

Abstract— In this paper, we consider the problem of adjusting

cross development toolkits (assembler, linker, simulator, profiler,
debugger, and IDE) to support processor extensions in the form
of accelerators (synchronous coprocessors). Considered approach
is based on describing accelerator models in a special
specification language and using such descriptions to
dynamically reconfigure cross toolkit to support assembling,
cycle accurate simulation and debugging of applications
containing new instructions implemented by the accelerators. We
describe a generalized mathematical model of the supported class
of accelerators and interfaces with the main processor. The
specification language for defining concrete accelerators is given
and our technology for dynamic cross-tools reconfiguration is
overviewed.

Index Terms— Cross development tools, embedded system
design, hardware specification languages, programming
environments.

I. INTRODUCTION
n this paper, we consider the problem of reconfiguration of
cross development tools to support extensions of the target

processor in the form of synchronous coprocessors
(accelerators). By cross development tools (cross-system or
cross toolkit) we mean a set of software utilities (assembler,
linker, simulator, debugger, profiler, and IDE) for software
development using a host-machine different from the target
hardware (e.g. using PC to develop firmware program for a
mobile phone). Supporting processor extensions in the cross
tools means ability to assemble, build, simulate and debug
application programs that contain instructions implemented by
user specific accelerators and unknown when building toolkit
for the main processor. Considered approach is based on
allowing user to describe accelerator models using developed
at ISP RAS specification language. These models are then
used for dynamic reconfiguration of the main cross toolkit.

This task appears because many modern hardware
architectures are built using a standard processor core and a
set of specific extensions in the form of domain specific
accelerators (coprocessors). A subset in the core’s instruction
set is reserved for accelerator invocation commands with the
semantics of real behavior initiated by such commands
defined by concrete accelerators independent of the main

Manuscript received April 20, 2007.
Vladimir V. Rubanov is with the Institute for System Programming of the

Russian Academy of Sciences, Moscow, Russia (e-mail: vrub@ispras.ru).

processor. Processor core and accelerator vendors may be
different companies, and cross development tools from the
core’s vendor must support core’s extensions created by
customers. In this article, by core’s extensions we mean
adding accelerators that may introduce new memory elements
(registers, data memories) and new instructions explicitly
invoked by the main processor as if they are a part of its
instruction set. The entire system consisting of the processor
core and a set of accelerators is viewed by an application
programmer as a computing system with uniform instruction
set and a single program. The memory of such system consists
of the main processor memory, shared memory and
accelerators’ local memories.

To distinguish the class of supported accelerators and
interfaces with the main processor as well as to introduce
decomposition of the system components, we created a
generalized mathematical model that allows to model state and
behavior of a wide class of accelerators with cycle true
accuracy. To define concrete accelerator models within the
generalized one, we developed a specification language ISE
(Instruction Set Extension) and implemented tools for visual
editing of ISE specifications with automatic
inconsistencies/errors analysis and detection. We implemented
dynamic cross-system reconfiguration based on the
interpretation of user defined accelerator model specifications
while assembling/disassembling, simulating and debugging.

The article consists of the introduction, three sections and
the conclusion and is organized as follows. Section II presents
our accelerator modeling approach, a generalized
mathematical model is given and the accelerator specification
language ISE is described. Section III contains an introduction
to the technology used for dynamic cross system
reconfiguration based on the accelerator specifications defined
in ISE. Section IV overviews the related work addressing
hardware modeling using specification languages targeted at
automatic cross tools generation. In the conclusion, practical
results are presented and future work is outlined.

II. MODELING PROCESSOR EXTENSIONS
In this section, we consider modeling of processor

extensions in the form of accelerators (coprocessors) using a
specification language. A generalized mathematical model for
a wide class of supported accelerators is given (see II.A) as
well as the interaction protocol with the main processor. In
II.B, we present the ISE specification language for concrete

Dynamic Support of Processor Extensions in
Cross Development Tools

V.V. Rubanov

I

accelerator model specification within the generalized one.
Defined in this way accelerator models are used for automatic
reconfiguration of the following cross system components:
simulator, assembler/disassembler, debugger and profiler (see
Section III).

A. Generalized Accelerator Model
We consider accelerators as slave coprocessors with

instructions issued by the main processor. All accelerators and
the main processor work synchronously using the shared cycle
generator. An accelerator can have its own local data memory
and also it has access to the memory shared between processor
and accelerators. Accelerators do not have their own program
memories.

1) Accelerator State

a) Accelerator memory
A memory cell is an ordered set of binary variables (bits)

with possible values 0 or 1. The number of bits in a cell is
called cell’s width. A set of one or more cells with the same
width forms a memory area. One or more memory areas form
a memory. We will denote memory by a capital letter S. Cell’s
state is defined by the set of particular values of all the cell’s
bits. Memory’s state is defined by the state of all the cells in
all the areas of the memory. Memory state is denoted by a
lower-case letter s. Let N to be the sum of all the widths of all
cells in a memory S, then the memory can be in one of the 2N
states. The set of possible memory states is denoted by {s}.
Please note: this set is unambiguously defined by the memory
structure. Memory structure descriptor Σ is a set of the
following numbers: the number of areas A and a set of A pairs
(Wi, Si), defining the width Wi of the area cells and their
quantity Si.

In our model, system memory S consists of main

processor local memory PS , shared memory SS and a

number of local accelerator memories aS :

{ }AN
i

a
i

SP SSSS 1}{,, == , AN - the number of
accelerators.

Considering local processor memory is not important in this
article, because accelerator has no access to it. A pair of
shared memory and local accelerator memory forms the full
accelerator memory, which we will denote as AS :

},{ aSA SSS =
The set of all possible states of the accelerator memory is

denoted by aSA sss }{}{}{ ×= . Each area in the local or
shared memory is characterized by access delay – the number
of cycles that should be passed after writing to a cell before
the changed value can be read; before that moment the
previous value is fetched.

Usually, accelerator memory has the following areas:
− A set of one or more data memories.
− A set of one or more register files.

− Single registers.

b) Control state
Accelerator has fixed number of control slots, the set of

which is denoted by AP . Each slot has an index, which will
be identified with the slot itself. Each slot Li is a pair of
integer variables (fields): instruction number field nf and
instruction state field t. The set of possible values of
instruction number field {nf} is finite. Zero always belongs to
{nf}. There is a one-to-one correspondence between {nf}\0
and instruction descriptors set, which will be defined below.
That is why we will identify number }{ fnn ∈ with the

corresponding descriptor f. Possible values of the instruction
set field are natural numbers (including 0). The state of a slot
with index n is denoted by),(tnl fn = and is defined by the

values of the slot’s fields. The set of possible slot states is
Ν×= }{}{ fnl . Slot in the state (0, 0) is called free slot,

otherwise active slot. Accelerator control state p is a whole of
the states of all the accelerator slots. The set of possible
accelerator control states is denoted by SN

A lp }{}{ = , where
Ns is the number of control slots in the accelerator. Active
slots correspond to accelerator instructions in progress, thus
the number of control slots defines the maximum number of
accelerator instructions running in parallel. Instruction number
field value of an active slot defines the running instruction for
this slot, while the instruction state field value corresponds to
the number of cycles passed from this instruction start.

c) Accelerator state
Accelerator state a is defined by the pair of memory state

and control state: a={s, p}. The set of possible accelerator
states (accelerator states set) is denoted by

AAA psa }{}{}{ ×= .
Accelerator state element is any accelerator memory cell or

any accelerator control slot. State element state is defined by
the state of the cell or control slot correspondingly.

Parallel composition of functions nϕϕϕ ..., 21 (which are
defined on the accelerator states set) is a function

nϕϕϕω ||...|||| 21= (also defined on the accelerator states
set), specified for accelerator state a as follows: let

AA PS ∪==Α }{α is the set of all state elements of the

accelerator, iΑ - the set of state elements, which state is

changed by function iϕ :)(αα ϕα aa ii ≠⇔Α∈ . If

intersection of all nii ..1, =Α is not an empty set, then ω is
undefined for the accelerator state a. Else, the value of ω is
specified as follows:

⎪⎩

⎪
⎨
⎧

Α∈=′

Α∈=′
==′

ii

i

aa

Aaa
a

αϕ

α
ω

α

αα

),(

\, Υ
, where αa′ and

αa - new and old state of α element correspondingly.

2) Accelerator Model

Operation [elementary] is a function ψ defined on the
accelerator memory states set {s}A (see 1.a), that calculates the
next memory state based on the previous one. Operations
correspond to actions that can be done for one cycle (e.g.
adding two registers):

AA ss }{}{: →ψ
The set of all accelerator operations is denoted by

}{ψ=Ψ A . For any accelerator this set includes so called

empty operation 0ψ that does not change memory state.
Each elementary operation is characterized by functional

resources that are necessary for this operation. We denote the
set of all accelerator resources by AR and the set of its
subsets (including empty one) by AΡ . Function Ar that maps
operations set AΨ to the set AΡ is called resource function.
This function specifies resources set for each operation in

AΨ :
AAAr Ρ→Ψ:

Let us denote the set of all subsets in AΨ that contains
operations with non-intersecting resources as AΩ :

∅=∩→≠∈∀⇔Ω∈)()(,, j
A

i
A

ji
A rrji ψψωψψω

Thus an element of AΩ defines a group of operations
}{ iψ that can be run in parallel within one cycle. Using

parallel composition (see 1.c) for all operations in AΩ∈ω
one can assign a function on the accelerator memory states set
{s}A. Further we will identify elements of AΩ with
corresponding functions defined as above. These functions are
called complex-operations. Please note that in this sense

AA Ω⊂Ψ .
We introduce two control actions: next and end. Each

control action is a parameterized function on the set of
accelerator control states. Function parameter is a slot index

]..1[Sl Nn ∈ . Action next increments by 1 the value of
instruction state field t for the slot defined by the parameter

ln .

⎩
⎨
⎧

=+=′
≠=′

==′
lnnn

lnn
l nntfl

nnll
pnnextp

),1,(
,

),(

Action end turns corresponding slot to the idle state.

⎩
⎨
⎧

==′
≠=′

==′
ln

lnn
l nnl

nnll
pnendp

),0,0(
,

),(

The set of these control actions is denoted by
},{ endnextU A = .

Accelerator instruction descriptor is а function f that

calculates a pair of complex-operation AΩ∈ω and control
action AUu ∈ based on the accelerator memory state

Ass }{∈ and instruction state Ν∈t (see 1.b):
AA

A Usf ×Ω→Ν×}{:
The set of all instruction descriptors of an accelerator is

denoted by }{ i
A fI = . This set is finite and each element

f of this set is assigned an index 1≥fn (e.g. in order of

machine code ascending as defined by the decoding function,
see below). For any accelerator instruction descriptor the
following is always valid (the only instruction end):

undefinedtsftendsf =>∀⇒=)),((:},{),(ωτωτ
An instruction descriptor f unambiguously defines

instruction cycle behavior function fb , which is defined on

the accelerator states set Aa}{ and parameterized by a slot

number ln . Function fb is not defined if instruction number

field value in the slot ln does not match the corresponding to

fb instruction descriptor f . Otherwise this function

AAlf aanb }{}{:)(→ is defined as follows:

Given the memory state s and instruction state filed value t
in the slot ln , using the instruction descriptor a pair of
complex-operation ω and control action u is determined by

),(},{ tsfu =ω , where ω defines the resulting memory
state)(ss ω=′ , while u calculates the resulting control state

),(pnup l=′ .),(ps ′′ defines the values of),,(psnb lf .

Thus the set of instruction descriptors AI unambiguously

defines the set of instruction cycle behavior functions AB
with the one-to-one correspondence.

Accelerator instruction codes set }{ i
A cC = is a set of

binary numbers with the same width. Each element of this set
corresponds to one of the possible values of the accelerator
instruction code field in the machine code for accelerator
invoking command (see 3.a).

Decoding function Ad maps the set of accelerator

instruction codes AC to instructions descriptors set AI :
AAA ICd →:

Decoding function unambiguously defines accelerator
decoder – function DA:

AA
AA ppCD }{}{: →× :

Function DA is specified as follows: if in p
)0,0(:

00 =∃ nln then

⎩
⎨
⎧

==′
≠=′

==′
0

0

),1),((
),,(

),(
nncdl
nntfl

pcDp A
n

nnnA , else AD is

undefined. In other words, in the case of free slot existence
decoder initialize the state of this slot to)1,(f , where f is
determined using accelerator instruction code using decoding

function Ad .
Cycle function AT defined on the accelerator states set

{a}A determines accelerator state transition for each cycle:

AA
A aaT }{}{: →

This function is unambiguously defined by parallel
composition (see 1.c) of instruction cycle behavior functions

fb associated with instruction descriptors f corresponding

to the instruction number field values fn for each active

control slot. In other words, active slots define the set of
active instructions characterized by corresponding cycle
behavior functions. Parallel composition of these functions
defines AT for the current cycle (accelerator behavior).

Generalized accelerator model AM is the following set of
elements described above:

{ }AAAAAA TDCPSM ,,,,=

3) Accelerator Simulation

For simulating of an accelerator specified by model AM
(see p.2 above) we need a cycle generator and a concrete
accelerator memory initial state Ass }{0 ∈ . In the initial

accelerator control state 0p all slots are always free. In the
system under consideration all accelerators and the main
processor work cycle-synchronously (cycle generator is the
same), that is one accelerator cycle is equal to the main
processor cycle. Besides cycle generator, the only external
event for accelerator is issuing (feeding) of an instruction to
accelerator by the main processor (see 3.a right below).

a) Accelerator instruction invocation
For our system model, the instruction set of the main

processor must contain a subset devoted to accelerator
invocation commands. Such a command initiates an
accelerator instruction. Please note that when executing this
command the main processor is not responsible for further
calculations initiated. In the main processor instruction set,
each accelerator invocation command is defined by three
fields of the machine code (the fields order is not significant
as well as some fields may be non-continuous):

{opcode, accelerator index, accelerator instruction code}
When executing such instruction the main processor

determines by opcode that it is an accelerator invocation
command. Then it extracts accelerator index field and
passes remaining bits in the accelerator instruction
code to the corresponding accelerator for further decoding
and execution in parallel with the main processor. For the
main processor, execution stage of an accelerator invocation
command always takes one cycle. In terms of the abstract
model, execution of an accelerator invocation command
results in issuing accelerator instruction to an accelerator, thus
activating accelerator decoder function AD (AC is a subset
of the possible accelerator instruction code field

values set). The main processor can issue no more than one
accelerator instruction per cycle. Please note that
accelerator instruction code in its turn consists
of accelerator instruction opcode and operands fields.

Accelerator can run several multi-cycle instructions in
parallel, including multiple instructions with the same
descriptor. That is the main processor can issue new
instruction before the previous ones finish. In terms of the
described model this is possible if all operations initiated by
all parallel instructions use non-intersecting resources (see
p.2). In practice this is possible when accelerator pipeline and
functional units allow this. Application programmer
(compiler) is responsible for scheduling correct accelerator
instructions invocations.

b) Per cycle accelerator behavior
In response to the external cycle generator event in our

model accelerator behavior is defined by the state transition
according to its cycle function AT (see p.2). This function
defines per cycle behavior of the accelerator.

c) Data exchange and synchronization with the main processor
Data exchange between processor and accelerators is

performed via the shared memory (see 1.a). Please note that
some information is delivered to accelerator from the
processor in the form of accelerator instruction code (see 3.a).
Also one should mention that different accelerators do not
have access to each other local memories.

Shared memory access rules in our model correspond to
CREW (Common Read Exclusive Write) type. This means
that processor and accelerator can simultaneously read from
the same memory cell (within the current cycle) but
simultaneous write is forbidden. In the model, memory areas
can have access delay (see 1.a). By default, in the considered
implementation all memory areas have access delay 1. This
means that changed value of a memory cell can be read on the
next cycle only (flip-flop cells model). Please note that if the
access delay is more than 0 then it is possible to
simultaneously read and write to a cell, old value is fetched
when reading.

Accelerator instructions can take fixed or data dependent
number of cycles. From the application programmer
(compiler) point of view there are three ways of synchronizing
the main processor and the results of a running in parallel
particular accelerator instruction:

1. If the accelerator instruction takes fixed number of
cycles then it is possible to predict in static when the
results become available. The main program can be
designed to take it into consideration and rely on the
synchronous processor and accelerator execution.

2. Accelerator instructions with varying number cycles to
execute can use some dedicated flags in the shared
memory to indicate to the main processor in run-time
when the results of this instruction become available.
The main processor program can repeatedly read this
flag to check if accelerator result is ready.

3. Raising of an interrupt by accelerator for the main
processor when results are ready. Interrupt handler
routine can read accelerator results.

B. Describing Concrete Accelerator Models

The set of the following parameters, sets and functions
defines a concrete accelerator model:

{ }AAAAAASAA rRIdCNm ,,,,,,, ΨΣ=
Sections A.1) and A.2) contain definitions for all the

symbols in Am as well as prove that these symbols
unambiguously define all the generalized model elements:

− AA S→Σ ;

− AS PN → ,

− AA Dd → ,

− AAAA rR Ω→Ψ ,, ; AAAA TBI →→Ω, .
A special language ISE (Instruction Set Extension) was

developed at ISP RAS for concrete accelerator models
specification. In addition to concrete accelerator model
elements description it provides the means for defining
assembly syntax and binary coding for each instruction plus
visualization formats for all memory areas. In the rest of this
paper we will identify the concrete accelerator model with its
specification in ISE.

1) Memory Structure Descriptor

Special constructs are used to declare the following types of
memory areas:

− Data memory.
− Register file.
− Stand-alone register.
A combination of such declarations defines a memory

structure descriptor AΣ (see A.1.a).

Example. Memory structure of a simple accelerator:
Two data memories: LDM with 2048 words of 16 bits width

and TM with 2048 words of 64 bits width. Access delay for
each memory is 3.

Register file GRF containing two 16 bit registers GR0 and
GR1.

Stand-alone accumulator register ACR of 36 bits wide and
access delay of 1 (default).

DECLARE_MEMORY(INT(16, 3), 2048) LDM;
DECLARE_MEMORY(INT(64, 3), 2048) TM;

DECLARE_REGISTERS_FILE(INT(16), 2) GRF;

DECLARE_REGISTER(UINT(36)) ACR;

// debugging names and registers file
structure
MEMORY(LDM, "Acc LDM");
MEMORY(TM, "Acc TM");

REGFILE_BEGIN(GRF, "General Registers")
REGISTER(0, "GR0");

REGISTER(1, "GR1");
REGFILE_END()

2) Behavior Description

The following elements of Am are the parts of the
accelerator behavior description: the set of resources AR , the
resource function Ar , the set of operations AΨ , the set of

instruction descriptors AI and the decoding function Ad
(along with AC).

a) Operations

Each operation from AΨ is defined in C++ programming
language. All accelerator memory cells are globally accessible
from within an accelerator (in particular, register file contents
are accessible as indexed arrays). It is allowed to use auxiliary
local variables and the means of a special library (for example,
N-bit data types INT<N>, UINT<N>, fixed point data types:
FIXED<I,F>, bit manipulation subroutines). The set of
resources used by the given operation is marked by a call to
UseResources(resources) function (thus defining the
resource function Ar). In the current implementation the set
of resources in UseResources is indicated as a bit set
where each resource corresponds to a specific bit index. The
whole set of resources AR is declared by C++ enum with
values equal to powers of 2:
enum Resources {MAC_ADDER=1,

MAC_MULTIPLIER=2, ALU_ADDER=4};

Example 1. An addition of two 36 bit integer numbers.
void ADD_36_36

(INT<36>& res, INT<36> a, INT<36> b)
{
 UseResources(MAC_ADDER);
 res = a + b;

}

Example 2. Multiplication of two 16 bit signed integers.
void SMUL_16_16

(INT<32>& res, INT<16> a, INT<16> b)
{
 UseResources(MAC_MULTIPLIER);
 res = a * b;

}
An operation defined in C++ can be either a separate

function (see examples above) or can be embedded directly
into the instruction behavior function (see examples in 2.b
below).

b) Instruction descriptor

Each accelerator instruction descriptor from AI is defined
by appropriate instruction behavior function. The function can
have arguments mapped to instruction parameters ip . Thus
each function defines a set of instruction descriptors (each
descriptor corresponds to one combination of particular
parameter values). The body of the instruction behavior

function is defined in C++. The special built-in function
FinishCycle() implicitly defines the mapping to the set
of operations for each instruction state t . Every subsequent
call of this function distinguishes operations corresponding to
the given state t . Inside the instruction behavior function the
dependence of operations performed on the memory state (the
functional dependence of),(τsf on s) is achieved by
standard C branching and looping constructs (see example 3
below). A call to the FinishCycle() means completion of
the operations for current cycle and corresponds to the control
action next. Return from the instruction behavior function
corresponds to the control action end. This approach allows
easy describing of accelerator instructions preserving
semantics for cycle-true simulation.

Example 1. Here we define a single-cycle instruction,

performing a move between two registers defined by
GRF[greg] = LRF[lreg] operation:

ACC_FUNCTION Move_LREG_GREG
(INT<4> lreg, INT<4> greg)

{
 GRF[greg] = LRF[lreg];
 FinishCycle();

}

Example 2. A double-cycle MAC (multiplication and
accumulation) instruction. The multiplication at the first cycle
(see SMUL_16_16 in the example 2 from 2.a) is followed by
the accumulation at the next cycle (see ADD_36_36 in the
example 1 from 2.a):

ACC_FUNCTION MAC_LREG_GREG
(INT<4> grs, INT<4> grt)

{
 SMUL_16_16 (mulres, GRF[grs], GRF[grt]);
 FinishCycle();
 ADD_36_36 (ACC, ACC, mulres);
 FinishCycle();
}

If this instruction is issued by the main processor twice at
successive cycles then a situation occurs when both stages of
this function are executed simultaneously for different
instruction instances (multiplication stage of the first
instruction and accumulation stage of the second one). This
approach allows modeling accelerator pipelines.

Example 3. The convolution of two vectors in different

memory areas: DM0 and TM0. Execution time for this
instruction depends on the length of input vectors (which
should be set in a special register LOOPREG). Note that inside
the loop body few operations using non-overlapping resources
are executed at the same cycle. An interrupt is raised upon
completion of convolution actions:

ACC_FUNCTION CONV_ACC_DM0_TM0
(INT<4> dreg, INT<4> treg)

{

SMUL_16_16 (mulres, DM0[AR[dreg]++],
TM0[AR[treg]++]);

FinishCycle();
while (LOOPREG>0) {

ADD_36_36 (ACC, ACC, mulres);
SMUL_16_16 (mulres,

DM0[AR[dreg]++],
TM0[AR[dreg]++]);

LOOPREG--;
FinishCycle();

}
ADD_36_36 (ACC, ACC, mulres);
InterruptProcessor();
FinishCycle();

}

c) Decoding function

Decoding function Ad is defined by a set of pairs of
machine code format and a reference to an instruction
behavior function:
INSTRUCTION(<format_string>,

<invoker_name>);

Machine code format is a string consisting of the following
characters alphabet:

1. Bit characters: ‘0’ and ‘1’
2. Parameter characters: ‘A-Z’ and ‘a-z’
3. Wildcard character: ‘*’
4. Separator character: ‘-‘
Characters from pp. 1-3 are called significant characters.

Note, that the number of significant characters in machine
code format must be equal to the machine word width.

A continuous series of parameter characters defines an
operand. Accelerator decoder extracts designated bits and
passes them as a parameter ip to proper instruction behavior
function. Bit, wildcard or separator characters are used to
separate different operands.

Bit character specifies particular value for designated
position in machine code. Parameter character or wildcard
character allows any value (0 or 1) for its position. Separator
characters do not correspond to any position and are used to
distinguish operands and for cosmetic purposes.

Example:
INSTRUCTION("11-**-0000-0000-0001-LREG-
GREG", Move_LREG_GREG);

Instruction behavior function MoveLREG_GREG (see
example 1 in 2.a) has two 4 bit parameters (LREG[4;7] and
GREG[0;3]). Bits [20;21] can take any value for the given
instruction (actually they contain an accelerator number used
by the decoder of the main processor). The rest of the bits are
fixed and form accelerator instruction opcode.

The collection of machine code format strings in all the
INSTRUCTION pairs defines the set of accelerator instruction

codes for the given accelerator (see AC from A.2).

The number of control slots sN is defined by using

SLOTS(< sN >).

C. Assembly Syntax for Accelerator Instructions

There is a separate section in the accelerator specification
file that is responsible for assembly syntax definition for the
instruction set of this accelerator. More correctly, this section
defines syntax for the subset of the main processor’s
instruction set that corresponds to instructions invoking
commands of this accelerator (see A.3.a). This is useful for
adequate reflection of the corresponding command semantics
at the assembly level because the same (in the sense of
machine codes) commands of the main processor (for
accelerator invocation) may have different semantics
depending on the concrete configuration of accelerators in a
specific for each customer system. In addition to semantics
definition for accelerator instructions (see B.2), the possibility
to adjust assembly syntax for these commands is an important
feature of the system in hand. It allows to get a production
quality cross system adapted for a specific configuration
«processor + user accelerators».

The description of the assembly syntax for the instruction
set consists of tree sections:

1. Operand types and aliases.
2. Commands.
3. Constraints.

Detailed specification of the assembly syntax description is
out of the scope of this article. Only a concise description of
the essential functionality is given below.

1) Mapping Assembly Instructions to Machine Codes

The general template of the allowed assembly syntax for
accelerator instructions is defined as follows:
command ::= mnemonic

[parameter {, parameter}*]
{|| mnemonic [parameter {,
parameter}*]}*

mnemonic ::= const_string

parameter ::= operand

{[const_string] [operand]}*

operand ::= const_string

const_string ::= <any text without

quotes and spaces>

Examples of possible instructions:
DMOVE ACR1.h, DM0(DA0--),

ACR1.L, TM0(TA0++)

MOVE GRA, DM1(TA0+25) || ADD GR3, ACR2.H

In the assembly language an instruction consists of a
mnemonic (several mnemonics for parallel commands) and a
set of comma divided parameters. Each parameter may
contain several parts – operands belonging to some of the

described types. In the scope of one parameter operands must
be divided by non-empty strings of constant symbols.
Combination of mnemonics is mapped to opcode field of the
corresponding instruction. Each operand is mapped to a field-
operand of the machine word. It is possible to map operands
to discontinuous fields (when field’s bits are interlaced with
bits of other fields).

Example:
.types

grn [gr0:0] [gr1:1] [gr2:2] [gr3:3]
const6b $ -32 31

.mnemonics
MOVE {grn#GG},{const6b#CCCCCC}

% 1010-10CC-11GG-CCCC

This description defines the instruction MOVE with two
operands. The first operand of type grn is a general register.
The register code is placed in two bits beginning from the 4th
bit. The second operand is a constant in the range [-32; 31]
placed in two parts of the machine word: in four bits
beginning from the zero bit and two bits beginning from the
eighth bit. Opcode equals to 1010-10XX-11XX-XXXX.

2) Constraints

a) Operand type constraints
Each operand has a type that defines imposed by this type

single operand constraint. Meanwhile, to make error reporting
more sophisticated, one should define a general type for an
operand and make use of the general constraints (see the next
paragraph) to filter allowed values.

b) Multi-operand predicate constraints
Multi-operand predicate constraints are defined as a set of

logical predicates involving arithmetic expressions, which
may contain references to any operands used in the
instruction. It is assumed that constraints are met if all logical
predicates for the given instruction are “true”.

Constraint expressions support the following operations:
Logical operations &&, ||, !
Comparison
operations

<, >, <=, >=,
==, <>

Arithmetic operations +, -, *, /, %
Bit operations |, &, ^, ~

One can use numerical constants and references to operands

in the expressions.

Example. Operands 1 and 2 must be different:
ADD {GRs#SSSS}, {GRt#TTTT}

% 1000-1011-SSSS-TTTT
(GRs <> GRt) %

“Operands must be different for ADD”

Note that with the aid of the mechanism described, it is
possible to define constraints for single operands. Thus two

strategies of working with operand constraints are possible: on
the one hand it is possible to create a set of general types and
then narrow collections of allowed for particular operand
values using logical predicates, on the other hand – one may
work with a lot of specific types. The first strategy may result
in more specific error messages for instruction operands; the
second is simpler for the instruction set description. The user
may choose any strategy.

c) Inter-instruction relationship constraints
Each instruction may have a particular set of properties. It

is possible to assign values and activation area for each
property. The property value is a constant or a value of one of
the instruction operands. The activation area defines a range
of the adjacent instructions for which the property is active.
The default activation area [1;1] involves only the current
instruction. The properties description mechanism
(supplemented with the compatibility predicates – see below)
actually is a modified description of reservation tables.

Example:

MAC {acr#A},{grs#SSSS},{grt#TTTT}
% 1010-A001-SSSS-TTTT

[read_grn:grs, read_grn:grt,
write_acr:acr:2;2]

The given instruction has the following properties:
− read_grn – double property with values equal to

values of the operands grs and grt. The activation area
by default involves only the current instruction (this
means that values for the registers grs and grt are read
at the first cycle of the execution stage).

− write_acr – the property value equals to the value
of the operand acr. The activation area [2;2] affects the
next instruction (this means that the value of the acr
register will be written at the second cycle of the
execution stage).

Definition of the resource usage constraints is based on the

property description mechanism. It is necessary to define a list
of property compatibility predicates. The property
compatibility predicate specifies a collection of property pairs
in square brackets (pairs are divided by commas, properties in
a pair by the ‘=’ sign). Predicate is “true” for an instruction
pair if the following conditions are met: the first instruction
has all the properties from the left side of the pair, the second
has all the properties from the right side of the pair;
properties’ values are equal within their activation areas
intersection for each pair. The assembler evaluates
compatibility predicates for each instruction pair during
program assembling. Thus it discovers conflicting
instructions. Note that evaluation works correctly for sure
only for linear sequence of instructions.

Example:

[write_acr=read_acr] % warning:
 “Write after read conflict for ACRs”

This predicate is “true” if the write_acr property value of

the first instruction equals to the read_acr property value of
the second instruction within their activation areas
intersection. The given example reflects the WRITE AFTER
READ data conflict (for accumulator registers).

There is a reserved property “any” that is assigned to every
instruction by default. [any=X] gives a true predicate if the
second instruction has the property X (with no regard to its
value). The similar rule is for [X=any].

3) Error Messages

a) Simulation errors
The number NS (see A.1.b) defines the limit for instructions

running by accelerator in parallel. The simulator generates an
error if the main processor tries to issue an instruction if no
free slots are available.

Another mechanism for discovering run-time simulation
errors is based on the functional resource usage (see A.2). If
two parallel instructions try to use the same resource
simultaneously (during the same cycle) then the simulator
generates a run-time error.

To support the CREW data access model the simulator
discovers situations when separate processes perform writes to
the same memory cell and generates a run-time error.

b) Assembly errors
Users can define custom error message and severity

(warning or error) for each constraint of the types 2.b and 2.c.
It is possible to define either individual text messages for each
constraint or refer to the shared messages table. This approach
allows users to customize assembly errors diagnostics with
detailed descriptions, which is very important for production
use of the cross system.

III. DYNAMIC CROSS-SYSTEM RECONFIGURATION
This section contains a brief description of our dynamically

reconfigurable cross-system. Reconfiguration is based on
accelerator specifications in ISE defined as according to II.B
and II.C.

A. System Configuration

By a system configuration we mean a particular set of
accelerators with defined type and index for each accelerator.
Accelerator type is defined by a specification file in ISE
format. Development environment GUI allows specifying an
ordered list (indexed from 0) of accelerator specification files.
This list defines a system configuration and is used by cross-
system components for their dynamic reconfiguration.

System configuration may be changed multiple times within
a single user session including changing the order of attached
accelerators (indexing) and their ISE descriptions. However
no change to system configuration is possible during

debugging and simulation. The debugger must be stopped to
change the system configuration. A visual front-end is
available to simplify the process of editing accelerator
specifications in ISE with analytical and validation features
(e.g. for detecting binary conflicts for different instructions).

B. Simulator Reconfiguration

The simulator is configured by extracting information
corresponding to the model parts described in II.B from
accelerator description files.

For simulator reconfiguration two different approaches are
possible in the current implementation:

− Compiling accelerator specification in ISE using an
external C++ compiler.

− Accelerator specification run-time interpretation.
In the first case, an accelerator description file is translated

by an external C++ compiler to a dynamic link library (DLL).
Please note that the syntax described in II.B can be treated as
a C++ program with C macros. The macros are expanded to
variable definitions for II.B.1 or to C++ functions for II.B.2.
The decoding function is generated as a table of
correspondence between machine codes and instruction
behavior functions (see II.B.2.c). Assembly syntax related
information (II.C) is ignored by simulator and is translated by
the compiler to a single text string initializer for a global
variable that is used by assembler/disassembler.

The API of resulting DLL contains a collection of interface
functions. Using these functions it is possible to get all the
information about corresponding accelerator in run-time.
Accelerator memory areas are represented by a set of variables
and arrays inside the DLL address space. Accelerator
instruction behavior functions and operations are translated to
host-executable subroutines. The simulator of the core
processor accesses the DLL API functions to issue a next
accelerator instruction and perform cycle synchronization (the
clock generator is managed by the debugger). Cycle driven
synchronization between processor and accelerators modules
is implemented by means of user manageable threads. For this
purpose, we used Fibers API in MS Windows and qt library
(QuickThreads library by David Keppel, 1993) in Unix. The
FinishCycle() in this case is translated to an explicit
switch between fibers.

If external C++ compiler is not available then the second
approach is used where accelerator instruction behavior
functions are interpreted by an internal virtual machine taking
an ISE file as input. However this approach implies certain
restrictions on the usage of C++ constructs and external
libraries inside the accelerator description file, because not all
of them are supported by the interpreter.

C. Assembler/Disassembler Reconfiguration

To provide a mechanism for dynamic assembler
reconfiguration, a universal assembler was developed. This
assembler interprets the description of assembly instructions
syntax and binary mapping, defined according to II.B, in run-

time during assembling of an application program. Note that
accelerator independent part of the instruction set of the main
processor is also defined in the form of II.B. Thus, besides the
source of the application program, assembler input contains a
set of the instruction set description files for the accelerator
independent part of the instruction set of the main processor
and instruction sets of all accelerators in the system. A union
of these descriptions defines full assembly syntax for all
instructions of the «processor + accelerators» system.

In the current implementation, the assembler extracts syntax
specification either from the specified in the command line
DLL libraries or directly from the accelerator description files.
The description of the main processor instruction set is
embedded into the assembler because it is not modified by
user.

Note that, in the current implementation, only syntax for
individual instructions is dynamically configured. General
syntax of the assembly file structure is fixed:

− Sections
− Variables declaration
− Expressions
− Macro processor constructs
− C debug information
The disassembler also extracts instruction set information

from the set of description files dynamically in run-time.

D. Debugger Reconfiguration

Debugger reconfiguration implies adjusting corresponding
windows that display the state of accelerator memories during
debugging including partitioning into named areas. The
debugger allows users to change values of individual cells
manually.

During initialization of a debug session the debugger either
reads information about accelerator memories structure (see
II.A.1.a) from the corresponding DLL libraries or directly
from the accelerator description files. Also IDE editor
dynamically uses syntax information for assembly instructions
highlighting (see II.B). One of the profilers (namely the
instruction set coverage profiler) extracts information from the
same source too.

IV. RELATED WORK
To specify hardware at the detailed level, hardware

description languages (HDL) are used, most famous of which
are Verilog [6] и VHDL [7]. The purpose of these languages
is creation of specifications ready for real HW synthesis for
silicon production. That is why hardware specification at this
level of abstraction is laborious and is not suitable for fast
design space exploration (DSE). Also automatic cross
development tools construction based on HDL specifications
is problematic because explicit instruction set description is
missing (see [1]).

An interesting approach to model hardware structure is
being developed under the Open SystemC Initiative [8],
initially presented in 2000. Currently all activities on

SystemC are sponsored and controlled by a committee
involving industrial companies such as: ARM, Cadence,
CoWare, Fujitsu, Mentor, Motorola, NEC, Sony, ST,
Synopsys. SystemC is a C++ class library that simplifies
creation of hardware system models by using library macros
and classes that implement constructs similar to those in HDL.
With these constructs (see [9]) it is possible to specify a
hardware system structure using the notions such as modules,
processes, ports, signals, interfaces, events, etc. The library
also provides a set of data types simplifying hardware
elements modeling such as bit strings, fixed point numbers,
logical (four state) numbers, etc. However SystemC models
are used only for simulation and further HW synthesis,
instruction set is not explicitly defined so automatic cross
toolkit construction is problematic based on SystemC (see
[5]). In this sense SystemC is closer to HDL languages,
automatic converters exist from Verilog and VHDL to
SystemC ([10] и [11]). Simulation speed for SystemC models
is slow because of the too low level hardware details
description that is inessential for cross system. However one
should note that HW behavior description primitives in
SystemC are quite convenient to describe operations behavior,
similar constructs are used in the considered approach for
operations and instruction behavior functions descriptions (see
II.B.2)). In particular, we provide similar data types for
accelerator designers as in SystemC; also our cycle
synchronization is very similar to the SystemC processes
synchronization (FinishCycle() is like wait() in
SystemC).

To address the task of automatic cross development
environment generation based on high level hardware
specifications, architecture description languages (ADLs) are
being researched in various academic and industrial
organizations. Additional information and full overview of
existing ADL languages can be found in [1] - [5]. Below only
most famous languages are described.

One of the first ADL languages was nML [12], initially
developed at Technical University in Berlin, Germany (1991).
nML was used as a specification language for SIGH/SIM
simulator and CBC compiler generation. In nML processor
instruction set is described using attribute grammars.
Attributes include behavior (action), assembly syntax (syntax)
and mapping to machine codes (image). Original nML does
not support multi-cycle functional units and multi-word
instructions. However nML took further research at IMEC,
where under the subsidiary company Target Compiler
Technologies a commercial environment was created [13]-
[14], oriented to DSP architectures. This environment includes
CHESS compiler, simulator CHECKERS, assembler,
disassembler and linker. VHDL synthesis is also supported.
nML was improved by Target Compiler Technologies to
support more complex hardware modeling (in particular
pipeline specification introduced, although from available
marketing reports (technical specification are proprietary) it is
not clear what specification mechanisms are supported. Also
nML supports only fixed duration instructions and simulator

performance reported in [14] is not high compared to other
approaches.

A follower of nML is Sim-nML [15], developed since
1998 at Indian Institute of Technology Kanpur under Cadence
company support. The main new feature of Sim-nML is a new
attribute for resources usage (uses) in the instruction set
specification grammar. This allows describing resource
conflicts between instructions. In this project they developed
compiler code generator, simulator, assembler and
disassembler. Unfortunately no results on debugging
environment are available.

ISDL was developed at MIT, USA [16] and presented at
DAC [17] in 1997. The main ISDL focus is on specification
of VLIW architectures. Similar to nML ISDL mainly specifies
processor instruction set including behavior semantics,
assembly syntax, mapping to binary codes and also resource
conflicts using an attribute grammar. Explicit pipeline
description is missing but conflicts and delays can be specified
in the form of logical rules. Unfortunately no real tools
supporting ISDL are available. Project team limited tools
implementation only to assembler and compiler code
generator under some PhD work at MIT.

EXPRESSION [18]-[19] was developed at University of
California, Irvine, USA and initially presented at DATE in
1999. This language supports a wide class of embedded
systems with ILP and memory hierarchies: RISC, DSP, ASIP,
VLIW. EXPRESSION contains an integrated description for
structure and behavior of processor-memory subsystem. An
EXPRESSION hardware model specification contains six
sections (the first three are for behavior; the latter three are for
structure description):
− Operations (set of atomic commands with codes,

operands and behavior specification)
− Instruction formats (instruction consists of slots

responsible for particular functional unit; each slot can be
filled with atomic operations for parallel execution)

− Mapping of general compiler operations to machine
operations. This section is used by compiler code
generator.

− Components (functional units, buses, ports, etc.).
− Pipeline and components links.
− Memory hierarchy (register memory, cache, SRAM,

DRAM).
Based on EXPRESSION description compiler EXPRESS

and simulator SYMPRESS are automatically generated.
Unfortunately simulation performance is not good, also due to
the rather detailed structural description it is not easy to
quickly specify hardware using EXPRESSION. In this sense
EXPRESSION is in the middle between behavioral ADLS
(like nML) and HDL languages.

LISA [21]-[22] language was developed at RWTH Aachen
(Germany) and was initially designed for hardware
specification for automatic simulator generation. The first
results were reported in 1996. The initial target architectures
were DSP processors. Key characteristic of LISA is detailed

pipeline specification at operations level with dependencies
and latencies definition. Pipeline conflicts are explicitly
specified. Each instruction is defined as a set of operations
that do register transfers during one synchronization period.
Description in LISA consists of two parts: resources
specification and operations specification. Operation
specification in its turn contains the following sections:
− DECLARE (objects and groups definitions based on

other objects – actually like grammar rules)
− CODING (binary coding for operations)
− SYNTAX (assembly syntax and operands)
− BEHAVIOR и EXPRESSION (behavior description

using C/C++ like script language)
− ACTIVATION (timings and pipeline behavior

specification)
Unfortunately full public LISA language reference is not

available.
According to [20] among all the mentioned approaches,

only the system based on EXPRESSION supports explicit
capturing of processor–coprocessors architecture. Although
this system is aimed at design space exploration only and does
not support such production components as assembler,
disassembler and debugger. Also, none of the systems above
support dynamic system retargetability, because all the cross
system components are created using special generators in the
form of high level programming language programs requiring
subsequent external compilers usage to be built. Customizable
error reporting is also not in the focus of the systems above,
though this is very important for production use.

V. CONCLUSION
This article presented a technology for dynamic

reconfiguration of cross development tools to support user
defined processor extensions. In real hardware, such
extensions are implemented by special accelerators
(coprocessors) designed while constructing an application
specific configuration of the “processor + accelerators”
system.

To solve this task, we developed a generalized model for a
wide class of supported accelerator architectures and defined
an interface with the main processor. We proposed a
specification language (ISE) that allows describing exact
accelerator models within the generalized one. Accelerator
description in ISE covers memory structure and accelerator
instruction set including cycle accurate behavior, assembly
syntax and mapping to binary codes. Sophisticated
mechanisms are available for customizing error detection rules
both statically during assembling (e.g. resource and pipeline
hazards detection for accelerator instructions by the
assembler) and in simulation run-time. Special tools for visual
editing, validation and analysis of ISE specifications have
been developed. A set of ISE description files reflects a
custom configuration of the “processor + accelerators”
system. Given this configuration, cross development tools are
dynamically (in run-time) reconfigured to accept new

instructions and accelerator memories during
assembling/disassembling, simulation, debugging and
profiling. In result, it is possible to interactively (within one
working session) adapt cross development tools for user
specific accelerator models without using external compilers.
This is a key feature for using the cross tools for prototyping
various design alternatives of “processor + accelerators”
system. At the same time, when adding extensions, the
resulting cross tools remain of production quality suitable for
real life application development.

Based on the introduced technology, 3 commercial cross
development systems for proprietary DSP core processors
(with accelerator interface support) have been developed at
ISP RAS. The systems are being successfully used in
production and the following real accelerator models have
been developed by customers using our approach:

− Fast Fourier Transform (FFT).
− Echo cancellation algorithms.
− Complex (imaginary) arithmetic operations.
− Image processing operations (JPEG accelerator).
− Digital voice filtering operations (FIR, IIR).
− Voice coding/decoding (AMR).
− MP3 music decoding.
Peak performance of the core processor simulator (on Intel

Core 2 Duo 2000MHz host machine) is about 50 million
cycles per second. In the presence of an accelerator (in
particular echo cancellation) the system simulation
performance is about 5 million cycles per second for
processor and accelerator running in parallel, which is due to
the big overhead for synchronization of processor and
accelerator fibers.

The ongoing work targets at extending ISE language and
developing a method to support full system modeling
including main processor specification.

REFERENCES
[1] Hiroyuki Tomiyama, Ashok Halambi, Peter Grun. Architecture

Description Languages for Systems-on-Chip Design. Center for
Embedded Computer Systems, Univertsity of California. 2000.

[2] Wei Qin, Sharad Malik. Architecture Description Languages for
Retargetable Compilation. The Compiler Design Handbook, CRC Press,
2003.

[3] Clifford Liem, Pierre G. Paulin, Ahmed A.Jerraya. Retargetable
Compilers for Embedded Core Processors. Kluwer Academic Publishers,
1997.

[4] Rainer Leupers. Retargetable Code Generation for Digital Signal
Processors. Kluwer Academic Publishers, 1997.

[5] Lin Yung-Chia. Hardware/Software Co-design with Architecture
Description Language. Programming Language Lab. NTHU. 2003.

[6] IEEE Standard Hardware Description Language Based on the Verilog®
Hardware Description Language, IEEE Std 1364-1995.

[7] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
1987

[8] Open SystemC Initiative. http://www.systemc.org/
[9] SystemC User’s Guide. Version 2.0.1. http://www.systemc.org/
[10] N.Agliada, A.Fin, F.Fummi, M.Martignano, G.Pravadelli. On the Reuse

of VHDL Modules into SystemC Designs, FDL 2001
[11] Leila Mahmoudi Ayough Ali Haj Abutalebi Omid F. Nadjarbashi

Shaahin Hessabi. Verilog2SC: A Methodology for Converting Verilog®
HDL to SystemC. HDLCon 2002

[12] A. Fauth, J. Van Praet, M. Freericks. Describing Instruction Set
Processors Using nML. Proc European Design and Test Conf., Paris,
March 1995.

[13] Chess/Checkers Products. Target Compiler Technology.
http://www.retarget.com/

[14] Mark R. Hartoog, James A. Rowson, Prakash D. Reddy. Generation of
Software Tools from Processor Descriptions for Hardware/Software
Codesign. Alta Group of Cadence Design Systems, Inc. DAC 1997.

[15] Sim-nML Homepage. http://www.cse.iitk.ac.in/sim-nml/
[16] ISDL Project Homepage. http://caa.lcs.mit.edu/caa/home.html
[17] George Hadjiyannis, Silvina Hanono. ISDL: An Instruction Set

Description Language for Retargetability. Srinivas Devadas. Department
of EECS, MIT. DAC 1997.

[18] EXPRESSION Homepage. http://www.cecs.uci.edu/~aces/index.html
[19] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt

and Alex Nicolau. EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator Retargetability, DATE 99.

[20] Prabhat Mishra, Frederic Rousseau, Nikil Dutt, Alex Nicolau.
Architecture Description Language Driven Design Space Exploration in
the Presence of Coprocessors. SASIMI 2001.

[21] V. Zivojnovic, S. Pees, and H. Meyr. LISA: Machine description
language and generic machine model for HW/SW co-design. In Proc. of
Workshop on VLSI Signal Processing, 1996.

[22] Andreas Hoffmann, Achim Nohl, Stefan Pees, Gunnar Braun, Heinrich
Meyr. Generating Production Quality Software Development Tools
Using a Machine Description Language. DATE 2001.

[23] N. Cutland. Computability: an introduction to recursive function theory.
Cambridge University Press, 1980.

