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Abstract—This work considers conformance testing (func- environment, but not amenable to formal reasoning. This
tional testing). The main distinction from the other works makes it difficult to give a formal definition afonforms-to.
is the availability of mapping from implementation states 10 - Tharefore in order to reason formally about implementations,
specification ones. This information allows us to simplify test . . .
development and to reduce test execution time. We introduce We_ assume that any implementation 'S_ modelled by formal
a novel implementation relation called conff and composite ObjectSys;ur € MODS, whereMODS is a set of models.
test suites. The conff relation minimizes the size of generated This assumption is called thest hypothesi$2], [19]. Note
test suite. Composite test suite is a compact representationthat the test hypothesis assumes only that the model exists,
of traditional test suite. Furthermore, it allows to reduce test |+ not that it is known a priory.
execution time. Thus, the test hypothesis allows to define conformance
|. INTRODUCTION as a.r_eIaFion bet.ween form_al mod_els of impIe_mentatiqn and
specification. This relation is callednplementation relation
Testing is an essential part of modern software engineeringyp € M/ODS x SPECS. Implementationf/UT € IMPS
With the development of software engineering methods, the said to be correct with respect t8/ € SPECS,
complexity of created systems increases. As result, testing7 conforms-to M, if and only if the model of im-
becomes more complex. By estimations of experts, testig@ementation Sys;yr € MODS is imp-related to M:
takes more than a half of all the time of creation of modergyslUT imp M.
software systems, that enables to speak about testing as abogthe behaviour of implementation is investigated by per-
one of the key activities in modern software engineering. forming experiments with it and observing reactions that the
Testing is an execution of implementation with the subsémplementation produces to these experiments. A specification
quent checking of results on conformity to the requirementst such experiments is calledtast casgand the process of
Depending on the requirements, several kinds of testing ajigplying a test to an implementatioriest executionFormally
distinguished: conformance testing (functional testing), pejre define test execution on the model of implementation,
formance testing, robustness testing, stress testing, reliabiliever, according to the test hypothesis, the same behaviour
testing and availability testing. will be observed at test execution on the real implementation.
There are black box testing and a white box testing. In aDuring test execution, a number of observations are made,
black box testing only the information on interaction of system.q. occurring events, stimuli, reactions are recorded. At the
with an environment is accessible. Whereas in a white bexd of the test execution we like to interpret the observations
testing the information on structure of system is accessibla.terms of being right or wrong, so we return verdict. If the
There are a plenty of gray box testing methods in which thest confirms the correctness of implementation, then verdict
part of the information on system is accessible. is pass otherwise —fail. We say that the tegtassesif it ends
In this work we concentrate on gray box, conformancgith a verdictpass and otherwise we say that fails .
testing. That distinguishes the work from traditional methods A set of tests is called test suite Implementatiorpassest
of conformance testing, in which testing is performed by bladkst suite, if it passes all the tests in it. Ideally, we would like to
box methods. have such test suite that implementation passes it if and only if
In conformance testing, functional specification and init conforms to the specification. A test suite with this property
plementation exhibiting some behaviour are given. The pug called complete It can distinguish exactly between con-
pose of testing is to check the conformance of the givéarming and non-conforming implementations. Unfortunately,
implementation to the specification. LS#PEC'S be a set of in practice this requirement is very strong: complete tests are
specifications,/ M PS be set of implementations, then conusually infinite and consequently not executable. Hence, a
formance could be represented as a relatonforms-to C  weaker requirement is usually posed: the test suite should be
IMPS x SPECS. ExpressionfUT conforms-to A/ means sound which means that any correct implementation passes
that IUT is a correct implementation of specificatidd. this suite. Probably, that some incorrect implementations also
In this work we consider specifications given in the formgbass the suite, but if implementation does not pass, it indeed
notations. However, unlike specifications, implementations aslees not conform to the specification.
real physical objects, such as pieces of hardware or softdn the conformance testing process there are two main
ware. They are considered as objects interacting with tpbasestest generation/writingandtest executionThe impor-



tant characteristics of these phases are size of input datadoites are introduced, which are the compact representations
obtaining a test suite and time of test execution. of regular test suites. Test cases in these suites are intended for
In automatic test generation, the only input is specificatiagxecution in different specification states, not only in the initial
from which tests are generated automatically. As it was notesiate as it is in traditional test suites. Besides reduction of input
in practice we need additional data for test selection to getdata size composite test suites allow to reduce test execution
test suite practically suitable for execution. For some reasditee as compared with test suites derived from them. In section
tests can be created manually. Imperfection of test generatdisome concluding remarks are given, among which a relation
and selection methods concern to such reasons, for examplég ipractice and a future work.
selection mt_ethods (_:io not al_low togeta good_—enough te_s'F su@te, Il. L ABELLED TRANSITION SYSTEMS
executable in practice. Besides, representation of specification .
can not allow to perform automatic generation, for exampIe,V\_/e use labelled t.ransmon systems (LTS) [18] for formal-
if the specification is given in the form of preconditions an&""t'or.1 (.)T the pehawour of sys?e.ms. .
postconditions representing predicates on states, input azg,a) efinition 1: Labellgd transition . sys_te_m s a 4-tuple
output data. . ,L, T, s0), whereS is a set (possibly infinite) of states,

On test execution phase it can be used both fully prepar{é‘) set of labels7" is the transition relatio” € 5 x (L U
e

test suite and partially prepared test suite from which tests lef 'ISO_'SLthe initial s;ta:’:]e. b ble int . ¢
constructed during execution. Process, in which tests are co abels InL represent the observable Interactions ot a

pletely generated at execution, is called on-the-fly generatirﬁ¥3tem' The special label ¢ L represents unobservable,

: R , fernal action.
Time of execution is interpreted as quantity of the executdy "
interactions with implementation. The more interactions the We denote the class of all labelled transition systems éver

longer is test executioln. Thus, we can recognize two importe& aLtzn;i(rf g t Y]\;evgei;réfet?;‘z%g ;:elgbglﬁgg:ggfg;?oiftems

chi\ra;t.erlstl;:.s of ttedstltng Process. The set of all finite sequences in alphabletis denoted
2) _I_.'Ze oprl; a a't' by L*, with ¢ denoting the empty sequence.df,os € L*,

) Time of test execution. theno; - o5 is the concatenation aof; and oo. With |o| we

_ In this_ work we co_nsider implementatiqns, which prov_idﬁenote the length of the sequence. Some additional notations
information about their state. This information can be obtainegl, iniroduced in definitions 2 and 3.

in different ways: by reading of accessible fields, global vari- pafinition 2: Let p = (S, L, T, so) be a labelled transition
ables; by function calls, with the established correctness; bysiem s s € S, o) € LL7J{”7'}7, v € L ando € L.
reading data from a database. Besides, it is required to provide

the mapping from this information to specification states. Thiss £ =def (s,p,8") €T
mapping is developed by test developers. In practice it is res "4 ' =, ¢ Jso,...,8, 5 =502 ... B s, =5
quired to write a function, which first reads the information of g #1--¢» —gef 35 s Hizefin o
an implementation state, and secondly, establishes connectiom:-...-un , Baeepin
between the information and specification state. s 67/_’ =def NOt3s":s .8

Formally, we consider, that there is a set of mappings = s’ =def s=s0rs ==
MAPPINGS : SPECS x MODS — FUNC, where for s ==s"  =g5 3Js1,80:58=>5] — 55 => 5/
each specificationV/ and implementationSys the function s "'=5" o' =, 3sp,...,8,:5=85)2 ... 25, =5
f = MAPPINGS(M, Sys) is given, which maps imple- ¢_-Z, =gy 35 5=
mentation states to specification ones. Note tfiatan be o o

. . . . e =gey NoOtIs':s=¢
partially defined, i.e. the corresponding specification state calafinition 3: Let p = (S,L,T,s) be a labelled transition

be defined not for all implementation states. system ands € S, o € L*.

The purpose of the work is to use the given state mappin . o
from implementation states to specification ones for reduction) ’?”_wes(s) =def {0 € L \VS =}
of size of input data and time of test execution. 2) init(s) =aey {v € L|s =}

This work is organized as follows. Section Il introduces 3) § after 0 =acs {s' € 5| s = 5(,}
labelled transition systems used as formalism for specifications?) @e7(P) =acy {s | 30 € L” : 50 = s}
and implementations. Section Il gives basic testing concepts®) P Nhas finite behaviour iBn € Nat, such thatvo c
for labelled transition systems, such as a test case, a test suite, a tr?ces(§(l_) Hof < n o
test run, passing a test case, passing a test suite and the notiofi » 1S 2 finite state ifder(p) is finite.
of completeness, soundness and exhaustive of a test suite. Alsp § IS deterministic if for all sequences < L*, s after
the implementation relationonf is described in this section. o has at most one element. df € traces(p), then we
The main results of this work are presented in section IvV. A Overloads after o to denote this element. L
novel implementation relatioconff which uses state mappings Definition 4: The state is finite i/ € LU{r} holdss 7.
given in MAPPINGS is introduced in it. The algorithm Definition 5: State is stable it /4.
for complete test suite generation that is more effective thdime set of all stable states is denoted &y Later on, we
algorithm in [18] forconf is developed. Then, composite testonsider thats, € Ss.

S
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I1l. CONFORMANCETESTING P P2
a

a
Starting point for conformance testing is a specification Aa/
given in some formal notation and implementation, that is o b
an object interacting with it's environment. We make an O ®
assumption that each implementation has a formal model. This
assumption is referred to as the test hypothesis.

In this paper labelled transition systems, or any languagep, Ps Pe
with underlying semantics of labelled transition systems, are a
considered as the formal notation for specifications. A model @
of implementation also considered as labelled transition sys- A
tem.

d

Conformance is defined by means of an implementation
relation between the models of implementation and the speci- Fig. 1. Examples of labelled transition systems
fications, in our case it is relatiamp C LTS(L) x LTS(L):
implementationSys € LTS(L) conforms to specification .
M e LTS(L) if and only if Sys imp M. B. Test Suite

Many possibilities for implementation relations have been Test cases are derived from the specification, and applied to
studied, for example, observation equivalence [12], strong afft¢ implementation. Test cases are constructed in such a way
weak bisimulation equivalence [13], [16], failure equivalenc&at from the results of applying them it can be concluded
and preorder [7], testing equivalence and preorder [15], failupdether the implementation conforms to specification.

trace equivalence and preorder [1], generalized failure equiv-A test case is a specification of the behaviour of a tester in
alence and preorder [10], and many others [20], [6]. an experiment to be carried out with an implementation under

In this paper we chose the implementation relatonf [5]. test. Such behaviour, like other behaviours, can be specified
This relation was extensively studied in the literature, see fg¥ & labelled transition system. An experiment should last
example [18]. for finite time, so the test case should have finite behaviour.
Moreover, a tester executing a test case would like to have as
much control as possible, so nondeterminism in a test case is
undesirable. To be able to decide about the success of a test

s after o deadlocks=g4.; 35 : s 2 and init(s') =0 a verdict is attached to each state of the test case.

Definition 7: The sets of observationshs andobs’ respec-  Definition 10: A test caset is a 5-tuple(S*, L, 7", v, s5),
tively, that an observen € LTS(L) of systemp € LTS(L) such that(S’, L, L7, T*, s) is a deterministic labelled transi-
can make, are given by deadlocks, respectively the tracestign system with finite behaviour, and: S* — {pass, fail}

the synchronized parallel composition @fand p: is a verdict function. o
The class of test cases over actiorLiis denoted byLT'S;(L).

obs(u,p) =aey {0 € L* | (ullp) after o deadlocks Definitions for LT'S(L) is extended ta.T'S;(L) by applying

A. Implementation Relation

Definition 6: A deadlock ofp in a states is a traces € L*,
after which no more observable actions are possible:

obs'(u,p) =gey {0 €L*| (u|p) ==} them to underlying labelled transition system.
Definition 8: Letp € LT'S(L), s€ S, 0 € L* andA C L, Definition 11: A test suiteT is a set of test cases, i.e. a
then subset of LTS, (L).
v A test case run is modelled by synchronous parallel compo-

s after o refusesA =4y 35’ : s = s’ andVv € A: s’ #  sition of the test case with an implementation, which continues
Definition 9: Let M = (S™ L, TM  s)') be a specification until the deadlock is reached. This deadlock may occur when
and Sys = (S, L, T, sg) be an implementation. test case reaches a final state, or when the composition reaches
Sys conf M =45 Yu € LTS(L) : (obs(u,Sys) N a state where the actions proposed by the test case cannot be
traces(s{!)) - obs(u, M) and (obs'(u,Sys) N accepted be the implementation. An implementation passes

traces(s}!)) C obs’' (u, M) a test run if and only if the verdict of the test case in a
Statement 1:.Sys conf M if and only if (Vo € deadlock state is pass. Since an implementation can behave

traces(M), YA C L. Sys after o refusesA implies nondeterministically different test runs of the same test case

M after o refuses A). can lead to different deadlock states, and hence to different

The proofs are given in [14], [17]. verdicts. An implementation passes a test case if and only if
Figure 1 gives examples of labelled transition systemgll possible test runs lead to verdict pass.

p2 conf p; does not hold, since, after a refuses{c} not Definition 12:

implies p, after a refuses{c}. It is easy to check that 1) A test runof a test case¢ € LT'S;(L) with an imple-

p3 conf pq, ps conf py, but p, conf ps does not hold. mentationSys € LTS(L) is a trace of the synchronous
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Fig. 3. Specification and implementation with state mappings
Fig. 2. Examples of test cases

parallel composition of andSys leading to a deadlock:
o is a test run oft and Sys =gy

(t||Sys) after o deadlocks

2) Animplementatiortys passedest case, if all test runs
lead to a deadlock states, where verdict is pass:
Fig. 4. Implementation supplemented with state mappings
Sys passest =gy
(t||Sys) after o deadlocksimplies v(t after o) = pass write Sys imp(f) M, if Sys imp M with state mapping
3) AnimplementatiorSys passes test suiteT’, if it passes f = M APPINGS(M, Sys).

all test cases € T". Existence of f allows to supplement systerfiys with
transitions representing the current specification state. Hence,
Sys passesl’ =gy Vt € T : Sys passest we define
Figure 2 shows examples of test casggnot passesty, A .
since t, ||p4 after a deadlocks and v(t; after a) = fail. Sys =gey (S, LU S, TUT,s0),

p1 passes{ti,ta}, po NOt passest;, ps passes{ti,ts},

py passes{ts,ts}, ps passes{ts,ts}, ps passes{ts,ts}.
Definition 13: Let M be a specificationmp be an imple- where

M =gep (SM,LUSY, TM UTM sh1),

mentation relation and’ be a test suite, then T ={(s, f(s),5) | s € Ss},
T is complete if VSys: Sys imp M « Sys passesl TM = {(sM M My | M e SM}.
T is sound if VSys: Sysimp M = Sys passesl’
T is exhaustive if VSys: Sys imp M <« Sys passesI’ Let's consider an example of specification and implementa-
tion with the given state mapping. Figure 3 shows specification
IV. USING STATE MAPPING m4, implementationi;, and two possible state mappings

In this section we consider specifications and implementand f>. Figure 4 shows implementatiofig andis, which are
tions for which the information about correlation between theihe result of supplementation of implementatigrwith state
states is given. We assume that for each specification and imappingsfi, f. respectively.
plementation there is a mapping from implementation stateé{)/ Implementation Relation conff
specification state. In practice this mapping is accomplished b\ P
the procedure which reads state data from the implementatioconsider implementation relatiazonff, which depends on
and then constructs the corresponding specification state. state mappings given infAPPINGS. We assume that for

By the semanticsy action in LTS can be executed ateach specification/ = (S, L, 7", sj") and implementa-
arbitrary time. Hence, reading of state data in the states witin Sys = (S,L,T,so) mapping f : S; — S} (f =
this action (unstable states) is complicated. In practice Wé APPINGS(M, Sys)) is given.
cannot guarantee that the data will be read in a certain unstabl®efinition 14: Let M = (S™, L, T si") be a specifica-
state. In this connection we assume that the mapping exi@$, Sys = (S, L, T, so) be an implementation, anfl be a
only for stable implementation states. state mapping.

Formally, we assume that for each pair (specification, infys conff M =gy
plementation) there is a functiofi : S5 — SM, where S; 1) Sys conf M, and
is a set of stable implementation states & is a set of  2) Vo € traces(M): so == s in Sys, wheres € Ss
stable specification states. BWAPPINGS we refer to a implies f(so) == f(s) in M.
mapping, which for each pair (specification, implementation) Statement 2:Sys conff M implies Sys conf M.
contains a corresponding mappirigImplementation relation  In example shown in figure 8 conff m; holds, if mapping
depending onM APPINGS is referred to asmp(f). We is fi, and does not hold, if mapping i%.



Theorem 1:Let T" be a test suite obtained by applying
construction 1 to all specification traces, th€nis complete
for implementation relatiorconff.

1 b c Proof: We devide proof into two parts. To show thAt
is complete it is sufficient to prove that

1) VT C T, T is sound;
pass  pass 2) T is exhaustive.

Prove 1. Suppose that one of the test cases T
does not pass oys. Then test case deadlocks in a state
st: v(sy) = fail, o is it's test run. By construction 1,
s; is not finite state. Hence, there exists € L U SM:
Sys after o refuses{u}. But by construction 10 - p €
aces(M). Hence, M after o refuses{u} does not hold.

pass 2 3

Fig. 5. Test suite example faonff

Consider another way afonff definition. For implementa-
tions supplemented with state mappings the following sta

ment holds. _ _ o . From statement 1 follows thatys conf M does not hold.
Statement 3:Sys conff M if and only if Sys conf M. Prove 2. It is required to show thati € 7' Sys passes,

From this follows that test suite generation for implemenpean, Sys conff M, i.e. by definition 14 and statement 1 it is
tation relationconff can be done by test generation algorithn, ficient to prove that

for conf described in [18] by applying it td/. 1) Vo € traces(M), YA C L: Sys after o refuses A
implies M after o refuses A
2) Yo € traces(M): sy == s in Sys, wheres € S;
The notions of test case, test suite, test run and passing implies f(so) == f(s) in M.
a test case are the same, with the only difference that ast first we show 2. Lets € traces(M) and sy == s in
implementation we consider systeffys, supplemented with §ys. Let ¢ be a test constructed on the basecofind Sys
state mapping. Furthermore, test cases together with labgdgses. By construction 1,f(s) € sM after o; otherwise,
from L include labels corresponding to specification statggst case finishes with the fail verdict. From this it follows
St that f(so) == f(s) in M.
In contrast toconf, test generation forconff becomes Now we show 1. Leto € traces(M) and
simpler because it is stronger: besides inclusion of observalglgs after o refuses A, i.e.
traces and deadlocks it requires coincidence of the correspond- u
ing specification states. s’ € Sys after o :Vu € A: s’ #= . (@)
Test suite generation algorithm consists in applying con-
struction 1 to all specification traceésaces(M).
Construction 1:Leto = uy-... - u, € traces(M) is given.
Construct a labelled transition system= (S*, L, T*, s) that
consists of the only tracéraces(xz) = {0}, deterministic for
all sequences, i.ex consists of transitions? % ... 27
sZ. Fromz construct test case= (S* U S,, LU SM, T* U
T,, v, s§), where functiorv on states” € S, S, andT, are

B. Test Generation for conff

We prove by contradiction. Let/ after o refuses A does
not hold, i.e.VsM : s} == sM 3 € A : sM L. By
proved condition 2, we havé(s,) == f(s'). Hence,3u €
A f(s) 2.

Let ¢t be a test case constructed on the base of: and
st = t after 0. By condition, Sys passest. By construc-
tion 1, the test case statd does not have transitions with
label f(s’), since there is no transition by in specifica-

as follows.

. / 1] . . .

Let 5 be a trace leading to”, i.e. s* = st after 5. 1ON M (f(s") =), and by assumption (1), |m#plementat|on
Consider two cases. does not have transition by in states’ (s #). Hence
” ; ty
1) If ¢|M after & deadlocks then t||$ys af_ter o deaQIocks But by construction ;I.,V(s ) =

. - ‘ fail. This contradicts the fact that implementation passes the

a) Assigny(s®) = fail test case. n

b) Add to T, the following set of transitions
{(s*,s',new) | s € SN SM, new — new statg,
where S’ — reachable specification state, in

Note 1: Test generation algorithm described in [18], gen-
._erates a test suite such that total number of traces of test
] ) ] A g\'h'c'}ases is no less than the number of specification traces. As

deadlock is possible, i.&’ = {s™ | (s§.50") == distinct from fit, algorithm proposed here is restricted to all
(s7,sM) and (57, sM) #=1. ~ specification traces.

¢) EnlargeS, with new states added @, for which |, example shown in figure 6, proposed test generation
we assign(new) = pass. algorithm for specificationn, generates a complete test suite

2) Otherwise, assign(s®) = fail. consisting of three test cases ¢, andts. Whereas algorithm

The example of the test suite generated from all specifit [18] generates a complete test suite consisting of infinite
cation traces ofn; (fig. 3) with applying construction 1, is number of test cases. The cause of infinite number is self-loops
shown in figure 5. representing transitions by specification states. However, even
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enabled: b

0s{ts, to} a a a a C
1—{ts}
2—{ts, ts} 1 b 3 3 C 4
3{te}
4-{} pass 3 pass pass 4 pass
o
pass pass pass
t, ts ) . .
Fig. 8. Example of composite test suite
a a a a
1 b c b © implementationSys € LT'S(L) in a states is a trace
of the synchronous parallel composition pfand Sys
pass g pass 3 pass pass leading to a deadlock:
pass pass o is a test run ot and Sys in s =4.¢
Fig. 6. Comparison of generated test suites (tHSys’) after o deadlocks

where Sys’ — systemSys with the initial states.
2) An implementationSys passes test run of a test case
t in a states, if the test run leads to a deadlock, where
- verdict is pass:
i0—0
i1—1 Sys passes test runo of t in s =4.¢
i2—2

i3—3 =
o v(t after o) = pass

3) An implementationSys passestest caset in s, if it
passes all test runs in this state:

Sys passest in s =gy

Vo : Sys passes test runo of ¢t in s
Fig. 7. Specification and implementation with state mapping To check the possibility of execution of test casa im-
plementation state we need information about corresponding
) ) o ) specification state. We assume that for each specification and
if we apply the algorithm to the original system without SelmepIementation we have functighmapping stable implemen-
loops, generated test suite will additionally contain test caggion states into stable specification states.
ta. Definition 17 introduces additional notations for test case
execution in stable states.

] ) . Definition 17: Given an implementation Sys =
We consider test suité’ containing test cases that can beg 5 s0), @ mappingf, a test suitel® = (T, enabled),

executed not only in the_ initial state, but in arb_itrary state as s, ¢ S5, te X ando € L*.
well. For each state™ with the help of the functiornabled to

we define the possibility of execution of a test caseT in
this state.

C. Composite Test Suites

1 —— Sg =qey 0 IS test run oft in sq, ¢t € enabled(f(s1)),
and S1 :U> S9

t t,o
Definition 15: Composite test suit&, for specificationd/ ! D—f> S.i. _difs_aa P8 T2
is a pair(T, enabled), whereT is a test suite andnabled : efinition L6 ) ) o )
SM _, 9T is a function defining a set of test cases which can 1) A run of composite test suité™ with implementation
be executed for each statd! ¢ 5. Sys is a set(, containing such chains as:

Figure 8 shows composite test suite for specificationin ti,o1  t2,02  tn,0n
. So —> S1 — ... — Snp,
figure 7.

The notions of test run, passing a test case and a test suite whereo; € L*, t; € T, s; € S and sy is the initial
with an implementation are the same with the only difference  state ofSys. Elementss L9 ¢ of chains are called run
that definitions are made not only for initial state, but for items.

arbitrary state as well. 2) An implementationSys passes rurf2 of composite test
Definition 16: suiteT®, if for each run items; =% s, in Q Sys passes

1) A test run of a test caset € LTS;(L) with an test runo of ¢ in s;.



3) AnimplementatiorSys passegest suitel™, if it passes

all test runsQ: t 0 8% % pass
Sys passesT® =4.; VS : Sys passes runQ b O 3% TR PG 3™ pass
Note, that for any composite test suite there exists a run o B Ay Ay B T A A4y pags
including any other runs. Obviously, that a run constructed as
a union of chains in all possible runs has such property. W‘O pass
Consider examples of runQ of composite test suite in b ‘2\b
pass

figure 8 with implementations (fig. 7).

PRI TC
.~ ti,al L t3,0:3 . te,c4 . a _
Q, = 10 241 i3 T g ts W‘O
1= . ta,a-b2 pass
—

10
gy
a
te, c4 te B

12

.~ t2,ab2 | ta,a-3 . .
0 — 2 = i3 =l P T o pass
0y — .~ t2,ab:2 . ts,acd
2 = 0 "—"12 — "4 O pass
. t2,ab3 W
i0 2225743 tz -

W pass

Definition 19: Let M be a specificationmp be an imple-

mentation relation and™ be a composite test suite, then . Wm pass

T€ is complete if VSys: Sys imp M < Sys passesl® 7\b pass

T¢ is sound if VSys: Sysimp M = Sys passesl®

T¢ is exhaustive if VSys : Sys imp M < Sys passes® Fig. 9. Example of derived test suite

1) Derived test suitesiet 7° be a composite test suite.
Consider the notion of concatenatianof two test cases
tl, to € Te. . L . .

Definition 20: Let t; = (S', LU SM T v s}) andt, = respectlvely., gnd tht_a beginning of trangltlon is a state where
(S2,L U SM T2, 12 s2). Test caset is the result of con- test case; finishes, i.eit; after o;. And vice versa, for each
catenation of two test cases,t,, if ¢ = (ST U §2,L U failed test runoy - st - o5 ... sy - 0 Of a test case

SM TLUT2UT! vt sb), whereTt = {(s1,sM,s2)}, atthat ¢ € T constructed by successive concatenation,of. . ¢,,
vl(s1) = pass, ty € enabled(sM), vt(s) = v'(s) for s € ST there exists rui2 where the test cagg fails in chains, .y
andvt(s) = v%(s) for s € S2. 51 2% T ands} = f(s). u

Now we construct test suitB = derive(T¢) from 7. Each i ] o }
test case € T in it is successive concatenation of test cases2) 1ime of Test Executiorfor estimation of test execution
to,.. . tn, t; € T¢, Wherety € enabled(s)). Test suitel is time we count the number of interactions between a test case

called derivedfrom composite test suit@®. and an implementation. For the sake of simplicity we do not

Figure 9 shows test suit&; derived from composite test consider the possible difference in execution time between
suite 7% in figure 8. different interactions. Moreover we do not take into account

Derived test suites have very important property: they paggecution times of internal actions. At first, this metrics

with the same set of implementations as composite ones frOfcOmes independent from labels At second, it does not
which they are derived. depend on the number of internal actions which can vary for

This enables us to talk about composite test suites as abllf Same test run.

compact representations of regular test suites. Indeed, deriveefinition 21: An execution time of test rua of a test case

test suites are always larger by both a number of test casegith implementationSys is p(c) =4y |o].

and a total number of transitions of all test cases in the test . . .

suite. A total exeputmn time of a test suité can be calculated
Statement 4:For any composite test suifé®, a test suite by the following formula

T = derive(T*) derived from it and an implementatidfys,

the following property holds

Sys passesT’ < Sys passesl™® p(T) = Z Z f p(a)
Proof: For proving this fact it is sufficient to note that teT o Is run oft
for each failed rurf) of 7 with failed chainsy =% s, 2%
tn,0n

o2 s, € Q, wherek is the number of the first failed

test case, there exists a test case suite T' constructed by  This formula is applicable only for finite test suite with
successive concatenation @f. . . t;, where transitions addedfinite number of test runs for each test case. Obviously, that
during concatenation of test cagest;; contain labelsf(s;) for other test suites execution time is infinite.



Let's compute execution time for derived test suite on
i3. For that consider all possible test runstof. .., ts € Ts.

tll -1
to :
tg:
t4:
t51
t62
t7:
tg:

ST TS =
NN

w o

S8 Ao
o w

QL 2 2 8 2 e e
Q2 Q2 9 ww

SO W WSO
Wk 0 o Wk

b2,

Total sum of all test runs ig(75) = 53.

Note, thatp(€23) = 20, whereasp(T5s) = 53.
Statement 6:For all implementations$'ys

Sys passes(),,q. < VQ : Sys passest?
As well as for any run, statement 5 holds fa,.... Hence,
execution time of2,,,,. is less than execution time of derived
test suite.

V. CONCLUSION

The work concerns questions of gray box conformance
testing. Besides the possibility of interaction with implemen-
tation, the test system has a possibility of reading the states

An execution time of run of a composite test suite is a totaf implementation and mapping these states to specification

sum of all run items.
Definition 22: An execution time of rurf2 is

p(Q) = > p(or) + p(o2) + ...+ plow)
sotgllslb"—("?...tmnsnEQ
An execution time of runs€?;, Q2 on is: p(Qy) = 9,

Let's estimate execution time of composite test suites.

it was noticed earlier for composite test suites there exi
a run containing run items of any other run. Thus, for timﬂm

estimation purpose we compare execution time of fangith
all test runs of derived test suité.

The following statement holds.

Statement 5Let 7¢ be a composite test suitel’

derive(T*). For any systenSys and any run of composite
test suiteQ2 such thatSys passes(, if total execution times

of T'and (2 are finite, then the following condition holds:

p(Q) < p(T)

ones.

In section 1V, it is shown, how this possibility, given in the
form of mappingsM APPINGS, can be used to improve the
methods of conformance testing.

A novel implementation relatiomonff was defined and a
test suite generation algorithm is simplified in comparison
with other known generation algorithms foonf. Note, that
'%ﬁere are other implementation relations and the possibility of

ﬁnplifying generation for them needs further investigation.
ong such relations it is deserved to mention widely spread
relationioco and it's improvements.

Composite tests, presented in this work, allow to essentially
simplify the description of test suite. Besides, the way of test
definition allows to reduce the execution time in comparison
with test suites derived from them with the same capability to
recognize incorrect implementations.

The idea of composite tests is very close to test sequence
generation methods in testing using automata or finite state

Proof: For proving this fact it is sufficient to show thatmachine (FSM) models [11]. These methods are improved

t1,01

for any chainsg — s

t2,02
=

. Im% g Q, there exists a for the more general case — labelled transition systems. State

test case in suiteT constructed by successive concatenatioRapping can be considered as a more general case of status
of test cases; .. .t,, transitions added during concatenatiofnessages, because the mapping does not require implementa-
of test cases;, t;, contain labelsf(s;), and the beginning of tion states to be equal to specification ones.

transition is a state where test casdinishes, i.et; after o;. ~ In practice composite test suites are successfully used in
An execution time of this test casgo; - f(s1) - 02 - ... - UniTESK technology [8], [9]. However, existing formalization
f(sn_1) - o,) is not less than execution time of the selectedf UniTESK approach is based on automata models. Con-
chain of Q). m ditions on specifications, implementations and tests at which

Note, that passing a ruft by implementation depends onautomata equivalency is guaranteed [3], [4] are determined for
passing test case in run iteras—% s’. From that follows, these models. In UniTESK composite test runs are limited by
that runs containing the same sets of run items pass or & ©nly chain, which corresponds to traversal of automata

simultaneously. We distinguish maximal rufls,,, containing Model of specification. Obviously, it is possible only with
all possible run items for given implementation. constraints on a specification and tests, whereas herein the

Definition 23: Maximal run Q,,,, is a run, such that for more general case is considered: runs can contain any number
any Q all run itemsVs L9 ¢ are contained in chains of of chains. ) ) ) ,
Let's note that in this work the question of effective
f complete composite test suite generation is not addressed.
Obviously, that complete test suite in a initial state can serve as
such suite. However in this case the advantages of composite

Q’H’L(L.’L’ .

For test suitel’s in figure 8 and implementatioiy one o
the possible,, . IS Q3

t3,b-3 .

.t al te,c4 .
0 2841 2 3 T g tests are neglected.
. ta,ab2 . tg,a-3 .
Q3 = 0 ta,a-b-2 2 t5 MZB REFERENCES
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