

Abstract — In this paper we propose a method for signature

matching optimization in the field of intrusion detection and
prevention. Signature matching algorithm performance is one of
the key factors in the overall quality of the IDS/IPS, especially in
high-speed networks. Optimization method proposed in this
paper relies on semantics of the signature matching task, typical
for such systems as Snort. The method minimizes the number of
patterns called by the detection system for each network packet,
reducing the time of its processing.

Index Terms— Security, Intrusion detection, Networks, Snort.

I. INTRODUCTION
ETWORK intrusion detection and prevention systems

(IDS/IPS), which are quite common nowadays, mostly
use signature-based method for attacks recognition. The idea
of this method is in comparison of real observed network
traffic with a set of known attack descriptions. The number of
signatures in a typical IDS database is usually several
thousands (Snort system has about 7 thousand signatures [1]).
A single signature can be imagined as an ordered set of tests
of network packet header and payload content – values of
some characteristic header fields, typical textual substrings,
regular expressions, etc. Thus, “straight” testing of all the
signatures set against a single network packet results in
hundreds of thousands machine operations. This is one of the
key factors that hinder wide spreading of those systems at
high speed networks – 1Gbit/s and beyond. Furthermore, there
are 2 important trends, observed from the beginning of
computers and networks evolution, called Moor’s law and
Gilder’s law. Moor’s law reads that processor’s throughput of
a given cost doubles every 2 years; Gilder’s law says that the
network throughput trebles at the same period. So, the
network node’s computational power growth is left behind by
the growth of volume of information transferred through the
network, which continuously make performance requirements
of the security systems’ algorithms to grow higher as well,
which refers to IDSs too.

This paper proposes a method for optimized testing process
of a given signature set on a single packet. The basic model

Manuscript received March 31, 2008.
D. S. Kazachkin is with the Computational systems lab at CMC MSU,

Moscow, Russia (e-mail: zok@lvk.cs.msu.su).
D. U. Gamayunov is with the Computational systems lab at CMC MSU,

Moscow, Russia (e-mail: gamajun@lvk.cs.msu.su).

for signature matching, used is this paper for evaluating the
optimized method, is consecutive checking of every signature
until the first success (getting “true” value), which is in fact a
brute-force search. Of course, modern IDSs do not use this
full search for signature matching and most of them have
some heuristics for search space reduction (Snort
optimizations are shown below). The proposed method was
implemented for an experimental IDS, designed at the
Computational systems lab of Moscow State University’s
Faculty of Computational Math and Cybernetics [4], and
Snort’s signature base released at 2007 was used as an initial
pack of signatures. Implementing the optimized signature
matching algorithm would be a hard task, for it implies
altering the Snort core engine. Yet, for experimental IDS this
method implementation is reduced to signature base
translation without meddling in the IDS engine.

Experimental IDS uses a specialized behavior description
language called R-lang, which use finite automaton for
describing network object behavior. A set of such
descriptions, grouped by the object type (in our case –
network packets), is called module. R-lang language is based
on ideas of Eckmann’s, Vigna’s and Kemmerer’s works and
STATL language [5,6]. Implementation of signatures
matching optimization method offers an optimizing translator
from R-lang modules to R-lang modules, which minimize the
total number of states and transitions in the module, and also
the number of testing functions called for a single event.

Evaluation of the Snort’s signature base with optimizing
translator revealed its essential superfluity, that partially can
be explained by the fact, that this base was formed by many
independent developers, and seemingly some of them were
using automatic signature generators, based on attack samples.
In the end of this paper is shown how proposed signature
matching optimization has helped to reduce this superfluity.

II. SIGNATURE FORMAL DEFINITION
 First, we will give a formal signature definition to use it
afterwards. The object of analysis of a signature is a single
network packet P, which consist of header and packet
payload. Header is a vector of some fixed fields H =
{H1,H2,...,Hn}, that belong to corresponding finite spaces.
Payload — text line P of unrestricted length.

Also, there is a variable vector C = {С1,С2,...,Сk},
describing the signature-based analyzer inner state (so-called

Network traffic analysis optimization for
signature-based intrusion detection systems

Dmitry S. Kazachkin, Student, Computational systems lab at CMC MSU, Dennis Y. Gamayunov,
scientific advisor, PhD, Computational systems lab at CMC MSU

N

state vector). Variables Ci also have a finite value ranges.
 Header condition CondHi(H) — is a logical predicate,
which takes header fields H as its arguments.
 A sample of such condition is a testing of the equality of
source port (one of the header fields) to value 80.
 Payload condition — is an array of functions:

 CondPi(P,C) — is a logical predicate, which takes
packet payload and state vector as its arguments,

 Effectsi = {Effecti,j(P,C)} — each function in this set
(for i=1...k) represents the side effect on variable Сk,
performed during CondPi(P,C) checking.

 It is said that payload condition evaluates successfully, if
CondPi(P,C) returns 1. At the same time, all the variables ib C
vector simultaneously get the new values C'j=Effecti,j(P,C),
based on payload text and their old values. When consecutive
payload conditions are evaluated, each of them “feels” side
effects from already evaluated conditions, and the result is
their complex superposition. This means there is no way of
caching conditions evaluation result in a general case.
 A sample of such condition is a test of substring presence in
payload P between markers С1 and С2 with a side effect of
moving left marker С1 to the end of found substring.
 Reaction — is an element of some finite set of event
classes.
 Signature — is a triplet <SH,SP,R>, where SH — set of
header conditions, SP — ordered set of payload conditions, R
— reaction.

Signature evaluation result RES(<SH,SP,R>,H,P,C):
 {R}, if all the header conditions return ‘true’ and all the

payload conditions successfully evaluate consecutive.
 ∅, else

III. CONVERTED SIGNATURES
Snort’s signatures are quite strictly described by suggested

formal model. Let’s examine Snort’s signature structure and
describe the way to build a corresponding formal signature.

Snort’s signature consists of 4 sections:
• action – action performed on rule activation (usually,

‘alert’). Corresponds to reaction function.

• header – context-independent conditions on packet
header: protocol, IP addresses and ports (if defined by
protocol) of source and destination, direction.
Corresponds to header conditions from the model.

• options – context-dependent conditions on packet
payload. Consists of different tests of text, contained in
payload after a single moving marker. Marker is moved
depending on a condition type. Corresponds to
payload conditions from the model.

• info – rule info and message, generated at rule
activation. Corresponds to reaction function arguments.

Let’s define vector H in the following way: H1 — protocol

type (TCP / UDP / ICMP / other IP), H2 and H3 — IP and port
of packet source, H4 — packet direction (from server/to
server), H5 and H6 — IP and port of packet destination. Ports
range is 0…65535, IPs range is 0.0.0.0 … 255.255.255.255.
Regarding to so defined vector H, for any header field a set of
header conditions {CondHi(H)} exists, having the same
functionality.

Vector C is defined as a single-variable vector. C1 —
current state of the text marker, after which the pattern
matching takes place. Regarding to so defined vector C, for
any options chain a chain of payload conditions
[<CondPi(P,C), Effecti(P,C)>] exists, having the same
functionality, including both return value and side-effects.

Reactions space, which contain different classes of events
we can define as a space of different possible values of
classtype field, which is representing class of detected attack.
The reaction of each signature is the value of classtype field.
This definition is correct, because for each signature reaction
exists and only one.

IV. R-LANG LANGUAGE
R-lang is the language used in experimental IDS. It

describes the behavior of observed system with a scenario –
finite automaton with memory, each transition of which is
marked by type, condition and body of transition.

There are 3 types of transitions – consuming (simply
performs a transition), non-consuming (creates automaton
exact copy and perform a transition there), unwinding
(destroys current automaton copy). Condition – is a logical
expression that should be true to perform transition. Body – a
program instruction block, that executes during the transition.

In fact, automaton is an extension of structure concept,
because it can contain functions (methods of scenario), and
automaton’s memory is а implemented in form of inner
variables (fields of scenario), that are globally visible in all the
transitions.

There is an important particularity of R-lang language:
there is totally no dynamic memory in it, so the framework is
safe from troubles caused by scenario errors. Also there are no
global variable, visible in all the scenarios, so for a library
function, designed as a function that is external to scenario,
side-effect can be performed only over its direct arguments
(structures are passed by reference). Functions, defined inside
scenario can also perform side-effects on its fields, even if
they are not passed as arguments.

V. CONVERSION TO R-LANG

A.Simple conversion
Structure similarity of R-lang and STATL languages allows

using conversion ideas, described by S.T. Eckmann in [2], the
paper about translating snort rules to STATL scenarios.

Network sensor of experimental IDS provides typified
events to scenarios on getting every packet. Each event
contains IP-addresses and ports of packet source and
destination (IPSrc, PortSrc, IPDst and PortDst), its direction

 alert tcp any:80 -> any:any (content:”qwerty”; msg:”Panic”)‏

action header options info

Fig. 1. Snort’s signature structure.

(Direction), and also its direction (Payload).
Below is an algorithm of signature conversion, written in

terms of formal model. The result is a R-lang scenario.
If protocol Pr (TCP, UDP, IP or ICMP) is granted by

header conditions {CondHi(H)} (vector H*={Pr, IPSrc*,
PortSrc*, Dir*, IPDst*, PortDst*} exists and all the conditions
return true value on it), then the signature has a corresponding
scenario, accepting events of corresponding packet type.

Each header condition has a corresponding logical
expression in R-lang language, which tests network event
fields, corresponding to H vector elements. This expression is
a model of CondHi(H) in R-lang.

For example, corresponding code for CondH(H):(H3=80) is
“ev.tcpSrcPort==80”.

Each payload condition is assigned to a logical expression
in R-lang language, which tests packet payload text P and
condition vector C. This expression returns a Boolean value,
simulating CondPi(P,C). Also during its evaluation condition
vector C can be modified, simulating Effecti(P,C).

For example, CondP(P,C): true, if packet payload contains
substring «qwerty» after the marker C1, EffectP1(P,C) moves
C1 to the end of found substring. The code corresponding to
payload condition <CondP, EffectP> is a call
“content(“qwerty”, C, ev.Payload)”, where content – external
function, modeling the described functionality, including side-
effect on passed-by-reference vector C.

Each reaction is assigned to an alert sending code, which
sends to IDS a message, containing found attack
classification.

Here is the scheme of signature evaluation performing
scenario in R-lang:
scenario sc(<event corresponding to packet type> ev)
{
 <Secondary variables definition>
 initial state st0;
 consuming transition st0->st0
 event <event corresponding to packet type> (
 <Header condition 1> && … && <Header condition N>
){
 if(<Payload condition 1>)
 …
 if(<Payload condition M>)
 <Reaction>;
 }
};

Before optimizations, described in this paper, Snort2R-lang
converter worked this way.

B.Header-based optimization
Conditions alternative — a set of pairs <SPi,Ri>, where SPi

– ordered set of payload conditions, Ri — reaction.
Alternative-containing signature – a pair <SH, SA>, where
SH — set header conditions, SA — condition alternative.

Set of signatures with the same header are converted to
alternative-containing signature this trivial way:

>><→<>< },{,},,{ iiii RSBSHRSBSH
Alternative-containing signature evaluation result is defined
as:

U
N

i
ii CPHRSPSHRESCPHSASHRES

1

),,,,,(),,,,(
=

><=><

Also, let’s define condition alternative evaluation result:

U
N

i
ii CPHRSPRESCPSARES

1

),,,,,(),,(
=

>/<= ο

Here is the structure of transition body at the R-lang model
of alternative-containing signature (anything else is just as in
simple signature scenario):
C1=C; if(<Series of payload conditions 1>) <Reaction 1>;
C=C1; if(<Series of payload conditions 2>) <Reaction 2>;
…
C=C1; if(<Series of payload conditions N>) <Reaction N>;

Tests on Snort signature base revealed considerable
economy on header condition evaluation provided by this
optimization: there are only 519 different header condition
sets for base of 6372 signatures.

The burden of this optimization is in replacement of excess
header condition evaluations with context vector restoring
operation, much simpler in the case of Snort’s signatures,
where context vector contain one integer only.

Let a set of alternative-containing signatures is given,
granting the same protocol. Because of context independency
of header conditions, they could be evaluated in tree-style
order that provides a good economy.

This additional optimization can be organized in R-lang by
scenario combining with the use of nested “if”s:
consuming transition st0->st0
event <event corresponding to packet type>(true){
 if(<Header condition 1>
 if(<Header condition 2>)
 <predicate alternative for header granted by 1,2>
 if(<Header condition 3>)
 if(<Header condition 4>)
 <predicate alternative for header granted by 1,3,4>
}}

Snort analysis engine use that header optimization only, that
does not allow achieving further speed-up on a fixed signature
set.

C.Predicate tree
The computational complexity of payload condition

evaluation usually much higher than the computational
complexity of header condition evaluation. That’s why the
task of optimizing conditions alternatives evaluation is urgent.

Condition chains contained in conditions alternative can
have the same beginnings. A huge benefit can be achieved by
using this fact.

Predicate tree ST – tree:
• the edges are marked with a payload condition
• the nodes are marked with a reaction set, possibly empty
• the leafs are marked with non-empty reaction sets
Algorithm of building a predicate tree based on a condition

alternative is intuitive clear: when adding a next chain of
payload conditions to a tree, a pointer moves from root node
through the edges marked with corresponding payload
conditions if they exist, otherwise a new branch, containing
left conditions is created and linked to the current pointer
position.

Predicate tree evaluation – recursive traversal of tree from
root node. Sub-trees are evaluated only if corresponding
condition could be evaluated successfully in current context.

Predicate tree evaluation result RES(ST, P,C) – a set of all
the reaction, that were achieved during the predicate tree
evaluation.

Statement. Let predicate tree ST is converted from
condition alternative SA. Then RES(ST,P,C)=RES(SA,P,C).

D.Static result analysis
Due to that optimization, a high benefit is achieved at some

scenarios.
Here are defined two static characteristic of this

optimization. Tree profit – is the difference between edges
number in the tree and the total number of payload conditions
in a conditions alternative that was the source of the predicate
tree. Relational tree profit – is the ration between thee profit
and total number of payload conditions in a conditions
alternative.

For two signature groups in the Snort Base the tree profit
exceeds 11000 for each group, and the relational tree profit for
them is about 80%. These groups contain about 2000
signatures, i.e. about 1/3 off the whole base. On average, the
relational tree profit is about 62%.

Also, while building those trees, 38 pair of identical
signatures and 2 groups of six identical signatures were found.

The number of context restoring is not increased at all
comparing to condition alternative usage. The number of
context backups is increased by the number of additional
branching, which is not more than the tree profit. Thus,
considering heaviness of payload condition evaluation, burden
of this optimization is insignificant in comparison with
economy, achieved by the lowering the number of conditions.

E.Additional optimizations
Consider a set of leafs, that are all marked with same

reaction R and being direct children of the same node.
Sometimes it is possible to think of a payload condition B,

so RES(<∅,[B],R>,H,P,C) would be equal to evaluation result
of a sub-tree that includes these given leafs and a parent node,
and the computational costs of B evaluation is lower than
costs for evaluation of A1, A2... An in total.

For example, payload conditions, which perform regular
expression analysis (pcre) can be combined into a single
predicate, that performs the search of first pattern, found of
this set.

For implementing this optimization for R-lang scenarios,

callout mechanism of PCRE library was used. It allows not
only to stop the ongoing regular expressions set testing after
the first match, but also returns id of matched pattern, which
allows to inform IDS of matched signature id and
classification text, not only classtype.

Also it is proposed to unite payload predicates, performing
substring search (contest) using Aho-Corasick algorithms [3],
which allows saving on substring search, performing all the
patterns look-up at once.

These predicate combination methods of quite effective
when performing conditions set evaluation until the first
match. But when searching all the matches (that is necessary,
if the branching node is not pre-leaf) at some strings, this
method works even worthier, than separate matching.
Nevertheless, they demonstrate a good performance in
average, so their application for non-pre-leaf branching nodes
needs further research.

VI. CONCLUSION
Using the proposed optimization method with the Snort

signature base allowed reducing the number of testing
functions calls by 60% (see table below). Considering that
most of superfluous conditions were “heavy-weigh” functions
such as substring search and regular expressions matching, the
real gain could be even higher. A series of experiments using
different types of traffic is planned to find out the numerical
evaluation of that gain.

The ideas, used in optimizing translator are with minimal
changes applicable for some R-lang constructions, not
overviewed in this paper. Here are some examples of this
constructions: several consequent transitions of the same type
to the same state (condition of transition is a analogue of a
payload conditions chain, because some side-effects are
possible here, body of transitions is and analogue of reaction) ;
several consequent if-blocks, etc. Implementing these ideas
would help to develop a universal optimizing translator for
this language.

TABLE I
STATIC CHARACTERISTICS OF PROPOSED OPTIMIZATION

Characteristic
The source
signatures

Using proposed
optimization

Number of header
conditions sets

6372 519

Number of payload
conditions

39299 15049

This table illustrates advantages of proposed method. The presented data
was collected using Snort IDS signature base dated 28.01.2007.

 A B

A C D

A

{R1}

{R2}

{R3}

A B

C
D

{R1}

{R2}

{R3}

Fig. 2. Predicate tree building sketch.

{R}

{R}

{R}
A2

An

… {R}
B

A1

Fig. 3. Additional optimization scheme.

REFERENCES
[1] Snort IDS, http://www.snort.org
[2] S.T. Eckmann, "Translating Snort rules to STATL scenarios" presented

at the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), Davis, CA, October 2001, LNCS 2212, pp. 69-
84.

[3] M. Norton, "Optimizing Pattern Matching for Intrusion Detection,"
white paper, Sourcefire Inc., 2004 [Online] Avaliable: http://
docs.idsresearch.org/OptimizingPatternMatching/ForIDS.pdf.

[4] D.U. Gamayunov, “Network objects behavior analysis for detecting
computer attacks” PhD thesis, Faculty of Computational Math and
Cybernetics, Moscow State University, Moscow, 2007.

[5] S.T. Eckmann, G. Vigna, and R. A. Kemmerer. “STATL: An Attack
Language for State-based Intrusion Detection” Dept. of Computer
Science, University of California, Santa Barbara, 2000.

[6] G. Vigna, R. Kemmerer, "NetSTAT: A Network-based Intrusion
Detection Approach." Proceedings of the 14th Annual Computer
Security Application Conference, Scottsdale, Arizona, December 1998.

[7] M. Roesch. "Writing Snort Rules: How To write Snort rules and keep
your sanity" [Online] Avaliable: http://www.snort.org.

