
Optimal Basic Block Reordering via Hammock
Decomposition

Oleg Medvedev
Fac. of Mathematics and Mechanics

St. Petersburg State University
Universitetski pr., 28, 198504, St.Petersburg, Russia

Email: dours@mail.ru

Abstract—Many optimizing compilers use basic block re-
ordering to reduce conditional branch misprediction penalties,
decrease the number of unconditional branches and to improve
the instruction cache performance. To perform this optimization
one has to solve an NP-hard problem of finding a covering of a
weighted control flow graph with a node-disjoint set of simple
paths with maximal total weight; the problem is usually solved
heuristically. We present the precise method which decomposes
the initial graph into the set of subgraphs of certain kind —
hammocks— and then solves a subproblem for each subgraph
by an exponential branch-and-bound algorithm. The algorithm
was tested on several real-world C programs, and its running
time was as small as the rest of the compilation time for 91%
of the tested graphs. Unfortunately it still failed to finish in a
reasonable time for the remaining graphs since they didn’t have
enough hammocks. We consider fixing up this drawback as a
future work.

I. I NTRODUCTION

Basic block reordering is a well-known optimization which
allows to reduce the number of pipeline flushes caused by
conditional jumps, improve instruction cache performance and
decrease the number of unconditional jump executions. It gives
much better results when applied to a program together with
its profiling information.

This optimization is typically reduced to the following graph
problem: given a control flow graph of a function with integer
weights on its edges, find its covering with a set of node-
disjoint simple paths with maximal total weight. Here a weight
of a path is a sum of weights of its edges. A weight of an
edge is actually a result of profiling — it is equal to a number
of times a control passed through the edge during function
execution on a set of tests.

This problem can be approximately solved by a greedy
approximation algorithm, which is fast and gives answers that
are close to precise or by reducing it to a traveling salesman
problem. The latter algorithm works rather fast in practice and
gives an answer that is very close to the precise one, butis
not precise.

This paper presents an approach to solve the problem
preciselyand fast. This approach useshammocksto decompose
the problem and construct an answer incrementally starting
from the smallest hammocks and proceeding to the whole
graph using simple branch-and-bounds method on each step.

This approach leads to an algorithm that usually works
fast, but may fail to finish for graphs that don’t have enough

hammocks.

II. T ERMINOLOGY

The following notation is used throughout this paper:

• a control flow graph is a directed graph with a dedicated
starting node from which all other nodes are reachable;

• for an edgee, src(e) denotes its source anddst(e) — its
destination;

• for a nodev, ins(v) denotes a set of incoming edges and
outs(v) — a set of outgoing edges;

• “the path covering problem” is a problem to cover a
weighted graph with a node-disjoint set of simple paths
with maximal total weight of edges in those paths.

III. T HE OPTIMIZATION AND ITS REDUCTION TO THE

GRAPH PROBLEM

Consider a control flow graphG = (V, E) of some
function with integer weights on its edges given by a function
w : E → N. For an edgee w(e) is a number of times a
flow of control passed fromsrc(e) to dst(e) during function
execution on a set of tests. Thus, it is a kind of profiling
information. First, consider a following simple model of
processor jump penalties: every non-fallthrough jump (either
conditional or not) takes one cycle. That is, a jump from
a previous instruction to the next one takes 0 cycles to be
performed and every other one takes 1 cycle. Suppose that we
want to minimize a number of cycles a processor spends on
jumps while executing the function on the same set of tests.
If the set is representative this will also accelerate execution
on an average test. Suppose that the only action allowed to
achieve this is to reorder the basic blocks of the function in
its machine code.

Let {p1, . . . , pl} be the covering ofG with node-disjoint
paths of maximal total weight. Letpi = (ui,1, ui,2, . . . , ui,ki).
Then (u1,1, u1,2, . . . , u1,k1 , u2,1, . . . , ul,kl

) is a reordering we
need, because all the edges in the covering correspond to
jumps that take 0 cycles to be executed while all other edges
take 1 cycle for each time they are passed. Thus the maximal
amount of cycles is saved by such an ordering.

The processor model where each non-fallthrough jump takes
1 cycle is too simple. In this paper a more reasonable model
is used which is defined by the three constants:

• a — a number of cycles a processor spends to execute a
taken conditional jump (the “pipeline flush” case);

• b — a number of cycles spent on a not taken conditional
jump;

• c — a number of cycles spent on an unconditional jump.

The optimal reordering of nodes of a graphG = (V,E) for
this model can be reduced to the path covering problem for a
graphG′ = (V ′, E′), where |V | = |V ′| and |E′| ≤ 3

2 · |E|.
This reduction is provided in [7].

IV. EXISTING METHODS TO SOLVE THE PATH COVERING

PROBLEM

This section gives an overview of algorithms to solve the
path covering problem for the special case where weights of
all edges are equal to 1 (“unweighted case”) as well as for the
case of arbitrary non-negative integer weights.

A. The unweighted case

The NP-hardness of the problem even for this case is proven
in [3]. An algorithm to solve it in polynomial time for dags
is given there too. It can also be polynomially solved for
all reducible control flow graphs, which is proven in [4].
An interesting linear algorithm for the graphs representing
“structural” programs is provided in [5]. Unfortunately the
class of such graphs is very small.

B. The weighted case

Two approximation algorithms are known.
The greedy algorithm[1] starts with a covering containing

no edges, where each node is a separate path. Then it processes
all the edges in order of decreasing of their sizes. It adds an
edge(u, v) to the covering ifv is a first node of some path
and u is a last node of someother path, thus merging those
two paths into a one. It skips the edge otherwise.

Traveling salesman. The authors of [2] reduced the path
covering problem to the directed traveling salesman problem,
which can be approximately solved by a special solver. They
claim that their approach gives an answer that averages within
0.3% of a provable optimum on their benchmarks. The speed
of their algorithm is less than the speed of other compilation
passes. The difference between the greedy algorithm and their
approach is about 0-10%.

V. THE PROPOSED APPROACH

This section first describes a simple branch-and-bounds
algorithm that cannot solve the path covering problem for
general control flow graphs because it works too slowly. Then
a definition of a hammock is given along with a way to
decompose the problem using hammocks. Since each part of
the decomposed problem is small enough it can be solved by
the branch-and-bounds algorithm in a reasonable time.

0

1

2

3

4

0

1

4

b)a)

Fig. 1. A graph and a hammock on the left, the graph with the collapsed
hammock on the right

A. Branch-and-bounds

Suppose we are given a graphG = (V,E) where
V = {v1, . . . , vn}; let w : E → N be a weighting function.

The algorithm is a recursive procedure of one parameteri
— a number of a node to be processed. It works as follows:

1) Casei < n. Suppose that we have already constructed
A — a path covering of the subgraph ofG consisting
of nodesv1, . . . , vi. We compute an upper bound for
a weight of the best covering containingA using the
bounding function described below. If this bound doesn’t
exceed the current best we do nothing. Otherwise for
eache ∈ out(vi) we try to adde to A. If this edge
doesn’t break the covering (i.e. doesn’t enter a node that
some other edge enters and doesn’t transform any path
to a cycle) we recursively proceed to the nodevi+1;

2) Casei = n. A is a covering of the whole graph in this
case. It is compared to the current best answer, which
is updated if needed.

The bounding function is defined as follows: letA be
the current path covering for the nodes{v1, . . . , vi}. Then
a weight of any covering that containsA will not exceed∑

e∈A w(e) +
∑n

j=i maxe∈out(vj) w(e).
This algorithm works fast only for small graphs (several

tenths of nodes).

B. Decomposition

In this section we present a way to decompose the problem
using subgraphs of a certain kind called “hammocks”.

1) Definition of a hammock:Let G = (V, E) be a graph
andG′ = (V ′, E′) — its subgraph. A nodev′ ∈ V ′ is called
an entry node of G′ iff it is the start node ofG or ∃e ∈
ins(v′) : src(e) /∈ V ′. A nodeu ∈ V is called afinal node iff
u /∈ V ′ and∃e ∈ ins(u) : src(e) ∈ V ′. Informally, if we are
traveling from the start node ofG then we can enterG′ only
through some of its entry nodes and can leave it only to some
of its final nodes.G′ is called ahammockiff it has exactly
one entry node and at most one final node. For example, a
subgraph consisting of nodes{1, 2, 3} on a figure 1a) has one
entry node — 1 — and one final node — 4 — and, thus, is a

1

21

20

10
11

1
22

21

v

u

a) 52

1

21

20

10
11

1
22

21

v

u

b) 73

1

21

20

10
11

1
22

21

v

u

d) 75

1

21

20

10
11

1
22

21

v

u

c) 63

1

21

20

10
11

1
22

21

v

u

e) 63

Fig. 2. the five subproblems to be considered to find an optimal answer

hammock. On the contrary a subgraph consisting only of node
1 is not a hammock because it has two final nodes —2 and
3.

The important idea is that a hammock with entry nodeu
and final nodev can be replaced by an edge(u, v), which
simplifies the graph. A graph with a selected hammock is
shown on figure 1a). A corresponding simplified graph is
shown on figure 1b).

2) How to decompose the path covering problem for a
given hammock:suppose we have some control flow graph
G and a hammockG′ inside it. Suppose we also can find an
optimal solution forG′ and forG without G′. The main idea
of our approach is to use these capabilities to obtain an optimal
answer for the whole graphG. We will show this idea using
the graph and the hammock on figure 1 as an illustration. The
hammock there consists of nodes 1, 2, 3 and the rest of the
graph consists of nodes 0 and 4.

The idea is to compute five pairs of optimal coverings of
the hammock and the rest of the graph, satisfying different

boundary conditions, then join the coverings in each of the
pairs and take the best one of the resulting five coverings of
the whole graph. Let’s call the hammockG′, the rest of the
graph —G′′, the entry node of the hammocku and the final
one —v. Those five cases are described below and are shown
on respective subfigures of figure 2. The edges that are not
allowed to be covered in the respective case are dotted and
those contained in the optimal covering are bold. Each edge’s
weight is written near it. A total weight of an optimal covering
for each case is written below an image.

The five pairs of coverings are:
a) an optimal covering ofG′ that is allowed to enteru but

is not allowed to enterv; an optimal covering ofG′′ that
is not allowed to enteru but is allowed to enterv;

b) an optimal covering ofG′ that is allowed to enteru and
is allowed to enterv; an optimal covering ofG′′ that is
not allowed to enteru and is not allowed to enterv;

c) an optimal covering ofG′ that is not allowed to enter
u and is not allowed to enterv; an optimal covering of
G′′ that is allowed to enteru and is allowed to enterv;

d) an optimal covering ofG′ that is not allowed to enteru
but is allowed to enterv and is not allowed to contain
any path fromu to v; an optimal covering ofG′′ that is
allowed to enteru but is not allowed to enterv and is
allowed to contain a path fromv to u;

e) an optimal covering ofG′ that is not allowed to enter
u but is allowed to enterv and is allowed to contain
a path fromu to v; an optimal covering ofG′′ that is
allowed to enteru but is not allowed to enterv and is
not allowed to contain any path fromv to u.

The intuition behind these cases is rather simple: we cannot
just find optimal coverings forG′ and G′′ and join them,
because we are at hazard to obtain a covering that has two
paths simultaneously enteringu or v or a cycle that goes from
u to v completely insideG′ and back inG′′. Note that we
need to explore all possible ways to includeu and v in path
coverings forG′ andG′′.

C. How the decomposition and the branch-and-bounds algo-
rithm are fit together

The proposed algorithm to solve the path covering problem
works as follows:
• given a graphG find all the hammocks with more than 4

nodes in it and sort them in order of increasing of their
sizes. LetH1, . . . , Hk be the sorted hammocks;

• process the hammocks in this order and for each ham-
mock Hi

– find coverings for the 5 cases described above using
the branch-and-bounds algorithm;

– let u be the entry node ofHi and v be the final
one. ReplaceHi with one “edge”(u, v) in all the
hammocks that are not yet processed. This edge has
5 different weights corresponding to weights of the
respective coverings;

• the biggest hammockHk is the graphG, thus we obtain
the answer forG as the answer forHk.

TABLE I
TIME SPENT TO COMPILE AND OPTIMIZE THE TEST PROGRAMS, IN

SECONDS

name gcc
time

opt
time

number
of big
graphs

avg
size
of big
graphs

max
size
of
good
graph

number
of
bad
graphs

avg
size
of bad
graphs

gzip 1.32 0.52 8 110.75 149 0 0
bzip2 2.24 7.87 16 240.25 648 1 648
awhttpd 0.78 1.39 2 84 84 0 0
gnuchess 6.681 12.84 40 191.5 552 5 210.2

In other words the algorithm solves the problem for some
hammock and collapses it to one “edge” in the enclosing
hammocks thus simplifying the problem for them. Note that
a hammock is collapsed not to a regular edge, but to an edge
that must be treated in a special way: the branch-and-bounds
algorithm has to consider five different cases for such an edge
paying respect to boundary conditions mentioned above.

VI. RESULTS

The algorithm was implemented on basis of the PRAN-
LIB [6] library for control flow optimizations. It parses the
assembler output of gcc, reorders basic blocks and prints
assembler code back.

We tested our implementation on four open-source pro-
grams:

• gzip — general-purpose data compressor;
• bzip2 — another data compressor (a bit better, but

slower than gzip);
• awhttpd — a tiny web server;
• gnuchess — a well known program that plays chess.

The average improvement of our path covering algorithm
over the greedy approach is about 3% for these tests, which
corresponds to results reported in [2]. We are mostly interested
in the running time of the algorithm. The table I gives the
following information:

• time spent bygcc to compile the program (without our
optimization);

• time spent by our optimization for this program;
• a number of graphs with more than 80 nodes in the

program;
• average size of these graphs;
• size of the maximal graph that our algorithm can process

fast;
• a number of graphs that our algorithm failed to process

fast;
• average size of these graphs.

Where “to process fast” means to process in less than 6
seconds on an Intel Core-Duo 1.83MHz processor. We didn’t
provide the results for the graphs with less than 80 nodes
because we believe them to be insignificant.

It occurred that the algorithm failed to finish fast on 9%
of the big graphs considered. The reason for that is not the
size of those graphs but the lack of hammocks in them — this

forces the algorithm to run the branch-and-bounds method on
some large graph for which it fails to finish. The run time of
the algorithm is comparable to that of the compiler for the
majority of the graphs.

VII. F UTURE WORK

The algorithm described can easily be generalized to process
subgraphs which have more entry and/or final nodes than
hammocks. To use the generalized algorithm we may for
example borrow some edges from a graph, then find a set of
hammocks in it, then add the edges back and use the resulting
large set of more complex subgraphs. This may help to find
answers for the graphs which don’t have enough hammocks.

REFERENCES

[1] K. Pettis and R. C. Hansen. “Profile guided code positioning”. In
Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, pp 16-27. ACM, June 1990

[2] C. Young, D. S. Johnson, M. D. Smith, D. R. Karger, “Near-optimal
intraprocedural branch alignment”. In Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and implementation,
pp 183-193. ACM, 1997

[3] F. T. Boesch and J. F. Gimpel. “Covering the points of a digraph with
point-disjoint paths and its application to code optimization”, Journal of
the Association for Computing Machinery, Vol 24, No 2, pp 192-198,
April 1977

[4] T. Hirata, A. Maruoka and M. Kimura. “A polynomial time algorithm to
find a path cover of a reducible flow graph”. Syst. Comput. Control 10,
3 (May-June 1979), 71-78.

[5] M. V. S. Ramanath and M. Solomon. “Jump Minimization in Linear
Time”. ACM Trans. Program. Lang. Syst. 6, 4, pp 527-545, 1984

[6] http://oops.tepkom.ru/projects/pranlib
[7] O. Medvedev. “Linearization of a control flow graph with respect to a

profiling information”. System Programming, Issue 2, 2006 (to appear).

