
Linux Distributions and Applications Analysis
During Linux Standard Base Development

Denis Silakov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

Email: silakov@ispras.ru

Abstract—This paper presents a novel approach of collecting
and managing information about existing Linux distributions and
applications necessary for standardizing Linux ecosystem during
Linux Standard Base specification development. The approach is
based on the usage of database designed on the basis of abstract
model of the Linux ecosystem. The process of database schema
design is described as well as design of tools for filling it with
data and analytical instruments.

Index Terms—Data management, Reverse engineering, Soft-
ware requirements and specifications, Software standards.

I. INTRODUCTION

One of the main aims of software standards is to unify
different implementations which solve the same problems and
perform the same operations. Standards on programming lan-
guages try to describe a set of compiler-independent language
features, SQL standards – DBMS-independent SQL features,
specifications of operating systems try to describe common
interfaces of different system distributions (either API, like
Single Unix Specification [1], or ABI, like LSB [2]).

Many standards suggest new features and solutions which
are not implemented yet in real systems; quite often such
suggestions are based on some theoretical research results.
However, a problem can arise if systems exist that already
propose their own approaches to the same issues. In this
case it’s a common practice for standard developers to take
implementation which is known to be de-facto standard. But
if there is no such implementation (i.e. there are several
competitive approaches) then standardization becomes rather
difficult. It’s very likely that the standard developed will
not be accepted by people if most systems are not going
to support it (providing alternative implementations instead).
In such situation standardization attempt can lead to a very
restricted specification which defines only those features that
are accepted by all competitors (like Single Unix Specification,
discussed below) or can even fail (like Xbase standardization
efforts [3]). Thus, if there are several competitive systems,
standard developers should analyze them all and try to con-
struct a set of features which will satisfy all parties – both
target systems developers and users.

The problem of existence of many competitive systems is
very relevant in the Open Source world. In the 90th, there
existed dozen UNIX systems which sometimes significantly
differed from each other. This fact led to so called ’UNIX

Wars’ and didn’t give to UNIX any advantages, indeed. Single
UNIX Specification (SUS) was created as an attempt to
unify different UNIX systems. During SUS development not
only operating systems were analyzed, but also applications
needs were investigated. A research of 50 applications was
performed in the 1993 and 130 interfaces were discovered
widely used by programs but not described in any specification
[4]. However, while being rather successfull in unifying sys-
tem software, SUS didn’t contain enough interfaces to allow
developers to create portable applications [5]. The thing is
that the standard doesn’t concern many important areas, the
main of which is graphical user interface. Addressing the
numbers, modern systems provide hundreds of thousands or
even millions of interfaces that can be used by applications,
and only less than 2000 are covered by the latest SUS version.

Nowdays the problem of many different competitive sys-
tems has appeared in the Linux world. There are hundreds
of different Linux distributions, which are sometimes also
significantly different. In order to prevent Linux world frag-
mentation, The Linux Foundation [6] (a nonprofit consortium
dedicated to fostering the growth of Linux) develops a standard
called Linux Standard Base (LSB) which aims to describe el-
ements that can be found in any LSB-compatible distribution.
Unlike SUS, LSB is a binary level standard, and its main part
specifies Application Binary Interface (ABI). This should help
developers to create portable applications that can be executed
on any LSB-compatible system without recompilation.

LSB concerns not only core system functions, but all
interfaces that are claimed by application developers and that
are mature enough to be included in the specification. Thus,
there are two main tasks here – the first is to determine which
elements are ’mature enough’ and the second is to select
interfaces that are mostly important for applications. The key
problem here lies in the size of data to be analyzed – there
are hundreds of distributions, thousands of applications and
millions of binary interfaces. LSB now describes about 40.000
binary interfaces, and this is still not enough for most applica-
tions. Taking into account SUS experience, one can notice that
manual analysis and selection of thousands of interfaces to be
included in the specification may require dozens man-years.
Therefore it is necessary to have an approach of collecting
and managing data about Linux applications and distributions
that will allow to standard developers to easily get information



about implementation of different interfaces in real systems,
their usage by applications, and, maybe, some additional useful
details (e.g. existing documentation).

The remainder of the paper is structured as follows: Sec-
tion 2 describes the principles of the Linux Standard Base
development. Section 3 introduces database design based on
Linux ecosystem abstract model. Section 4 describes the
fundamentals of binary files analysis in Linux on which the
tools are based that fill the database with data. Section 5 adds
some words about analysis of programs that use interpreted
languages. Section 6 introduces analytical tools used to make
decisions on standardization. Finally, Section 7 summarizes
the ideas.

II. LINUX STANDARD BASE

The main purpose of the Linux Standard Base specification
is to make applications development easier for vendors. Differ-
ences between Linux distributions lead to the fact that almost
every application should be recompiled for every particular
system, since one cannot guarantee binary compatibility of
different distributions. This is not very problematic for open
source applications – usually developers of every distribution
that provide binary packages simply compile all necessary
applications by themselves. Even developers of source-based
distributions before including applications to the stable version
of the system perform different tests to unsure that these
applications can be compiled and successfully launched inside
the distribution environment. The situation is more difficult for
proprietary applications – in this case vendors cannot simply
give the source code to every distribution vendor, so they
have to create binary packages for every distributions they are
interested in. To be sure, the number of supported distributions
for such applications is usually very small.

However, all distributions contain a lot of similar compo-
nents, so they definitely have a lot of common things. LSB
tries to collect and describe elements (libraries, functions,
commands, etc.) that are the same in most distributions. It is
impossible to cover all existing distributions, indeed; there are
a lot of systems created for particular purposes which really
have quite a few intersections. But most popular distributions
(including those that have significant market share – a rather
important fact for proprietary applications’ vendors) do contain
lots of similar elements. LSB focuses on binary symbols and
libraries, also defining some commands and shell utilities that
might be useful for application installation. Thus, the main
idea of LSB is that if some application uses only elements
specified by the standard (i.e. it is LSB compatible application)
then it can be installed and launched from the same binary
files on any distribution that provides all such elements (i.e.
it is LSB compatible distribution). Surely, this works only
inside the same hardware architecture, since binary file formats
differ on different architectures (of course, one can launch, for
example, files targeted for x86 platform on x86-64 systems,
but only if the latter contain all necessary 32bit libraries in
addition to their 64bit variants).

Formally, the Linux Foundation has two main criteria which
should be met for every binary interface going to be included
in the LSB specification:

• The interface should be stable – i.e. its developers can
guarantee that the same interface in different library
versions has the same behavior (and will remain the same
in future versions). Note that for cases when modification
of interface behavior is required, binary symbols versions
can be used.

• The interface should be present in the main modern
distributions. Linux Foundation doesn’t aim to cover all
existing distributions, but focuses on those who have the
major market share – SUSE, Red Hat, Oracle Enterprise
Linux (based on Red Hat), Ubuntu, Debian, Mandriva
and some others.

• The interface should be requested by applications. It’s
a fact, indeed, that even some interfaces having been
provided by distributions for a long time, are not actually
used in real-life applications.

There are also some additional criteria (not obligatory, but
very desirable), concerning existing documentation, tests, etc.
Though they are rather important, their analysis is out of scope
of this paper and we’ll not consider them here.

For modules of interpreted languages requirements are the
same.

The final decision is done by human after consulting with
developers of components going to be included in the speci-
fication. It is the first criterion that should be guaranteed by
developers – nobody else can predict the future. And even if all
criteria mentioned above are met, the function can be declined
by some other reasons - for example, as being unstable, unsafe
from security point of view, etc. To say the truth, even if
developers are not going to change the interface behavior,
this can be simply done by distribution vendors then building
the component for their systems – maybe not directly, but
as a side effect of some other patches. But such situations
are determined by LSB certification tests and vendor should
change the behavior back to the specified one if he wants to
be LSB compatible.

However, before consulting the actual developers of com-
ponents that are candidates to be included in the specification,
LSB analysts should prepare concrete suggestions about in-
terfaces they’d like to include. This actually means that the
second and the third criteria (i.e. presence in distributions
and usage by applications) should be investigated. This is not
the thing which component developers supposed to analyze
(though it may be rather interesting for them, too). On the
basis of such investgations, first, a set of libraries is determined
which are mostly used by applications and are present in
every distribution. Then a list of binary symbols inside each
library is created which meet the same criteria. Analysts can
also perform some additional tasks here – for example, check
interface documentation and tests, if any. Only after that a
list of symbols is presented to component developers for
comments. It is usually not difficult for them to check the
list and to say which interfaces can be safely included, which



are not (and why) and maybe give some additional comments
(for example, suggest more interfaces to be included as they
usually accompany those that are already in the list).

Thus, before component developers are involved, LSB de-
velopers should analyze dozens of distributions, hundreds of
applications and millions of interface and to prepare a list
of symbols that should be considered as LSB candidates. As
was mentioned in the Introduction, the key problem here lies
in the amount of data – only manual selection of dozens of
thousands interfaces to be considered as LSB candidates may
take dozens man years. This is rather expensive and doesn’t
look to be reasonable, especially keeping in mind the fact that
Linux is evolving and new libraries and interfaces constantly
appear. Thus, LSB developers need a way to quickly collect,
easily manage and efficiently analyze large amount of data on
Linux distributions and applications.

III. ABSTRACT MODEL OF THE LINUX ECOSYSTEM

An approach of collecting and managing large sets of
distributions and applications data was developed in the ISP
RAS under the contract with the Linux Foundation. The
approach suggests development of the infrastructure consisting
of a database storing necessary data, tools used to collect
information and upload it to the database and analytical tools
representing collected data in the form convenient for analysts.

The starting point of the infrastructure development is the
database schema design. To develop a schema, one should
sharply define what exactly will be subjected to analysis. It is
necessary to define entities and their properties which will be
required during analysis, define relations between these entities
and represent it in a way suitable to database setup.

Appropriate database schema for the LSB purposes was
designed on the basis of analysis of LSB needs and criteria
described above as well as distributions and applications
structure. On the basis of this analysis, the abstract model of
the Linux ecosystem was created. Entity-Relationship diagram
of the model is presented on Fig.1. The main entities here
are distributions and applications. Distributions are divided
to components (corresponding to real upstream components
from which every distribution is constructed, such as glibc,
X11, GTK, Qt, etc.). Each component may contain libraries,
commands and modules of interpreted languages. Libraries,
in turn, provides interfaces which are grouped by classes
(for C++ interfaces). As for applications, every program can
require libraries directly (by their sonames), binary interfaces
and interpreted languages modules.

One can notice that some relations (for example, between
distributions and components) are marked as ’one-to-many’
though it could reasonable to mark them as ’many-to-many’
instead (especially taking into account the fact mentioned by
us before – the key feature of distributions on which LSB is
based is that different systems actually contain the same com-
ponents). Nevertheless, from the our model point of view the
only thing which remains the same for the same component in
different distributions is its name. All other properties (version,
packages which form the component, etc.) are different. In

Fig. 1. Distributions and Applications Entity-Relationship Diagram

such situations the decision should be made on the basis of ac-
tual technology on which the database will be based. In case of
LSB, the relational database was supposed to be used, so this
question transforms to the problem of normalization; though
normalization makes the data managing easier in some aspects,
it usually decrease the speed of achieving necessary data. In
our case very complicated requests are sometimes required,
but all operations perfromed by analysts consist of selection
of different information. The data was not supposed to be
added changed manually, so we decided to denormalize the
schema in some areas to increase the speed of requests (and,
sequently, we had to create more complicated tools that upload
and manage the data). Thus, we consider components from
different distributions as different components, not regarding
their names, versions, etc. Groupings by names, versions and
other parameters are perfromed by analytical tools if it is
needed for report creation.

As for elements properties, there are quite a few of them that
are required for analysis. These are binary symbols versions,
libraries sonames (discussed in the section below) and com-
mands locations. There are some additional properties useful
for analysis (such as applications and distributions versions)
that also should be stored in the database.

Database alone is of no use, indeed, if it is not filled with
data. ISP RAS team has developed a set of tools that collect
data about Linux distributions and applications and upload it
to the database [7]. There are actually two sets of tools: one
is for data collection and the other is for data upload. Tools
from the first set analyses shared objects and executables of
applications and distributions. These tools determines binary
symbols and libraries provided by distributions and used by
applications. The analysis algorithm is actually the same for
distributions and applications. However, for distributions it



is important which interfaces and sonames are provided by
its libraries. For applications, we should know which binary
symbols should be present in the system to execute its binary
files. We should also keep in mind that applications can ship
some libraries with themselves; if some symbol is required by
some executable file and provided by a library shipped with
the application, then this symbol is not considered as external
dependency. Such analysis of collected information (including
analysis of actual external dependencies of the application) is
performed by tools uploading information to the database.

Next section presents the fundamentals of binary executable
files and shared objects analysis in Linux on which the tools
are based that collect applications and distributions data. In
addition. Section 5 concerns analysis of programs that use
interpreted languages as well as analysis of interpreters with
their environments implemented in particular distributions.

IV. BINARY FILES ANALYSIS

A. Executable and Linking Format

Almost all shared objects and binary executables in Linux
have ELF (Executable and Linking Format) file format (there
is one more format for UNIX-like systems, COFF – Common
Object File Format, but it is not used widely in Linux at the
moment). The ELF format for UNIX System V is described in
the System V Application Binary Interface specification [8].
Some additional aspects for Linux are specified in the Linux
Standard Base Core Specification [9]. Content of the ELF files
can be explored using functions from the libdl library, which
provides C API to access internal structure of such files. There
also standard utilities, such as readelf, nm or objdump, that can
present ELF file contents in a human-readable form.

Every ELF file has a header containing information that can
be useful during file analysis. At least the following attributes
are usually important:

• Class – ELF32 for 32-bit platforms (and for IBM S/390
formally known as 31-bit platform), ELF64 for 64-bit
ones.

• OS/ABI – 13 different OS/ABI types are defined at the
moment, including ’Linux’ and ’UNIX System V ABI’
(the latter is the default type supported by all systems
including Linux).

• Type – Executable, shared object, relocatable or core file.
• Machine – Actual architecture for which this file is

intended for. There are more than 70 possible values for
this attribute (and x86 is only one of them!). Note that in
some cases this field itself is not enough to define target
acrchitecture precisely. For example, both IBM S/390 and
IBM S/390x files have ’IBM S/390’ value in this field.
In such cases ’Class’ field should be used in addition
to ’Machine’ – in our example S/390 files belong to the
ELF32 class, and IBM S/390x files - to the ELF64 one.

After the header, different ELF file sections and tables
follow. LSB describes about 40 sections of 17 different types
that may be present in ELF file. We’ll shortly describe here
those that are necessary for detection of binary symbols

exported by shared libraries as well as symbols and libraries
required by application to be executed.

B. ELF Symbol Tables

In order to find out which external interfaces are required
by executable file or which symbols are exported by shared
object, one should explore symbol tables of the file which
contain lists of used binary symbols. Symbol tables are stored
in either ’.dynsym’ or ’.symtab’ section of the file. The
following properties can be obtained for every symbol from
the symbol tables:

• Type – for dependencies analysis, ’function’ and ’object’
types are of interest (’object’ type designates data inter-
face, such as global variable or alias).

• Binding – local, weak, global or some processor-specific
or operating system-specific values.

• Visibility – default, internal, hidden or protected.
• Index – ABS (absolute), UND (undefined) or some nu-

meric value.
• Offset value – the offset has non-zero value if the symbol

is implemented inside the file and zero value otherwise.
We will not consider processor or system-specific bindings

here. Symbols with local binding in shared objects are visible
only inside the component where they are defined. As for exe-
cutables, local binding of a symbols means that the appropriate
interface is implemented inside the file.

Global and weak symbols in shared objects are symbols
that are visible externally. The difference between ’global’ and
’weak’ binding lies in restricions on symbol names – when
several relocatable object files are combined by link editor,
there must be no definitions of ’global’ symbols with the
same name, while multiple definitions of ’weak’ interfaces are
allowed (as well as precense of one ’global’ and several ’weak’
symbols with the same name). That’s why applications using
weak symbols are considered to be unreliable – changes in the
runtime environment might cause their execution to fail; weak
symbols are intended primarily for use in system software.

In case of executable files, global symbols are actually
external references that should be resolved by link editor
before the execution starts.

The actual visibility of symbols with ’default’ visibility
value is as specified by the symbol’s binding type. That is,
global and weak symbols in shared objects are visible outside
the file, local symbols are not. Symbols with ’protected’
visibility can be also accessed from the outside, but unlike
default symbols with global or weak binding they are not
preemptable. Hidden and internal symbols can be accessed
only within the file where they are defined. As for executables,
their external references have ’default’ visibility.

C. ELF Dynamic Sections

According to LSB, if an object file participates in dynamic
linking, its program header table shall have an element of
a special type, PT DYNAMIC. Segment represented by this
element contains so called ’dynamic’ section, which, in turn,
contains different entries necessary for linker. Some of them



are auxiliary, the others represent the internal structure of
the file, but there is one kind of such entries which is vital
for its interaction with the system environment. We mean
DT NEEDED entries containing library names that should be
present in the system in order to successfully link the current
file. More precisely, DT NEEDED entries reference libraries’
’sonames’.

As denoted at LinuxQuestions.org [10], the point of the
soname is for the creator of the library to be able to provide
version compatibility information to the system. I.e. if a new
version of the library is released which is fully compatible
with the old one, developers can assign the same soname to
it; this will make two versions of the library identical from
the linker point of view. Thus, library can be safely updated
without touching the programs that use it (surely, if developers
haven’t broken anything). Soname of every library is stored in
a special dynamic entry of its ELF file, called DT SONAME.

Thus, every ELF file may have a list of DT NEEDED de-
pendencies, telling the linker which libraries should be loaded
to resolve symbols dependencies of this file discussed in the
section above. The process is recursive – all dependencies of
the referenced libraries should also be resolved, and so on. If
the linker cannot satisfy any dependency, the linking process
will be stopped by error; a list of sonames known to the system
linker can be obtained by calling ’ldconfig’ with ’-p’ option.
If a binary symbol needed by the file is not found among
libraries collected, the linking will fail, too.

However, a set of DT NEEDED entries should not be
considered as a reliable list of libraries which are really
required by application. There are two common problems that
can be found in real-life applications:

• DT NEEDED list may contain library whose symbols are
not really used by the file.

• DT NEEDED list may not contain library whose symbols
are used by the file.

The first problem is caused by the fact that default link ed-
itor behavior is to simply put all libraries pushed to it through
’-l’ option to the DT NEEDED list. But such a list taken from
the command line often contains superfluous names. Many
developers do not want to form such list manually and use
some auxiliary tools, such as pkg-config [11]. However, sim-
plicity here sometimes leads to extra dependencies. A common
example is about compiling programs using GTK libraries –
with pkg-config developers can simply get necessary linker
options by calling ’pkg-config --libs gtk+-2.0’. The tool will
fairly return the line containing all libraries concerning GTK+-
2.0. The list contains about 10 libraries, and very often only
some of them are really used by application.

One can object that libraries in the list constructed by pkg-
config are usually closely interconnected, so during dynamic
linking they will be loaded anyway. This is true, but only
for a certain system where the application is built. No one can
guarantee that on the other system the interconnection between
libraries is the same. The worst thing here is that some of the
libraries not actually required by application but included in
its DT NEEDED list can be missing on other systems. In this

case the application will fail to execute on such systems, even
though they do have all really necessary libraries and symbols.

The problem with unnecessary dependencies is known to
many Linux developers, including those who is responsible
for link editor development. The ’ld’ linker has ’--as-needed’
option which forces it to detect libraries really required by
files and to construct DT NEEDED list from such libraries
only. However, this feature is still rather unstable and known
to cause problems with many applications [12]. A list of
DT NEEDED entries which are unnecessary from the linker
point of view can be obtained by using ’ldd’ command with
’-u’ option. There is also a ’checklib’ tool [13], used by some
distribution developers to check their packages.

The second problem is opposite to the first one and usually
appears when developers manually form list of libraries that
should be placed in the DT NEEDED entries. In this case it is
possible to omit some libraries in the list expecting that they
will be loaded as dependencies of other libraries referenced
in the list. However, applications compiled with such tricks
can also fail to execute on systems where interconnections
between libraries differ.

V. SCRIPTS ANALYSIS

Creating binary executable files is not the only form of
distributing applications. Many developers use interpreted
languages (such as Perl, Python or Ruby) to create at least
some parts of their applications. In order to execute such
application on some distribution, the latter should provide
appropriate language interpreter and, maybe, some additional
staff (libaries, modules, etc.). LSB takes this fact into account
and specifies some aspects of Perl and Python interpreters
and environment that should be provided by LSB-compliant
distribution. More particular, LSB specifies minimal versions
of Perl and Python interpreters that should be provided by
distributions and sets of modules that should be present in the
system.

Thus, for analytical purposes it is important to know which
modules are provided by distributions and which are used
by applications. As for python, it has a separate module
called ’modulefinder’ that allows to get the list of modules
the application depends on. However, this module calculates
not only direct dependencies (i.e. it recursively calculates
dependencies of all modules required by application). This
is actually not exact what is required for analysis; so for
LSB puproses a modified version of the module called lsb-
modulefinder is developed which reports direct dependencies
only. As for Perl language modules, perldeps.pl script from
the rpm-build package can is used.

Note, however, that some interpreted languages provide
constructions that significantly complicate program analysis.
For example, in Python the exported name of the module can
be constructed in runtime, as well as a name of imported
module; moreover, module imports can be enclosed with
different ’try’ or ’if’ statements, so it is possible that the same
application will use different modules in different system en-
vironments. Surely, some similar tricks are available in binary



executables, too. Among possible examples we can mention
the ’system’ function that can execute any system command,
’syscall’ function performing system calls and functions from
the ’dlopen’ library that allow to call specific interfaces from
libraries hiding this fact from the dynamic loader. However,
in case of binaries files we still can detect the usage of
’system’ , ’syscall’ or ’dlopen’ symbols and the fact of their
usage itself indicates that there can be some problems with
application portability. In case of interpreted languages it is
sometimes impossible to detect such tricky situations, so tools
performing analysis of programs that use interpreted languages
are still consider as experimental. Sometimes results obtained
by these tools look unrealistic and require manual analysis of
application source code. Fortunately, manual analysis of scripts
is much more simple that the one for binary files, so analysts
usually don’t spend much time on it.

VI. ANALYSIS TOOLS

Thus, we’ve designed a database and fill it with all necessary
data. But though a database provides us with everything we
need for analysis, it is not convenient to perform complex
queries to the database every time we want to obtain some
information. The tools are required which will take care of
routine work to allow analysts to quickly obtain necessary
information. Surely, one cannot develop a program which will
satisfy all imaginable requests by terms of several mouse
clicks. Thus, it is necessary to determine the typical kinds
of reports that are used most often.

In case of Linux Standard Base, there are two typical
requests that are very important for analytics:

• Which distributions provide the symbols given.
• Which applications use the symbols given.
Detailed elaboration of these generic requests are usually

required to observe the data form different perspectives. For
example, it is useful to know do all last versions of distribu-
tions provide the interface, does the symbols given are used
only by games or which symbols are mostly important for
proprietary applications.

The main program used for analysis during LSB devel-
opment is LSB Navigator [14]. This is a web application
which uses information from the database. Online working
version can be accessed at the Linux Foundation portal. LSB
ATK Manager – a standalone tool (i.e. it doesn’t use the
database) for testing, certifying and analyzing applications –
also can create some analytical reports for applications. Both
programs are distributed under the GPL version 2 license and
can be freely downloaded from the Linux Foundation Bazaar
repository [15].

A. LSB Navigator

Availabilities of representing different reports for any given
sets of symbols is implemented in the LSB Navigator’s
’Decision Making Support’ section [16]. LSB Navigator also
provides sections containing different statistical data, among
which we’d like to mention the following:

• Top interfaces and libraries not included in LSB but used
by applications.

• Applications ’LSB compatibility’ – a rating of applica-
tions with respect to number of non-LSB elements used
by them.

For the latter purpose LSB Navigator uses LSB specification
database [17] that stores information about elements included
in the specification.

LSB Navigator provides a set of filters for every statistical
report, which can be used to observe the report from different
perspectives, as it was mentioned above. More particular, the
following filters are available:

• Application size – small, medium or large. This size is
based on the number of external symbols required by
application. Programs that use less than 100 symbols
are considered as small, from 100 to 999 symbols – as
medium, and products that require 1000 and more exter-
nal interfaces are called ’large’. Note that size calculated
by this way may not correspond to the actual size of
application’s binary files or source code. Applications
with lots of lines in their source code may implement
all necessary features inside themselves and decrease
the interaction with system environment to some generic
system calls.

• Application vendor. For proprietary applications, the ac-
tual vendor is stored. As for open source applications, the
situation is not so straightforward. The thing is that the
same application can have different external dependencies
if compiled and built in different system environments,
with different compiler options, etc. Therefore for opens
source applications analysis we usually take the builds
from particular distributions and mention those distribu-
tion vendor as application vendor.

• Functional category. Applications are divided on the
following categories at the moment:

– Accessibility and internationalization
– Antivirus and Security
– Emulators
– Office and Desktop
– Data Management
– Development
– Games
– Multimedia and Graphics
– Network
– Science and Education
– System Tools
– X11 Utilities

This set of values was developed on the basis of anal-
ysis of the same categorizations perfromed by different
distributions (more particular, Gentoo and Debian were
taken into account) and by large application vendors
(e.g. Chiphopper program of the IBM [18]). Detailed
description of these categorization is available on the LSB
Navigator Help page.

• Licensing type – proprietary, open source or mixed (the



latter is for those vendors who have both proprietary and
open licenses the same product).

• User interfaces – either GUI or non-GUI (command line
interface only). Applications that provide both graphical
and command line interfaces are considered as GUI ones.

LSB Navigators allow to select either single or multiple
values for each filter, so it is possible to perform such requests
as ’non-LSB interfaces mostly used by proprietary games,
emulators and antiviruses’ or ’large or small applications of
VendorA, VendorB and VendorC vendors that are at the top
of LSB compatibility rating’.

In addition to filters described above, LSB Navigator has
Architecture filter. LSB is a binary level standard and on
different architectures the sets of symbols may differ (for
example, some symbols are available on 32bit platforms only,
the others are specific for IBM S390 architecture, etc.). This
filter allows to view reports for every architecture supported
by LSB (7 architectures are supported at the moment – x86,
x86-64, IA64, PPC32, PPC64, S390 and S390X).

As it was mentioned above, LSB Navigator uses the speci-
fication database to determine which elements are included in
the standard. This specification database has special fields that
support historical requests – i.e. it is possible to know which
elements were included in a particular LSB version. Using this
information, LSB Navigator allows to view reports from the
different LSB versions retrospectives. This allows to observe,
for example, how the number of LSB compatible applications
changes in time, to decide, if the standard moves in the right
direction.

B. LSB ATK Manager

Information about external dependencies of applications
is important not only for standard developers, but also for
application vendors. Analysis of their software not only can
help to create LSB-compatible programs, but also helps to
detect some particular problems in binary files discussed in
the ’ELF Dynamic Sections’ section, which is rather useful
for all applications.

The data for any application can be gathered by tools
described earlier, uploaded to the main LSB database and
explored using LSB Navigator. But for LSB developers it
doesn’t make sense to have information about many different
versions of the same application. It’s very likely that these
different versions don’t differ vastly, indeed. It is possible to
set up the database and LSB Navigator locally, but this is
also not very convenient for single software vendor, since the
setup procedure takes significant amount of time. That’s why
the possibility of application analysis was integrated in the
LSB ATK Manager [19] – a tool that among other purposes
has the one to help develop LSB-compatible applications.

Using ATK Manager, it is possible to analyse any given
application (using its rpm or deb package or specifying
application files directly) and to get the report similar to
those produced by LSB Navigator for single application. ATK
Manager doesn’t require database; necessary data from the
LSB specification database is shipped with the program, and

data necessary for assigning interfaces to libraries is collected
in runtime, using information from the system dynamic loader.
Though the latter is not very fast and sometimes the analysis
may take several minutes; in future, we plan to ship some
additional information with ATK Manager which will allow
to decrease the number of requests to system dynamic loader.

VII. CONCLUSION

This paper has suggested and approach of collecting and
managing information about existing Linux distributions and
applications necessary for analysis of applications portability
among different Linux distributions. The method concerns all
aspects that should be taken into account when exploring
portability of binary executable files of the application written
in C. The same aspects are also should be considered for
applications written in C++; however, there is one C++ specific
thing that is not covered yet – the structure of class virtual
tables (though there are many C++ applications for which
this is not important). Interpreted languages modules data and
analysis tools are so mature yet and require more manual work,
so this is one of the directions for development in future.

The approach suggests to store collected information in the
database, but this is not the only possible solution, indeed.
We’ve suggested a set of Linux ecosystem elements with their
properties that should be placed in some data storage. We
use a relational database as a such storage (with MySQL as
DBMS) and we are satisfied by its performance and scalability.
Though it should be mentioned that one of the reasons for
such decision was the existence of stable and rather mature
open source DBMS with convenient interface for different
programming languages (in order to create tools to work with
the database).

The approach developed was initially targeted to solve the
problem of Linux ecosystem analysis during Linux Standard
Base specification development. However, such analysis is
very useful for application vendors themselves. Using the
tools developed by Linux Foundation and ISP RAS (freely
distributed under the GPLv2 license) they can analyze their
applications portability. This possibility is used by proprietary
vendors which don’t want to place data about their applications
to the central LSB database. As for analytical tools, though
they initially aimed to answer the question ’can these symbols
be added to the LSB’ they can also answer another question
very useful for software vendors – ’on which distributions the
given binary build of the application can be launched’.

As LSB development process itself, the approach already
proved to be very useful. The database at the moment contains
data about 33 distributions and almost 1000 applications,
which is quite enough to make decisions about binary symbols
inclusion. Indeed, this data is the first thing that is checked by
LSB analysts now when deciding whether to include given
set of symbols to the specification or not; nothing is included
without such checks.

REFERENCES

[1] The Single UNIX Specification, Version 3. http://www.unix.org/version3/



[2] Linux Standard Base. https://www.linux-foundation.org/en/LSB
[3] Xbase – The Standards Effort. Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/XBase#The standards effort
[4] Andrew Josey. API Standards for Open Systems. http://www.opengroup.

org/austin/papers/wp-apis.txt.
[5] Jerry Cashin. Bloom Fading From Posix Rose As Open Focus Shifts.

Software Magazine, Volume 14, #3, March 1994. (http://findarticles.com/
p/articles/mi m0SMG/is n3 v14/ai 15061435/)

[6] The Linux Foundation. https://www.linux-foundation.org
[7] Application and Distribution Data in the LSB Database. http://ispras.

linux-foundation.org/index.php/Application and Distribution Data
[8] System V Application Binary Interface – DRAFT – 17 December 2003.

http://www.caldera.com/developers/gabi/2003-12-17/contents.html
[9] Linux Standard Base Core Specification 3.2. Executable and

Linking Format. http://refspecs.linux-foundation.org/LSB 3.2.0/
LSB-Core-generic/LSB-Core-generic.html#ELF-GENERIC

[10] LinuxQuestions.org – Library-related Commands and Files. http://wiki.
linuxquestions.org/wiki/Library-related Commands and Files#soname

[11] pkg-config Wiki. http://pkg-config.freedesktop.org/wiki/
[12] Gentoo Quality Assurance – ’--as-needed’ Introduction and Fixing

Guide. http://www.gentoo.org/proj/en/qa/asneeded.xml
[13] Checklib Tool. http://swirl.redtux.org/checklib
[14] LSB Navigator. http://www.linux-foundation.org/navigator
[15] Linux Foundation Bazaar Repository. http://bzr.linux-foundation.org
[16] Decision Making Support in the LSB Navigator. http:

//ispras.linux-foundation.org/index.php/Administration Mode Howto#
Decision Making Support

[17] LSB Specification Database. http://ispras.linux-foundation.org/index.
php/LSB Database Home

[18] IBM Systems Application Advantage for Linux (Chiphopper). http://
www.ibm.com/isv/go/chiphopper

[19] LSB Application Testkit Manager. http://ispras.linux-foundation.org/
index.php/About LSB Application Testkit Manager


