

Usage of CASE approach for guaranteeing of software quality

Pavel Drobintsev, Vsevolod Kotlyarov, Andrey Karpov, Yury Yusupov

Motorola, Saint-Petersburg, Russia
{apd031c, r36959, aak055, ayy302c}@motorola.com

Abstract: Today process of a quality guaranteeing is the
most complicated in whole software development
process. The reasons of such situation are in high
requirements for performance and reliability of software,
in huge amount of software code which is being
developed every day and of course in increasing of
software complexity. This paper is devoted to resolve
software quality issues by using of CASE tools and the
best software development practices within different
phases of software development cycle.
Article is divided in two main parts: the first one
presents quality indicators and their relations to
software development practices and the second one gives
an examples of CASE tools usage in such areas of
software development process as requirements gathering
and analysis, development and testing. All presented
examples based on usage of different CASE tools both
internally developed and presented on the market.

1. Introduction

Development of quality software is highly
complicated task related to cooperation of huge number
of employees which use a lot of processes to perform
their tasks. A set of indicators can be used to measure
and manage quality. This article is devoted to analysis of
these indicators and opportunities to their guaranteeing
based on usage of CASE tools and methods.

The main quantitative estimation of software quality
is a number of found defects. However in real life
estimations and management of quality are based on a set
of quality indicators. A lot of them do not have
quantitative estimations and are used only based on
expert estimations.

2. Quality indicators

Quality indicators related to quality of developed
software in terms of developed product properties.
Usually the following parameters are mentioned in
software development process:

• Efficiency

• Maintainability
• Portability
• Reliability
• Reusability

The other quality indicators such as completeness,
understandability, simplicity etc. can be viewed as part of
those four. Each of them should be formulated in terms
of particular software development project, measured
and used for quality estimation. For example simplicity
in terms of mobile phone software application is not the
same as for PC application, the number of modules and
functions in these applications can be strongly different.
Let’s describe all these qualities related to software
products:

Efficiency – is the capability of a system to
productively perform its function without wasting system
resources. [3] This is one of the significant indicators of
software quality in a lot of systems. The highest priority
of it is in embedded applications such as automotive
applications, mobile phones applications etc. To improve
this indicator of the software quality the following
software development practices can be used: code
generation and requirements verification. Code
generation gives an opportunity to use existing optimized
algorithms and approaches in developed software.
Requirements verification in turn allows to find and
check performance critical areas in specifications and
move focuse to it during the development process.

Maintainability - is the extent to which software
artifacts facilitate change [1]. This particular indicator
contains a set of sub sections such as extensibility,
simplicity, testability and understandability. The most
important for each system is understandability which is
the extent to which people can comprehend the behavior
of a software system. [2] It is necessary to understand
system behavior to make any changes in it.
Formalization, reengineering and code generation can be
used to achieve this quality indicator. Reengineering
approach is used when documentation for maintained
system is absent or incomplete. This practice helps to
understand system architecture, to improve it, and to fix
defects. Formalization jointed with code generation

allows generating of enhanced system code based on
initial requirements without hard work with legacy code.

 Portability – is the extent to which code can operate
in different computer configurations and environments
[3]. In the modern world software products should work
on thousands different hardware platforms and this
requires creation of cross platform software. Even if
software works in particular local area with limited set of
hardware in case the hardware is upgraded in time the
software systems should be rebuild in accordance with
new requirements. This parameter as long as a
maintainability (due to their correlation) can be improved
with usage of reengineering, formalization and code
generation.

Reliability – is the probability that a program will
function without failure over a specified time [1]. In
other words it is extent to which developed software
workable in normal mode and secure in case of any
emergency situations. This particular indicator contains a
set of sub sections such as accuracy, robustness and
completeness. Completeness – is the extent to which all
parts of a software system are fully developed this is the
main reason of unspecified works of software. Generally
the problems with completeness are in requirements area.
Some of them are missed and some are incompleted. The
well-known practice to check such problems is
verification. The base for verification of requirements is
formal specifications which are the prerequisite for
formal proving process. Verification of requirements
gives a guarantee in completeness of developed software
system but in addition it should be checked dynamically
by testing.

Reusability – is a measure of the ease with which a
software artifact can be used by a software project other
than the one for which it was originally intended. [3] It
can be guaranteed by creating of well defined interfaces.
The main approach for definition of interfaces is based
on formal representation in high level graphical or target
languages. Reuse of software components is useful if
their correctness and quality were guaranteed by previous
developers. It can be resolved via implementation of
verification and testing automation processes.

3. Software development practices

A software development process contains a lot of
practices involved in different areas of software
development life cycle. In the article we are focused on
modern techniques only which are related to mature
software development process. They can be used in all
software development projects but require high level of
employee’s knowledge and existing of special tools.

Formalization – is the process of formal software
requirements description. It is usually based on usage of
formal graphical languages. The main idea of this
practice is in creation of requirements which are formal,
understandable to all stakeholders and can be used for
future automated development. The most popular
graphical formal language for formalization is UML [8].
This standard allows creating system description from
different points of view. CASE tools which support UML
notation give an opportunity to model system behavior
and generate code. Formalization is required for
successful start of code generation and requirements
verification phases. It is also very useful for testing
automation because when formal requirements are
created they can be used for tests generation.

Reengineering – is the process of analyzing a subject
system to identify the system’s components and their
relationships and create representation of the system in
another form or at a higher level of abstraction. This
practice is often used for architecture and design
recovering based on legacy code. Existing approaches
for code transformation into high level graphical
languages allow software developers decrease time for
software modernization and support. Technology chain
presented in this article shows how CASE tools can be
used for reengineering with future specifications and
code generation.

Code generation – is the process of software code
generation from formal requirements representation. This
practice strongly depends on tools because the main
problem is in translation of formal requirements into the
code. However usage of formal notations for
requirements creation is not so simple due to lack of
experience in engineers committee.

Testing automation – is the process of test creation,
execution, and analysis automation. It is one of the
known in presented practices. It has strong tools support.
Almost all software development tools contain features
for testing automation but testing automation takes a lot
of time for customization to target application.

Table 1. Quality indicators and SDP correlation

SDP/Quality E
ff

ic
ie

nc
y

M
ai

nt
ai

na
bi

lit
y

Po
rt

ab
ili

ty

R
el

ia
bi

lit
y

R
eu

sa
bi

lit
y

Formalization x x x x
Reengineering x x
Code generation x x x

Testing automation x x

Requirements verification x x x

Requirements verification – is proving of mutual
consistency of the requirements. Implementation of this
practice into software development process is necessary
in case we need to develop system with strong
performance and reliability requirements. The main
problem here is that engineers are not familiar with the
tools which are responsible for verification based on
formal notations.. Tools chain presented in this article is
based on well known graphical language UML that
allows increasing applicability area of this practice.

The table defines correlation between quality
indicators and software development practices (SDP).

4. CASE tools in software development

Usage of the CASE (Computer Aided Software
Engineering) tools is the most advantage approach in
modern software industry. Now these tools already cover
such areas as requirements gathering, software testing
and verification, code generation etc. They provide
functionality for different automation activities and can
be used together to improve the software development
process. The most number of such tools provide
dedicated open interfaces which allow developers to
create absent but necessary functionality. We will cover
only tools devoted to describe earlier practices. All
mentioned tools are being used in Motorola company and
have already proved their efficiency:

Klocwork – a tool includes a set of all capabilities for
defect finding and architectural analysis. It is designed by
Klocwork Company for customers who plan to
implement an architecture optimization, a software
metrics-based process improvement initiative, or a
customized analysis of their software [5]. The tool based
on analysis of source code with its intermediate
representation in syntax tree. As output user can receive
a list of found defects and formal graphical
representation of code. Defects finding process is
performed using default set of checkers which can be
extended by user defined checkers. The benefits of the
tool are:

• Possibility to work with huge amount of code. It
allows analyzing of systems with millions code
lines.

• Existing of open interface for internal data
access. The user of tool can access to internal
data for adding special features based on data
analysis.

• Intermediate syntax of data representation. This
very detailed tree received from source code can
be used for a lot of reengineering activities.

Klocwork was used within the presented technology
chain for defects detecting in code and for reengineering
of systems’ legacy code.

VRS (Verifier of Requirements Specifications) [10] –
is a tool for requirements verification developed in
Motorola Company. The tool based on basic protocols
theory which is implemented for formal requirements
gathering [4]. Basic protocol (BP) is a simple step
representation of system behavior. A set of BP can fully
describes a system behavior from requirements point of
view. Usage of VRS tool allows checking different
aspects of BP correctness. From requirements point of
view each BP is a part of requirement. From
reengineering input of Klocwork each generated BP is a
part of system’s code which can be analyzed.

Another way of VRS usage is traces generation from
the set of BP. Each trace is a scenario of system’s
behavior built with BP’s concatenation. A trace
generated by VRS is presented in the form of MSC
(Message Sequence Chart) [9] diagram which is
standardized formal language. These traces can be used
for future analysis or tests generation.

Telelogic TAU G2 – is a tool for model driven
development based on UML (Unified Modeling
Language) language. This tool was created by Telelogic
Company and initially (in first generation) worked with
SDL (Specification and Description Language) [7]
specifications. Features presented by TAU G2 allow user
to create UML model and to simulate its behavior. After
model creation and semantics checking a source code can
be automatically generated by TAU G2. Open interfaces
allow users to implement additional features into this tool
via add-ins. Also the tool can use different compilers to
build the generated code. This feature allows generating
implementation of one system to different platforms and
environments automatically.

TAT (Test Automation Toolset) - is a tool for testing
automation based on MSC language usage. TAT was
initially developed in Motorola Company for testing
automation needs. This tool provides functionalities for
automated tests code generation and analysis. Input of
TAT is MSC diagrams and output is wrapper and target
code of tests. Wrapper is a special code which is
responsible for mapping of tests’ functions to calls of
system under test API. Initially TAT generates skeleton
of wrapper which should be customized for target
system. The set of tests can be generated on different
languages. Multi-language generation based on usage of
template mechanism which is a part of toolset. Now
generation is available on Java, C, and TTCN (Testing
and Test Control Notation) languages.

Telelogic TAU Tester – is a tool for automated testing
of software based on TTCN language. This tool was
developed by Telelogic Company to support of UML

model’s testing. Input for the tool is formulated in terms
of TTCN notation which is textual representation of
tests. Features of TAU Tester allow user to write,
execute and analyze tests.

The Pic. 1 shows tools’ relations in the software
development process.

Pic. 1. Technology chain

There is only one possible configuration of the

technology chain which uses all mentioned tools. On the
first step legacy code is analyzed by Klocwork. In result
code can be corrected in accordance with found defects.
Also a special module developed for Klocwork creates a
set of BPs generated from source code. This is the
reengineering phase of technology which also provides
automated formalization. The next phase is verification.
At the verification phase BPs created from code or
formalized by user from the requirements can be proved
by VRS toolset. Defects found in requirements should be
corrected in both initial requirements and legacy code.
Then they can be used to create a system model and for
traces generation for future testing. Code generation
phase based on transformation of BP into UML
language. That is semi automated task because BP
notation is very close to UML state charts. And the final
phase is testing automation. Here traces automatically
created by verification tool can be used for tests
generation in TTCN language and execution with TAU
Tester toolset.

In accordance with the process requirements proposed
technology chain can be changed and used only for

reengineering or testing automation. That is supplied
with the features of CASE tools which have very flexible
customization mechanism. The main benefit of such
approach with usage of different CASE tools is in
decreasing software development time and increasing
quality of product which is achieved due to automation
of different software development practices.

5. Conclusion
Usage of software development practices allows

increasing quality of the developed software. These
practices are integrated into software development
process and require high level of knowledge in engineers
committee. Implementation of simple formal notation
and supported tools such as UML allow to remove part
of complexity limitations.

CASE tools and approaches are available for software
development process now. Simplification of tools usage
and enhancement of their functionality allow to integrate
them into day to day activities of software development
process.

The approach presented in the article gives initial
knowledge about opportunities to software process
enhancement with CASE and formal technologies.

6. References

[1] Weigers, K.E., Creating a Software Engineering Culture,
Dorset House, 1996
[2] Pardee, W.J., To Satisfy and Delight Your Customer: How
to Manage for Customer Value, Dorset House, 1996
[3] Ronald Kirk Kandt, Software Engineering Quality
Practices, Auerbach Publications Taylor & Francis Group 2006
[4] Sergey Baranov, Pavel Drobintsev, Alexander Letichevsky,
Vsevolod Kotlyarov, “The verification technology of basic
protocols for software design and development”, 2005.
[5] www.klocwork.com
[6] www.telelogic.com
[7] ITU-T z.100 (08/2002) // Telecommunication
standardization sector of ITU, 202 p. –
http://www.itu.int/rec/T-REC-Z.100-200208-I/e
[8] UML Distilled Second Edition. A Brief Guide to the
Standard Object Modeling Language.
[9] ITU Recommendation Z.120. Message Sequence Charts
(MSC), 11/99
[10] VRS User manual // Motorola, 82 p. -
http://www.stc.corp.mot.com/twiki/bin/view/GSGSE/VrsDocu
mentation

