Optimal Basic Block Reordering via
Hammock Decomposition

Oleg Medvedev
St. Petersburg State University
Russia

introduction

* a problem of control flow graph basic blocks
reordering to eliminate some pipeline flushes and
unconditional jumps

* its informal reduction to an NP-hard problem of
covering an edge-weighted graph with a set of
non-intersecting paths of maximal total weight

* a way to use hammock decomposition of a
control flow graph to solve this problem
precisely using a simple branch-and-bounds
algorithm to solve small subproblems

time

processor pipeline

O

1

2

3

4

Fetch

add shi
Decode add | shl
Get args add @ shl
Execute add | shi
Store results add | shl

* instruction execution 1s separated to many
stages

e different stages for different instructions can be
executed 1n parallel, which gives a
performance boost

conditional/indirect jump 1nstruction
leads to “pipeline bubbles” = lost cycles

time
>
o 1 2 3 4 5 6

Fetch jeLO add adc inc |mov
Decode jeLO add adc | inc mov
Get arguments | Xor jeLO add
Execute xor jeLO
Store result Xor jeLO

xor 10, r0
je LO

add rl, r2
adc r3, 14

Inc r5

LO:

mov 10, [r3]

all processors try to predict jump

behaviour to fix this

* simple prediction heuristics, like “every branch
1s not taken”, or “backward jump 1s usually

taken”

e prediction based on results of previous
executions of the jump

— branch target buffer (BTB)
- BTB + history patterns

— perhaps something more sophisticated

but part of this work can be
statically done by compiler

@ true false
’@¢ @Q ,

XA
x>=10.

@?

* we may reorder basic blocks of a control flow
graph of every function to make the most

frequent jumps be “fall-through™

basic block reordering
e consider a CFG with execution counts on edges

* the penalty to be minimized is the total amount
of cycles spent on execution of jump
instructions on the same tests for which the
profiling information was gathered

* to minimize the penalty we find a covering of a
CFG by a set of non-intersecting paths with
maximal total weight and make all the edges 1n
these paths tfall-through

covering and reordering

= penalty of 4
pipeline
flushes + 10
unconditional
jumps

= penalty of 4
pipeline
flushes + 4
unconditional
jumps

complexity of the problem

® covering a weighted graph with non-intersecting paths
1s NP-hard, because we can simply check if the graph has
a hamiltonian path by solving this problem

* it 1s usually solved by a greedy approximation algorithm

* one can implement a simple exponential branch-and-
bounds algorithm that finds an optimal answer for tiny
programs, but never finishes even for GNU zip (gzip)

* thus, one has to use a kind of decomposition of a graph
to find the precise solution fast

What 1S a hammock

* a CFG subgraph with
one entry node and at
most one final node

1n other words, a
fragment useful for
decomposing graph
problems

all hammocks in a
graph can be found
in 0(E'|time

general decomposition 1dea:
example graph

general decomposition 1dea

* we have a graph with a
hammock inside it

* we know how to find an
optimal path covering for
smaller graphs

* we want to obtain a covering
for the whole graph by
combining its “hammock” and

/ “non-hammock” optimal
coverings

* we cannot just paste the two
coverings, but have to consider
several ways to cover the entry
and final nodes instead

decomposition: case 1

a total weight of the covering 1s 52 here

* we find an optimal covering

of the green graph that is
allowed to enter the entry
node and 1s not allowed to
enter the final one

we find an optimal covering
of the blue graph that 1s
allowed to enter the final
node and 1s not allowed to
enter the entry one

we paste the two coverings
and consider the result as a
candidate optimal covering
for the whole graph

decomposition: case 2

a total weight of the covering 1s 73 here

* we find an optimal covering

of the green graph that is
allowed to enter the entry
node and 1s allowed to enter
the final one

we find an optimal covering
of the blue graph that is not
allowed to enter the final
node and 1s not allowed to
enter the entry one

we paste the two coverings
and consider the result as a
candidate optimal covering
for the whole graph

decomposition: case 3

* we try an optimal covering of
the green graph that is not
allowed to enter the entry
node and 1s not allowed to

1T @ enter the final one
/ * together with an optimal

covering of the blue graph
. that is allowed to enter the
final node and 1s allowed to
enter the entry one

a total weight of the covering 1s 63 here

decomposition: case 4

* we try an optimal covering of the
green graph that is not allowed to
enter the entry node and but is
allowed to enter the final one and is
not allowed to contain a path from
the entry node to the final one

* together with an optimal covering of
the blue graph that is not allowed to
enter the final node but is allowed to
enter the entry one and 1s allowed to
contain a path from the final node to
the entry one

* we escape considering cycles by this
a total weight of the covering is 75 here trick

decomposition: case 5

a total weight of the covering 1s 63 here

* we try an optimal covering of the

green graph that is not allowed to
enter the entry node and but is
allowed to enter the final one and is

allowed to contain a path from the

entry node to the final one

together with an optimal covering of
the blue graph that is not allowed to
enter the final node but is allowed to
enter the entry one and 1s not
allowed to contain a path from the
final node to the entry one

we escape considering cycles by this
trick

decomposition

the best of the five coverings described above 1s
an optimal covering for the graph

using decomposition together with
branch-and-bounds

* find all the hammocks and process them 1n an
increasing order of their sizes

e for each hammock

— find optimal coverings for the 5 cases described
above using branch-and-bounds

— replace the hammock by an edge from the entry to
the final node marked with those 5 weights

* the whole graph 1s the biggest hammock

implementation and results

* the algorithm was implemented in OCaml, it
uses the Pranlib control flow graph library
(http://oops.tepkom.ru/projects/pranlib)

* it processes gcc assembler output

* tested on several open-source programs (gzip,
bzip2 (de-)compressors, gnuchess chess player,
awhttpd mini web-server), total of about 66
graphs with more than 80 nodes

implementation and results

* an average improvement of the exact algorithm
over the usual approximation one 1s 3% 1n terms
of processor cycles lost for unconditional
jumps/pipeline flushes (the penalty function)

* the algorithm works as fast as the rest of the
compilation process with exception of 9%
graphs which don't have enough hammocks

* this 1s much better than what 1s achieved by the
same branch-and-bounds without decomposition

table of all results

name gcc opt number avg max number avg
time time of size size of bad size of

big of of graphs bad
graphs big good graphs

graphs graph

gz1p 1.32 052 8 110.75 149 0 0
bzip2 224 787 16 24025 648 1 648
awhttpd | 0.78 1.39 2 84 34 0 0
gnuchess | 6.681 12.84 40 191.5 HH2 5 210.2

Future work

* we may try to use more complicated subgraphs
than hammocks to decompose the problem

* for example, we may remove all the cross edges
from the graph, find hammocks in the result,
add the edges back and consider the resulting
fragments

Thank you

