MMMMMMMMMMM

Automata-Based Programming
Technology Extension for
Generation of JML Annotated Java
Card Code

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

UTMO Smart Cards

® «Stupid» cards — cards with just magnetic
stripe;

® Smarts cards — chip and memory are
embedded:

Mobile and secure credit card size computers;

Very limited recourses — 1-4Kb RAM, 48-64KDb
NVM (ROM) + 8-32Kb EEPROM,;

Main domains of use are secure storage of data,
business transactions, authentication, ...

Vendor specific, difficult to develop applications.

UTMO Java Card

® Java platform for smart cards;

® Provides all the benefits of Java and also

Allows to abstract away from low-level features of different
cards;

Applet isolation mechanism;
Post-issuance applet downloading, ...

® Java Card API 2.2.2 is a superset of Java API
subset;

® Java Card 3.0 will be discussed in «Open
questions» section.

NTMO Formal methods for JC

Several reasons to attract formal methods
researchers:

® Java Card domain of use, industry support;

® Complexity of updating;
® Relatively small, but real-world applications.

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

Automata-based

programming overview

® |ntroduced by A. Shalyto in . | conto Controlled
1991; — 5 System »| object

® Sort of synchronous
programming;
® Programs are treated as

systems of automated .
controlled objects; e /Z— output action;

® FEach system consists of ® E -event;
control system and
controlled objects;

® Control system - system of
co-operating automata.

e X — input action;

O Automata-based

programming benefits

® Formally describes application logic and behaviour;

® Perfect solution for reliable application development
for reactive and embedded systems;

® Defines two types of diagrams for application
description — connectivity schema and transition
graphs;

® Fully supported by the UniMod tool

Closes the gap between model and implementation via
Java code generation;

Finite state machine validation.

Automata-based

=t I programming for Java Card

: : Command Command
¢ Half-duplex Communlcatlon Host application APDU Java Card APDU ,, Applet
channel, master-slave _Runtimo
mOdeI, <Respon <] (JCRE) ‘ Responce
® Event driven interaction APDU APDU
Host application — event CAD Smant card
provider;
Smart card — controlled
object.

® Standard structure of
applet, logic is incapsulated .

IN one methOd install] — _ Commsnd
— Passive Active handling
state «— state / (process)

® «Java Card applet is a state deselect
machine.»

Wikipedia

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

® JML is a behavioural interface specification
language,

® JML is based on design by contract, but
extends it greatly;

® Designed to be used by Java programmers;
® Tailored to Java;

® Doesn’t require programs to be OO;
® A |ot of tools are developed to support JML.

UTMO JML (cont.)

® Preconditions (requires), postconditions
(ensures) and invariants (invariant);

® \old (var) —variable var value before
method execution;

® | ogical constructions (ex. implication) and
constaraint consruction — constraints
variable's value change in time;

® prure and assignable keywords.

UTMO JML (cont.)

® private fields could be declared as
spec publigc,

® Quantifiers — \forall, \exists;
® \min, \sum expressions;

® Allows to describe behaviour in exceptional
situations;

® And much more!

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

Approach description

® Problem: Java Card code should be
trustworthy and bug-free.

® Solution: automata-based programming +
JML!

® Sub-problems to be solved:

Extend automata-based programming code
generation technologies;

Convert state machine model to JML annotations:

Explore different verification tools designed to
work with JML.

UTMO Approach overview

rTOCYAAPCTBEHH
YHUBEPCUTET

Friddod application o

O Annotated code generation

FOCYAAPCTBEHHbI N
YHUBEPCUTET S ag e

Model's
XML
description

Java Card
code + JML

Convertor
application
+

Apache
Velocity

Java Card
code + JML

Templates

UTMO Verification stage

rOCYAAPCTBEHHbBIN
YHUBEPCUTET

. Model checking Source code Byte code
® jm/C (SPIN, Bogor) verification verification
. (JML tools) (BML tools)

Fully automatic;

Full language coverage; Source code
’ verification on conformance
Doesn’t prove errors o tha model
absence. (JML tools)
® ESC/JavaZ?
Fully automatic; Tasks 4
Not sound, not complete; Verification
Good for common errors.
® KeY, Loop, Jack, ... Static.
oo e eheeking------------- RRRRhaa
POWG rfu | : :Demldablllty
eve
Interactive. Type
checking

[
>

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

UTMO Case study — descri

FTOCYAAPCTBEHHbBIN
YHUBEPCUTET

. severilprimicer s e
pl : HostApplicstiorCommand Al : ...onfighanager
iF El: String = "e1" {Wesify PN}
—
g0l xl <=3]
—
(\I
Applet inkialzation) (" PIN code verification

T sevenbproviders &l

p2 : JavaCardReply
SF B2 String = "e2” {Wrong PIN}
F E3: Swing = 83" {Correct PIN} [arkar fol.21) | enker fol.22

: -
a3 -.'_‘_,_p‘fﬂ
____.--"'". a{el.xl=3])
ol L =
2] wcortrolsdobjacts ‘,_-d-"'-f 4
ol : JavaCard (Dosomething | (C SMcardislocked
13 ik {Wrong stbempl Colinbar b
3 71: woid {Ink applet}
y 221 woid {Increase vwrong attempk counter}
p 23 wold {Make wrong sttempl counter zero} enber -I'-"]"z'{' al.z4 & LELer fol.25
@ 41 voud (Do somethang}
y 25: woid {5end "Locked”™ reply}

UTMO Case study — several results

® Convinient notation for commands vs. byte arrays;
® /*@ invariant

(state == APPLET INITIALIZATION) ||
(state == VERIFY PIN) ||

(state == DO SOMETHING) ||
(state == SIM CARD IS LOCKED);

@x/

® Precondition for the on enter to state SIM card is
locked — //Q@ requires x1 > 3; (if x1 has no
side effects).

Case study — several results

FOCYAAPCTBEHHbI N
YHUBEPCUTET CO n
|

Transitions between states:

/*@ constraint

((state == APPLET INITIALIZATION) ==>
(\old(state) == APPLET INITIALIZATION)) &&
((state == VERIFY PIN) ==> ((\old(state) == VERIFY PIN) ||
(\old(state) == APPLET INITIALIZATION))) &&
((state == DO_SOMETHING) ==>

((\old(state) == VERIFY PIN) ||

(\old(state) == DO _SOMETHING))) &&

((state == SIM CARDS IS LOCKED) ==>
((\old(state) == VERIFY PIN) ||

(\old(state) == SIM CARDS IS LOCKED))) &&
((\old(state) == APPLET INITIALIZATION) ==>
((state == VERIFY PIN) ||

(state == APPLET INITIALIZATION))) &&
((\old(state) == VERIFY PIN) ==>

((state == VERIFY PIN) ||

(state == DO SOMETHING) ||

(state == SIM CARDS IS LOCKED))) &&
((\old(state) == DO_SOMETHING) ==

(state == DO_SOMETHING)) &&

((\old(state) == SIM CARDS IS LOCKED) ==>
(state == SIM CARDS IS LOCKED)) ;

@/

UTMO Outline

® Smart Cards

® Automata-based programming technology
® Java modelling language (JML)

® Approach description

® Case study

® Open questions

MUTMO Open questions

4 Y N
¢ Java Card 30 A Ie?lzlzgtainer Webl-C|3-|;>-|;1Ft)ainer
Great new opportunities Applets Serviets
close to «big» Javal..

But possible problems for
formal methods.

Classic API Connected API

N

JavaCard APlIs

(L

® Java ME

Midlets are running on
constraint devices...

But much more powerful
then smart cards.

UTMO Thank you!

Thank you!

