
 

  
Abstract— In this paper, we consider the problem of adjusting 

cross development toolkits (assembler, linker, simulator, profiler, 
debugger, and IDE) to support processor extensions in the form 
of accelerators (synchronous coprocessors). Considered approach 
is based on describing accelerator models in a special 
specification language and using such descriptions to 
dynamically reconfigure cross toolkit to support assembling, 
cycle accurate simulation and debugging of applications 
containing new instructions implemented by the accelerators. We 
describe a generalized mathematical model of the supported class 
of accelerators and interfaces with the main processor. The 
specification language for defining concrete accelerators is given 
and our technology for dynamic cross-tools reconfiguration is 
overviewed. 
 

Index Terms— Cross development tools, embedded system 
design, hardware specification languages, programming 
environments. 

I. INTRODUCTION 
n this paper, we consider the problem of reconfiguration of 
cross development tools to support extensions of the target 

processor in the form of synchronous coprocessors 
(accelerators). By cross development tools (cross-system or 
cross toolkit) we mean a set of software utilities (assembler, 
linker, simulator, debugger, profiler, and IDE) for software 
development using a host-machine different from the target 
hardware (e.g. using PC to develop firmware program for a 
mobile phone). Supporting processor extensions in the cross 
tools means ability to assemble, build, simulate and debug 
application programs that contain instructions implemented by 
user specific accelerators and unknown when building toolkit 
for the main processor. Considered approach is based on 
allowing user to describe accelerator models using developed 
at ISP RAS specification language. These models are then 
used for dynamic reconfiguration of the main cross toolkit. 

This task appears because many modern hardware 
architectures are built using a standard processor core and a 
set of specific extensions in the form of domain specific 
accelerators (coprocessors). A subset in the core’s instruction 
set is reserved for accelerator invocation commands with the 
semantics of real behavior initiated by such commands 
defined by concrete accelerators independent of the main 
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processor. Processor core and accelerator vendors may be 
different companies, and cross development tools from the 
core’s vendor must support core’s extensions created by 
customers. In this article, by core’s extensions we mean 
adding accelerators that may introduce new memory elements 
(registers, data memories) and new instructions explicitly 
invoked by the main processor as if they are a part of its 
instruction set. The entire system consisting of the processor 
core and a set of accelerators is viewed by an application 
programmer as a computing system with uniform instruction 
set and a single program. The memory of such system consists 
of the main processor memory, shared memory and 
accelerators’ local memories. 

To distinguish the class of supported accelerators and 
interfaces with the main processor as well as to introduce 
decomposition of the system components, we created a 
generalized mathematical model that allows to model state and 
behavior of a wide class of accelerators with cycle true 
accuracy. To define concrete accelerator models within the 
generalized one, we developed a specification language ISE 
(Instruction Set Extension) and implemented tools for visual 
editing of ISE specifications with automatic 
inconsistencies/errors analysis and detection. We implemented 
dynamic cross-system reconfiguration based on the 
interpretation of user defined accelerator model specifications 
while assembling/disassembling, simulating and debugging. 

The article consists of the introduction, three sections and 
the conclusion and is organized as follows. Section II presents 
our accelerator modeling approach, a generalized 
mathematical model is given and the accelerator specification 
language ISE is described. Section III contains an introduction 
to the technology used for dynamic cross system 
reconfiguration based on the accelerator specifications defined 
in ISE. Section IV overviews the related work addressing 
hardware modeling using specification languages targeted at 
automatic cross tools generation. In the conclusion, practical 
results are presented and future work is outlined. 

II. MODELING PROCESSOR EXTENSIONS 
In this section, we consider modeling of processor 

extensions in the form of accelerators (coprocessors) using a 
specification language. A generalized mathematical model for 
a wide class of supported accelerators is given (see II.A) as 
well as the interaction protocol with the main processor. In 
II.B, we present the ISE specification language for concrete 
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accelerator model specification within the generalized one. 
Defined in this way accelerator models are used for automatic 
reconfiguration of the following cross system components: 
simulator, assembler/disassembler, debugger and profiler (see 
Section III). 

A. Generalized Accelerator Model 
We consider accelerators as slave coprocessors with 

instructions issued by the main processor. All accelerators and 
the main processor work synchronously using the shared cycle 
generator. An accelerator can have its own local data memory 
and also it has access to the memory shared between processor 
and accelerators. Accelerators do not have their own program 
memories. 

1) Accelerator State 

a) Accelerator memory 
A memory cell is an ordered set of binary variables (bits) 

with possible values 0 or 1. The number of bits in a cell is 
called cell’s width. A set of one or more cells with the same 
width forms a memory area. One or more memory areas form 
a memory. We will denote memory by a capital letter S. Cell’s 
state is defined by the set of particular values of all the cell’s 
bits. Memory’s state is defined by the state of all the cells in 
all the areas of the memory. Memory state is denoted by a 
lower-case letter s. Let N to be the sum of all the widths of all 
cells in a memory S, then the memory can be in one of the 2N 
states. The set of possible memory states is denoted by {s}. 
Please note: this set is unambiguously defined by the memory 
structure. Memory structure descriptor Σ  is a set of the 
following numbers: the number of areas A and a set of A pairs 
(Wi, Si), defining the width Wi of the area cells and their 
quantity Si. 

In our model, system memory S  consists of main 

processor local memory PS , shared memory SS  and a 

number of local accelerator memories aS : 

{ }AN
i

a
i

SP SSSS 1}{,, == , AN - the number of 
accelerators. 

Considering local processor memory is not important in this 
article, because accelerator has no access to it. A pair of 
shared memory and local accelerator memory forms the full 
accelerator memory, which we will denote as AS : 

},{ aSA SSS =  
The set of all possible states of the accelerator memory is 

denoted by aSA sss }{}{}{ ×= . Each area in the local or 
shared memory is characterized by access delay – the number 
of cycles that should be passed after writing to a cell before 
the changed value can be read; before that moment the 
previous value is fetched. 

Usually, accelerator memory has the following areas: 
− A set of one or more data memories. 
− A set of one or more register files. 

− Single registers. 

b) Control state 
Accelerator has fixed number of control slots, the set of 

which is denoted by AP . Each slot has an index, which will 
be identified with the slot itself. Each slot Li is a pair of 
integer variables (fields): instruction number field nf and 
instruction state field t. The set of possible values of 
instruction number field {nf} is finite. Zero always belongs to 
{nf}. There is a one-to-one correspondence between {nf}\0 
and instruction descriptors set, which will be defined below. 
That is why we will identify number }{ fnn ∈  with the 

corresponding descriptor f. Possible values of the instruction 
set field are natural numbers (including 0). The state of a slot 
with index n is denoted by ),( tnl fn =  and is defined by the 

values of the slot’s fields. The set of possible slot states is 
Ν×= }{}{ fnl . Slot in the state (0, 0) is called free slot, 

otherwise active slot. Accelerator control state p is a whole of 
the states of all the accelerator slots. The set of possible 
accelerator control states is denoted by SN

A lp }{}{ = , where 
Ns is the number of control slots in the accelerator. Active 
slots correspond to accelerator instructions in progress, thus 
the number of control slots defines the maximum number of 
accelerator instructions running in parallel. Instruction number 
field value of an active slot defines the running instruction for 
this slot, while the instruction state field value corresponds to 
the number of cycles passed from this instruction start. 

c) Accelerator state 
Accelerator state a is defined by the pair of memory state 

and control state: a={s, p}. The set of possible accelerator 
states (accelerator states set) is denoted by 

AAA psa }{}{}{ ×= . 
Accelerator state element is any accelerator memory cell or 

any accelerator control slot. State element state is defined by 
the state of the cell or control slot correspondingly. 

Parallel composition of functions nϕϕϕ ..., 21  (which are 
defined on the accelerator states set) is a function 

nϕϕϕω ||...|||| 21=  (also defined on the accelerator states 
set), specified for accelerator state a as follows: let 

AA PS ∪==Α }{α  is the set of all state elements of the 

accelerator, iΑ - the set of state elements, which state is 

changed by function iϕ : )( αα ϕα aa ii ≠⇔Α∈ . If 

intersection of all nii ..1, =Α  is not an empty set, then ω  is 
undefined for the accelerator state a. Else, the value of ω  is 
specified as follows: 
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αa - new and old state of α  element correspondingly. 



 

2) Accelerator Model 

Operation [elementary] is a function ψ  defined on the 
accelerator memory states set {s}A (see 1.a), that calculates the 
next memory state based on the previous one. Operations 
correspond to actions that can be done for one cycle (e.g. 
adding two registers): 

AA ss }{}{: →ψ  
The set of all accelerator operations is denoted by 

}{ψ=Ψ A . For any accelerator this set includes so called 

empty operation 0ψ  that does not change memory state. 
Each elementary operation is characterized by functional 

resources that are necessary for this operation. We denote the 
set of all accelerator resources by AR  and the set of its 
subsets (including empty one) by AΡ . Function Ar  that maps 
operations set AΨ  to the set AΡ  is called resource function. 
This function specifies resources set for each operation in 

AΨ : 
AAAr Ρ→Ψ:  

Let us denote the set of all subsets in AΨ  that contains 
operations with non-intersecting resources as AΩ : 

∅=∩→≠∈∀⇔Ω∈ )()(,, j
A

i
A

ji
A rrji ψψωψψω  

Thus an element of AΩ  defines a group of operations 
}{ iψ  that can be run in parallel within one cycle. Using 

parallel composition (see 1.c) for all operations in AΩ∈ω  
one can assign a function on the accelerator memory states set 
{s}A. Further we will identify elements of AΩ  with 
corresponding functions defined as above. These functions are 
called complex-operations. Please note that in this sense 

AA Ω⊂Ψ . 
We introduce two control actions: next and end. Each 

control action is a parameterized function on the set of 
accelerator control states. Function parameter is a slot index 

]..1[ Sl Nn ∈ . Action next increments by 1 the value of 
instruction state field t for the slot defined by the parameter 

ln . 
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Action end turns corresponding slot to the idle state. 
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The set of these control actions is denoted by 
},{ endnextU A = . 

Accelerator instruction descriptor is а function f  that 

calculates a pair of complex-operation AΩ∈ω  and control 
action AUu ∈  based on the accelerator memory state 

Ass }{∈  and instruction state Ν∈t  (see 1.b): 
AA

A Usf ×Ω→Ν×}{:  
The set of all instruction descriptors of an accelerator is 

denoted by }{ i
A fI = . This set is finite and each element 

f  of this set is assigned an index 1≥fn  (e.g. in order of 

machine code ascending as defined by the decoding function, 
see below). For any accelerator instruction descriptor the 
following is always valid (the only instruction end): 

undefinedtsftendsf =>∀⇒= )),((:},{),( ωτωτ  
An instruction descriptor f  unambiguously defines 

instruction cycle behavior function fb , which is defined on 

the accelerator states set Aa}{  and parameterized by a slot 

number ln . Function fb  is not defined if instruction number 

field value in the slot ln  does not match the corresponding to 

fb  instruction descriptor f . Otherwise this function 

AAlf aanb }{}{:)( →  is defined as follows: 

Given the memory state s and instruction state filed value t 
in the slot ln , using the instruction descriptor a pair of 
complex-operation ω  and control action u  is determined by 

),(},{ tsfu =ω , where ω  defines the resulting memory 
state )(ss ω=′ , while u  calculates the resulting control state 

),( pnup l=′ . ),( ps ′′  defines the values of ),,( psnb lf . 

Thus the set of instruction descriptors AI  unambiguously 

defines the set of instruction cycle behavior functions AB  
with the one-to-one correspondence. 

Accelerator instruction codes set }{ i
A cC =  is a set of 

binary numbers with the same width. Each element of this set 
corresponds to one of the possible values of the accelerator 
instruction code field in the machine code for accelerator 
invoking command (see 3.a). 

Decoding function Ad  maps the set of accelerator 

instruction codes AC  to instructions descriptors set AI : 
AAA ICd →:  

Decoding function unambiguously defines accelerator 
decoder – function DA: 

AA
AA ppCD }{}{: →× : 

Function DA is specified as follows: if in p 
)0,0(:

00 =∃ nln  then 
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undefined. In other words, in the case of free slot existence 
decoder initialize the state of this slot to )1,( f , where f  is 
determined using accelerator instruction code using decoding 



 

function Ad . 
Cycle function AT  defined on the accelerator states set 

{a}A determines accelerator state transition for each cycle: 

AA
A aaT }{}{: →  

This function is unambiguously defined by parallel 
composition (see 1.c) of instruction cycle behavior functions 

fb  associated with instruction descriptors f  corresponding 

to the instruction number field values fn  for each active 

control slot. In other words, active slots define the set of 
active instructions characterized by corresponding cycle 
behavior functions. Parallel composition of these functions 
defines AT  for the current cycle (accelerator behavior). 

Generalized accelerator model AM  is the following set of 
elements described above: 

{ }AAAAAA TDCPSM ,,,,=  

3) Accelerator Simulation 

For simulating of an accelerator specified by model AM  
(see p.2 above) we need a cycle generator and a concrete 
accelerator memory initial state Ass }{0 ∈ . In the initial 

accelerator control state 0p  all slots are always free. In the 
system under consideration all accelerators and the main 
processor work cycle-synchronously (cycle generator is the 
same), that is one accelerator cycle is equal to the main 
processor cycle. Besides cycle generator, the only external 
event for accelerator is issuing (feeding) of an instruction to 
accelerator by the main processor (see 3.a right below). 

a) Accelerator instruction invocation 
For our system model, the instruction set of the main 

processor must contain a subset devoted to accelerator 
invocation commands. Such a command initiates an 
accelerator instruction. Please note that when executing this 
command the main processor is not responsible for further 
calculations initiated. In the main processor instruction set, 
each accelerator invocation command is defined by three 
fields of the machine code (the fields order is not significant 
as well as some fields may be non-continuous): 

{opcode, accelerator index, accelerator instruction code} 
When executing such instruction the main processor 

determines by opcode that it is an accelerator invocation 
command. Then it extracts accelerator index field and 
passes remaining bits in the accelerator instruction 
code to the corresponding accelerator for further decoding 
and execution in parallel with the main processor. For the 
main processor, execution stage of an accelerator invocation 
command always takes one cycle. In terms of the abstract 
model, execution of an accelerator invocation command 
results in issuing accelerator instruction to an accelerator, thus 
activating accelerator decoder function AD  ( AC  is a subset 
of the possible accelerator instruction code field 

values set). The main processor can issue no more than one 
accelerator instruction per cycle. Please note that 
accelerator instruction code in its turn consists 
of accelerator instruction opcode and operands fields. 

Accelerator can run several multi-cycle instructions in 
parallel, including multiple instructions with the same 
descriptor. That is the main processor can issue new 
instruction before the previous ones finish. In terms of the 
described model this is possible if all operations initiated by 
all parallel instructions use non-intersecting resources (see 
p.2). In practice this is possible when accelerator pipeline and 
functional units allow this. Application programmer 
(compiler) is responsible for scheduling correct accelerator 
instructions invocations. 

b) Per cycle accelerator behavior 
In response to the external cycle generator event in our 

model accelerator behavior is defined by the state transition 
according to its cycle function AT  (see p.2). This function 
defines per cycle behavior of the accelerator. 

c) Data exchange and synchronization with the main processor 
Data exchange between processor and accelerators is 

performed via the shared memory (see 1.a). Please note that 
some information is delivered to accelerator from the 
processor in the form of accelerator instruction code (see 3.a). 
Also one should mention that different accelerators do not 
have access to each other local memories. 

Shared memory access rules in our model correspond to 
CREW (Common Read Exclusive Write) type. This means 
that processor and accelerator can simultaneously read from 
the same memory cell (within the current cycle) but 
simultaneous write is forbidden. In the model, memory areas 
can have access delay (see 1.a). By default, in the considered 
implementation all memory areas have access delay 1. This 
means that changed value of a memory cell can be read on the 
next cycle only (flip-flop cells model). Please note that if the 
access delay is more than 0 then it is possible to 
simultaneously read and write to a cell, old value is fetched 
when reading. 

Accelerator instructions can take fixed or data dependent 
number of cycles. From the application programmer 
(compiler) point of view there are three ways of synchronizing 
the main processor and the results of a running in parallel 
particular accelerator instruction: 

1. If the accelerator instruction takes fixed number of 
cycles then it is possible to predict in static when the 
results become available. The main program can be 
designed to take it into consideration and rely on the 
synchronous processor and accelerator execution. 

2. Accelerator instructions with varying number cycles to 
execute can use some dedicated flags in the shared 
memory to indicate to the main processor in run-time 
when the results of this instruction become available. 
The main processor program can repeatedly read this 
flag to check if accelerator result is ready. 



 

3. Raising of an interrupt by accelerator for the main 
processor when results are ready. Interrupt handler 
routine can read accelerator results. 

B. Describing Concrete Accelerator Models 

The set of the following parameters, sets and functions 
defines a concrete accelerator model: 

{ }AAAAAASAA rRIdCNm ,,,,,,, ΨΣ=  
Sections A.1) and A.2) contain definitions for all the 

symbols in Am  as well as prove that these symbols 
unambiguously define all the generalized model elements: 

− AA S→Σ ; 

− AS PN → , 

− AA Dd → , 

− AAAA rR Ω→Ψ ,, ; AAAA TBI →→Ω, . 
A special language ISE (Instruction Set Extension) was 

developed at ISP RAS for concrete accelerator models 
specification. In addition to concrete accelerator model 
elements description it provides the means for defining 
assembly syntax and binary coding for each instruction plus 
visualization formats for all memory areas. In the rest of this 
paper we will identify the concrete accelerator model with its 
specification in ISE. 

1) Memory Structure Descriptor 

Special constructs are used to declare the following types of 
memory areas: 

− Data memory. 
− Register file. 
− Stand-alone register. 
A combination of such declarations defines a memory 

structure descriptor AΣ  (see A.1.a). 

Example. Memory structure of a simple accelerator: 
Two data memories: LDM with 2048 words of 16 bits width 

and TM with 2048 words of 64 bits width. Access delay for 
each memory is 3. 

Register file GRF containing two 16 bit registers GR0 and 
GR1. 

Stand-alone accumulator register ACR of 36 bits wide and 
access delay of 1 (default). 

 
DECLARE_MEMORY(INT(16, 3), 2048) LDM; 
DECLARE_MEMORY(INT(64, 3), 2048) TM; 

DECLARE_REGISTERS_FILE(INT(16), 2) GRF; 

DECLARE_REGISTER(UINT(36)) ACR; 

// debugging names and registers file 
structure 
MEMORY(LDM, "Acc LDM"); 
MEMORY(TM, "Acc TM"); 

REGFILE_BEGIN(GRF, "General Registers") 
REGISTER(0, "GR0"); 

REGISTER(1, "GR1"); 
REGFILE_END() 

2) Behavior Description 

The following elements of Am  are the parts of the 
accelerator behavior description: the set of resources AR , the 
resource function Ar , the set of operations AΨ , the set of 

instruction descriptors AI  and the decoding function Ad  
(along with AC ). 

a) Operations 

Each operation from AΨ  is defined in C++ programming 
language. All accelerator memory cells are globally accessible 
from within an accelerator (in particular, register file contents 
are accessible as indexed arrays). It is allowed to use auxiliary 
local variables and the means of a special library (for example, 
N-bit data types INT<N>, UINT<N>, fixed point data types: 
FIXED<I,F>, bit manipulation subroutines). The set of 
resources used by the given operation is marked by a call to 
UseResources(resources) function (thus defining the 
resource function Ar ). In the current implementation the set 
of resources in UseResources is indicated as a bit set 
where each resource corresponds to a specific bit index. The 
whole set of resources AR  is declared by C++ enum with 
values equal to powers of 2: 
enum Resources {MAC_ADDER=1, 

MAC_MULTIPLIER=2, ALU_ADDER=4}; 
 

Example 1. An addition of two 36 bit integer numbers. 
void ADD_36_36 

(INT<36>& res, INT<36> a, INT<36> b) 
{ 
 UseResources(MAC_ADDER); 
 res = a + b; 

} 
 

Example 2. Multiplication of two 16 bit signed integers. 
void SMUL_16_16 

(INT<32>& res, INT<16> a, INT<16> b) 
{ 
 UseResources(MAC_MULTIPLIER); 
 res = a * b; 

} 
An operation defined in C++ can be either a separate 

function (see examples above) or can be embedded directly 
into the instruction behavior function (see examples in 2.b 
below). 

b) Instruction descriptor 

Each accelerator instruction descriptor from AI  is defined 
by appropriate instruction behavior function. The function can 
have arguments mapped to instruction parameters ip . Thus 
each function defines a set of instruction descriptors (each 
descriptor corresponds to one combination of particular 
parameter values). The body of the instruction behavior 



 

function is defined in C++. The special built-in function 
FinishCycle() implicitly defines the mapping to the set 
of operations for each instruction state t . Every subsequent 
call of this function distinguishes operations corresponding to 
the given state t . Inside the instruction behavior function the 
dependence of operations performed on the memory state (the 
functional dependence of ),( τsf  on s ) is achieved by 
standard C branching and looping constructs (see example 3 
below). A call to the FinishCycle() means completion of 
the operations for current cycle and corresponds to the control 
action next. Return from the instruction behavior function 
corresponds to the control action end. This approach allows 
easy describing of accelerator instructions preserving 
semantics for cycle-true simulation. 

 
Example 1. Here we define a single-cycle instruction, 

performing a move between two registers defined by 
GRF[greg] = LRF[lreg] operation: 

ACC_FUNCTION Move_LREG_GREG 
(INT<4> lreg, INT<4> greg) 

{ 
 GRF[greg] = LRF[lreg]; 
 FinishCycle(); 

} 
 

Example 2. A double-cycle MAC (multiplication and 
accumulation) instruction. The multiplication at the first cycle 
(see SMUL_16_16 in the example 2 from 2.a) is followed by 
the accumulation at the next cycle (see ADD_36_36 in the 
example 1 from 2.a): 

ACC_FUNCTION MAC_LREG_GREG 
(INT<4> grs, INT<4> grt) 

{ 
 SMUL_16_16 (mulres, GRF[grs], GRF[grt]); 
 FinishCycle(); 
 ADD_36_36 (ACC, ACC, mulres); 
 FinishCycle(); 
} 

If this instruction is issued by the main processor twice at 
successive cycles then a situation occurs when both stages of 
this function are executed simultaneously for different 
instruction instances (multiplication stage of the first 
instruction and accumulation stage of the second one). This 
approach allows modeling accelerator pipelines. 

 
Example 3. The convolution of two vectors in different 

memory areas: DM0 and TM0. Execution time for this 
instruction depends on the length of input vectors (which 
should be set in a special register LOOPREG). Note that inside 
the loop body few operations using non-overlapping resources 
are executed at the same cycle. An interrupt is raised upon 
completion of convolution actions: 

ACC_FUNCTION CONV_ACC_DM0_TM0 
(INT<4> dreg, INT<4> treg) 

{ 

SMUL_16_16 (mulres, DM0[AR[dreg]++], 
TM0[AR[treg]++]); 

FinishCycle(); 
while (LOOPREG>0) { 

ADD_36_36 (ACC, ACC, mulres); 
SMUL_16_16 (mulres, 

DM0[AR[dreg]++], 
TM0[AR[dreg]++]); 

LOOPREG--; 
FinishCycle(); 

} 
ADD_36_36 (ACC, ACC, mulres); 
InterruptProcessor(); 
FinishCycle(); 

} 

c) Decoding function 

Decoding function Ad  is defined by a set of pairs of 
machine code format and a reference to an instruction 
behavior function: 
INSTRUCTION(<format_string>, 

<invoker_name>); 

Machine code format is a string consisting of the following 
characters alphabet: 

1. Bit characters: ‘0’ and ‘1’ 
2. Parameter characters: ‘A-Z’ and ‘a-z’ 
3. Wildcard character: ‘*’ 
4. Separator character: ‘-‘ 
Characters from pp. 1-3 are called significant characters. 

Note, that the number of significant characters in machine 
code format must be equal to the machine word width. 

A continuous series of parameter characters defines an 
operand. Accelerator decoder extracts designated bits and 
passes them as a parameter ip  to proper instruction behavior 
function. Bit, wildcard or separator characters are used to 
separate different operands. 

Bit character specifies particular value for designated 
position in machine code. Parameter character or wildcard 
character allows any value (0 or 1) for its position. Separator 
characters do not correspond to any position and are used to 
distinguish operands and for cosmetic purposes. 

 
Example: 
INSTRUCTION("11-**-0000-0000-0001-LREG-
GREG", Move_LREG_GREG); 

Instruction behavior function MoveLREG_GREG (see 
example 1 in 2.a) has two 4 bit parameters (LREG[4;7] and 
GREG[0;3]). Bits [20;21] can take any value for the given 
instruction (actually they contain an accelerator number used 
by the decoder of the main processor). The rest of the bits are 
fixed and form accelerator instruction opcode. 

The collection of machine code format strings in all the 
INSTRUCTION pairs defines the set of accelerator instruction 

codes for the given accelerator (see AC  from A.2). 

The number of control slots sN  is defined by using 



 

SLOTS(< sN >). 

C. Assembly Syntax for Accelerator Instructions 

There is a separate section in the accelerator specification 
file that is responsible for assembly syntax definition for the 
instruction set of this accelerator. More correctly, this section 
defines syntax for the subset of the main processor’s 
instruction set that corresponds to instructions invoking 
commands of this accelerator (see A.3.a). This is useful for 
adequate reflection of the corresponding command semantics 
at the assembly level because the same (in the sense of 
machine codes) commands of the main processor (for 
accelerator invocation) may have different semantics 
depending on the concrete configuration of accelerators in a 
specific for each customer system. In addition to semantics 
definition for accelerator instructions (see B.2), the possibility 
to adjust assembly syntax for these commands is an important 
feature of the system in hand. It allows to get a production 
quality cross system adapted for a specific configuration 
«processor + user accelerators». 

The description of the assembly syntax for the instruction 
set consists of tree sections: 

1. Operand types and aliases. 
2. Commands. 
3. Constraints. 

Detailed specification of the assembly syntax description is 
out of the scope of this article. Only a concise description of 
the essential functionality is given below. 

1) Mapping Assembly Instructions to Machine Codes 

The general template of the allowed assembly syntax for 
accelerator instructions is defined as follows: 
command   ::= mnemonic 

[parameter {, parameter}*] 
{|| mnemonic [parameter {, 
parameter}*]}* 

 
mnemonic  ::= const_string 
 
parameter ::= operand  

{[const_string] [operand]}* 
 
operand   ::= const_string 
 
const_string ::= <any text without 

quotes and spaces> 
 

Examples of possible instructions: 
DMOVE ACR1.h, DM0(DA0--), 

ACR1.L, TM0(TA0++) 

MOVE GRA, DM1(TA0+25) || ADD GR3, ACR2.H 
 

In the assembly language an instruction consists of a 
mnemonic (several mnemonics for parallel commands) and a 
set of comma divided parameters. Each parameter may 
contain several parts – operands belonging to some of the 

described types. In the scope of one parameter operands must 
be divided by non-empty strings of constant symbols. 
Combination of mnemonics is mapped to opcode field of the 
corresponding instruction. Each operand is mapped to a field-
operand of the machine word. It is possible to map operands 
to discontinuous fields (when field’s bits are interlaced with 
bits of other fields). 

Example: 
.types 

grn [gr0:0] [gr1:1] [gr2:2] [gr3:3] 
const6b $ -32 31 
 

.mnemonics 
MOVE {grn#GG},{const6b#CCCCCC} 

% 1010-10CC-11GG-CCCC 

This description defines the instruction MOVE with two 
operands. The first operand of type grn is a general register. 
The register code is placed in two bits beginning from the 4th 
bit. The second operand is a constant in the range [-32; 31] 
placed in two parts of the machine word: in four bits 
beginning from the zero bit and two bits beginning from the 
eighth bit. Opcode equals to 1010-10XX-11XX-XXXX. 

2) Constraints 

a) Operand type constraints 
Each operand has a type that defines imposed by this type 

single operand constraint. Meanwhile, to make error reporting 
more sophisticated, one should define a general type for an 
operand and make use of the general constraints (see the next 
paragraph) to filter allowed values. 

b) Multi-operand predicate constraints 
Multi-operand predicate constraints are defined as a set of 

logical predicates involving arithmetic expressions, which 
may contain references to any operands used in the 
instruction. It is assumed that constraints are met if all logical 
predicates for the given instruction are “true”. 
 

Constraint expressions support the following operations: 
Logical operations &&, ||, ! 
Comparison 
operations 

<, >, <=, >=, 
==, <> 

Arithmetic operations +, -, *, /, % 
Bit operations |, &, ^, ~ 

 
One can use numerical constants and references to operands 

in the expressions. 
 

Example. Operands 1 and 2 must be different: 
ADD {GRs#SSSS}, {GRt#TTTT} 

% 1000-1011-SSSS-TTTT 
(GRs <> GRt) % 

“Operands must be different for ADD” 
 

Note that with the aid of the mechanism described, it is 
possible to define constraints for single operands. Thus two 



 

strategies of working with operand constraints are possible: on 
the one hand it is possible to create a set of general types and 
then narrow collections of allowed for particular operand 
values using logical predicates, on the other hand – one may 
work with a lot of specific types. The first strategy may result 
in more specific error messages for instruction operands; the 
second is simpler for the instruction set description. The user 
may choose any strategy. 

c) Inter-instruction relationship constraints 
Each instruction may have a particular set of properties. It 

is possible to assign values and activation area for each 
property. The property value is a constant or a value of one of 
the instruction operands. The activation area defines a range 
of the adjacent instructions for which the property is active. 
The default activation area [1;1] involves only the current 
instruction. The properties description mechanism 
(supplemented with the compatibility predicates – see below) 
actually is a modified description of reservation tables. 
 

Example: 

MAC {acr#A},{grs#SSSS},{grt#TTTT} 
% 1010-A001-SSSS-TTTT 

[read_grn:grs, read_grn:grt, 
write_acr:acr:2;2] 

 
The given instruction has the following properties: 
− read_grn – double property with values equal to 

values of the operands grs and grt. The activation area 
by default involves only the current instruction (this 
means that values for the registers grs and grt are read 
at the first cycle of the execution stage). 

− write_acr – the property value equals to the value 
of the operand acr. The activation area [2;2] affects the 
next instruction (this means that the value of the acr 
register will be written at the second cycle of the 
execution stage). 

 
Definition of the resource usage constraints is based on the 

property description mechanism. It is necessary to define a list 
of property compatibility predicates. The property 
compatibility predicate specifies a collection of property pairs 
in square brackets (pairs are divided by commas, properties in 
a pair by the ‘=’ sign). Predicate is “true” for an instruction 
pair if the following conditions are met: the first instruction 
has all the properties from the left side of the pair, the second 
has all the properties from the right side of the pair; 
properties’ values are equal within their activation areas 
intersection for each pair. The assembler evaluates 
compatibility predicates for each instruction pair during 
program assembling. Thus it discovers conflicting 
instructions. Note that evaluation works correctly for sure 
only for linear sequence of instructions. 
 

Example: 

[write_acr=read_acr] % warning: 
   “Write after read conflict for ACRs” 

 
This predicate is “true” if the write_acr property value of 

the first instruction equals to the read_acr property value of 
the second instruction within their activation areas 
intersection. The given example reflects the WRITE AFTER 
READ data conflict (for accumulator registers). 

There is a reserved property “any” that is assigned to every 
instruction by default. [any=X] gives a true predicate if the 
second instruction has the property X (with no regard to its 
value). The similar rule is for [X=any]. 

3) Error Messages 

a) Simulation errors 
The number NS (see A.1.b) defines the limit for instructions 

running by accelerator in parallel. The simulator generates an 
error if the main processor tries to issue an instruction if no 
free slots are available. 

Another mechanism for discovering run-time simulation 
errors is based on the functional resource usage (see A.2). If 
two parallel instructions try to use the same resource 
simultaneously (during the same cycle) then the simulator 
generates a run-time error. 

To support the CREW data access model the simulator 
discovers situations when separate processes perform writes to 
the same memory cell and generates a run-time error. 

b) Assembly errors 
Users can define custom error message and severity 

(warning or error) for each constraint of the types 2.b and 2.c. 
It is possible to define either individual text messages for each 
constraint or refer to the shared messages table. This approach 
allows users to customize assembly errors diagnostics with 
detailed descriptions, which is very important for production 
use of the cross system. 

III. DYNAMIC CROSS-SYSTEM RECONFIGURATION 
This section contains a brief description of our dynamically 

reconfigurable cross-system. Reconfiguration is based on 
accelerator specifications in ISE defined as according to II.B 
and II.C. 

A. System Configuration 

By a system configuration we mean a particular set of 
accelerators with defined type and index for each accelerator. 
Accelerator type is defined by a specification file in ISE 
format. Development environment GUI allows specifying an 
ordered list (indexed from 0) of accelerator specification files. 
This list defines a system configuration and is used by cross-
system components for their dynamic reconfiguration. 

System configuration may be changed multiple times within 
a single user session including changing the order of attached 
accelerators (indexing) and their ISE descriptions. However 
no change to system configuration is possible during 



 

debugging and simulation. The debugger must be stopped to 
change the system configuration. A visual front-end is 
available to simplify the process of editing accelerator 
specifications in ISE with analytical and validation features 
(e.g. for detecting binary conflicts for different instructions). 

B. Simulator Reconfiguration 

The simulator is configured by extracting information 
corresponding to the model parts described in II.B from 
accelerator description files. 

For simulator reconfiguration two different approaches are 
possible in the current implementation: 

− Compiling accelerator specification in ISE using an 
external C++ compiler. 

− Accelerator specification run-time interpretation. 
In the first case, an accelerator description file is translated 

by an external C++ compiler to a dynamic link library (DLL). 
Please note that the syntax described in II.B can be treated as 
a C++ program with C macros. The macros are expanded to 
variable definitions for II.B.1 or to C++ functions for II.B.2. 
The decoding function is generated as a table of 
correspondence between machine codes and instruction 
behavior functions (see II.B.2.c). Assembly syntax related 
information (II.C) is ignored by simulator and is translated by 
the compiler to a single text string initializer for a global 
variable that is used by assembler/disassembler. 

The API of resulting DLL contains a collection of interface 
functions. Using these functions it is possible to get all the 
information about corresponding accelerator in run-time. 
Accelerator memory areas are represented by a set of variables 
and arrays inside the DLL address space. Accelerator 
instruction behavior functions and operations are translated to 
host-executable subroutines. The simulator of the core 
processor accesses the DLL API functions to issue a next 
accelerator instruction and perform cycle synchronization (the 
clock generator is managed by the debugger). Cycle driven 
synchronization between processor and accelerators modules 
is implemented by means of user manageable threads. For this 
purpose, we used Fibers API in MS Windows and qt library 
(QuickThreads library by David Keppel, 1993) in Unix. The 
FinishCycle() in this case is translated to an explicit 
switch between fibers. 

If external C++ compiler is not available then the second 
approach is used where accelerator instruction behavior 
functions are interpreted by an internal virtual machine taking 
an ISE file as input. However this approach implies certain 
restrictions on the usage of C++ constructs and external 
libraries inside the accelerator description file, because not all 
of them are supported by the interpreter. 

C. Assembler/Disassembler Reconfiguration 

To provide a mechanism for dynamic assembler 
reconfiguration, a universal assembler was developed. This 
assembler interprets the description of assembly instructions 
syntax and binary mapping, defined according to II.B, in run-

time during assembling of an application program. Note that 
accelerator independent part of the instruction set of the main 
processor is also defined in the form of II.B. Thus, besides the 
source of the application program, assembler input contains a 
set of the instruction set description files for the accelerator 
independent part of the instruction set of the main processor 
and instruction sets of all accelerators in the system. A union 
of these descriptions defines full assembly syntax for all 
instructions of the «processor + accelerators» system. 

In the current implementation, the assembler extracts syntax 
specification either from the specified in the command line 
DLL libraries or directly from the accelerator description files. 
The description of the main processor instruction set is 
embedded into the assembler because it is not modified by 
user. 

Note that, in the current implementation, only syntax for 
individual instructions is dynamically configured. General 
syntax of the assembly file structure is fixed:  

− Sections 
− Variables declaration 
− Expressions 
− Macro processor constructs 
− C debug information 
The disassembler also extracts instruction set information 

from the set of description files dynamically in run-time. 

D. Debugger Reconfiguration 

Debugger reconfiguration implies adjusting corresponding 
windows that display the state of accelerator memories during 
debugging including partitioning into named areas. The 
debugger allows users to change values of individual cells 
manually. 

During initialization of a debug session the debugger either 
reads information about accelerator memories structure (see 
II.A.1.a) from the corresponding DLL libraries or directly 
from the accelerator description files. Also IDE editor 
dynamically uses syntax information for assembly instructions 
highlighting (see II.B). One of the profilers (namely the 
instruction set coverage profiler) extracts information from the 
same source too. 

IV. RELATED WORK 
To specify hardware at the detailed level, hardware 

description languages (HDL) are used, most famous of which 
are Verilog [6] и VHDL [7]. The purpose of these languages 
is creation of specifications ready for real HW synthesis for 
silicon production. That is why hardware specification at this 
level of abstraction is laborious and is not suitable for fast 
design space exploration (DSE). Also automatic cross 
development tools construction based on HDL specifications 
is problematic because explicit instruction set description is 
missing (see [1]). 

An interesting approach to model hardware structure is 
being developed under the Open SystemC Initiative [8], 
initially presented in 2000. Currently all activities on 



 

SystemC are sponsored and controlled by a committee 
involving industrial companies such as: ARM, Cadence, 
CoWare, Fujitsu, Mentor, Motorola, NEC, Sony, ST, 
Synopsys. SystemC is a C++ class library that simplifies 
creation of hardware system models by using library macros 
and classes that implement constructs similar to those in HDL. 
With these constructs (see [9]) it is possible to specify a 
hardware system structure using the notions such as modules, 
processes, ports, signals, interfaces, events, etc. The library 
also provides a set of data types simplifying hardware 
elements modeling such as bit strings, fixed point numbers, 
logical (four state) numbers, etc. However SystemC models 
are used only for simulation and further HW synthesis, 
instruction set is not explicitly defined so automatic cross 
toolkit construction is problematic based on SystemC (see 
[5]). In this sense SystemC is closer to HDL languages, 
automatic converters exist from Verilog and VHDL to 
SystemC ([10] и [11]). Simulation speed for SystemC models 
is slow because of the too low level hardware details 
description that is inessential for cross system. However one 
should note that HW behavior description primitives in 
SystemC are quite convenient to describe operations behavior, 
similar constructs are used in the considered approach for 
operations and instruction behavior functions descriptions (see 
II.B.2)). In particular, we provide similar data types for 
accelerator designers as in SystemC; also our cycle 
synchronization is very similar to the SystemC processes 
synchronization (FinishCycle() is like wait() in 
SystemC). 

To address the task of automatic cross development 
environment generation based on high level hardware 
specifications, architecture description languages (ADLs) are 
being researched in various academic and industrial 
organizations. Additional information and full overview of 
existing ADL languages can be found in [1] - [5]. Below only 
most famous languages are described. 

One of the first ADL languages was nML [12], initially 
developed at Technical University in Berlin, Germany (1991). 
nML was used as a specification language for SIGH/SIM 
simulator and CBC compiler generation. In nML processor 
instruction set is described using attribute grammars. 
Attributes include behavior (action), assembly syntax (syntax) 
and mapping to machine codes (image). Original nML does 
not support multi-cycle functional units and multi-word 
instructions. However nML took further research at IMEC, 
where under the subsidiary company Target Compiler 
Technologies a commercial environment was created [13]-
[14], oriented to DSP architectures. This environment includes 
CHESS compiler, simulator CHECKERS, assembler, 
disassembler and linker. VHDL synthesis is also supported. 
nML was improved by Target Compiler Technologies to 
support more complex hardware modeling (in particular 
pipeline specification introduced, although from available 
marketing reports (technical specification are proprietary) it is 
not clear what specification mechanisms are supported. Also 
nML supports only fixed duration instructions and simulator 

performance reported in [14] is not high compared to other 
approaches. 

A follower of nML is Sim-nML [15], developed since 
1998 at Indian Institute of Technology Kanpur under Cadence 
company support. The main new feature of Sim-nML is a new 
attribute for resources usage (uses) in the instruction set 
specification grammar. This allows describing resource 
conflicts between instructions. In this project they developed 
compiler code generator, simulator, assembler and 
disassembler. Unfortunately no results on debugging 
environment are available. 

ISDL was developed at MIT, USA [16] and presented at 
DAC [17] in 1997. The main ISDL focus is on specification 
of VLIW architectures. Similar to nML ISDL mainly specifies 
processor instruction set including behavior semantics, 
assembly syntax, mapping to binary codes and also resource 
conflicts using an attribute grammar. Explicit pipeline 
description is missing but conflicts and delays can be specified 
in the form of logical rules. Unfortunately no real tools 
supporting ISDL are available. Project team limited tools 
implementation only to assembler and compiler code 
generator under some PhD work at MIT. 

EXPRESSION [18]-[19] was developed at University of 
California, Irvine, USA and initially presented at DATE in 
1999. This language supports a wide class of embedded 
systems with ILP and memory hierarchies: RISC, DSP, ASIP, 
VLIW. EXPRESSION contains an integrated description for 
structure and behavior of processor-memory subsystem. An 
EXPRESSION hardware model specification contains six 
sections (the first three are for behavior; the latter three are for 
structure description): 
− Operations (set of atomic commands with codes, 

operands and behavior specification) 
− Instruction formats (instruction consists of slots 

responsible for particular functional unit; each slot can be 
filled with atomic operations for parallel execution) 

− Mapping of general compiler operations to machine 
operations. This section is used by compiler code 
generator. 

− Components (functional units, buses, ports, etc.). 
− Pipeline and components links. 
− Memory hierarchy (register memory, cache, SRAM, 

DRAM). 
Based on EXPRESSION description compiler EXPRESS 

and simulator SYMPRESS are automatically generated. 
Unfortunately simulation performance is not good, also due to 
the rather detailed structural description it is not easy to 
quickly specify hardware using EXPRESSION. In this sense 
EXPRESSION is in the middle between behavioral ADLS 
(like nML) and HDL languages. 

LISA [21]-[22] language was developed at RWTH Aachen 
(Germany) and was initially designed for hardware 
specification for automatic simulator generation. The first 
results were reported in 1996. The initial target architectures 
were DSP processors. Key characteristic of LISA is detailed 



 

pipeline specification at operations level with dependencies 
and latencies definition. Pipeline conflicts are explicitly 
specified. Each instruction is defined as a set of operations 
that do register transfers during one synchronization period. 
Description in LISA consists of two parts: resources 
specification and operations specification. Operation 
specification in its turn contains the following sections: 
− DECLARE (objects and groups definitions based on 

other objects – actually like grammar rules) 
− CODING (binary coding for operations) 
− SYNTAX (assembly syntax and operands) 
− BEHAVIOR и EXPRESSION (behavior description 

using C/C++ like script language) 
− ACTIVATION (timings and pipeline behavior 

specification) 
Unfortunately full public LISA language reference is not 

available. 
According to [20] among all the mentioned approaches, 

only the system based on EXPRESSION supports explicit 
capturing of processor–coprocessors architecture. Although 
this system is aimed at design space exploration only and does 
not support such production components as assembler, 
disassembler and debugger. Also, none of the systems above 
support dynamic system retargetability, because all the cross 
system components are created using special generators in the 
form of high level programming language programs requiring 
subsequent external compilers usage to be built. Customizable 
error reporting is also not in the focus of the systems above, 
though this is very important for production use. 

V. CONCLUSION 
This article presented a technology for dynamic 

reconfiguration of cross development tools to support user 
defined processor extensions. In real hardware, such 
extensions are implemented by special accelerators 
(coprocessors) designed while constructing an application 
specific configuration of the “processor + accelerators” 
system. 

To solve this task, we developed a generalized model for a 
wide class of supported accelerator architectures and defined 
an interface with the main processor. We proposed a 
specification language (ISE) that allows describing exact 
accelerator models within the generalized one. Accelerator 
description in ISE covers memory structure and accelerator 
instruction set including cycle accurate behavior, assembly 
syntax and mapping to binary codes. Sophisticated 
mechanisms are available for customizing error detection rules 
both statically during assembling (e.g. resource and pipeline 
hazards detection for accelerator instructions by the 
assembler) and in simulation run-time. Special tools for visual 
editing, validation and analysis of ISE specifications have 
been developed. A set of ISE description files reflects a 
custom configuration of the “processor + accelerators” 
system. Given this configuration, cross development tools are 
dynamically (in run-time) reconfigured to accept new 

instructions and accelerator memories during 
assembling/disassembling, simulation, debugging and 
profiling. In result, it is possible to interactively (within one 
working session) adapt cross development tools for user 
specific accelerator models without using external compilers. 
This is a key feature for using the cross tools for prototyping 
various design alternatives of “processor + accelerators” 
system. At the same time, when adding extensions, the 
resulting cross tools remain of production quality suitable for 
real life application development. 

Based on the introduced technology, 3 commercial cross 
development systems for proprietary DSP core processors 
(with accelerator interface support) have been developed at 
ISP RAS. The systems are being successfully used in 
production and the following real accelerator models have 
been developed by customers using our approach: 

− Fast Fourier Transform (FFT). 
− Echo cancellation algorithms. 
− Complex (imaginary) arithmetic operations. 
− Image processing operations (JPEG accelerator). 
− Digital voice filtering operations (FIR, IIR). 
− Voice coding/decoding (AMR). 
− MP3 music decoding. 
Peak performance of the core processor simulator (on Intel 

Core 2 Duo 2000MHz host machine) is about 50 million 
cycles per second. In the presence of an accelerator (in 
particular echo cancellation) the system simulation 
performance is about 5 million cycles per second for 
processor and accelerator running in parallel, which is due to 
the big overhead for synchronization of processor and 
accelerator fibers. 

The ongoing work targets at extending ISE language and 
developing a method to support full system modeling 
including main processor specification. 
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