
Conformance Testing With State Mapping
Vadim Mutilin

Institute for System Programming of Russian Academy of Sciences
25, B. Kommunisticheskaya, Moscow, Russia

mutilin@ispras.ru

Abstract— This work considers conformance testing (func-
tional testing). The main distinction from the other works
is the availability of mapping from implementation states to
specification ones. This information allows us to simplify test
development and to reduce test execution time. We introduce
a novel implementation relation called conff and composite
test suites. The conff relation minimizes the size of generated
test suite. Composite test suite is a compact representation
of traditional test suite. Furthermore, it allows to reduce test
execution time.

I. I NTRODUCTION

Testing is an essential part of modern software engineering.
With the development of software engineering methods, the
complexity of created systems increases. As result, testing
becomes more complex. By estimations of experts, testing
takes more than a half of all the time of creation of modern
software systems, that enables to speak about testing as about
one of the key activities in modern software engineering.

Testing is an execution of implementation with the subse-
quent checking of results on conformity to the requirements.
Depending on the requirements, several kinds of testing are
distinguished: conformance testing (functional testing), per-
formance testing, robustness testing, stress testing, reliability
testing and availability testing.

There are black box testing and a white box testing. In a
black box testing only the information on interaction of system
with an environment is accessible. Whereas in a white box
testing the information on structure of system is accessible.
There are a plenty of gray box testing methods in which the
part of the information on system is accessible.

In this work we concentrate on gray box, conformance
testing. That distinguishes the work from traditional methods
of conformance testing, in which testing is performed by black
box methods.

In conformance testing, functional specification and im-
plementation exhibiting some behaviour are given. The pur-
pose of testing is to check the conformance of the given
implementation to the specification. LetSPECS be a set of
specifications,IMPS be set of implementations, then con-
formance could be represented as a relationconforms-to ⊆
IMPS × SPECS. ExpressionIUT conforms-to M means
that IUT is a correct implementation of specificationM .

In this work we consider specifications given in the formal
notations. However, unlike specifications, implementations are
real physical objects, such as pieces of hardware or soft-
ware. They are considered as objects interacting with the

environment, but not amenable to formal reasoning. This
makes it difficult to give a formal definition ofconforms-to.
Therefore in order to reason formally about implementations,
we assume that any implementation is modelled by formal
objectSysIUT ∈ MODS, whereMODS is a set of models.
This assumption is called thetest hypothesis[2], [19]. Note
that the test hypothesis assumes only that the model exists,
but not that it is known a priory.

Thus, the test hypothesis allows to define conformance
as a relation between formal models of implementation and
specification. This relation is calledimplementation relation
imp ⊆ MODS × SPECS. ImplementationIUT ∈ IMPS
is said to be correct with respect toM ∈ SPECS,
IUT conforms-to M , if and only if the model of im-
plementation SysIUT ∈ MODS is imp-related to M :
SysIUT imp M .

The behaviour of implementation is investigated by per-
forming experiments with it and observing reactions that the
implementation produces to these experiments. A specification
of such experiments is called atest case, and the process of
applying a test to an implementation –test execution. Formally
we define test execution on the model of implementation,
however, according to the test hypothesis, the same behaviour
will be observed at test execution on the real implementation.

During test execution, a number of observations are made,
e.g. occurring events, stimuli, reactions are recorded. At the
end of the test execution we like to interpret the observations
in terms of being right or wrong, so we return verdict. If the
test confirms the correctness of implementation, then verdict
is pass, otherwise –fail . We say that the testpasses, if it ends
with a verdictpass, and otherwise we say that itfails .

A set of tests is called atest suite. Implementationpassesa
test suite, if it passes all the tests in it. Ideally, we would like to
have such test suite that implementation passes it if and only if
it conforms to the specification. A test suite with this property
is called complete. It can distinguish exactly between con-
forming and non-conforming implementations. Unfortunately,
in practice this requirement is very strong: complete tests are
usually infinite and consequently not executable. Hence, a
weaker requirement is usually posed: the test suite should be
sound, which means that any correct implementation passes
this suite. Probably, that some incorrect implementations also
pass the suite, but if implementation does not pass, it indeed
does not conform to the specification.

In the conformance testing process there are two main
phases:test generation/writingand test execution. The impor-

tant characteristics of these phases are size of input data for
obtaining a test suite and time of test execution.

In automatic test generation, the only input is specification
from which tests are generated automatically. As it was noted,
in practice we need additional data for test selection to get a
test suite practically suitable for execution. For some reasons
tests can be created manually. Imperfection of test generation
and selection methods concern to such reasons, for example, if
selection methods do not allow to get a good-enough test suite,
executable in practice. Besides, representation of specification
can not allow to perform automatic generation, for example,
if the specification is given in the form of preconditions and
postconditions representing predicates on states, input and
output data.

On test execution phase it can be used both fully prepared
test suite and partially prepared test suite from which tests are
constructed during execution. Process, in which tests are com-
pletely generated at execution, is called on-the-fly generation.
Time of execution is interpreted as quantity of the executed
interactions with implementation. The more interactions the
longer is test execution. Thus, we can recognize two important
characteristics of testing process:

1) Size of input data;
2) Time of test execution.
In this work we consider implementations, which provide

information about their state. This information can be obtained
in different ways: by reading of accessible fields, global vari-
ables; by function calls, with the established correctness; by
reading data from a database. Besides, it is required to provide
the mapping from this information to specification states. This
mapping is developed by test developers. In practice it is re-
quired to write a function, which first reads the information of
an implementation state, and secondly, establishes connection
between the information and specification state.

Formally, we consider, that there is a set of mappings
MAPPINGS : SPECS ×MODS → FUNC, where for
each specificationM and implementationSys the function
f = MAPPINGS(M, Sys) is given, which maps imple-
mentation states to specification ones. Note thatf can be
partially defined, i.e. the corresponding specification state can
be defined not for all implementation states.

The purpose of the work is to use the given state mapping
from implementation states to specification ones for reduction
of size of input data and time of test execution.

This work is organized as follows. Section II introduces
labelled transition systems used as formalism for specifications
and implementations. Section III gives basic testing concepts
for labelled transition systems, such as a test case, a test suite, a
test run, passing a test case, passing a test suite and the notions
of completeness, soundness and exhaustive of a test suite. Also
the implementation relationconf is described in this section.
The main results of this work are presented in section IV. A
novel implementation relationconff which uses state mappings
given in MAPPINGS is introduced in it. The algorithm
for complete test suite generation that is more effective than
algorithm in [18] forconf is developed. Then, composite test

suites are introduced, which are the compact representations
of regular test suites. Test cases in these suites are intended for
execution in different specification states, not only in the initial
state as it is in traditional test suites. Besides reduction of input
data size composite test suites allow to reduce test execution
time as compared with test suites derived from them. In section
V some concluding remarks are given, among which a relation
to practice and a future work.

II. L ABELLED TRANSITION SYSTEMS

We use labelled transition systems (LTS) [18] for formal-
ization of the behaviour of systems.

Definition 1: Labelled transition system is a 4-tuple
〈S,L, T, s0〉, whereS is a set (possibly infinite) of states,L
is a set of labels,T is the transition relationT ⊆ S × (L ∪
{τ})× S, s0 is the initial state.
The labels inL represent the observable interactions of a
system. The special labelτ /∈ L represents unobservable,
internal action.

We denote the class of all labelled transition systems overL
asLTS(L). We restrictLTS(L) to labelled transition systems
that do not have cycles composed of internal actions.

The set of all finite sequences in alphabetL is denoted
by L∗, with ε denoting the empty sequence. Ifσ1, σ2 ∈ L∗,
then σ1 · σ2 is the concatenation ofσ1 and σ2. With |σ| we
denote the length of the sequence. Some additional notations
are introduced in definitions 2 and 3.

Definition 2: Let p = 〈S, L, T, s0〉 be a labelled transition
system,s, s′ ∈ S, µ(i) ∈ L ∪ {τ}, ν(i) ∈ L andσ ∈ L∗.

s
µ−→ s′ =def (s, µ, s′) ∈ T

s
µ1·...·µn−→ s′ =def ∃s0, . . . , sn : s = s0

µ1→ . . .
µn→ sn = s′

s
µ1·...·µn−→ =def ∃s′ : s

µ1·...·µn−→ s′

s
µ1·...·µn6−→ =def not ∃s′ : s

µ1·...·µn−→ s′

s
ε=⇒ s′ =def s = s′ or s

τ ·...·τ−→ s′

s
ν=⇒ s′ =def ∃s1, s2 : s

ε=⇒ s1
ν−→ s2

ε=⇒ s′

s
ν1·...·νn=⇒ s′ =def ∃s0, . . . , sn : s = s0

ν1⇒ . . .
νn⇒ sn = s′

s
σ=⇒ =def ∃s′ : s

σ=⇒ s′

s
σ

6=⇒ =def not ∃s′ : s
σ=⇒ s′

Definition 3: Let p = 〈S, L, T, s0〉 be a labelled transition
system ands ∈ S, σ ∈ L∗.

1) traces(s) =def {σ ∈ L∗ | s σ=⇒}
2) init(s) =def {ν ∈ L | s ν=⇒}
3) s after σ =def {s′ ∈ S | s σ=⇒ s′}
4) der(p) =def {s | ∃σ ∈ L∗ : s0

σ=⇒ s}
5) p has finite behaviour if∃n ∈ Nat, such that∀σ ∈

traces(s0) : |σ| < n
6) p is a finite state ifder(p) is finite.
7) s is deterministic if for all sequencesσ ∈ L∗, s after

σ has at most one element. Ifσ ∈ traces(p), then we
overloads after σ to denote this element.

Definition 4: The state is finite if∀µ ∈ L∪{τ} holdss
µ

6→.

Definition 5: State is stable ifs
τ

6→.
The set of all stable states is denoted bySδ. Later on, we
consider thats0 ∈ Sδ.

III. C ONFORMANCETESTING

Starting point for conformance testing is a specification
given in some formal notation and implementation, that is
an object interacting with it’s environment. We make an
assumption that each implementation has a formal model. This
assumption is referred to as the test hypothesis.

In this paper labelled transition systems, or any language
with underlying semantics of labelled transition systems, are
considered as the formal notation for specifications. A model
of implementation also considered as labelled transition sys-
tem.

A. Implementation Relation

Conformance is defined by means of an implementation
relation between the models of implementation and the speci-
fications, in our case it is relationimp ⊆ LTS(L)×LTS(L):
implementationSys ∈ LTS(L) conforms to specification
M ∈ LTS(L) if and only if Sys imp M .

Many possibilities for implementation relations have been
studied, for example, observation equivalence [12], strong and
weak bisimulation equivalence [13], [16], failure equivalence
and preorder [7], testing equivalence and preorder [15], failure
trace equivalence and preorder [1], generalized failure equiv-
alence and preorder [10], and many others [20], [6].

In this paper we chose the implementation relationconf [5].
This relation was extensively studied in the literature, see for
example [18].

Definition 6: A deadlock ofp in a states is a traceσ ∈ L∗,
after which no more observable actions are possible:

s after σ deadlocks=def ∃s′ : s
σ⇒ and init(s′) = ∅

Definition 7: The sets of observations,obs andobs′ respec-
tively, that an observeru ∈ LTS(L) of systemp ∈ LTS(L)
can make, are given by deadlocks, respectively the traces of
the synchronized parallel composition ofu andp:

obs(u, p) =def {σ ∈ L∗ | (u‖p) after σ deadlocks}
obs′(u, p) =def {σ ∈ L∗ | (u‖p) σ=⇒}
Definition 8: Let p ∈ LTS(L), s ∈ S, σ ∈ L∗ andA ⊆ L,

then

s after σ refusesA =def ∃s′ : s
σ⇒ s′ and∀ν ∈ A : s′

ν

6⇒
Definition 9: Let M = 〈SM , L, TM , sM

0 〉 be a specification
andSys = 〈S, L, T, s0〉 be an implementation.
Sys conf M =def ∀u ∈ LTS(L) : (obs(u, Sys) ∩
traces(sM

0)) ⊆ obs(u,M) and (obs′(u, Sys) ∩
traces(sM

0)) ⊆ obs′(u,M)
Statement 1:Sys conf M if and only if (∀σ ∈

traces(M), ∀A ⊆ L: Sys after σ refusesA implies
M after σ refusesA).
The proofs are given in [14], [17].

Figure 1 gives examples of labelled transition systems.
p2 conf p1 does not hold, sincep2 after a refuses{c} not
implies p1 after a refuses{c}. It is easy to check that
p3 conf p1, p5 conf p4, but p4 conf p5 does not hold.

a

c
b

p1

a

cb

a

p2

τ

c
b

a

p3

b

τ

c

b

a

p4

d

cb

a

p5

d

a

p6

a

Fig. 1. Examples of labelled transition systems

B. Test Suite

Test cases are derived from the specification, and applied to
the implementation. Test cases are constructed in such a way
that from the results of applying them it can be concluded
whether the implementation conforms to specification.

A test case is a specification of the behaviour of a tester in
an experiment to be carried out with an implementation under
test. Such behaviour, like other behaviours, can be specified
by a labelled transition system. An experiment should last
for finite time, so the test case should have finite behaviour.
Moreover, a tester executing a test case would like to have as
much control as possible, so nondeterminism in a test case is
undesirable. To be able to decide about the success of a test
a verdict is attached to each state of the test case.

Definition 10: A test caset is a 5-tuple〈St, L, T t, ν, st
0〉,

such that〈St, L, Lt
τ , T t, st

0〉 is a deterministic labelled transi-
tion system with finite behaviour, andν : St → {pass, fail}
is a verdict function.
The class of test cases over action inL is denoted byLTSt(L).
Definitions forLTS(L) is extended toLTSt(L) by applying
them to underlying labelled transition system.

Definition 11: A test suiteT is a set of test cases, i.e. a
subset ofLTSt(L).

A test case run is modelled by synchronous parallel compo-
sition of the test case with an implementation, which continues
until the deadlock is reached. This deadlock may occur when
test case reaches a final state, or when the composition reaches
a state where the actions proposed by the test case cannot be
accepted be the implementation. An implementation passes
a test run if and only if the verdict of the test case in a
deadlock state is pass. Since an implementation can behave
nondeterministically different test runs of the same test case
can lead to different deadlock states, and hence to different
verdicts. An implementation passes a test case if and only if
all possible test runs lead to verdict pass.

Definition 12:
1) A test runof a test caset ∈ LTSt(L) with an imple-

mentationSys ∈ LTS(L) is a trace of the synchronous

a

b

a

t1 t5

pass

a

c

t2

pass

a

b

t3

pass

d

pass

t4

a

b

pass

d

c

pass

a

t6

apass

pass

Fig. 2. Examples of test cases

parallel composition oft andSys leading to a deadlock:

σ is a test run oft andSys =def

(t‖Sys) after σ deadlocks

2) An implementationSys passestest caset, if all test runs
lead to a deadlock states, where verdict is pass:

Sys passest =def

(t‖Sys) after σ deadlocks implies ν(t after σ) = pass

3) An implementationSys passesa test suiteT , if it passes
all test casest ∈ T :

Sys passesT =def ∀t ∈ T : Sys passest
Figure 2 shows examples of test cases.p4 not passest1,

since t1‖p4 after a deadlocks and ν(t1 after a) = fail.
p1 passes{t1, t2}, p2 not passest1, p3 passes{t1, t2},
p4 passes{t3, t4}, p5 passes{t3, t4}, p6 passes{t5, t6}.

Definition 13: Let M be a specification,imp be an imple-
mentation relation andT be a test suite, then

T is complete if ∀Sys : Sys imp M ⇔ Sys passesT
T is sound if ∀Sys : Sys imp M ⇒ Sys passesT

T is exhaustive if ∀Sys : Sys imp M ⇐ Sys passesT

IV. U SING STATE MAPPING

In this section we consider specifications and implementa-
tions for which the information about correlation between their
states is given. We assume that for each specification and im-
plementation there is a mapping from implementation state to
specification state. In practice this mapping is accomplished by
the procedure which reads state data from the implementation
and then constructs the corresponding specification state.

By the semantics,τ action in LTS can be executed at
arbitrary time. Hence, reading of state data in the states with
this action (unstable states) is complicated. In practice we
cannot guarantee that the data will be read in a certain unstable
state. In this connection we assume that the mapping exists
only for stable implementation states.

Formally, we assume that for each pair (specification, im-
plementation) there is a functionf : Sδ → SM

δ , whereSδ

is a set of stable implementation states andSM
δ is a set of

stable specification states. ByMAPPINGS we refer to a
mapping, which for each pair (specification, implementation)
contains a corresponding mappingf . Implementation relation
depending onMAPPINGS is referred to asimp(f). We

2

a

0

1

3

c
b

m1

i2

τ

i0

i1

i3

c

b

a

i1

i4

b

f1:

i0→0

i1→1

i2→2

i3→3

i4→2

f2:

i0→0

i1→1

i2→2

i3→3

i4→3

Fig. 3. Specification and implementation with state mappings

i2

τ

i0

i1

i3

c
b

a

î1=i1(f1)

i4

b

0

1

2

2
3

i2

τ

i0

i1

i3

c
b

a

î2=i1(f2)

i4

b

0

1

2

3
3

Fig. 4. Implementation supplemented with state mappings

write Sys imp(f) M , if Sys imp M with state mapping
f = MAPPINGS(M, Sys).

Existence off allows to supplement systemSys with
transitions representing the current specification state. Hence,
we define

ˆSys =def 〈S, L ∪ SM
δ , T ∪ T̂ , s0〉,

M̂ =def 〈SM , L ∪ SM
δ , TM ∪ T̂M , sM

0 〉,
where

T̂ = {(s, f(s), s) | s ∈ Sδ},
T̂M = {(sM , sM , sM) | sM ∈ SM

δ }.
Let’s consider an example of specification and implementa-

tion with the given state mapping. Figure 3 shows specification
m1, implementationi1, and two possible state mappingsf1

andf2. Figure 4 shows implementationsi2 and i3, which are
the result of supplementation of implementationi1 with state
mappingsf1, f2 respectively.

A. Implementation Relation conff

Consider implementation relationconff, which depends on
state mappings given inMAPPINGS. We assume that for
each specificationM = 〈SM , L, TM , sM

0 〉 and implementa-
tion Sys = 〈S,L, T, s0〉 mapping f : Sδ → SM

δ (f =
MAPPINGS(M, Sys)) is given.

Definition 14: Let M = 〈SM , L, TM , sM
0 〉 be a specifica-

tion, Sys = 〈S, L, T, s0〉 be an implementation, andf be a
state mapping.
Sys conff M =def

1) Sys conf M , and
2) ∀σ ∈ traces(M): s0

σ=⇒ s in Sys, where s ∈ Sδ

implies f(s0)
σ=⇒ f(s) in M .

Statement 2:Sys conff M implies Sys conf M .
In example shown in figure 3i1 conff m1 holds, if mapping

is f1, and does not hold, if mapping isf2.

a

b

t2

pass

a

c

t3

pass

2 3

a

1

t1

pass

Fig. 5. Test suite example forconff

Consider another way ofconff definition. For implementa-
tions supplemented with state mappings the following state-
ment holds.

Statement 3:Sys conff M if and only if ˆSys conf M̂ .
From this follows that test suite generation for implemen-

tation relationconff can be done by test generation algorithm
for conf described in [18] by applying it toM̂ .

B. Test Generation for conff

The notions of test case, test suite, test run and passing
a test case are the same, with the only difference that as
implementation we consider system̂Sys, supplemented with
state mapping. Furthermore, test cases together with labels
from L include labels corresponding to specification states
SM

δ .
In contrast to conf, test generation forconff becomes

simpler because it is stronger: besides inclusion of observable
traces and deadlocks it requires coincidence of the correspond-
ing specification states.

Test suite generation algorithm consists in applying con-
struction 1 to all specification tracestraces(M).

Construction 1:Let σ = µ1 · . . . ·µn ∈ traces(M) is given.
Construct a labelled transition systemx = 〈Sx, L, T x, sx

0〉 that
consists of the only tracetraces(x) = {σ}, deterministic for
all sequences, i.e.x consists of transitionssx

0
µ1−→ . . .

µn−→
sx

n. From x construct test caset = 〈Sx ∪ Sη, L ∪ SM
δ , T x ∪

Tη, ν, sx
0〉, where functionν on statessx ∈ Sx, Sη andTη are

as follows.
Let σ̃ be a trace leading tosx, i.e. sx = sx

0 after σ̃.
Consider two cases.

1) If t‖M after σ̃ deadlocks, then

a) Assignν(sx) = fail
b) Add to Tη the following set of transitions

{(sx, s′, new) | s′ ∈ S′ ∩ SM
δ , new – new state},

whereS′ – reachable specification state, in which
deadlock is possible, i.e.S′ = {sM | (sx

0 , sM
0) σ̃=⇒

(sx, sM) and (sx, sM) 6=⇒}.
c) EnlargeSη with new states added toTη, for which

we assignν(new) = pass.

2) Otherwise, assignν(sx) = fail.
The example of the test suite generated from all specifi-

cation traces ofm1 (fig. 3) with applying construction 1, is
shown in figure 5.

Theorem 1:Let T be a test suite obtained by applying
construction 1 to all specification traces, thenT is complete
for implementation relationconff.

Proof: We devide proof into two parts. To show thatT
is complete it is sufficient to prove that

1) ∀T̃ ⊆ T , T̃ is sound;
2) T is exhaustive.

Prove 1. Suppose that one of the test casest ∈ T
does not pass onˆSys. Then test case deadlocks in a state
st: ν(st) = fail, σ is it’s test run. By construction 1,
st is not finite state. Hence, there existsµ ∈ L ∪ SM

δ :
ˆSys after σ refuses{µ}. But by construction 1,σ · µ ∈

traces(M̂). Hence,M̂ after σ refuses{µ} does not hold.
From statement 1 follows that̂Sys conf M̂ does not hold.

Prove 2. It is required to show that if∀t ∈ T ˆSys passest,
thenSys conff M , i.e. by definition 14 and statement 1 it is
sufficient to prove that

1) ∀σ ∈ traces(M), ∀A ⊆ L: Sys after σ refusesA
implies M after σ refusesA

2) ∀σ ∈ traces(M): s0
σ=⇒ s in Sys, where s ∈ Sδ

implies f(s0)
σ=⇒ f(s) in M .

At first we show 2. Letσ ∈ traces(M) and s0
σ=⇒ s in

Sys. Let t be a test constructed on the base ofσ and ˆSys
passest. By construction 1,f(s) ∈ sM

0 after σ; otherwise,
test case finishes with the fail verdict. From this it follows
that f(s0)

σ=⇒ f(s) in M .
Now we show 1. Let σ ∈ traces(M) and

Sys after σ refusesA, i.e.

∃s′ ∈ Sys after σ : ∀µ ∈ A : s′
µ

6=⇒ . (1)

We prove by contradiction. LetM after σ refusesA does
not hold, i.e.∀sM : sM

0
σ=⇒ sM ∃µ ∈ A : sM µ

=⇒. By
proved condition 2, we havef(s0)

σ=⇒ f(s′). Hence,∃µ ∈
A : f(s′)

µ
=⇒.

Let t be a test case constructed on the base ofσ · µ and
st = t after σ. By condition, ˆSys passest. By construc-
tion 1, the test case statest does not have transitions with
label f(s′), since there is no transition byµ in specifica-
tion M (f(s′)

µ
=⇒), and by assumption (1), implementation

does not have transition byµ in state s′ (s′
µ

6⇒). Hence
t‖ ˆSys after σ deadlocks. But by construction 1,ν(st) =
fail. This contradicts the fact that implementation passes the
test case.

Note 1: Test generation algorithm described in [18], gen-
erates a test suite such that total number of traces of test
cases is no less than the number of specification traces. As
distinct from it, algorithm proposed here is restricted to all
specification traces.

In example shown in figure 6, proposed test generation
algorithm for specificationm2 generates a complete test suite
consisting of three test casest1, t2 andt3. Whereas algorithm
in [18] generates a complete test suite consisting of infinite
number of test cases. The cause of infinite number is self-loops
representing transitions by specification states. However, even

2

τ

0

1

3

c
b

a

m2

a

b

t2

pass

a

c

t3

pass

2 3

a

1

t1

pass

1

pass

0

2

1

3

a

b

t4

pass

c

pass

Fig. 6. Comparison of generated test suites

1

a

0

4

τ

2

b

a

τ

3

b

c c

i1

a

i0

i4

i2

b

a

τ

i3

b

c

m3 i3

f:

i0→0

i1→1

i2→2

i3→3

i4→4

Fig. 7. Specification and implementation with state mapping

if we apply the algorithm to the original system without self-
loops, generated test suite will additionally contain test case
t4.

C. Composite Test Suites

We consider test suiteT containing test cases that can be
executed not only in the initial state, but in arbitrary state as
well. For each statesM with the help of the functionenabled
we define the possibility of execution of a test caset ∈ T in
this state.

Definition 15: Composite test suiteTe for specificationM
is a pair〈T, enabled〉, whereT is a test suite andenabled :
SM

δ → 2T is a function defining a set of test cases which can
be executed for each statesM ∈ SM

δ .
Figure 8 shows composite test suite for specificationm3 in

figure 7.
The notions of test run, passing a test case and a test suite

with an implementation are the same with the only difference
that definitions are made not only for initial state, but for
arbitrary state as well.

Definition 16:

1) A test run of a test caset ∈ LTSt(L) with an

a

1

a

b

2 3

b

3

a

3

a

c

4

c

4

t1 t2 t3 t4 t5 t6

enabled:

0→{t1, t2}

1→{t3}

2→{t4, t5}
3→{t6}

4→{} pass

pass pass

pass pass

pass

pass

Te
3

Fig. 8. Example of composite test suite

implementationSys ∈ LTS(L) in a states is a trace
of the synchronous parallel composition oft and Sys
leading to a deadlock:

σ is a test run oft andSys in s =def

(t‖Sys′) after σ deadlocks,

whereSys′ – systemSys with the initial states.
2) An implementationSys passes test runσ of a test case

t in a states, if the test run leads to a deadlock, where
verdict is pass:

Sys passes test runσ of t in s =def

ν(t after σ) = pass

3) An implementationSys passestest caset in s, if it
passes all test runs in this state:

Sys passest in s =def

∀σ : Sys passes test runσ of t in s
To check the possibility of execution of test caset in im-

plementation states we need information about corresponding
specification state. We assume that for each specification and
implementation we have functionf mapping stable implemen-
tation states into stable specification states.

Definition 17 introduces additional notations for test case
execution in stable states.

Definition 17: Given an implementation Sys =
〈S,L, T, s0〉, a mappingf , a test suiteT e = 〈T, enabled〉,
s1, s2 ∈ Sδ, t ∈ X andσ ∈ L∗.
s1

t, σ−→ s2 =def σ is test run oft in s1, t ∈ enabled(f(s1)),
ands1

σ=⇒ s2

s1
t−→ s2 =def ∃σ : s1

t, σ−→ s2

Definition 18:

1) A run of composite test suiteT e with implementation
Sys is a setΩ, containing such chains as:

s0
t1, σ1−→ s1

t2, σ2−→ . . .
tn, σn−→ sn,

where σi ∈ L∗, ti ∈ T , si ∈ S and s0 is the initial
state ofSys. Elementss

t, σ−→ s′ of chains are called run
items.

2) An implementationSys passes runΩ of composite test
suiteT e, if for each run items1

t, σ−→ s2 in Ω Sys passes
test runσ of t in s1.

3) An implementationSys passestest suiteT e, if it passes
all test runsΩ:

Sys passesT e =def ∀Ω : Sys passes runΩ
Note, that for any composite test suite there exists a run

including any other runs. Obviously, that a run constructed as
a union of chains in all possible runs has such property.

Consider examples of runsΩ of composite test suite in
figure 8 with implementationi3 (fig. 7).

Ω1 =

{
i0

t1, a·1−→ i1
t3, b·3−→ i3

t6, c·4−→ i4

i0
t2, a·b·2−→ i2

}

Ω2 =

i0
t2, a·b·2−→ i2

t4, a·3−→ i3
t6, c·4−→ i4

i0
t2, a·b·2−→ i2

t5, a·c·4−→ i4

i0
t2, a·b·3−→ i3

Definition 19: Let M be a specification,imp be an imple-
mentation relation andT e be a composite test suite, then

T e is complete if ∀Sys : Sys imp M ⇔ Sys passesT e

T e is sound if ∀Sys : Sys imp M ⇒ Sys passesT e

T e is exhaustive if ∀Sys : Sys imp M ⇐ Sys passesT e

1) Derived test suites:Let T e be a composite test suite.
Consider the notion of concatenationt of two test cases
t1, t2 ∈ T e.

Definition 20: Let t1 = 〈S1, L ∪ SM
δ , T 1, ν1, s1

0〉 and t2 =
〈S2, L ∪ SM

δ , T 2, ν2, s2
0〉. Test caset is the result of con-

catenation of two test casest1, t2, if t = 〈S1 ∪ S2, L ∪
SM

δ , T 1 ∪T 2 ∪T t, νt, s1
0〉, whereT t = {(s1, s

M , s2
0)}, at that

ν1(s1) = pass, t2 ∈ enabled(sM), νt(s) = ν1(s) for s ∈ S1

andνt(s) = ν2(s) for s ∈ S2.
Now we construct test suiteT = derive(T e) from T e. Each

test caset ∈ T in it is successive concatenation of test cases
t0, . . . , tn, ti ∈ T e, wheret0 ∈ enabled(sM

0). Test suiteT is
calledderivedfrom composite test suiteT e.

Figure 9 shows test suiteT3 derived from composite test
suiteT e

3 in figure 8.
Derived test suites have very important property: they pass

with the same set of implementations as composite ones from
which they are derived.

This enables us to talk about composite test suites as about
compact representations of regular test suites. Indeed, derived
test suites are always larger by both a number of test cases
and a total number of transitions of all test cases in the test
suite.

Statement 4:For any composite test suiteT e, a test suite
T = derive(T e) derived from it and an implementationSys,
the following property holds

Sys passesT ⇔ Sys passesT e

Proof: For proving this fact it is sufficient to note that
for each failed runΩ of T e with failed chains0

t1,σ1−→ s1
t2,σ2−→

. . .
tn,σn−→ sn ∈ Ω, wherek is the number of the first failed

test case, there exists a test caset in suite T constructed by
successive concatenation oft1 . . . tk, where transitions added
during concatenation of test casesti, ti+1 contain labelsf(si)

a 1

a 1 b 3

a 1 b 3 c 4

a b
2

3

a b
2

3

a 3

a b
2

3

a 3 c 4

a b
2

3

a c 4

t1

t2

t3

t4

t5

t6

t7

a b
2

3
t8

c 4

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

pass

T3

Fig. 9. Example of derived test suite

respectively, and the beginning of transition is a state where
test caseti finishes, i.e.ti after σi. And vice versa, for each
failed test runσ1 · sM

1 · σ2 · . . . · sM
n−1 · σn of a test case

t ∈ T constructed by successive concatenation oft1 . . . tn,
there exists runΩ where the test casetn fails in chains0

t1,σ1−→
s1

t2,σ2−→ . . .
tn,σn−→ sn, andsM

i = f(si).

2) Time of Test Execution:For estimation of test execution
time we count the number of interactions between a test case
and an implementation. For the sake of simplicity we do not
consider the possible difference in execution time between
different interactions. Moreover we do not take into account
execution times of internal actions. At first, this metrics
becomes independent from labelsL. At second, it does not
depend on the number of internal actions which can vary for
the same test run.

Definition 21: An execution time of test runσ of a test case
t with implementationSys is ρ(σ) =def |σ|.

A total execution time of a test suiteT can be calculated
by the following formula

ρ(T) =
∑

t∈T

∑

σ is run of t

ρ(σ)

This formula is applicable only for finite test suite with
finite number of test runs for each test case. Obviously, that
for other test suites execution time is infinite.

Let’s compute execution time for derived test suiteT3 on
i3. For that consider all possible test runs oft1, . . . , t8 ∈ T3.

t1 : a · 1
t2 : a · 1 · b · 3
t3 : a · 1 · b · 3 · c · 4
t4 : a · b · 2, a · b · 3
t5 : a · b · 2 · a · 3, a · b · 3
t6 : a · b · 2 · a · 3 · c · 4, a · b · 3
t7 : a · b · 2 · a · c · 4, a · b · 3
t8 : a · b · 2, a · b · 3 · c · 4

Total sum of all test runs isρ(T3) = 53.
An execution time of run of a composite test suite is a total

sum of all run items.
Definition 22: An execution time of runΩ is

ρ(Ω) =
∑

s0
t1,σ1−→ s1

t2,σ2−→ ...
tn,σn−→ sn∈Ω

ρ(σ1) + ρ(σ2) + . . . + ρ(σn)

An execution time of runsΩ1, Ω2 on i3: ρ(Ω1) = 9,
ρ(Ω2) = 16.

Let’s estimate execution time of composite test suites. As
it was noticed earlier for composite test suites there exists
a run containing run items of any other run. Thus, for time
estimation purpose we compare execution time of runsΩ with
all test runs of derived test suiteT .

The following statement holds.
Statement 5:Let T e be a composite test suite,T =

derive(T e). For any systemSys and any run of composite
test suiteΩ such thatSys passesΩ, if total execution times
of T andΩ are finite, then the following condition holds:

ρ(Ω) ≤ ρ(T)
Proof: For proving this fact it is sufficient to show that

for any chains0
t1,σ1−→ s1

t2,σ2−→ . . .
tn,σn−→ sn ∈ Ω, there exists a

test caset in suiteT constructed by successive concatenation
of test casest1 . . . tn, transitions added during concatenation
of test casesti, ti+1 contain labelsf(si), and the beginning of
transition is a state where test caseti finishes, i.e.ti after σi.
An execution time of this test caseρ(σ1 · f(s1) · σ2 · . . . ·
f(sn−1) · σn) is not less than execution time of the selected
chain ofΩ.

Note, that passing a runΩ by implementation depends on
passing test case in run itemss

t,σ−→ s′. From that follows,
that runs containing the same sets of run items pass or fail
simultaneously. We distinguish maximal runsΩmax containing
all possible run items for given implementation.

Definition 23: Maximal run Ωmax is a run, such that for
any Ω all run items∀s t,σ−→ s′ are contained in chains of
Ωmax.

For test suiteT e
3 in figure 8 and implementationi3 one of

the possibleΩmax is Ω3

Ω3 =

i0
t1, a·1−→ i1

t3, b·3−→ i3
t6, c·4−→ i4

i0
t2, a·b·2−→ i2

t4, a·3−→ i3

i0
t2, a·b·2−→ i2

t5, a·c·4−→ i4

i0
t2, a·b·3−→ i3

Note, thatρ(Ω3) = 20, whereasρ(T3) = 53.
Statement 6:For all implementationsSys

Sys passesΩmax ⇔ ∀Ω : Sys passesΩ
As well as for any run, statement 5 holds forΩmax. Hence,
execution time ofΩmax is less than execution time of derived
test suite.

V. CONCLUSION

The work concerns questions of gray box conformance
testing. Besides the possibility of interaction with implemen-
tation, the test system has a possibility of reading the states
of implementation and mapping these states to specification
ones.

In section IV, it is shown, how this possibility, given in the
form of mappingsMAPPINGS, can be used to improve the
methods of conformance testing.

A novel implementation relationconff was defined and a
test suite generation algorithm is simplified in comparison
with other known generation algorithms forconf. Note, that
there are other implementation relations and the possibility of
simplifying generation for them needs further investigation.
Among such relations it is deserved to mention widely spread
relation ioco and it’s improvements.

Composite tests, presented in this work, allow to essentially
simplify the description of test suite. Besides, the way of test
definition allows to reduce the execution time in comparison
with test suites derived from them with the same capability to
recognize incorrect implementations.

The idea of composite tests is very close to test sequence
generation methods in testing using automata or finite state
machine (FSM) models [11]. These methods are improved
for the more general case – labelled transition systems. State
mapping can be considered as a more general case of status
messages, because the mapping does not require implementa-
tion states to be equal to specification ones.

In practice composite test suites are successfully used in
UniTESK technology [8], [9]. However, existing formalization
of UniTESK approach is based on automata models. Con-
ditions on specifications, implementations and tests at which
automata equivalency is guaranteed [3], [4] are determined for
these models. In UniTESK composite test runs are limited by
the only chain, which corresponds to traversal of automata
model of specification. Obviously, it is possible only with
constraints on a specification and tests, whereas herein the
more general case is considered: runs can contain any number
of chains.

Let’s note that in this work the question of effective
complete composite test suite generation is not addressed.
Obviously, that complete test suite in a initial state can serve as
such suite. However in this case the advantages of composite
tests are neglected.

REFERENCES

[1] J. C. M. Baeten and W. P. Weijland.Process algebra. Cambridge
University Press, New York, NY, USA, 1990.

[2] Gilles Bernot. Testing against formal specifications: A theoretical
view. In TAPSOFT ’91: Proceedings of the International Joint Con-
ference on Theory and Practice of Software Development, Volume
2: Advances in Distributed Computing (ADC) and Colloquium on
Combining Paradigms for Software Developmemnt (CCPSD), pages 99–
119, London, UK, 1991. Springer-Verlag.

[3] Igor B. Bourdonov, Alexander Kossatchev, and Victor V. Kuliamin.
Irredundant traversal algorithms of directed graphs. deterministic case.
Programming, 5:59–69, 2003.

[4] Igor B. Bourdonov, Alexander Kossatchev, and Victor V. Kuliamin.
Irredundant traversal algorithms of directed graphs. nondeterministic
case.Programming, 1:2–17, 2004.

[5] Ed Brinksma. A theory for the derivation of tests. pages 63–74, 1988.
[6] Ed Brinksma and Jan Tretmans. Testing transition systems: an annotated

bibliography. pages 187–195, 2001.
[7] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1985.
[8] A. Khoroshilov.Specification and testing components with asynchronous

interfaces. PhD thesis. ISP RAS, Moscow, 2006.
[9] V. Kuliamin, A. Petrenko, A. Kossatchev, and I. Bourdonov. Unitesk

approach to test development.Programming, 29:25–43, 2003.
[10] Rom Langerak. A testing theory for lotos using deadlock detection.

In Proceedings of the IFIP WG6.1 Ninth International Symposium
on Protocol Specification, Testing and Verification IX, pages 87–98,
Amsterdam, The Netherlands, The Netherlands, 1990. North-Holland
Publishing Co.

[11] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - A survey. InProceedings of the IEEE, volume 84, pages
1090–1126, 1996.

[12] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[13] Robin Milner. Communication and concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[14] R De Nicola. Extensional equivalence for transition systems.Acta Inf.,
24(2):211–237, 1987.

[15] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34(1–2):83–133, November 1984.

[16] David Park. Concurrency and automata on infinite sequences. In
Proceedings of the 5th GI-Conference on Theoretical Computer Science,
pages 167–183, London, UK, 1981. Springer-Verlag.

[17] Jan Tretmans.A Formal Approach to Conformance Testing. PhD thesis.
University of Twente, 1992.

[18] Jan Tretmans. Conformance testing with labelled transition systems:
implementation relations and test generation.Comput. Netw. ISDN Syst.,
29(1):49–79, 1996.

[19] Jan Tretmans. Testing concurrent systems: A formal approach. In
CONCUR ’99: Proceedings of the 10th International Conference on
Concurrency Theory, pages 46–65, London, UK, 1999. Springer-Verlag.

[20] Rob J. van Glabbeek. The linear time - branching time spectrum ii.
In CONCUR ’93: Proceedings of the 4th International Conference on
Concurrency Theory, pages 66–81, London, UK, 1993. Springer-Verlag.

