Automated creation of verification model for
C-programs

Yury Yusupov Vsevolod Kotlyarov
Saint-Petersburg State Polytechnic University Motorola
Saint-Petersburg, Russia Saint-Petersburg, Russia
yury.yusupov@gmail.com Vsevolod.Kotlyarov@motorola.com

Abstract—This paper presents initial results of experiments on generation based on the static code analyzer KlocWork [7].
deriving of verification models from the source code of a softare \VRS technology [6] was used for approbation of the derived

system. The main principles of C-program transformation o 4e|s and its results are presented as well. Also, peigpsct
formal view in basic protocols notation as well as realizatn d further d | ti di d
based on usage of the code analyzer KlocWork are presented.an urther development ISsues are discussed.

Model adequacy and completeness were checked using VRS
technology. Further perspectives and ways of developmentfo]
the suggested approach are also discussed. A. Basic protocols

Il. SCOPE OF THE WORK

The formalism of basic protocols was proposed by the

)) .. mathematician A. Letichevsky et al. for creating of system
Software is often used in areas that are very sensitive §@navior models suitable to automated verification [8, ©]. |

program errors. That's why achieving the highest scores f haseq on the theory of agents and environments with the
software quality (interpreted as the number of post-réleas,sertion function [10].

defects in a software product) is an integral part of thevemié ggic protocol is a formal representation of an assertion
development life cycle. To ensure the required quality llevgphout some actions that have to be applied in a program or
formal verification (checking that actual properties of a6 4 0rithm under some conditions. Consider for example the
model meet the requirements [1]) is used along with testifgjioying requirement for a system: “If a system is in the yus
of the final executable code. Also, under certain conssainiate it shall be switched to the idle state when the phoes go
a formal verification process ensures the completeness f hnok”. This assertion can be divided into three parts: pre
system analysis: all system properties will be considered iyngition — “If a system is in the busy state”, process part —

all possible modes of the system behavior. “the phone goes on hook”, and post-condition — “the system
Verification approaches can be divided into two part$y 5| be switched to the idle state”.

deductive, based on automatic theorem proving using of¥ap | 5 general case a basic protocol is a Hoare’s triplet [11]
and different algebras [2], and model checking, based g{ihe following notation:

creating of a program model in some formal representation "

and checking the system requirements for every possibie sta a—f

of the model [3]. wherea and g — are the pre-condition and the post-condition

There are many technologies and methods of testing and e tively and. — is the process part of the basic protocol.
verification based on the model checking approach — UnfTeslg i, , and 3 conditions are specified by logic formulas of

ina2
Zing?, Spec Explorét, and others ([4, 5]). However, efforts o pagic protocols language (a variant of the first-ordgic)o

to create formal specifications for any of those approach@fich can be evaluated for any state of the system.

are critical for using it in industrial projects, which uslya — pgagjc protocols can be consistently concatenated through
experience heavy time and cost pressure. For example, e pre- and post-conditions — if the state specified by the
UniTesk and Zing the size of formal specifications t0 b condition of one basic protocol is to the same as the
preated for a softvyare system IS nearly equal to th? sSlzé (ﬂ‘fe specified by the pre-condition of the next basic protocol
its source code. It is obvious, that creating such speabieat .y ally, the pre-condition formula of the successor &hou

is a very laborious task that brings down the attractiveléssy, qerivable from the post-condition formula of the predece

program verification with model _Chec'_“”Q- ... sor). All such possible concatenations construct the nmedel
This paper outlines the main principles of verificatiop.p5vior graph to be parsed by verifier.

models creation from C-program in the formal language of o this formalization the software system should be inter-
basic protocols [6] and a realization of this automatic ”"Odﬁreted as agents interacting in an environment [10]. An faigen

ttp:/www. unitesk.ru. has a name and parar'neters. The set of agent’s pgrameters is
2http:/iresearch.microsoft.com/zing. specified by the a_gents type. At each mom.e_nt of time when
3http://research.microsoft.com/specexplorer. the model is “being executed” by the verifier, each agent

I. INTRODUCTION

is characterized by the agent's state and current valuesvafious incidents of non-deterministic behavior, unredulity
its parameters. Agents’ interaction is expressed throlgh tof specified system states, or deadlocks are detected. ifafo s
messaging mechanism. defects are found, the system model is formally proved to be
The mathematical notation “ageAtof the typeT is in the complete and consistent within the specified constraints.
states’ can be written asl(A,s) Access to a parameterof Automated verification of software systems with VRS tech-
the agentA of the typeT has the following syntaxT A.p nology implies the functional requirements, which wereduse
The language of basic protocols has an MSC-type syntax 6} system implementation, and system’s model in the form
and basic protocols can be presented in two ways: textwdlbasic protocols created from the source code, formal-spec
and graphical (MSC/PR and MSC/GR) [12]. The followindfications, etc. The technology checks that the model meets
elements of the MSC language are used for constructing basie system requirements. This means that the softwarensyste

protocols: satisfies them as well.
« instance — for agents representation; For verification process an ordered list of signals or basic
« condition — for pre- and post-condition formulas; protocols that contain required events (actions, sigretts)
. action — for description of local actions in a basishould be specified. VRS can check that for this model the
protocol; behavior graph contains paths which include the specified
« message — signal of interaction between agents. sequences in the specified order. The existence of such paths

gtraces) is a proof of correctness of the model behavior with
respect to this criterion. Search of such traces is realmed
looking for respective signal interaction between agentsyo
EETMORK#nework PHONE#phonel looking for the specified basic protocol names in the gepdrat
traces and considering their actual ordering.
PRE Thus, a trace is a scenario of a possible model behavior.
PHONE (phonel, busy) Since the model was derived from an actual implementation
of a program system, we can say, that a trace is a scenario of an
prhook actual system behavior. Scenarios are represented asteonsi
onhook concatenations of relevant basic protocols into one ch4ks
outputs traces in the MSC/PR view.
Results of verification are automatically summarized in a
POST e .) . .
PHONE (phonel, idle] verification report, which describes all found inconsisies,
discrepancies, deadlocks, and other errors in the modsde$r
|—_L| demonstrating the incorrect model behaviors are attached t
F|g 1: Basic protoco' in a graphic representation .the_cll’eport. They are Used to |dent|fy the root causes Of SUCh
incidents.

The pre-condition (with the keyword PRE) of the basiC yyces generated by VRS can be used for automated cre-
protocol is at the top of the diagram, where the state of g, of an exhaustive test suite for the program system. The
model is specified. In this (_example the model state is definggdr (Test Automation Toolset) [13] tool is used for autorate
by the agent statghonelwhich has the valubusy The agent et generation from those traces along with the respective
phonelis of the typePHONE testing environment and subsequent test runs. In [14, 5] th

The process part of a basic protocol describes a set of evepiss/TAT system was adjusted for application and system
that occur in the system after the pre-condition becomes try sware testing of Java mobile phones.

This basic protocol contains a local actionhook(the phone

goes on h_ook_) and sending a respectivg signa_l tn#teork - code analyzer KlocWork

agent (which is of the typBIETWORK to inform it about the) o o

occurred action. In this work a decision was made to use an existing
As the result of the events in the process part the syst&@de analyzer, namely KlocWork, created and maintained by

transits to the post-condition state (specified with thenayl namesake vendrKlocWork is an industrial analyzer of C,

The abovementioned sample requirement translated int
basic protocol is shown in Fig. 1 in a graphical represeonati

A

POST), where the agent state has changedié C++, and Java source code, specifically designed for systems
of millions of lines of code; it has an open interface to
B. VRS technology its intermediate code representation (AST — Abstract Synta

The VRS technology was developed through a joint effort diee), and_ allows the users to expand its basic functignalit
the V.M. Glushkov Institute of Cybernetics in Kiev and the St The main features of the tool are:
Petersburg Branch of ZAO “Motorola ZAQO” for verification 1) large amount of code being analyzed (4-5 MLOC);
of behavioral specifications of software systems [6]. Using 2) high speed of code analysis due to optimized algorithms
elaborated combination of model checking and deductive rea of data processing;
soning, the technology is capable to verify models reprtesen
with basic protocols, from small to huge ones. As a result,*http:/iwww.klocwork.com.

3) usage of unified interfaces that allow the users to accdaaction call: FunctionCall_Start(parameter) and
intermediate data resulting from the static and dynamkeunction Call_End(parameter). The first signal is in the
source code analysis. basic protocol, which passes control to a set of basic

KlocWork performs syntax analysis of the source code arfiotocols describing the called function. The second one — i
checks whether it satisfies certain properties, both defad the protocol, which returns control to the main flow from the
user-defined. The mechanism of analysis is based on variéaded function. Besides, the local action of the first peoto
checkers realized as dynamically loaded libraries (di§ctE contains the called function name with all its parameters.
checker contains rules for AST traversal to check certain Two other signals — VariabléJsed(parameter) and Vari-

source code properties and can be extended by the usepie Modified(parameter) — are used to indicate access to
CIC++ [16]. program variables (using them or changing them respegjivel

The signal parameter is the variable’s name.
Local actions. A local action in a basic protocol is used
BASIC PROTOCOLS for better traces readability; its body contains the name of
A. Main ideas the formalized construct. For example, for a statement with
A C-application in terms of basic protocols can be reprdunction call the local action contains the name of the calle

sented as two agents of different types — agent-application function with all its parameters.
agent-environment. The agent-application models the evhol IV. REALIZATION

application and has a set of parameters — all variables Of'I'he process of C-code formalization and obtaining a pro-
the initial program. Basic protocols are created for ever . : - .
ram model in form of basic protocols can be divided into

rogram operator: assignment, conditional operator,,letp . .
brog P gn P two main stages. At the first, KlocWork analyzes the source
A compound statement is represented by several protocols — :
. code and creates its AST. Then the checker parses the tree and
for the statement as a whole and for all its operands.

. . nerates basic protocols. The respective plug-in wazeeal
The agent-environment models the program environm
. . . in C using special methods of AST traversing, described
and is used for exchanging messages with the agent-

application. Messages from the agent-application usually) 'E’lh?a].following data was used for basic protocols creation:
form the agent-environment about events occurring in the . '
application and are used by VRS in verification process for 1) model, env —agents, which represent the program sys-
traces search. These messages also provide a useful way for €M and its environment. ’
manual analysis of traces. 2) MODEL, ENV - the respective model and env agents
The pre-condition of a basic protocol describes the ap- types. , ,
plication state before execution of the current operatbe T) MODEL#model, ENV#env — instances, which repre-
state of agent-application is changed in accordance with th ~ S€nt agent-application and agent-environment in MSC-

current position of the verifier in the model. The values @& th diagrams.

agent parameters are changed in accordance with algebraf) MODEL(model, FUNC) — representation of the model
agent state. FUNC is the name of the function being

operations which are executed over these parameters. These
operations correspond to algebraic operations over Jasab executed at the current moment. _
5) FUNC_VAR - variable VAR of the function FUNC.

of the statement under consideration. _ C o
Changes of the agent state are reflected in the basic protocdl) controLflow — attribute which is used for control flow
saving.

post-condition, where the application state after exeoutif ; . . o)

the current operator is specified. 7 funcUon_t;aII_pomt - attribute which is used for saving
The process part of a basic protocol contains a local action e function call point.

with information about the processed statement in its bouly a Module of basic protocol generation used the MSC/PR

interacting signals between the two agents. Signals aideativ template:

into two groups: calling functions and accessing pararseter

IIl. PRINCIPLES OFC-CODE REPRESENTATION IN FORM OF

. mscdocumentfile name

B. Details msc basic protocol name

Control flow saving. In order to store a program controlENV#env: instance;
flow in the model and to simplify the process of traceMODEL#model: instance;
generation, a special attribute is added to formulas of tee pall: condition PRE /*MODEL(model, agent statg
and post-conditions of every basic protocol in additionhe t atribute and agent paramete¥s
agent state description. It defines the order of basic potsocMODEL#model: action 'local action;
in accordance with the control flow of the initial C-applicst. MODEL#model: out signalparametej to ENV#env;
The value of this attribute is changed in the post-cond#tioh ENV#env: in signalparametej from MODEL#model;
all basic protocols, providing unigueness to the modekstat all: condition POST /*MODEL(model, agent stat}

Model signals. Two signals with a function atribute and agent parametévs
name as their parameters are used to indicate EAIV#env: endinstance;

MODEL#model: endinstance; program’s behavior at a higher level of abstraction (e.g., a
endmsc; the design level) is needed. VRS tools which allow creating
multilevel behavior models (for example, the call graph, a
program model at the component level, etc.) can be used for
that. Additional advantage of multilevel models, which are
used in the VRS technology, is the possibility of their direc
Testing of developed tools was performed on small projeexecution and, therefore, obtaining multilevel tracegyher
pilots (about 1-5 KLOC). Node handling procedures aniével behavior scenarios can be used for verification and for
algorithms of control flow (the order of basic protocols irtoncise documenting the given software system as well.
accordance with the program logic) saving were checked. The
experiments demonstrated that creating a model for a projec

with 350 functions takes about 10 seconds. About 2000 ba$it IEEE Standard Glossary of Software Engineering Terroign

. ANSI/IEEE Standard 610.121990, IEEE Standard, IEEE, NYO@9
protocols were generated durmg the process._ [2] Sipma H.B., Uribe T.E., and Manna Z. Deductive model ¢fm@g. In
At the current moment procedures of handling and creating Proceedings of International Conference on Computerdiderication,

basic protocols for all AST nodes of C-programs have been 199.

. . . Edmund M. Clarke and Holger Schlingloff. Model checkingh A.
|mplemented. Further work will be aimed at deeper analyé% \oronkov, editor, Handbook of Automated Deduction. ElsevR000.

of C-constructs, because the complete handling is perfrnig] visser W., Havelund K., Brat G., Park S., and Lerda F. Mocfeecking

so far only for expressions with unary operations over ging| pngfaﬂJS- AUtomatEddSOﬂwafe Eng";]eefinngsfugnaly 1K@l 2&?0%
. . - Fernandez J.-C., Jard C., Jeron Th., an iho C. Usingherfly

operand and bln.ary operatlons over two operandfs (assi “verification techniques for the generation of test suites.Proc. 8th

ment). Also, possible ways of links and system functiontscal conference on Computer Aided Verification, volume 1102 oftlee

(for example, functions of string handling) formalizatifor Notes in Computer Science, New Brunswick, August 1996.

. . . . [6] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Wolv V., Baranov S.,
higher mOdeI ad.eqqacy will be mvestlgated.. Weigert T. Basic protocols, message sequence charts, anettification
Practical applications of the results of this research are a of requirements specifications, Computer Networks: Therirtional

following. As the set of basic protocols contains a formal Journal of Computer and Telecommunications Networking9w.5,

.S . . p.661-675, 5 December 2005.
descrlptlon of the algor'thm realized by the program, t 1 Fisher G. The Next Generation of Source Code Analysigciftiork,

derived model can be used for verification of the model's whitepaper, February, 2008.
behavioral properties. Besides, checking of various atara [8] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Letigdvsky Jr A.A.,

.. . L Baranov S.N., Kotlyarov V.P., Weigert T. System Specifimativith Basic
istics of program Safety (StaCk overflow, using of uninized Protocols // Cybernetics and Systems Analysis, Volume gduyd 4 (July

variables, etc.) is performed during model execution. The 2005), p.479-493.
VRS tool allows creating the call graph of a C-applicatioff] Baranov S., Jervis C., Kotlyarov V. Letichevsky A., ahteigert T.

. L . . Leveraging UML to deliver correct telecom applications iMUfor Real:
for subsequent model studying and analyzing; also nawgati Design of Embedded Real-Time Systems by L.Lavagno, G. Maaiid

through basic protocols becomes easier with this graph. B. Selic (editors), pp. 323342, Kluwer Academic Publish@@03.
It is still too early to expect full automation of formall10] Letichevsky A.A. Kapitonova J.V., Volkov V.A., Vysheirskii V.V.,

. . . Letichevsky Jr. A.A. Insertion Programming // Cybernetizsd Systems
model creation from C-programs with the described apprpach Analysis, Volume 39, Issue 1 (January 2003), p.16-26.

because generated basic protocols still need manual @alys] Hoare C.A.R. Communicating sequential processes)tReeHall, Lon-

and formatting of their pre- and post-conditions. In some_ don, 1985.

" 12] ITU Recommendation Z.120. Message Sequence Chart€yMS1/99.
cases pre- and post-condltlons need to be supplemented \{‘fg] Drobintsev P.D. Integrated technology of software ducts quality

a formula in the basic protocol language in order to restore guaranteeing by means of verification and testing. PhD, 8PbR006.
the missed program logic, which was bypassed by the checker238 p. _
because of shallow analvsis of constructs [14] Karpov A.N. Technology of adjustable tests generatfoom formal
y : . specifications for embedded software and program intesfaealized in
In the near future we plan to apply the described tools Java-similar languages. PhD, SPbSPU. 2007. 145 p.
and approach to a real Motorola project to reveal defed#] Golubev A.A. Methods of agents creating and integ@tinto appli-
th hi d select priorities for further d | cation and system saftware for testing automation and mwamg of
mor_e oroughly and se _ec prlo_” 1es tor further e_Ve @it . computing embedded systems. PhD, SPbSPU. 2007. 150 p.
Besides, further work will be directed to adaptation of thige] Klocwork Extensibility Interface User's Guide, Docemt version 1.3,

approach to applications in C++ and Java. KlocWork, 2006.

V. THE CURRENT STATUS APPROBATION, POSSIBLE WAYS
OF APPLICATION AND FURTHER DEVELOPMENT

REFERENCES

VI. CONCLUSION

Except for engineering development and experiments with
the current version of the proposed tool, it is supposed te pu
sue other research tasks. Using basic protocol generatad fr
the source code of a program for traces generation, we obtain
behavioral scenarios which model the program behaviors&he
scenarios are nothing more than a detailed description of
the program behavior, because they describe it at the lower
enough level (the source code level) of abstraction. Sonesti
such detailed description is redundant while a model of the

