

 Abstract—This article gives a short overview of tool UniMod 2,
which is now being developed by group of students of Saint-
Petersburg State University of Information Technologies,
Mechanics and Optics. This instrumental tool is designed to
develop automata based software, providing means for visual
software building, software verification and validation, as well as
means for debugging this software in terms of automata.

Index Terms—Automata, Executable UML, Software
debugging, Software verification and validation.

I.INTRODUCTION

NSTRUMENTAL TOOL for Automata Based Software
Development UniMod [1] year was developed in 2005, it

provides means if visual development and execution of
automata based software. The base concepts of this
instrumental tool are:

 UML [2], [3];
 automata based software development [4];
 Eclipse platform [5];
 Java programming language;
 Open source (sources of the instrumental tool are

available on project internet-site [1]).
Actually UniMod tool is one of implementations of

“Executable UML” [6]. When using automata based way the
program as a whole is designed by means of two types of
UML-diagrams:

 Class diagrams are represented as scheme of linked
automata based objects;

 State chart diagrams, which implements automata
which are present on class diagram.

These diagrams are processed and executed automatically
by the instrumental tool, the only thing which is to be
developed manually is fragments of code corresponding to
input and output actions. Thus this tool let the developer to
combine different levels of abstraction (class and state chart

 Manuscript submitted March 31, 2008.
 D. Y. Kochelaev is with Saint-Petersburg State University of Information
Technologies, Mechanics and Optics, Saint-Petersburg, Russia (corresponding
author to provide phone: +7-921-919-78-26; e-mail: dkochelaev@gmail.com).
 B. S. Khasanzyanov is with Saint-Petersburg State University of
Information Technologies, Mechanics and Optics, Saint-Petersburg, Russia (e-
mail: bulemar@gmail.com).

 B. R. Yaminov is with Saint-Petersburg State University of Information
Technologies, Mechanics and Optics, Saint-Petersburg, Russia (e-mail:
bulat.yaminov@gmail.com).

 A. A. Shalyto is with Saint-Petersburg State University of Information
Technologies, Mechanics and Optics, Saint-Petersburg, Russia (e-mail:
shalyto@mail.ifmo.ru)

diagrams and code on Java programming language) and
different programming styles (visual and textual).

Give an enumeration of advantages of this instrumental
tool:

 The tool provides means of visual building of class and
state chart diagrams. The close integration of visual
objects representation and their implementation in code
is provided as well.

 The tool provides not only the ability to interpret and
compile the developed program, yet the ability to
perform visual debugging of software, adding
breakpoints to states and transitions. Combination of
this ability and automata based representation of
program make the mistakes search appreciably easier.

 The ability to validate composed automata models
provide additional information about possible errors,
which were made whereas the state chart diagram was
designed.

There are some disadvantages in this instrumental tool as
well:

 There is not ability to verify designed programs by
means of the tool itself.

 The validation algorithm is not optimal and therefore its
execution time could be improved. Moreover the rules
are hard coded, that is why it is hard to add new rules to
be validated.

II.DEVELOPMENT OF THE INSTRUMENTAL TOOL UNIMOD 2
The development of second version of the tool UniMod was

started in 2007. The goal of the project is to eliminate
disadvantages, which were present in the first version, as well
as improve existing components. One more significant change
is closer integration with Eclipse platform. This provides an
ability to create some parts of the instrumental tool
automatically.

A.Data Model
As it was already mentioned one of the primary differences

in instrumental tool UniMod 2 from the prototype is widened
use of resources and means, provided by Eclipse platform.
This let to improve all components of the system. In particular
EMF (Eclipse Modeling Framework) [8] was used for
description of the meta model. Meta model is also a model
which describes the structure and behavior of other models,
which corresponds to this meta model. The EMF project is a
modeling framework and code generation facility for building
tools and other applications based on a structured data model.
From a model specification described in XMI, EMF provides

I

Dmitry Y. Kochelaev, Bulat S. Khasanzyanov, Bulat R. Yaminov, and Anatoly A. Shalyto

Instrumental Tool for Automata Based
Software Development UniMod 2

tools and runtime support to produce a set of Java classes for
the model, along with a set of adapter classes that enable
viewing and command-based editing of the model, and a basic
editor. Utilization of this framework saves time with
automatic classes generation, as well as helps to avoid errors,
which could be done if these classes were developed
manually. Model alteration (e.g. adding new attributes to
model items) is performed in visual editor and doesn't require
manual code modification, since it will be rebuild
automatically in the future.

B.Validation
New algorithm of validation of automata based

programs [9] is used in new version of the instrumental tool
UniMod, which is currently being developed. While validation
the model is being checked to suit the meta model. The new
algorithm is faster then the one which was used in original
version of the tool. This was achieved with utilization of
preliminary calculations, as well as utilization of context-
dependent rules checking – the model rules are checked only
in context of modified model element. This significantly
reduces the count of rules, which should be checked, and
increases validation speed.

The model validation algorithm consist of two linked
stages:

1. On the first stage (before editing the model) the tool
collects data, which is required to determine quickly,
which may have been violated while editing model.

2. The set of rules is created on each model modification.
This is the set of rules, which it is necessary to check.

Rules, which describe the restrictions on the model
(actually these restrictions describe the meta model), are
stored in Object Constraint Language (OCL) [10]. This
language was developed by IBM corporation specially to
describe restrictions on UML-models [2], [3], and this can be
used for solving validation problem.

To measure productivity of the described algorithm it was
compared theoretically and experimentally with the original
validation algorithm, which was used in UniMod. As a result
it was proved that proposed algorithm is much faster
comparing to the original one [9].

C.Verification
A new feature of instrumental tool Unimod 2 is the ability

to verify correctness of developed automata programs [11]. To
do this verification tool Bogor [12] was integrated with
Unimod 2. As a result, automata programs developed using
instrumental tool Unimod 2 can be checked for correctness by
established Model Checking [13] method.

Verification method implemented in instrumental tool
Unimod 2 has an advantage over other methods. To verify a
program by Model Checking method, a special kind of formal
model must be constructed, which represents the program.
Statements to verify also have to be translated from terms of
program to terms of the constructed formal model. Therefore
there used to be two similar ways to verify automata
programs. The first one [14] was to convert automata program
into Kripke model [13], and then verify this manually by

standard model checking algorithm. Another way [15] was to
translate automata program into an input language of a
verifying tool, and then run this tool to check the correctness
of the model. If automata program is not correct, an error
report is returned by verifying tool or by verification
algorithm. However, the error report describes the program
incorrectness in terms of the converted formal model, not the

initial automata program. So user has to convert the error
report back into terms of initial automata program, which
sometimes is quite difficult.

Fig. 1 represents schema of described ways to verify
automata programs.

The advantage of new verification method implemented in
Unimod 2 is that it lets verification tool Bogor work directly
with automata program, as if it was already a formal model,

ready for verification. As a result, there is no need in complex
translations of automata program to formal model and back.
Therefore, verification process is simpler, faster and more
reliable. Schema of this verification method is represented by
Fig. 2.

Actually Unimod 2 became the first tool which lets create
automata based programs, launch, and automatically verify
them. To check correctness of an automata program, user has
just to print a list of statements, which must hold true for the
program, and launch the verification. When verification is
completed, user is informed which statements do hold or do
not. Furthermore, if a statement is violated, user gets a
detailed history of program execution, which caused the
statement violation. It lets user easily trace down the root
cause of the error, and it is one of the main advantages of

Fig. 1. Previous verification method. Four steps are required: (1) translate the
program into formal model, (2) translate specification into formal mode
specification, (3) verify the model and (4) translate error report back into
terms of automata program.

Fig. 2. New verification method: no additional converting are needed.

program verification over program testing. Another advantage
is that verification checks all possible program executions to
find an error, while each test checks only one execution

D.Debugging
The new concept was used to create debugging part of the

instrumental tool UniMod 2. The debugger for domain-
oriented programming language (e.g. automata language) was
created with utilization of EMF technology [16]. Utilizing the
proposed method it is possible to implement universal
debugging system for arbitrary domain-oriented programming
language, which implements standard available in Eclipse IDE
debugging tools:

1. breakpoints give ability to pause program execution in
specified place (e.g. on some transition or in some
state);

2. step by step execution;
3. overview of context variable in any moment of

program execution.

E.Visualization
The Graphical Modeling Framework (GMF) [17] was used

to create model editor, which is used for model editing, as
well as for visualization and control of debugging process.
The GMF provides a generative component and runtime
infrastructure for developing graphical editors based on EMF.
So this technology provides an ability to build fully functional
graphical model editor basing on meta model description and
some additional configuration descriptions. This editor can
easily be integrated into Eclipse IDE. Additional
configurations specifies the list of meta model elements,
which can be added to diagram, as well as their graphical
representation and sets of connected to them editor control
elements.

There is an ability to highlight some model elements in the
editor [16]. This ability is used to highlight violated
constraints, which were found while validation process [9].
This functionality will also be used to visualize results of
program verification. Thus an unified approach for
visualization actions on model (debugging), model changes
and highlighting of model elements (validation) was designed
and implemented in the instrumental tool UniMod 2.

III.CONCLUSION
Following components were redesigned, improved or

introduced as a result of development of the instrumental tool
UniMod 2:

1. the representation of automata model was redesigned to
improve usability of model editing facilities;

2. the algorithm of automata program validation was
improved for better performance;

3. the ability to verify automata programs was introduced;
4. the visual model editor was redesigned to be improve

integration with editing tools provided with GMF
technology;

5. the debugging system for domain-oriented
programming language (adopted for debugging of

automata models) was introduced;
6. the unified system of debugging and validation

visualization was introduced.

REFERENCES
[1] V. S. Gurov, M. A. Mazin, A. S. Narvsky, A. A. Shalyto

Instrumentalnoe sredstvo dlya podderzhki avtomatnogo
programmirovaniya // Programmirovanie. 2007. № 6, pp. 65–80.
Available:
 http://is.ifmo.ru/works/_2008_01_27_gurov.pdf

[2] H. Goma. Designing concurrent, Distributed, and Real-time
Applications with UML; Addison-

Wesley – 200
0

[3] I. Jacobson; G. Booch; J. Rumbaugh (1998). The Unified Software
Development Process. Addison Wesley Longman.

[4] A. A. Shalyto. Switch-tekhnologiia: algoritmizatsiia i
programmirovanie zadach logicheskogo upravleniia. Sankt-
Peterburg: Nauka, 1998. Available:
 http://is.ifmo.ru/books/switch/6

[5] Web-site of Eclipse project: http://www.eclipse.org/
[6] Mellor S., Balcer M. Executable UML: A Foundation for Model-

Driven Architecture. Addison-Wesley, 2002.
[7] N. I. Polikarpova, A. A. Shalyto.Uchebno-metodicheskoe posobie

po distsipline «Avtomatnoe programmirovanie».
Spb.: SpbGU ITMO. 2007 Available:
http://is.ifmo.ru/books/_umk.pdf

[8] Web-site of Eclipse Modeling Framework project:
 http://www.eclipse.org/modeling/emf/

[9] D. Y. Kochelaev Metody dinamicheskoy proverki prvil
neprotivorechivosti avtomatnoy modeli. Bakalavrskaya rabota.
Spb.: SpbGU ITMO. 2007. Available
http://is.ifmo.ru/papers/_kochelaev-bachelor.pdf

[10] Warmer J., Kleppe A. The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley, 2003.

[11] V. S. Gurov, A. A. Shalyto, B. R. Yaminov. Technologiya
verifikatsii avtomatnyh modeley programm bez ih tranlyatsii vo
vhodnoy yazyk verifikatora // Materialy mezhdunarodnoy
nauchno-tehnicheskoy konferentsii «Mnogoprotsesornye
vychislitelnye i upravlyauschie sistemy». Т. 1, pp. 198–203. 2007.
Available:
http://is.ifmo.ru/verification/_jaminov.pdf

[12] Robby, Dwyer M., Hatcliff J. Bogor: A Flexible Framework for
Creating Software Model Checkers /IEEE Conf. of the Testing:
Academic & Industrial Conference –
Practice and Research Techniques (TAIC PART) 2006, pp. 3–22.
Available:
http://ieeexplore.ieee.org/iel5/11139/35654/0169166
5.pdf?arnumber=1691665

[13] E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model Checking,
MIT Press, 1999.

[14] S. E. Velder, A. A. Shalyto. Verifikatsiya prostyh avtomatnyh
programm na osnove metoda Model checking //Materialy XV
nauchno-metodicheskoy konferentsii «Vysokie intellektualnye
technologii i innovatsii v obrazovanii i nauke». SpbGPU. 2008, pp.
285–288. Available:
http://is.ifmo.ru/download/2008-02-
25_politech_verification.pdf

[15] M. A. Lukin, A. A. Shalyto. Avtomaizatsiya verifikatsii visualnyh
avtomatnyh programm //Materialy XV nauchno-metodicheskoy
konferentsii «Vysokie intellektualnye technologii i innovatsii v
obrazovanii i nauke». SpbGPU. 2008, pp. 296, 297. Available:
http://is.ifmo.ru/download/2008-02-
25_politech_tezis.pdf

[16] B. S. Khasanzyanov. Metod sozdaniya otladchikov dlya domenno-
orientirovannyh yazykov programmirovaniya na osnove

technologii Eclipse Modeling. Bakalavrskaya rabota.
Spb.: SpbGU ITMO. 2007. Available:

http://is.ifmo.ru/papers/domainlanguagedebugmethod
/

[17] Web-site of Eclipse GMF project.
http://www.eclipse.org/modeling/gmf/

