

Abstract—This paper gives an overview of the ongoing

research project which concerns generation of dependable Java
Card code. According to the automata-based programming
technology, code is generated from a high-level application
behavior description which is based on finite state machines. An
extra benefit from the use of such description is the possibility of
generation of formal application specification in Java Modeling
Language. Conformance of the code against its specification
could be checked by different static checking and verification
tools.

Index Terms—Finite state machines, Smart cards, Software
requirements and specifications, Software verification and
validation.

I. INTRODUCTION
smart card [1] is a card that is embedded with a chip,
which allows to store and process information. In fact,

smart cards are secure credit card size computers. Besides
being secure, smart cards have several advantages such as
mobility and simplicity of use. So, the main domains of their
use are secure storage of data, business transactions,
authentication, and so on.

Java Card technology [1], [2] provides a Java platform for
smart cards. It brings all the benefits of using Java; it also
simplifies development process, as it covers all vendor
specific card features. Java Card API is a superset of Java
API subset – this means that Java Card does not support
multithreading, strings, multidimensional arrays, garbage
collection, and et cetera due to the cards’ limited resources,
but Java Card API includes some extra functionality, required
to handle tasks from smart cards domain of use. For example,
sending and receiving special commands (APDU commands),
working with PIN codes and cryptographic algorithms, and
much more.

Manuscript received March 31, 2008.
A. A. Klebanov is BSc student at the Computer Technologies Department,

Saint-Petersburg State University of Information Technologies, Mechanics
and Optics, Saint-Petersburg, Russia (phone: 955-29-00; e-mail:
klebanov.andrey@gmail.com).

The research is supervised by A. A. Shalyto, PhD, professor at the
Computer Technologies Department, Saint-Petersburg State University of
Information Technologies, Mechanics and Optics, Saint-Petersburg, Russia (e-
mail: shalyto@mail.ifmo.ru).

There are number of reasons for Java Card to become an

attractive field for formal methods researchers. Java Card
applets are dependable systems which must be secure and
bug-free and, in contrast with PC software; it could be very
difficult to make updates when cards are issued. Moreover,
limited resources and lack of some Java features guarantees,
that applets will not be very complicated. So, formal
verification is a feasible task for Java Card applications.

In this paper we introduce an automata-based programming
technology extension for generation of Java Card applet code
skeleton, which also implements application logic, with
formal specification in Java Modeling Language (JML).

The rest of the paper is organized as follows. Section II
introduces automata-based programming, Section III describes
applied technologies. Code generation and verification details
are introduced in Section IV; they are further illustrated with
example in Section V. An overview of related work is given in
Section VI and, finally, Section VII concludes.

II. AUTOMATA-BASED PROGRAMMING FOR JAVA CARD
Synchronous programming [3] is believed to be one of the

best approaches to application development for embedded and
reactive systems. In this paper we use a sort of synchronous
programming – automata-based programming [4], [5], which
is also known as Switch-technology [6]. According to this
paradigm, programs are treated as systems of automated
controlled objects. Each system consists of control system
(system of cooperating automata) and controlled objects.
Automata-based programming technology defines two types
of diagrams for application description – connectivity schema
and transition graphs. Connectivity schema describes relation
between event providers, state machines and controlled
objects; transition graph describes behavior of corresponding
finite state machine. But such complicated methodology is not
only good for application design; it also helps to close the gap
between specification and implementation, as there exist a
formal and isomorphic way to generate a skeleton of code
from the description. To prove code conformance against its
specification we also generate JML annotations.

Let us consider some Java Card features which make
automata-based programming use reasonable. Interaction with

Automata-Based Programming Technology
Extension for Generation of JML Annotated

Java Card Code
Andrey A. Klebanov

A

a smart card is achieved by means of interface devices (card
readers). Card reader powers the card and also provides
communication channel between the card and a PC or a
terminal with a host application installed on it.
Communication channel is half duplex; master-slave model is
used where smart card is always a slave while terminal is a
master. In other words, smart cards always wait for a
command from a terminal. Thus their interaction is “event
driven”. Commands are passed one by one from a host
application to Java Card Runtime Einvironment where they
are forwarded to the selected applet. After the command
handling, card reply goes inversely the whole way back to the
host application. All Java Card applets have the same
structure – they should extend the base class Applet. We
will only discuss one of the methods to be extended –
process method, which is invoked every time when applet
receives a command from the host application. Depending on
the state of the applet, process method either calls
dedicated helper method to handle the command or throws
exception. In our approach all the logic of the process
method is described in terms of finite state machines and a
skeleton of applet code (including logic implementation) is
generated. Only stubs are generated for helper methods.

III. APPLIED TECHNOLOGIES

A. JML
JML [7] is a behavioral interface specification language

designed to specify Java classes and interfaces. It means that
it both specifies behavior and syntactic interface of Java code.
JML is based on design by contract [8] and model-based
specification [9] approaches. JML was specially designed to
be used by Java programmers, including those with just basic
mathematical education. Therefore it uses slightly extended
Java syntax. It was also intended to be independent from
program design manner. Specifications written in JML are
annotations for Java code (they could be also stored in a
separated file) – thus Java compiler treats them as comments
and simply ignores, but JML-aware tools can use them.

We shall briefly discuss some of the JML features which
are used in our research. Key elements of JML specification
are preconditions, postconditions, and invariants. Precondition
for a method is a logical predicate which must hold for the
method invocation. Postcondition for a method is a logical
predicate which must hold after each execution of the method.
And, finally, class invariant constrains all the methods of the
class. JML also provides \old(var) expression which
refers to the value of the variable var at the moment of
entrance to the method (before its execution). It is convenient
to use constraint keyword, \old() expression and
logical constructions, such as a ==> b (implication) or
a <==> b (equality) to constrain variable’s value changing
in time.

Great number of tools which support JML has been

developed. Overview of them is given in [10]; here we
mention only some of the static checking and verification
tools important for our research. It is too ambitious to hope to
proof all the correctness and security properties of the
application. The task becomes more feasible if attention is
concentrated on a subset of the properties. For example, static
checking tools can guarantee that all the array indices will
never get out of bounds. Such property has a great practical
value. Static checking technique lies between compiler type
checks and full program verification [11]. ESC/Java2 [12] is a
static checking tool which can automatically detect some
common errors such as array index out of bounds or null
pointer dereferencing. Several verification tools such as KeY
[13], LOOP [14], and JACK [15] are designed to work with
JML, they can handle more complex tasks, but user interaction
is a price for that.

B. UniMod
UniMod [16] stands for Unified Modeling; the goal of the

project is to create a methodology for the whole application
development cycle – from design to implementation stage.
The tool supports automata-based programming technology
and adopts it to current UML standards. It allows to describe
application and to generate skeleton of Java source code, but
it does not support Java Card. Validation techniques for finite
state machines are embedded in UniMod. Thus each state is
reachable from the initial one and has a complete and
consistent set of outgoing transitions.

IV. CODE GENERATION AND VERIFICATION DETAILS
We use UniMod application behavior description to

generate both Java Card code and JML specification for it. As
it was already mentioned Java Card applets have standard
structure. Here we will only discuss application logic which is
encapsulated in the process method. Automata-based
programming is also known as Switch-technology, so
process method may consist of just one or two nested
switch operators. For example, if two operators are used –
outer one is for finite state machine states and inner one is for
commands. If a command is valid for the current state a helper
method is called to handle this command; otherwise an
exception is thrown. Host application commands and card
replies are treated as events from event providers. Moreover,
according to the automata-based programming technology,
transitions between states my optionally contain boolean
expressions with input actions. They are transformed to JML
preconditions for the on enter to state methods. Currently we
are also able to describe control flow – specify that applet
could only be in the one of predefined states (via JML
invariant keyword) and describe incoming and outgoing
transitions for each state (using constraint keyword and
\old() expression).

As for implementation part – UniMod has a feature to
convert application description to XML file. Afterwards we

use a template engine to generate code. This research is still
on its early stage and some of the implementation aspects
should be cleared. For example, we still discuss the way of
generating JML specifications. On the one hand, they could be
generated together with the code but this may lead to very
complicated templates and on the other hand, it is possible to
parse XML file and retrieve all the required information for
specification generation. The last step in our approach is static
checking and/or formal verification of the code. Variety of
tools developed for JML provides a wide range of directions
for further work. We believe that ESC/Java2 tool will be used
for static checking, as for verification tool – it is still an open
question.

V. CASE STUDY
Here we introduce a small example of a Java Card applet

description with its JML specification. Connectivity schema is
described on the Fig. 1. It is a way of class diagram
representation, according to the automata-based programming
technology. Host application commands and Java Card
replies are treated as event providers. For example, “Verify
PIN” command is an event from the host application. Java
Card is a controlled object, because it handles incoming
commands. Event providers and controlled object are related
by finite state machine; its transition graph is shown on the
Fig. 2.

Applet functions as follows. After applet’s initialization
phase it is required to verify PIN code (event e1). If it is
correct applet state is changed to “Do something”; where
wrong attempt counter is made zero via output action method
o1.z3 and something is done via method o1.z4. If PIN
code is not correct and number of wrong attempts is less or
equal to three (boolean expression with input action method
o1.x3<=3) the state is remained unchanged, but value of
the wrong attempts counter is incremented. If PIN code is not
correct and the wrong attempts counter exceeds three, SIM
card locks itself and informs host application about that.

Following JML specification describes control flow. Let
variable state to describe automaton state. So specification:
/*@ invariant

(state == APPLET_INITIALIZATION) ||
(state == VERIFY_PIN) ||
(state == DO_SOMETHING) ||
(state == SIM_CARD_IS_LOCKED);

@*/
guarantees that applet always remains in the one of predefined
states. The way to constraint transitions between states is more
bulky:
/*@ constraint
((state == APPLET_INITIALIZATION) ==>
(\old(state) == APPLET_INITIALIZATION))
&&
((state == VERIFY_PIN) ==> ((\old(state)
== VERIFY_PIN) ||
(\old(state) == APPLET_INITIALIZATION)))
&&
((state == DO_SOMETHING) ==>
((\old(state) == VERIFY_PIN) ||
(\old(state) == DO_SOMETHING))) &&

Fig. 1. Connectivity schema.

((state == SIM_CARDS_IS_LOCKED) ==>
((\old(state) == VERIFY_PIN) ||
(\old(state) == SIM_CARDS_IS_LOCKED)))
&&
((\old(state) == APPLET_INITIALIZATION)
==> ((state == VERIFY_PIN) ||
(state == APPLET_INITIALIZATION))) &&
((\old(state) == VERIFY_PIN) ==>
((state == VERIFY_PIN) ||
(state == DO_SOMETHING) ||
(state == SIM_CARDS_IS_LOCKED))) &&
((\old(state) == DO_SOMETHING) ==>
(state == DO_SOMETHING)) &&
((\old(state) == SIM_CARDS_IS_LOCKED)
==> (state == SIM_CARDS_IS_LOCKED));

@*/
In our approach exceptions caused by illegal commands do
not change automaton state. Let us denote set of automaton
states by Q, hence, ∀ q ∈ Q we generate
\old(state) == q <==> state == q constraint.
 Finally, let us consider transition between state “Verify
PIN” and “SIM card is locked”. Input action method x1
should be declared as pure. This is specification only
property, which means that this method does not have side-
effects and thus could be called in specification. In other
words, specification should not change state of the
application. So, precondition for on enter to state method of
“SIM card is locked” state is //@ requires x1 > 3;
 Though Java is a high-level programming language, Java
Card has several low-level features. For example, APDU
commands are encoded in byte arrays. In our approach

Fig. 2. Automaton transition graph

commands are treated as events, therefore their short names
and natural language descriptions are used for application
design and code generation. Some of the standard commands
and card replies are already predefined. So, programmer uses
convenient notation, but not byte arrays. By covering some of
the low-level aspects, we decrease number of potential bugs
and therefore increase code dependability.

VI. RELATED WORK
There exist two research projects aimed on generating Java

Card code from high-level specification. The first one is
introduced in [17]. Special language, SmartSlang, is used
there to describe applets with high-level constructions which
are specific to smart cards. Declared benefit from those
constructions is the possibility to generate more functionality,
but use of a complex base system is required. Such approach
does not have too much in common with ours, except that
finite state machines are used during code generation.

The second one is described in [18], [19]. In [18]
verification tool is used as an editor for finite state machine
modeling, [19] uses UML to describe automata. Our work has
several advantages over those researches. First, we use
automata-based programming paradigm, but not only finite
state machine description of applet. The main difference is
that we describe application behavior rather than provide
static description of application structure. Secondly, generated
constraints only describe the control flow in contrast to our
approach, where in addition some preconditions are also
generated. Moreover, in our approach a notation which covers
low-level aspects is provided to manipulate with commands
and card replies. Finally, there are special model checking
add-ons for UniMod, so it is also possible to verify application
model [20]. Verification capabilities of the environment in
[18] are not used.

As for JML – there has been done a lot of research and case
studies about using and combining different tools designed to
support it. JML is used in many areas, and is popular both in
industry and academia.

VII. CONCLUSION
Automata-based programming technology provides a

methodology for full development cycle of reliable
applications. Proposed extension is intended to make
applications even more correct by uniting model checking,
design by contract, and verification of real implementation,
but not only application model. We are planning to extend our
approach to Java ME midlets; and create a full mobile
solutions development framework, based on the UniMod tool.

REFERENCES
[1] Z. Chen, Java Card Technology for Smart Cards: Architecture and

Programmer's Guide, 1st ed., Addison-Wesley, 2000.
[2] M. Baentsch, P. Buhler, T. Eirich, F. Höring, M. Oestreicher, “JavaCard

– From Hype to Reality,” IEEE Concurrency, pp. 36–42, Dec. 1999.
[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,

R. de Simone, “The synchronous languages 12 years later,” in Proc.
IEEE, vol. 91, no. 1, Jan. 2003, pp. 64–83.

[4] A. A. Shalyto, “Logic Control and “Reactive” Systems:
Algorithmization and Programming,” Automation and Remote Control,
vol. 62, no. 1, pp. 1–29, 2001.

[5] A. A. Shalyto, “Software Automation Design: Algorithmization and
Programming of Problems of Logical Control,” J. of Comput. and
Systems Sci. Int., vol. 39, no. 6, pp. 899–916, 2000.

[6] A. A. Shalyto, N. I. Tukkel, “SWITCH-Technology: An Automated
Approach to Developing Software for Reactive Systems,” Programming
and Comput. Software, vol. 27, no. 5, pp. 260–276, 2001.

[7] G. T. Leavens, A. L. Baker, C. Ruby, “Preliminary design of JML: A
behavioral interface specification language for Java,” Iowa State Univ.,
Dept. of Comput. Sci., Tech. Rep. 98-06u, Apr. 2003.

[8] B. Meyer, “Applying design by contract,” Computer, 25(10), pp. 40–51,
Oct. 1992.

[9] I. Sommerville, “Model-based Specification,” in Software Engineering,
ed. 5, Addison Wesley, 1995.

[10] L. Burdy, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, E. Poll , “An overview of JML tools and applications,” Int. J. on
Software Tools for Technology Transfer (STTT), 7(3), Jun. 2005, pp.
212–232.

[11] D. L. Detlefs, K. R. M. Leino, G. Nelson, J. B. Saxe, “Extended static
checking,” Res. Rep. 159, Compaq Systems Res. Center, Dec. 1998.

[12] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2,” Nijmegen Inst.
for Computing and Inform. Sci., Tech. Rep. NIII-R0413, May 2004.

[13] W. Ahrendt et al., “The KeY Tool,” Dept. of Computing Sci., Chalmers
Univ. and Goteborg Univ., Goteborg, Sweden, Tech. Rep. no. 2003-05,
May 2003.

[14] J. van den Berg, B. Jacobs, “The LOOP compiler for Java and JML,” in
T. Margaria and W. Yi, editors, Int. Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), vol. 2031 of
Lecture Notes in Comput. Sci., Springer-Verlag, 2001, pp. 299–312.

[15] L. Burdy, A. Requet, “JACK: Java Applet Correctness Kit,” in GDC
2002, Singapore, Nov. 2002.

[16] V. S. Gurov, M. A. Mazin, A. S. Narvsky, A. A. Shalyto, “Tools for
Support of Automata-Based Programming,” Programming and Comput.
Software, vol. 33, no. 6, pp. 343–355, 2007.

[17] A. Coglio, “An Approach to the Generation of High-Assurance Java
Card Applets,” in Proc. 2nd NSA Conf. on High Confidence Software
and Systems (HCSS’02), Mar. 2002, pp. 69–77.

[18] E. Hubbers, M. Oostdijk, E. Poll, “From finite state machines to
provably correct Java Card applets,” in D. Gritzalis et al., editors, Proc.
18th IFIP Inform. Security Conf., 2003, pp. 465–479.

[19] E. Hubbers, M. Oostdijk, “Generating JML specifications from UML
state diagrams,” in Proc. Forum on specification and Design Languages
(FDL’03), Sep. 2003.

[20] E. V. Kuzmin, V. A. Sokolov, “ Modeling, Specification, and
Verificationof Automaton Programs,” Programming and Comput,
Software, vol. 34, no. 1, pp. 27–43, 2008.

