

Abstract—This paper is about the tool called Janus for

automated analysis of security protocol models. The type
checking method that is a modern extension of SPi-calculus was
implemented in Janus. The tool is based on windows GUI
application. It provides graphical schema of analysis process and
textual reports. This paper contains brief description of type
checking, sample of protocol modeling and analysis, tool's design
and description. We also tried to compare Janus with some
analogues.

Index Terms — analysis of security protocols, protocol models,
formal methods, SPi-calculus, type checking, software tools

I. INTRODUCTION

Distributed systems that contain security protocols are
widely used. A protocol model is a core of distributed system.
Usual approach for development of these systems consists of
three steps: modeling, implementation and testing; this process
does not include protocol model analysis. Models should be
analyzed otherwise protocols can be failed. There are several
formal algebraic methods for analysis and verifications of
security protocols. General idea of methods is to evolve the
decision using reduction of models to prove feasibility of
specified security properties. This paper is about the protocols
analyzer using extensions of SPi-calculus [1, 2]. SPi-calculus
[1] is a one of modern formal algebraic calculus.

There are amount of tools for analysis of protocol models.
Two of them are most interesting and close to our work: STA
(Symbolic Trace Analyzer) [3] and AVISPA (Automated
Validation of Internet Security Protocols and Applications)
[4]. The STA was created by Michele Boreale and Marzia
Buscemi. This tool can be used for analysis of protocol
models described in sort of SPi-calculus. STA converts SPi-
calculus specified model to the terms of ML-language.
Protocols are modeled as systems of concurrent processes.
STA analyzes the execution traces of this system to detect
possible failures of security properties. The core of STA
method is an optimized exploration of the state-space.
Currently the tool is provided command-prompt user
interface. AVISPA is an international project for creation of
universal tool for analysis of security protocols. Protocols can
be described using original notation, then they can be

analyzed. Variants of tool are provided for Linux and MacOS,
WEB-access is allowed also. Project supports the library of
examples. We can conclude that both tools are appropriated
for researchers who want enough level of autoimmunization.
Tools use enumerative reasoning to prove that protocol model
is safe (so proving protocol safety can take lot of time); also
tools don't have graphical user interface. The tool that we
present in this paper provides graphic user interfaces for
analysis. Janus works under MS Windows operation system.

II. TYPE CHECKING METHOD
Here we should say some more about the method Janus is

based on. The main idea is a conception of how safe protocol
should work. At first one can find moments when some
procedures in protocol are starting and ending. For example
we can determine moments when authenticity step of protocol
is started and finished. Also there are some rules that can be
used to check protocol if random numbers are used to check
temporal precedence between events.

After applying this method to the part of the protocol model
one can know conditions that guaranties this part of model to
be safe. We will call such set of conditions for a part of the
model as effect of this part.

Secure protocol written in SPi notation consists of protocol
branches; each branch consists of SPi operations. Type
checking analysis starts from the latest operation of each
protocol branch; on first step effect of these operations is
calculated. On second step effect of last 2 operations of each
branch is calculated and so on. If the rest set of effects is
empty then protocol is secure. Otherwise some issues are
possible.

 TABLE I
Some SPi operations used in this paper:

Operation Description
In C (X) Input a value from channel X to variable C
Out C N Put a value of variable N into channel C
Cast N is N' Set value of N' to N
New N Set N to random value
Check N is X Checks if N = X
Begin ProcLabel Procedure labeled with ProcLabel was

started.
End ProcLabel Procedure labeled with ProcLabel was

finished

The security protocols analyzer using extensions
of SPi-calculus

Sergey S. Seleznev,
e-mail: sermyt@yandex.ru

Alexander S. Mikhailov,
e-mail: almikh@mail.ru

Department of Cybernetics
Moscow Engineering Physics Institute (State University)

31, Kashirskoe shosse, Moscow, 115409, Russia

Rules for analysis of protocol operation:
• Begin and end events

o If end “label” is analyzed then end “label” effect
should be added to the list of effects

o If begin “label” is analyzed then end “label” effect
should be removed from the list of effectse

TABLE II
BEGIN AND END EVENTS

Events Set of effects
begin L; end L []
end L; end L: [end L, end L]
begin L; end L; end L [end L]
begin L; begin L; end L; end L: []

• Communicating parallel processes
o If In or Out commands are analyzed then list of

effects should not be changed
o If parallel command '|' is analyzed (for example,

'(protocol branch 1)|(protocol branch 1)') then result
effect is a sum of effect of protocol branch 1 and
effect of protocol branch 2

• Freshness of random numbers
o If cast operation is analyzed then some effect should

be added to the list of effects (effect type depends on
operation parameters)

o If check operation is analyzed then effect is removed
and new check effect is added to the list of effects

o If random operation is analyzed then check effect is
removed from the list of effects

III. SIMPLE PROTOCOL MODELING AND ANALYSIS
For example we can take system of two participants: A and B.
They are communicated using the simple protocol for start
connection. The protocol:

1) Random number N generation. Both A and B know N
2) A sends N to B using channel C
3) B receives some X from channel C
4) If X = N then B ensures he is communicating with A

The SPi-model of the above protocol is following:
1) System A(N) = out C N
2) System B(N) = in C(X); check N is X
3) SYSTEM = new N; (System A(N) | System B(N))

We want proof that an authenticity property of protocol is
valid. For this goal we will add 'begin' and 'end' labels. The
modified model is following:

1) System A(N) = begin m; out C N
2) System B(N) = in C(X); check N is X; end m
3) SYSTEM = new N; (System A(N) | System B(N))

Then we also need specify types of variables.
TABLE III

TYPES OF VARIABLES
Variable Type Description
N Un Random type
X Nonce [end m] Random number is used for

checking of m event
C Ch((Nonce [end m])) Channel type
N’ Nonce [end m] Additional variable for passing

data using a typed channel
For analysis we will try to calculate effects of above protocol.
There are two sorts of affects are interested:

1) “end m” label – we should meet in previous operators
“begin m” or “check X is Y”. In first case the rest set of
effects will be empty ([]). In second, if type of Y = Nonce
[end m] then effect is changed to [check X]
2) check N – we should ensure variable N is random (by using
New operator)
Main protocol analysis steps:
For system A:
 out C N' – empty effect ([])
 out C N'; cast N is N’ – effect is ([end m])
 out C N'; cast N is N’; begin m – empty effect (begin +
end = [])
For system B:
 end m – effect is ([end m])
 end m; check N is X – effect is ([check N])
 end m; check N is X; in C (X) – effect is still the same
([check N])
For the whole system:
 (System A(N) | System B(N)) - effect is ([check N])
 (System A(N) | System B(N)); new N – empty effect ([])
The result effect is empty. Thus we can conclude that
described protocol is secure.

IV. ANALYSIS AUTOMATION

Janus consists of four parts. First (and main) part is
analyzer core where all protocol model data are stored; next
part is analyzer itself; also it contains a module for loading
protocol model from text file and a module for painting of
protocol tree.

Object-oriented approach was used for developing analyzer
core. For example, an abstract protocol operation is
represented by abstract class; operation groups are inherited
from abstract operation (of course, some fields were added
and methods were override needed to represent operation
behavior). Each operation is inherited from corresponding
operation group. So any protocol model can be represented
using this core.

Figure 1. Operation groups

Protocol analyzer came to be very simple due to considered

core structure. One of the problems related to analysis process

was branch associating. Protocol analyzer works from the
bottom of the protocol tree to it's top, so to calculate effect for
«branch» operation one must know effects for all branches, as
described in sections II and III. Also some efforts were made
to locate place in model which causes model to be unsafe.
Protocol analyzer generates messages each time it sees that
model structure differs from it's supposition.

Reading absolutely any protocol model from text file was
too hard task for this version of the project (because of
potential infinity of variable data type description), so model
was restricted in some aspects. For example, nested data types
and nested branches were not allowed. Reading from file was
realized in this limitations.

Protocol model drawing appeared to be very simple task. In
analyzer one can paint protocol tree as far as used data types
and used begin/end messages.

V. THE ANALYZER TOOL

Figure 2. Janus user interface

Protocol operations tree is situated at the main form's
center. Types list (green) and events list (red) are situated to
the right of it. One can disable types and events painting using
«Settings» menu item. Protocol tree, types and events are
painted just after protocol loads. Log window is situated at the
bottom of the form. Analyzer adds messages to this window
during analysis process. After analysis finishes a message
window appears with information about analysis result.

One can use «Settings» menu to prepare program for
advanced users and for newbie. For newbie it is useful to hide
log window and disable types and events painting. For
advanced users it better to show all messages and enable types
and events painting.

VI. CONCLUSION
Janus tool uses comparatively new approach, based on type

checking and graphical representation of analysis process.
Janus is MS Windows compatible tool that has user-friendly
interface. Proposed approach and tool allow analyzing

protocol models quickly because approach doesn't use
enumerative reasoning. At the same time modeling of
protocols depends on human proficiency. The issue is that
sometimes secure model can be wrongly considered as
insecure. At the same time an insecure models will be exactly
disclosed. We think current version of Janus can be
appropriated as additional checking tool of protocol models
during their development.

REFERENCES
[1] Abadi M. Calculus for Cryptographic Protocols: The SPi Calculus. / M.

Abadi, A. A.Gordon. // Information and Computation – 1999 – V148(1)
– P. 1-70

[2] Gordon A. Authenticity by Typing for Security Protocols. // A. Gordon,
A. Jeffrey. //Journal of Computer Security – 2003 – V.11(4) – P 451-
520.

[3] Experimenting with STA, a Tool for Automatic Analysis of Security
Protocols. M. Boreale, M. Buscemi. A shorter version appears in Proc.
of SAC '02, ACM Press, 2002.

[4] The AVISPA project. http://www.avispa-project.org/.

