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Cryptosystem security assessment

Evaluate the cryptosystem’s 
resistance to  the attacks 

Determine the attacks 
that the cryptosystem is 
exposed to

Define the 
potential attackers

Define the 
cryptosystem
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Optimizing tools in cryptanalysis

Public key cryptography: based on the 
complexity of

Factorization
Discrete logarithm computation

Not NP-complete problems, but no 
polynomial algorithms is known to solve 
these problems
The best known algorithms run
in subexponential time of the form:
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Smoothness 

For u, B , we say u is  B –smooth, if all 
the primes qi in the prime factorization of u 
are 

Primes qi form Factor Base Q:
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Index-calculus methods

Matrix Matrix 
Step Step 

Final 
Step

Relation Relation 
Collection  Collection  

StepStep

Find many 
linear relations 
involving the 

unknown 
logarithms of 
the primes in 

the factor base

Solve the linear 
system for the 

unknown 
logarithms using 
techniques from 
linear algebra

Compute 
individual 

logarithm using 
the logarithms 
of the primes in 
the factor base

Problem : (mod )xa b p=
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Generating relations

Pick a random integer v∈[1..p-1] and compute

c ≡ av (mod p)

c is an element of Zp
* but we treat it as an 

integer and factorize it over Q

Given that c = q1
b1·q2

b2 · … · qn
bn where all qi∈ Q:

v ≡ b1 logaq1+ b2 logaq2+ … bn logaqn (mod p - 1)

Problem : (mod )xa b p=
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Observations 

Interesting properties of matrices:
Size: 100 000 x 100 000 or larger
Elements: very small (the number of 
elements ~p → 0 )
Density: Sparse, but not uniformly sparse!

Problem: (mod )xa b p=
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Matrix structure

P (c  is y –smooth| c ∈ [0, 1, ... , x] & x ≤ y) = O(u-u),
where u = log x / log y
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Observations 

Interesting properties of matrices:
Size: 100 000 x 100 000 or larger
Density: Sparse, but not uniformly sparse!
Elements: very small (the number of 
elements ~p → 0 )

Linear algebra needs to be done over 
the ring Z/nZ for some composite n

Problem: (mod )xa b p=
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Solving a linear system in Z/36

26 3 4
9 34 1

x y
x y

+ =⎧
⎨ + =⎩

26

26 18 0(mod36)⋅ ≡

3

3 12 0(mod36)⋅ ≡

9

9 4 0(mod36)⋅ ≡

34

34 18 0(mod36)⋅ ≡

17
22

x
y
=⎧

⎨ =⎩

All the coefficients are non-invertible; the solution 
however exists and is unique modulo 36
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Linear algebra techniques

Reducing the problem to:
i. solving a number of systems over prime 

fields and combining the results using the 
Chinese Remainder Theorem

ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring
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Solving a number of systems over prime fields

26 3 4
(mod36)

9 34 1
x y

x y
+ =⎧

⎨ + =⎩
2 236 2 3= ⋅

226 3 4
(mod3 )

9 34 1
x y

x y
+ =⎧

⎨ + =⎩
226 3 4

(mod 2 )
9 34 1

x y
x y

+ =⎧
⎨ + =⎩

8 3 4
(mod9)

7 1
x y

y
+ =⎧

⎨ =⎩

2 3 0
(mod 4)

2 1
x y
x y
+ =⎧

⎨ + =⎩
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Solving a number of systems over prime fields

1
(mod 4)

2

8
(mod 9)

4

x
y

x
y

⎧⎛ ⎞ ⎛ ⎞
=⎪⎜ ⎟ ⎜ ⎟

⎪⎝ ⎠ ⎝ ⎠
⎨
⎛ ⎞ ⎛ ⎞⎪ =⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎩

Chinese Remainder Theorem yields the result:

17
(mod36)

22
x
y
=⎧

⎨ =⎩
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Gaussian-Jordan elimination

1

1

1, 1, 1

, ,

1 0 0
0

0
0 0 1

n m

n m

i i

nn i n i

a a b

ba a

+

+

′ ′ ′ ⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜ ′′ ′⎝ ⎠

↓

1, 1 1,11 1 1

, 1 ,1

n mn

n n n mn nn n

a aa a b

a aa a b

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Matrix structure: Gaussian-Jordan elimination

Step 1 Step 5
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Disadvantages 

Factorization of p - 1 is unknown

We have to solve many systems instead of 
one

The coefficients in the dense part of the 
matrix grow rapidly

Fill-in quickly causes matrix to become non-
sparse
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Linear algebra techniques

Reducing the problem to:
i. solving a number of systems over prime 

fields and combining the results using the 
Chinese Remainder Theorem

ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring
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Solving a system of Diophantine equations

Reduction:

General solution:

1

2

26 3 36 4
9 34 36 1

x y v
x y v
+ + =⎧

⎨ + + =⎩

0 1

0 1
0 1

1 0 1

2 0 1

5653025  1224  (-21492)
-1496390  (-324)  5688  

, ,
-3958042  (-857)  15048  
            0    0          1            

x t t
y t t

t t
v t t
v t t

= + ⋅ + ⋅⎧
⎪ = + ⋅ + ⋅⎪ ∈⎨ = + ⋅ + ⋅⎪
⎪ = + ⋅ + ⋅⎩

Z

exponential growth of coefficients
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Linear algebra techniques

Reducing the problem to:
i. solving a number of systems over prime 

fields and combining the results using the 
Chinese Remainder Theorem

ii. solving a system of Diophantine equations
iii. solving an equation over a matrix ring
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Solving an equation over a matrix ring

x=A-1bAx=b

Elizarov V.P. Russian
Mathematical Surveys. –
1993. Vol. 48, No. 2. pp. 

181-182.

Elizarov V.P. Russian
Mathematical Surveys. –
1993. Vol. 48, No. 2. pp. 

181-182.

Efficient algorithm for matrix inverting

?

Glukhov М.М., Elizarov V.P., 
Nechaev А.А. Algebra. Vol. I -

М.: Gelios АRV, 2003 

Glukhov М.М., Elizarov V.P., 
Nechaev А.А. Algebra. Vol. I -

М.: Gelios АRV, 2003 
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Generalized Gaussian-Jordan Elimination 
(GGJE) for residue rings

The basic idea:
Extended Euclidean algorithm 
Gaussian-Jordan elimination 

Applicable to:
Residue rings
Finite fields

Efficiency:
At worst case time and space complexity equivalent 
to Gaussian-Jordan elimination for finite fields
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Extended Euclidian Algorithm
INPUT: 
OUTPUT: d, x, y, r, s:

,a b +∈Z ( , )
0
d GCD a b a x b y

a r b s
= = ⋅ + ⋅⎧

⎨ = ⋅ + ⋅⎩

SUB Euclid(a,b)

WHILE LOOP

END WHILE
END SUB

0n ≥

1 0
0 1

d x y a
n r s b

⎛ ⎞ ⎛ ⎞
←⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

0 1
1

d x y d x y
n r s c n r s

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
← ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

/c d n← ⎢ ⎥⎣ ⎦
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Euclidian Algorithm applied to matrix

26 3 4
(mod 36)

9 34 1
x y

x y
+ =⎧

⎨ + =⎩

[1] [2] 2 [1] [2]

[1] [2] 1 [1] [2]

[1] [2] 8 [1] [2]

[1] 26 3 4 8 7 2 9 34 1
[2] 9 34 1 9 34 1 8 7 2

[1] 9 34 1 1 27 35 8 7 2
[2] 8 7 2 8 7 2 1 27 35

[1] 8 7 2 0 7 10
[2] 1 27 35 1 27 35

− ⋅ ↔

− ⋅ ↔

− ⋅ ↔

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯→ ⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎯⎯⎯⎯→ ⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

⎯⎯⎯⎯→ ⎯⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 27 35
0 7 10
⎛ ⎞

⎯⎯→⎜ ⎟
⎝ ⎠

[2] 31 [1] [2] 27[1] 1 27 35 1 27 35 1 0 17
[2] 0 7 10 0 1 22 0 1 22

⋅ − ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯→ ⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Euclidian Algorithm applied to matrix

Bezout coefficients for  a=26, b=9 :
1 26 (35) 9 (3) 0 26 (9) 9 (10)= ⋅ + ⋅ = ⋅ + ⋅

[1] [2] 2 [1] [2]

[1] [2] 1 [1] [2]

[1] [2] 8 [1] [2]

[1] 26 3 4 8 7 2 9 34 1
[2] 9 34 1 9 34 1 8 7 2

[1] 9 34 1 1 27 35 8 7 2
[2] 8 7 2 8 7 2 1 27 35

[1] 8 7 2 0 7 10
[2] 1 27 35 1 27 35

− ⋅ ↔

− ⋅ ↔

− ⋅ ↔

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯→ ⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎯⎯⎯⎯→ ⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

⎯⎯⎯⎯→ ⎯⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 27 35
0 7 10
⎛ ⎞

⎯⎯→⎜ ⎟
⎝ ⎠

[2] 31 [1] [2] 27[1] 1 27 35 1 27 35 1 0 17
[2] 0 7 10 0 1 22 0 1 22

⋅ − ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯→ ⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[1] [1] (35) [2] (3)
[2] [1] (9) [2] (10)
′ = ⋅ + ⋅
′ = ⋅ + ⋅
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Algorithm output

Solving the system:

Inverse matrix computation:

[1] [1] 35 [2] 3 [1] [1] [2] 27
[2] [1] 9 [2] 10 [2] [2] 31

[1] 26 3 4 1 27 35 1 0 17
[2] 9 34 1 0 7 10 0 1 22

′ ′= ⋅ + ⋅ = + ⋅
′ ′= ⋅ + ⋅ = ⋅

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[1] [1] 35 [2] 3
[2] [1] 9 [2] 10

[1] [1] [2] 27
[2] [2] 31

[1] 26 3 1 0 1 27 35 3
[2] 9 34 0 1 0 7 9 10

[1] 1 27 35 3 1 0 26 21
[2] 0 7 9 10 0 1 27 22

′= ⋅ + ⋅
′= ⋅ + ⋅

′= + ⋅
′= ⋅

⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎯⎯⎯⎯⎯→⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

26 3 4
(mod36)

9 34 1
x y

x y
+ =⎧

⎨ + =⎩
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SUB GGJE(А, n, m, p)
FOR i=1 TO n DO

{zero elements below aii }
FOR j=i+1 TO n DO

END FOR {for j}

Input: {Extended matrix}

Output: А {transformed matrix}

( ) ,ij n m ij pA a a×= ∈Z

GCD( , )
COMPUTE , , , :

0
ii ji ii ji

ii ji

a a a x a y
x y r s

a r a s
′ ′= ⋅ + ⋅⎧ ⎫

′ ′ ′ ′ ⎨ ⎬′ ′= ⋅ + ⋅⎩ ⎭
( , ) ( , )
( , ) ( , )

A i x y A i
A j r s A j

′ ′∗ ∗⎛ ⎞ ⎛ ⎞ ⎛ ⎞
← ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′∗ ∗⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Algorithm GGJE
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IF GCD(aii, p)>1 
THEN exit {singular matrix}

ELSE
{zeroing elements above aii }

END IF
RETURN( А )

END SUB

1
,( , ) : ( , ) i iA i A i a −∗ = ∗ ⋅

( , ) ( , ) ( , ) , 1, 1jiA j A j A i a j i∗ ← ∗ − ∗ ⋅ = −

Algorithm GGJE
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Algorithm analysis

Time complexity

Solving a number of 
systems over prime 

fields 

Solving a system of 
Diophantine equations

Solving an equation 
over a matrix ring

Generalized Jordan-
Gaussian Elimination 

over residue rings

( )2 2 logO n m p

ln ln ln

1
( log ) ln ln ln

t
p p

k
k

O n n m p p p eα
=

⎛ ⎞
⋅ ⋅ ⋅ + + ⋅⎜ ⎟

⎝ ⎠
∑

( )nO n

( )( log )O n nm p⋅ +
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Further improvements

Fill-in: 65%

Non-zero 
elements ~P: 54%

Fill-in: 33%

Non-zero 
elements ~P: 13%
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Experiments

Set of non-zero coefficients at ith iteration:

Set of big coefficients at ith iteration:

{ }| 0 , 1, , 1,i kj n ma A a k n j n i×Ν = ∈ ≠ = = −

{ }| 0 , log (log ), 1, , 1,i kj n m ija A a a O p k n j n i×Λ = ∈ ≠ = = = −
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Set of non-zero coefficients at ith iteration:

Set of big coefficients at ith iteration:

{ }| 0 , 1, , 1,i kj n ma A a k n j n i×Ν = ∈ ≠ = = −

{ }| 0 , log (log ), 1, , 1,i kj n m ija A a a O p k n j n i×Λ = ∈ ≠ = = = −

( ) 100%iD i
n i
Ν

= ⋅
⋅

Density

( ) 100%iM i
n i
Λ

= ⋅
⋅

Magnitude

Experiments
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Implementation and results (1)
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(2)
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Implementation and results (2)
# Size N P

1 Small 32 79833603

2 Medium 270 608658

3 Large 875 1237264621
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Implementation and results (3)

Fill-in of matrices

0

20

40

60

80

100

120

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561 601 641 681 721 761 801 841

Right-to-left eliminationLeft-to-right elimination
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Implementation and results (4)

Number of elementary operations

0

50000

100000

150000

200000

250000

300000

1 42 83 124 165 206 247 288 329 370 411 452 493 534 575 616 657 698 739 780 821 862

Right-to-left eliminationLeft-to-right elimination
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Future work

Further analysis of heuristic time complexity of the 
Generalized Gaussian-Jordan Elimination for residue rings

Optimization problem of finding a transposition that 
minimizes the number of elementary operations

Verifying hypotheses, e.g.

Time complexity of GGJE is better than O(n(nm+logP)) for the 
matrices that occur in index-calculus algorithms
Slow-down of fill-in in sparse matrices transformed in reverse 
order reduces the number of operation by 1/2
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