Formal methods and tools for evaluating cryptographic systems security

Alexandra A. Savelieva
Supervisor: Prof. Sergey M. Avdoshin

State University - Higher School of Economics, Russia Software Engineering Department

Cryptosystem security assessment

Cryptosystem security assessment

Optimizing tools in cryptanalysis

Public key cryptography: based on the complexity of

- Factorization
- Discrete logarithm computation
* Not NP-complete problems, but no polynomial algorithms is known to solve these problems
\% The best known algorithms run in subexponential time of the form:

$$
L_{x}[\gamma ; c]=e^{(c+o(1))(\log x)^{\gamma}(\log \log x)^{1-\gamma}}, \text { where } x \rightarrow \infty, 0<\gamma<1, c=\text { const, } c>0
$$

Smoothness

For $u, B \in \mathbb{Z}$, we say u is B - smooth, if all the primes q_{i} in the prime factorization of u are $\leq B$

$$
u=\prod_{i=1}^{k} q_{i}^{\alpha_{i}}
$$

Primes $\boldsymbol{q}_{\boldsymbol{i}}$ form Factor Base Q :

$$
Q=\left\{q \leq B=e^{\text {const } \sqrt{\log x \log \log x}}\right\}
$$

Index-calculus methods

Relation
 Collection Step

Find many linear relations involving the unknown logarithms of the primes in the factor base

Compute individual logarithm using the logarithms of the primes in the factor base

Generating relations

Pick a random integer $v \in[1 . . p-1]$ and compute

$$
c \equiv a^{v}(\bmod p)
$$

* c is an element of $Z_{p}{ }^{*}$ but we treat it as an integer and factorize it over Q

Given that $c=q_{1}{ }^{b 1} \cdot q_{2}{ }^{b 2} \cdot \ldots \cdot q_{\mathrm{n}}{ }^{b \mathrm{n}}$ where all $q_{\mathrm{i}} \in Q$:

$$
v \equiv b_{1} \log _{a} q_{1}+b_{2} \log _{a} q_{2}+\ldots b_{\mathrm{n}} \log _{a} q_{\mathrm{n}}(\bmod p-1)
$$

Observations

I nteresting properties of matrices:

- Size: 100000×100000 or larger
- Elements: very small (the number of elements $\sim p \rightarrow 0$)
- Density: Sparse, but not uniformly sparse!

Matrix structure

\square

$$
P(c \text { is } y-\operatorname{smooth} \mid c \in[0,1, \ldots, x] \& x \leq y)=O\left(u^{-u}\right)
$$

$$
\text { where } \mathrm{u}=\log \mathrm{x} / \log \mathrm{y}
$$

Observations

I nteresting properties of matrices:

- Size: 100000×100000 or larger
- Density: Sparse, but not uniformly sparse!
- Elements: very small (the number of elements $\sim p \rightarrow 0$)

Linear algebra needs to be done over the ring Z / nZ for some composite n

Solving a linear system in Z/36

All the coefficients are non-invertible; the solution however exists and is unique modulo 36

$$
\left\{\begin{array}{l}
x=17 \\
y=22
\end{array}\right.
$$

Linear algebra techniques

Reducing the problem to:
i. solving a number of systems over prime fields and combining the results using the Chinese Remainder Theorem
ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring

Linear algebra techniques

Reducing the problem to:

i. solving a number of systems over prime fields and combining the results using the Chinese Remainder Theorem
ii. solving a system of Diophantine equations iii. solving an equation over a matrix ring

Solving a number of systems over prime fields

$$
\begin{gathered}
\left\{\begin{array}{l}
26 x+3 y=4 \\
9 x+34 y=1
\end{array} \quad(\bmod 36)\right. \\
\left\{\begin{array} { r l }
{ 2 6 x + 3 y = 4 } \\
{ 9 x + 3 4 y = 1 }
\end{array} (\operatorname { m o d } 2 ^ { 2 }) \quad \left\{\begin{array}{l}
26 x+3 y=4 \\
9 x+34 y=1
\end{array}\right.\right. \\
\left\{\begin{aligned}
2 x+3 y=0 \\
x+2 y=1
\end{aligned}\left(\bmod 3^{2}\right)\right. \\
(\bmod 4) \quad\left\{\begin{array}{r}
8 x+3 y=4 \\
7 y=1
\end{array}(\bmod 9)\right.
\end{gathered}
$$

Solving a number of systems over prime fields

$$
\left\{\begin{array}{l}
\binom{x}{y}=\binom{1}{2} \quad(\bmod 4) \\
\binom{x}{y}=\binom{8}{4} \quad(\bmod 9)
\end{array}\right.
$$

Chinese Remainder Theorem yields the result:

$$
\left\{\begin{array}{l}
x=17 \\
y=22
\end{array}\right.
$$

(mod 36$)$

Gaussian-J ordan elimination

$$
\begin{aligned}
& \left(\begin{array}{cccccc|c}
a_{11} & \cdots & \cdots & a_{1 n} & a_{1, n+1} & \cdots & a_{1, m} \\
\vdots & \ddots & & \vdots & \vdots & & \vdots \\
\vdots \\
\vdots & & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n} & a_{n, n+1} & \cdots & a_{n, m}
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{ccccccc|c}
1 & 0 & \cdots & 0 & a_{1, i_{n+1}}^{\prime} & \cdots & a_{1, i_{m}}^{\prime} & b_{1}^{\prime} \\
0 & \ddots & & \vdots & \vdots & & \vdots & \vdots \\
\vdots & & \ddots & 0 & \vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 1 & a_{n, i_{n+1}}^{\prime} & \cdots & a_{n, i_{m}}^{\prime} & b_{n}^{\prime}
\end{array}\right)
\end{aligned}
$$

Matrix structure: Gaussian-J ordan elimination

Step 1

Step 5

Disadvantages

Factorization of $p-1$ is unknown

We have to solve many systems instead of one

The coefficients in the dense part of the matrix grow rapidly

Fill-in quickly causes matrix to become nonsparse

Linear algebra techniques

Reducing the problem to:
i. solving a number of systems over prime fields and combining the results using the Chinese Remainder Theorem
ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring

Solving a system of Diophantine equations

Reduction:

$$
\left\{\begin{aligned}
26 x+3 y+36 v_{1} & =4 \\
9 x+34 y+36 v_{2} & =1
\end{aligned}\right.
$$

General solution:

$$
\left\{\begin{array}{l}
x=5653025+t_{0} \cdot 1224+t_{1} \cdot(-21492) \\
y=-1496390+t_{0} \cdot(-324)+t_{1} \cdot 5688 \\
v_{1}=-3958042+t_{0} \cdot(-857)+t_{1} \cdot 15048 \\
v_{2}=\begin{array}{l}
0 \\
0
\end{array} \quad, t_{0} \cdot 0
\end{array}, t_{0}, t_{1} \in \mathbb{Z}\right.
$$

exponential growth of coefficients

Linear algebra techniques

Reducing the problem to:

i. solving a number of systems over prime fields and combining the results using the Chinese Remainder Theorem
ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring

Solving an equation over a matrix ring

Ax=b

Glukhov M.M., Elizarov V.P., Nechaev A.A. Algebra. Vol. IM.: Gelios ARV, 2003

Elizarov V.P. Russian Mathematical Surveys. 1993. Vol. 48, No. 2. pp. 181-182.

Efficient algorithm for matrix inverting

Generalized Gaussian-J ordan Elimination (GGIE) for residue rings

\%The basic idea:

- Extended Euclidean algorithm
- Gaussian-Jordan elimination
- Applicable to:
- Residue rings
- Finite fields

Efficiency:

- At worst case time and space complexity equivalent to Gaussian-Jordan elimination for finite fields

Extended Euclidian Algorithm

INPUT: $\quad a, b \in \mathbb{Z}_{+}$

$$
\left\{\begin{array}{l}
d=G C D(a, b)=a \cdot x+b \cdot y \\
0=a \cdot r+b \cdot s
\end{array}\right.
$$

SUB Euclid (a, b)

$$
\left(\begin{array}{lll}
d & x & y \\
n & r & s
\end{array}\right) \leftarrow\left(\begin{array}{lll}
a & 1 & 0 \\
b & 0 & 1
\end{array}\right)
$$

WHILE $n \geq 0$ LOOP

$$
\begin{aligned}
& c \leftarrow\lfloor d / n\rfloor \\
& \left(\begin{array}{lll}
d & x & y \\
n & r & s
\end{array}\right) \leftarrow\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right) \times\left(\begin{array}{ccc}
d & x & y \\
n & r & s
\end{array}\right)
\end{aligned}
$$

END WHILE
END SUB

Euclidian Algorithm applied to matrix

$$
\left\{\begin{array}{l}
26 x+3 y=4 \tag{mod36}\\
9 x+34 y=1
\end{array}\right.
$$

$$
\begin{gathered}
{[1]} \\
{[2]}
\end{gathered}\left(\begin{array}{cc|c}
26 & 3 & 4 \\
9 & 34 & 1
\end{array}\right) \xrightarrow{[11][2] \cdot 2}\left(\begin{array}{cc|c}
8 & 7 & 2 \\
9 & 34 & 1
\end{array}\right) \xrightarrow{[1] \leftrightarrow[2]}\left(\begin{array}{cc|c}
9 & 34 & 1 \\
8 & 7 & 2
\end{array}\right)
$$

$$
\begin{gathered}
{[1]} \\
{[2]}
\end{gathered}\left(\begin{array}{cc|c}
9 & 34 \\
8 & 7 & 1 \\
2
\end{array}\right) \xrightarrow{[1]-[2] \cdot 1}\left(\begin{array}{cc|c}
1 & 27 & 35 \\
8 & 7 & 2
\end{array}\right) \xrightarrow{[1] \leftrightarrow[2]}\left(\begin{array}{cc|c}
8 & 7 & 2 \\
1 & 27 & 35
\end{array}\right)
$$

$$
\begin{gathered}
{[1]} \\
{[2]}
\end{gathered}\left(\begin{array}{cc|c}
8 & 7 & 2 \\
1 & 27 & 35
\end{array}\right) \xrightarrow{[1]-[2] \cdot 8}\left(\begin{array}{cc|c}
0 & 7 & 10 \\
1 & 27 & 35
\end{array}\right) \xrightarrow{[1] \leftrightarrow[2]}\left(\begin{array}{cc|c}
1 & 27 & 35 \\
0 & 7 & 10
\end{array}\right)
$$

$$
\left[\begin{array}{cc|c}
{[1]} \\
{[2]}
\end{array}\left(\left.\begin{array}{cc}
1 & 27 \\
0 & 7
\end{array} \right\rvert\, \begin{array}{c}
35 \\
10
\end{array}\right) \xrightarrow{[2] \cdot 31}\left(\begin{array}{cc|c}
1 & 27 & 35 \\
0 & 1 & 22
\end{array}\right) \xrightarrow{[1]-[2] \cdot 27}\left(\begin{array}{cc|c}
1 & 0 & 17 \\
0 & 1 & 22
\end{array}\right)\right.
$$

Euclidian Algorithm applied to matrix

Bezout coefficients for $a=26, b=9$:

$$
1=26 \cdot(35)+9 \cdot(3) \quad 0=26 \cdot(9)+9 \cdot(10)
$$

Algorithm output

Solving the system: $\left\{\begin{array}{l}26 x+3 y=4 \\ 9 x+34 y=1\end{array}\right.$ (mod36)

:Inverse matrix computation:

$\left[\begin{array}{c}{[1]} \\ {[2]}\end{array}\left(\begin{array}{cc|cc}1 & 27 & 35 & 3 \\ 0 & 7 & 9 & 10\end{array}\right) \xrightarrow{[11]-[1]+[2] \cdot 27]}\left(\begin{array}{ll|ll}1 & 0 & 26 & 21 \\ 0 & 1 & 27 & 22\end{array}\right)\right.$

Algorithm GGJ E

- Input: $A=\left(a_{i j}\right)_{n \times m}, a_{i j} \in \mathbb{Z}_{p} \quad$ \{Extended matrix\}
- Output: A \{transformed matrix\}
$\operatorname{SUB} \operatorname{GGJE}(A, n, m, p)$
FOR $i=1$ TO n DO
\{zero elements below $a_{i i}$ \}
FOR $j=i+1$ TO n DO

$$
\begin{aligned}
& \text { COMPUTE } x^{\prime}, y^{\prime}, r^{\prime}, s^{\prime}:\left\{\begin{array}{c}
\operatorname{GCD}\left(a_{i i}, a_{j i}\right)=a_{i i} \cdot x^{\prime}+a_{j i} \cdot y^{\prime} \\
0=a_{i i} \cdot r^{\prime}+a_{j i} \cdot s^{\prime}
\end{array}\right\} \\
& \binom{A(i, *)}{A(j, *)} \leftarrow\left(\begin{array}{ll}
x^{\prime} & y^{\prime} \\
r^{\prime} & s^{\prime}
\end{array}\right) \times\binom{ A(i, *)}{A(j, *)}
\end{aligned}
$$

END FOR $\{$ for $j\}$

Algorithm GGJ E

```
IF \(G C D\left(a_{i v} p\right)>1\)
THEN exit \{singular matrix\}
```


ELSE

```
\{zeroing elements above \(a_{i i}\) \}
\[
\begin{aligned}
& A(i, *):=A(i, *) \cdot a_{i, i}^{-1} \\
& A(j, *) \leftarrow A(j, *)-A(i, *) \cdot a_{j i}, \quad j=\overline{1, i-1}
\end{aligned}
\]
```

END IF $\operatorname{RETURN}(A)$
END SUB

Algorithm analysis

Time complexity
Solving a number of systems over prime fields

$$
O\left(n \cdot\left(n \cdot m \cdot \sum_{k=1}^{t} \alpha_{k}+\log p\right)+\sqrt{\ln p \ln \ln p} \cdot e^{\sqrt{\ln p \ln \ln p}}\right)
$$

Solving a system of Diophantine equations

$$
O\left(n^{2} m^{2} \log p\right)
$$

Solving an equation

 over a matrix ring$$
\frac{O\left(n^{n}\right)}{O(n \cdot(n m+\log p))}
$$

Generalized J ordanGaussian Elimination over residue rings

Further improvements

Fill-in: 65\%
Non-zero elements ~P: 54\%

Fill-in: 33\%
Non-zero elements ~P: 13\%

Experiments

Set of non-zero coefficients at $i^{\text {th }}$ iteration:

$$
\mathrm{N}_{i}=\left\{a_{k j} \in A_{n \times m} \mid a \neq 0, k=\overline{1, n}, j=\overline{1, n-i}\right\}
$$

Set of big coefficients at $i^{\text {th }}$ iteration:

$$
\Lambda_{i}=\left\{a_{k j} \in A_{n \times m} \mid a \neq 0, \log a_{i j}=O(\log p), k=\overline{1, n}, j=\overline{1, n-i}\right\}
$$

Experiments

Set of non-zero coefficients at $i^{\text {th }}$ iteration:

$$
\mathrm{N}_{i}=\left\{a_{k j} \in A_{n \times m} \mid a \neq 0, k=\overline{1, n}, j=\overline{1, n-i}\right\}
$$

Set of big coefficients at $i^{\text {th }}$ iteration:
$\Lambda_{i}=\left\{a_{k j} \in A_{n \times m} \mid a \neq 0, \log a_{i j}=O(\log p), k=\overline{1, n}, j=\overline{1, n-i}\right\}$

Density

$$
D(i)=\frac{\left|\mathrm{N}_{i}\right|}{n \cdot i} \cdot 100 \%
$$

* Magnitude

$$
M(i)=\frac{\left|\Lambda_{i}\right|}{n \cdot i} \cdot 100 \%
$$

Implementation and results (1)

$\#$	Size	N	P
1	Small	32	79833603
2	Medium	270	608658
3	Large	875	1237264621

Density Magnitude

(2)

(3)

Implementation and results (2)

(1)

$\#$	Size	N	P
1	Small	32	79833603
2	Medium	270	608658
3	Large	875	1237264621

Density
 Magnitude

(2)

Implementation and results (3)

Fill-in of matrices

Left-to-right elimination

Implementation and results (4)

Number of elementary operations

Future work

* Further analysis of heuristic time complexity of the Generalized Gaussian-J ordan Elimination for residue rings
* Optimization problem of finding a transposition that minimizes the number of elementary operations
* Verifying hypotheses, e.g.
- Time complexity of GGJE is better than $O(n(n m+\log P))$ for the matrices that occur in index-calculus algorithms
- Slow-down of fill-in in sparse matrices transformed in reverse order reduces the number of operation by $1 / 2$

Formal methods and tools for evaluating cryptographic systems security

alexandra.savelieva@gmail.com

