
ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Automata-Based Programming
Technology Extension for

Generation of JML Annotated Java
Card Code

Andrey Klebanov, CTD, SPb SU ITMO

supervised by Anatoly Shalyto, Ph. D,
prof. CTD, SPb SU ITMO

2

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

3

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

4

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Smart Cards

 «Stupid» cards – cards with just magnetic
stripe;

 Smarts cards – chip and memory are
embedded:
 Mobile and secure credit card size computers;
 Very limited recourses – 1-4Kb RAM, 48-64Kb

NVM (ROM) + 8-32Kb EEPROM;
 Main domains of use are secure storage of data,

business transactions, authentication, ...
 Vendor specific, difficult to develop applications.

5

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Java Card

 Java platform for smart cards;
 Provides all the benefits of Java and also

 Allows to abstract away from low-level features of different
cards;

 Applet isolation mechanism;
 Post-issuance applet downloading, ...

 Java Card API 2.2.2 is a superset of Java API
subset;

 Java Card 3.0 will be discussed in «Open
questions» section.

6

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Formal methods for JC

Several reasons to attract formal methods
researchers:

 Java Card domain of use, industry support;
 Complexity of updating;
 Relatively small, but real-world applications.

7

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

8

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Automata-based
programming overview

 Introduced by A. Shalyto in
1991;

 Sort of synchronous
programming;

 Programs are treated as
systems of automated
controlled objects;

 Each system consists of
control system and
controlled objects;

 Control system - system of
co-operating automata.

 Xi – input action;
 Zi – output action;
 E – event;

Control
system

Controlled
objectE Z X

9

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Automata-based
programming benefits

 Formally describes application logic and behaviour;
 Perfect solution for reliable application development

for reactive and embedded systems;
 Defines two types of diagrams for application

description – connectivity schema and transition
graphs;

 Fully supported by the UniMod tool
 Closes the gap between model and implementation via

Java code generation;
 Finite state machine validation.

10

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Automata-based
programming for Java Card

 Half-duplex communication
channel, master-slave
model;

 Event driven interaction
 Host application – event

provider;
 Smart card – controlled

object.
 Standard structure of

applet, logic is incapsulated
in one method.

 «Java Card applet is a state
machine.»

Wikipedia

Host application Java Card
Runtime

Environment
(JCRE)

Applet

Command
APDU

Command
APDU

Responce
APDU

Responce
APDU

Smart cardCAD

Passive
state

Active
state

install Commsnd
handling
(process)

select

deselect

11

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

12

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

JML

 JML is a behavioural interface specification
language;

 JML is based on design by contract, but
extends it greatly;

 Designed to be used by Java programmers;
 Tailored to Java;
 Doesn’t require programs to be OO;
 A lot of tools are developed to support JML.

13

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

JML (cont.)

 Preconditions (requires), postconditions
(ensures) and invariants (invariant);

 \old(var) – variable var value before
method execution;

 Logical constructions (ex. implication) and
constaraint consruction – constraints
variable's value change in time;

 pure and assignable keywords.

14

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

JML (cont.)

 private fields could be declared as
spec_public;

 Quantifiers – \forall, \exists;
 \min, \sum expressions;
 Allows to describe behaviour in exceptional

situations;
 And much more!

15

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

16

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Approach description

 Problem: Java Card code should be
trustworthy and bug-free.

 Solution: automata-based programming +
JML!

 Sub-problems to be solved:
 Extend automata-based programming code

generation technologies;
 Convert state machine model to JML annotations;
 Explore different verification tools designed to

work with JML.

17

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Approach overview

18

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Annotated code generation
stage

Model's
XML
description

Templates

Convertor
application
+
Apache
Velocity

Java Card
code + JML

Java Card
code + JML



19

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Verification stage

 jmlc
 Fully automatic;
 Full language coverage;
 Doesn’t prove errors

absence.
 ESC/Java2

 Fully automatic;
 Not sound, not complete;
 Good for common errors.

 KeY, Loop, Jack, ...
 Powerful;
 Interactive.

Model checking
(SPIN, Bogor)

Source code
verification
(JML tools)

Byte code
verification

 (BML tools)

Tasks

Type
checking

Static
checking

Verification

Decidability
level

Source code
verification on conformance

to the model
(JML tools)

20

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

21

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Case study – description

22

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Case study – several results

 Convinient notation for commands vs. byte arrays;
 /*@ invariant

(state == APPLET_INITIALIZATION) ||

(state == VERIFY_PIN) ||

(state == DO_SOMETHING) ||

(state == SIM_CARD_IS_LOCKED);

@*/
 Precondition for the on enter to state SIM card is

locked – //@ requires x1 > 3; (if x1 has no
side effects).

23

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Case study – several results
(cont.)

Transitions between states:
/*@ constraint

((state == APPLET_INITIALIZATION) ==>
(\old(state) == APPLET_INITIALIZATION)) &&
((state == VERIFY_PIN) ==> ((\old(state) == VERIFY_PIN) ||
(\old(state) == APPLET_INITIALIZATION))) &&
((state == DO_SOMETHING) ==>
((\old(state) == VERIFY_PIN) ||
(\old(state) == DO_SOMETHING))) &&
((state == SIM_CARDS_IS_LOCKED) ==>
((\old(state) == VERIFY_PIN) ||
(\old(state) == SIM_CARDS_IS_LOCKED))) &&
((\old(state) == APPLET_INITIALIZATION) ==>
((state == VERIFY_PIN) ||
(state == APPLET_INITIALIZATION))) &&
((\old(state) == VERIFY_PIN) ==>
((state == VERIFY_PIN) ||
(state == DO_SOMETHING) ||
(state == SIM_CARDS_IS_LOCKED))) &&
((\old(state) == DO_SOMETHING) ==>
(state == DO_SOMETHING)) &&
((\old(state) == SIM_CARDS_IS_LOCKED) ==>
(state == SIM_CARDS_IS_LOCKED));

@*/

24

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Outline

 Smart Cards
 Automata-based programming technology
 Java modelling language (JML)
 Approach description
 Case study
 Open questions

25

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Open questions

 Java Card 3.0
 Great new opportunities

close to «big» Java!..
 But possible problems for

formal methods.

 Java ME
 Midlets are running on

constraint devices...
 But much more powerful

then smart cards.

APDU
Applet Container

Applets

Classic API

HTTP
Web Container

Servlets

Connected API

JavaCard APIs

26

ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ

Thank you!

Thank you!

