
Automated creation of verification model for
C-programs

Yury Yusupov
Saint-Petersburg State Polytechnic University

Saint-Petersburg, Russia
yury.yusupov@gmail.com

Vsevolod Kotlyarov
Motorola

Saint-Petersburg, Russia
Vsevolod.Kotlyarov@motorola.com

Abstract—This paper presents initial results of experiments on
deriving of verification models from the source code of a software
system. The main principles of C-program transformation into
formal view in basic protocols notation as well as realization
based on usage of the code analyzer KlocWork are presented.
Model adequacy and completeness were checked using VRS
technology. Further perspectives and ways of development of
the suggested approach are also discussed.

I. I NTRODUCTION

Software is often used in areas that are very sensitive to
program errors. That’s why achieving the highest scores for
software quality (interpreted as the number of post-release
defects in a software product) is an integral part of the software
development life cycle. To ensure the required quality level
formal verification (checking that actual properties of a system
model meet the requirements [1]) is used along with testing
of the final executable code. Also, under certain constraints
a formal verification process ensures the completeness of
system analysis: all system properties will be considered in
all possible modes of the system behavior.

Verification approaches can be divided into two parts:
deductive, based on automatic theorem proving using of graphs
and different algebras [2], and model checking, based on
creating of a program model in some formal representation
and checking the system requirements for every possible state
of the model [3].

There are many technologies and methods of testing and
verification based on the model checking approach – UniTesk1,
Zing2, Spec Explorer3, and others ([4, 5]). However, efforts
to create formal specifications for any of those approaches
are critical for using it in industrial projects, which usually
experience heavy time and cost pressure. For example, in
UniTesk and Zing the size of formal specifications to be
created for a software system is nearly equal to the size of
its source code. It is obvious, that creating such specifications
is a very laborious task that brings down the attractivenessof
program verification with model checking.

This paper outlines the main principles of verification
models creation from C-program in the formal language of
basic protocols [6] and a realization of this automatic model

1http://www.unitesk.ru.
2http://research.microsoft.com/zing.
3http://research.microsoft.com/specexplorer.

generation based on the static code analyzer KlocWork [7].
VRS technology [6] was used for approbation of the derived
models and its results are presented as well. Also, perspectives
and further development issues are discussed.

II. SCOPE OF THE WORK

A. Basic protocols

The formalism of basic protocols was proposed by the
mathematician A. Letichevsky et al. for creating of system
behavior models suitable to automated verification [8, 9]. It
is based on the theory of agents and environments with the
insertion function [10].

Basic protocol is a formal representation of an assertion
about some actions that have to be applied in a program or
algorithm under some conditions. Consider for example the
following requirement for a system: “If a system is in the busy
state, it shall be switched to the idle state when the phone goes
on hook”. This assertion can be divided into three parts: pre-
condition – “If a system is in the busy state”, process part –
“the phone goes on hook”, and post-condition – “the system
shall be switched to the idle state”.

In a general case a basic protocol is a Hoare’s triplet [11]
in the following notation:

α
µ

−→ β

whereα andβ – are the pre-condition and the post-condition
respectively andµ – is the process part of the basic protocol.
Both α and β conditions are specified by logic formulas of
the basic protocols language (a variant of the first-order logic)
which can be evaluated for any state of the system.

Basic protocols can be consistently concatenated through
their pre- and post-conditions – if the state specified by the
post-condition of one basic protocol is to the same as the
one specified by the pre-condition of the next basic protocol
(actually, the pre-condition formula of the successor should
be derivable from the post-condition formula of the predeces-
sor). All such possible concatenations construct the model’s
behavior graph to be parsed by verifier.

For this formalization the software system should be inter-
preted as agents interacting in an environment [10]. An agent
has a name and parameters. The set of agent’s parameters is
specified by the agent’s type. At each moment of time when
the model is “being executed” by the verifier, each agent



is characterized by the agent’s state and current values of
its parameters. Agents’ interaction is expressed through the
messaging mechanism.

The mathematical notation “agentA of the typeT is in the
states” can be written asT(A,s). Access to a parameterp of
the agentA of the typeT has the following syntax:T A.p.

The language of basic protocols has an MSC-type syntax [6]
and basic protocols can be presented in two ways: textual
and graphical (MSC/PR and MSC/GR) [12]. The following
elements of the MSC language are used for constructing basic
protocols:

• instance – for agents representation;
• condition – for pre- and post-condition formulas;
• action – for description of local actions in a basic

protocol;
• message – signal of interaction between agents.

The abovementioned sample requirement translated into a
basic protocol is shown in Fig. 1 in a graphical representation.

Fig. 1: Basic protocol in a graphic representation

The pre-condition (with the keyword PRE) of the basic
protocol is at the top of the diagram, where the state of the
model is specified. In this example the model state is defined
by the agent statephone1which has the valuebusy. The agent
phone1is of the typePHONE.

The process part of a basic protocol describes a set of events
that occur in the system after the pre-condition becomes true.
This basic protocol contains a local actiononhook(the phone
goes on hook) and sending a respective signal to thenetwork
agent (which is of the typeNETWORK) to inform it about the
occurred action.

As the result of the events in the process part the system
transits to the post-condition state (specified with the keyword
POST), where the agent state has changed toidle.

B. VRS technology

The VRS technology was developed through a joint effort of
the V.M. Glushkov Institute of Cybernetics in Kiev and the St.
Petersburg Branch of ZAO “Motorola ZAO” for verification
of behavioral specifications of software systems [6]. Usingan
elaborated combination of model checking and deductive rea-
soning, the technology is capable to verify models represented
with basic protocols, from small to huge ones. As a result,

various incidents of non-deterministic behavior, unreachability
of specified system states, or deadlocks are detected. If no such
defects are found, the system model is formally proved to be
complete and consistent within the specified constraints.

Automated verification of software systems with VRS tech-
nology implies the functional requirements, which were used
for system implementation, and system’s model in the form
of basic protocols created from the source code, formal spec-
ifications, etc. The technology checks that the model meets
the system requirements. This means that the software system
satisfies them as well.

For verification process an ordered list of signals or basic
protocols that contain required events (actions, signals,etc.)
should be specified. VRS can check that for this model the
behavior graph contains paths which include the specified
sequences in the specified order. The existence of such paths
(traces) is a proof of correctness of the model behavior with
respect to this criterion. Search of such traces is realizedby
looking for respective signal interaction between agents or by
looking for the specified basic protocol names in the generated
traces and considering their actual ordering.

Thus, a trace is a scenario of a possible model behavior.
Since the model was derived from an actual implementation
of a program system, we can say, that a trace is a scenario of an
actual system behavior. Scenarios are represented as consistent
concatenations of relevant basic protocols into one chain.VRS
outputs traces in the MSC/PR view.

Results of verification are automatically summarized in a
verification report, which describes all found inconsistencies,
discrepancies, deadlocks, and other errors in the model. Traces
demonstrating the incorrect model behaviors are attached to
the report. They are used to identify the root causes of such
incidents.

Traces generated by VRS can be used for automated cre-
ation of an exhaustive test suite for the program system. The
TAT (Test Automation Toolset) [13] tool is used for automated
test generation from those traces along with the respective
testing environment and subsequent test runs. In [14, 15] the
VRS/TAT system was adjusted for application and system
software testing of Java mobile phones.

C. Code analyzer KlocWork

In this work a decision was made to use an existing
code analyzer, namely KlocWork, created and maintained by
namesake vendor4. KlocWork is an industrial analyzer of C,
C++, and Java source code, specifically designed for systems
of millions of lines of code; it has an open interface to
its intermediate code representation (AST – Abstract Syntax
Tree), and allows the users to expand its basic functionality.

The main features of the tool are:

1) large amount of code being analyzed (4-5 MLOC);
2) high speed of code analysis due to optimized algorithms

of data processing;

4http://www.klocwork.com.



3) usage of unified interfaces that allow the users to access
intermediate data resulting from the static and dynamic
source code analysis.

KlocWork performs syntax analysis of the source code and
checks whether it satisfies certain properties, both default and
user-defined. The mechanism of analysis is based on various
checkers realized as dynamically loaded libraries (dll). Each
checker contains rules for AST traversal to check certain
source code properties and can be extended by the user in
C/C++ [16].

III. PRINCIPLES OFC-CODE REPRESENTATION IN FORM OF

BASIC PROTOCOLS

A. Main ideas

A C-application in terms of basic protocols can be repre-
sented as two agents of different types – agent-applicationand
agent-environment. The agent-application models the whole
application and has a set of parameters – all variables of
the initial program. Basic protocols are created for every
program operator: assignment, conditional operator, loop, etc.
A compound statement is represented by several protocols –
for the statement as a whole and for all its operands.

The agent-environment models the program environment
and is used for exchanging messages with the agent-
application. Messages from the agent-application usuallyin-
form the agent-environment about events occurring in the
application and are used by VRS in verification process for
traces search. These messages also provide a useful way for
manual analysis of traces.

The pre-condition of a basic protocol describes the ap-
plication state before execution of the current operator. The
state of agent-application is changed in accordance with the
current position of the verifier in the model. The values of the
agent parameters are changed in accordance with algebraic
operations which are executed over these parameters. These
operations correspond to algebraic operations over variables
of the statement under consideration.

Changes of the agent state are reflected in the basic protocol
post-condition, where the application state after execution of
the current operator is specified.

The process part of a basic protocol contains a local action
with information about the processed statement in its body and
interacting signals between the two agents. Signals are divided
into two groups: calling functions and accessing parameters.

B. Details

Control flow saving. In order to store a program control
flow in the model and to simplify the process of traces
generation, a special attribute is added to formulas of the pre-
and post-conditions of every basic protocol in addition to the
agent state description. It defines the order of basic protocols
in accordance with the control flow of the initial C-application.
The value of this attribute is changed in the post-conditions of
all basic protocols, providing uniqueness to the model states.

Model signals. Two signals with a function
name as their parameters are used to indicate a

function call: FunctionCall Start(parameter) and
Function Call End(parameter). The first signal is in the
basic protocol, which passes control to a set of basic
protocols describing the called function. The second one – in
the protocol, which returns control to the main flow from the
called function. Besides, the local action of the first protocol
contains the called function name with all its parameters.

Two other signals – VariableUsed(parameter) and Vari-
able Modified(parameter) – are used to indicate access to
program variables (using them or changing them respectively).
The signal parameter is the variable’s name.

Local actions. A local action in a basic protocol is used
for better traces readability; its body contains the name of
the formalized construct. For example, for a statement witha
function call the local action contains the name of the called
function with all its parameters.

IV. REALIZATION

The process of C-code formalization and obtaining a pro-
gram model in form of basic protocols can be divided into
two main stages. At the first, KlocWork analyzes the source
code and creates its AST. Then the checker parses the tree and
generates basic protocols. The respective plug-in was realized
in C using special methods of AST traversing, described
in [16].

The following data was used for basic protocols creation:
1) model, env – agents, which represent the program sys-

tem and its environment.
2) MODEL, ENV – the respective model and env agents’

types.
3) MODEL#model, ENV#env – instances, which repre-

sent agent-application and agent-environment in MSC-
diagrams.

4) MODEL(model, FUNC) – representation of the model
agent state. FUNC is the name of the function being
executed at the current moment.

5) FUNC VAR – variable VAR of the function FUNC.
6) control flow – attribute which is used for control flow

saving.
7) function call point – attribute which is used for saving

the function call point.
Module of basic protocol generation used the MSC/PR

template:
—————————————————————————
mscdocumentfile name;
msc basic protocol name;
ENV#env: instance;
MODEL#model: instance;
all: condition PRE /*MODEL(model, agent state);
atribute and agent parameters*/;
MODEL#model: action ’ local action’;
MODEL#model: out signal(parameter) to ENV#env;
ENV#env: in signal(parameter) from MODEL#model;
all: condition POST /*MODEL(model, agent state);
atribute and agent parameters*/;
ENV#env: endinstance;



MODEL#model: endinstance;
endmsc;
————————————————————————–

V. THE CURRENT STATUS, APPROBATION, POSSIBLE WAYS

OF APPLICATION AND FURTHER DEVELOPMENT

Testing of developed tools was performed on small project
pilots (about 1-5 KLOC). Node handling procedures and
algorithms of control flow (the order of basic protocols in
accordance with the program logic) saving were checked. The
experiments demonstrated that creating a model for a project
with 350 functions takes about 10 seconds. About 2000 basic
protocols were generated during the process.

At the current moment procedures of handling and creating
basic protocols for all AST nodes of C-programs have been
implemented. Further work will be aimed at deeper analysis
of C-constructs, because the complete handling is performed
so far only for expressions with unary operations over single
operand and binary operations over two operands (assign-
ment). Also, possible ways of links and system functions calls
(for example, functions of string handling) formalizationfor
higher model adequacy will be investigated.

Practical applications of the results of this research are as
following. As the set of basic protocols contains a formal
description of the algorithm realized by the program, the
derived model can be used for verification of the model’s
behavioral properties. Besides, checking of various character-
istics of program safety (stack overflow, using of uninitialized
variables, etc.) is performed during model execution. The
VRS tool allows creating the call graph of a C-application
for subsequent model studying and analyzing; also navigation
through basic protocols becomes easier with this graph.

It is still too early to expect full automation of formal
model creation from C-programs with the described approach,
because generated basic protocols still need manual analysis
and formatting of their pre- and post-conditions. In some
cases pre- and post-conditions need to be supplemented with
a formula in the basic protocol language in order to restore
the missed program logic, which was bypassed by the checker
because of shallow analysis of constructs.

In the near future we plan to apply the described tools
and approach to a real Motorola project to reveal defects
more thoroughly and select priorities for further development.
Besides, further work will be directed to adaptation of this
approach to applications in C++ and Java.

VI. CONCLUSION

Except for engineering development and experiments with
the current version of the proposed tool, it is supposed to pur-
sue other research tasks. Using basic protocol generated from
the source code of a program for traces generation, we obtain
behavioral scenarios which model the program behavior. These
scenarios are nothing more than a detailed description of
the program behavior, because they describe it at the lower
enough level (the source code level) of abstraction. Sometimes
such detailed description is redundant while a model of the

program’s behavior at a higher level of abstraction (e.g., at
the design level) is needed. VRS tools which allow creating
multilevel behavior models (for example, the call graph, a
program model at the component level, etc.) can be used for
that. Additional advantage of multilevel models, which are
used in the VRS technology, is the possibility of their direct
execution and, therefore, obtaining multilevel traces. Higher
level behavior scenarios can be used for verification and for
concise documenting the given software system as well.

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Standard 610.121990, IEEE Standard, IEEE, NY (1990).

[2] Sipma H.B., Uribe T.E., and Manna Z. Deductive model checking. In
Proceedings of International Conference on Computer-Aided Verication,
1996.

[3] Edmund M. Clarke and Holger Schlingloff. Model checking. In A.
Voronkov, editor, Handbook of Automated Deduction. Elsevier, 2000.

[4] Visser W., Havelund K., Brat G., Park S., and Lerda F. Model checking
programs. Automated Software Engineering Journal, 10(2),April 2003.

[5] Fernandez J.-C., Jard C., Jeron Th., and Viho C. Using on-the-fly
verification techniques for the generation of test suites. In Proc. 8th
Conference on Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, New Brunswick, August 1996.

[6] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Volkov V., Baranov S.,
Weigert T. Basic protocols, message sequence charts, and the verification
of requirements specifications, Computer Networks: The International
Journal of Computer and Telecommunications Networking, v.49 n.5,
p.661-675, 5 December 2005.

[7] Fisher G. The Next Generation of Source Code Analysis, Klocwork,
Whitepaper, February, 2008.

[8] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Letichevsky Jr A.A.,
Baranov S.N., Kotlyarov V.P., Weigert T. System Specification with Basic
Protocols // Cybernetics and Systems Analysis, Volume 41, Issue 4 (July
2005), p.479-493.

[9] Baranov S., Jervis C., Kotlyarov V., Letichevsky A., andWeigert T.
Leveraging UML to deliver correct telecom applications in UML for Real:
Design of Embedded Real-Time Systems by L.Lavagno, G. Martin, and
B. Selic (editors), pp. 323342, Kluwer Academic Publishers, 2003.

[10] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Vyshemirskii V.V.,
Letichevsky Jr. A.A. Insertion Programming // Cyberneticsand Systems
Analysis, Volume 39, Issue 1 (January 2003), p.16-26.

[11] Hoare C.A.R. Communicating sequential processes, Prentice Hall, Lon-
don, 1985.

[12] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.
[13] Drobintsev P.D. Integrated technology of software products quality

guaranteeing by means of verification and testing. PhD, SPbSPU. 2006.
238 p.

[14] Karpov A.N. Technology of adjustable tests generationfrom formal
specifications for embedded software and program interfaces realized in
Java-similar languages. PhD, SPbSPU. 2007. 145 p.

[15] Golubev A.A. Methods of agents creating and integrating into appli-
cation and system saftware for testing automation and monitoring of
computing embedded systems. PhD, SPbSPU. 2007. 150 p.

[16] Klocwork Extensibility Interface User’s Guide, Document version 1.3,
KlocWork, 2006.


