
How to Cook an Automated System for Linux
Driver Verification

A. Khoroshilov, V. Mutilin, V. Shcherbina, O. Strikov, S. Vinogradov, V. Zakharov

Institute for System Programming
Moscow, Russia

Abstract—We present the preliminary results of our work on
designing an automatic toolset for verification of Linux kernel-
space drivers. By now the toolset includes three components:

• a library of verification models; each model is a formal
description of some safety property to be checked;

• a preprocessor unit; it is intended for simulating an envi-
ronment of a driver;

• a verification unit BLAST; it is a general-purpose toolkit in-
tended for automatic program verification based on Boolean
abstraction and counter-example guided abstraction refine-
ments techniques.

We discuss in some details how our system operates and outline
the directions for future work.

Operating system (OS) is the key component of every
computer system including automatic control system of power
station, bank information system, or just a cheap cell phone.
The faults occurred in OS may result in fatal consequences:
damage of the objects under the control of computer, material
losses, data leakage. For the most part program errors do not
exceed the bounds of erroneous software components; they can
be easily localized, checked and corrected. But if a software
component operates in a kernel mode then its erroneous
behaviour has far-reaching implications and tends to failure
many other elements of computer system. The empirical data
indicate (see [10], [21]) that bugs in kernel-space device
drivers cause 85% of the system crashes. Therefore verification
of OS drivers is the topical problem in software designing.

The most generally employed approach to detecting bugs
in application programs is testing. But in the case of OS
testing encounter with a number of limitations that drastically
deteriorate its effectiveness. When testing OS components one
checks the correctness of their behaviour only on some specific
configurations depending on the state of main and peripheral
hardware, distribution of internal and external events, etc. The
number of such configurations in incredibly large and even
small difference in configurations may cause in significant
variances in OS behaviour. That is why no reasonable test set
could cover a high proportion of traces in OS code to detect
all possible errors. Certainly, a highly skilled expert is able to
reveal the most critical parts of OS code and thus guide the
detection of errors, but in this case the reliability of a driver
becomes a subject to human factor.

In this paper we report on the attempts to implement a
new approach to driver verification which would be able to
cope pure automatically with checking the most common

errors occurred in OS drivers. When verification of drivers is
concerned, it should be noticed that the most important issue
which need to be checked is the safety of interaction between
a driver and the other components of OS. A vast amount
of drivers employ only some bounded set of conventional
means for interacting with the environment. Close inspection
of means and templates that are used by designers of drivers
makes its possible to settle in formal terms the requirements
(rules) that should be satisfied to guarantee the safety of
driver’s behaviour. As soon as this set of rules is formalized
a partial verification of OS drivers may be performed pure
automatically with the help of some software verification
tool which is tailored to suit checking of these rules with
high accuracy. The users of such a system need not to be
experts in OS or program verification, and it can be widely
dissipated in the community of drivers designers to facilitate
effective preliminary checking of the most common safety
requirements.

The paper is organized as follows. We begin with a brief
introduction into the fundamentals of formal analysis of pro-
grams and description of a recently developed new approach to
automatized program verification — counter-example guided
abstraction refinement (CEGAR). Then we sketch the archi-
tecture of the work-in-progress system for OS Linux driver
verification, tell about the intended meaning of its components,
give a brief report about our experience in using CEGAR-
based software verification toolset approach to verification of
some OS Linux drivers, and outline directions of future work.

I. FORMAL ANALYSIS OF PROGRAMS

There are two main approaches to program verification
— proof theoretic and model checking. In proof-theoretic
approach program statements are treated as predicate trans-
formers. The aim of verification is to check that a given
program transforms a predicateϕ which characterizes a set of
initial states of computations (pre-condition) into a predicate
ψ which covers all admissible final states of computations
(post-condition). Usually this is achieved by applying logic
inference technique (see [15]). The main advantage of this
approach is its high accuracy — as soon asψ is derived from
ϕ this guarantees thatany execution of the program is correct
w.r.t. ϕ andψ, — which is attained at the cost of getting over
severe difficulties in building such a proof. Therefore it is used
only for verification of critical applications.

Model checking approach was initially developed to reason
about the logical correctness of any discrete state systems (see
[11]). To apply this technique to software verification one
needs to abstract a finite state transition systemM from a
given program and then to check ifM satisfies its specification
ψ. The virtues of model checking are its efficiency and the
ability of building counter-examples in the cases whenM does
not satisfiesϕ. The main problem faced by model-checking
tools is a combinatorial blow up of the state-space of a model;
this effect puts obstacles in the way of the wide application
of this technique. To make model checking effective for
verification of real programs one needs to choose a proper
abstraction level for a finite-state modelM of a program to
be analyzed. Search of this level is rather uneasy error-prone
activity which requires high experience.

Automated theorem proving and model checking taken sep-
arately can not cope with such difficult problem as verification
of kernel-level device drivers of OS. The huge leap forward has
been taken with the introduction of predicate abstraction [16]
and counter-example guided abstraction refinement (CEGAR)
[12] which combines the advantages of both approaches.
Predicate abstraction is a formal method for generating finite-
state models of computer programs. The states of the abstract
model are finite bit-strings whose elements are the values
of first order logic predicates. An initial set of predicates is
derived from the formal specification (property) of program
to be checked. The transitions in the model are computed
with the help of automated theorem provers. Then a model-
checking algorithm is applied to the finite state transition
system and either reports a success or build some possibly
erroneous trace as a counter-example. In the last case theorem
proving is used once again to check the feasibility of the
counter-example trace. Usually an insufficient set of predicates
leads to falsely reported counter-examples. Such an inaccurate
abstractions can be refined by means of adding predicates that
are extracted from these false counter-examples. This cycle
is repeated until either all false counter-examples vanish, or
some genuine execution trace which certifies the error is found.
Mathematical fundamentals of Boolean program abstractions
for software verification are thoroughly studied in [1], [2],
[18], [17], [20].

A typical automated verification system implemented in the
framework of CEGAR principles is comprised of three main
units:

1) a tool for transforming a C programP into a Boolean
program BP (P ;E) with respect to a given set of
predicatesE. This tool translates each procedure of
the C program separately, enabling it to scale to large
programs.

2) a model checking tool for performing reachability anal-
ysis of Boolean programsBP (P ;E) in attempt to find
a path π leading to an erroneous state. It combines
interprocedural dataflow analysis in the style of [19] with
Binary Decision Diagrams to efficiently represent the
reachable states of the Boolean program at each program
point.

3) a tool that discovers additional predicates to refine
the Boolean program, by analyzing the feasibility of
erroneous pathsπ in the C program. There are three
possible outcomes of this checking:

• the process terminates with a feasible error pathπ;
• the process terminates with discovering a pathπ is

not a trace of any program execution; in this case
the tool finds a set of predicatesFi that ”explain”
the infeasibility of pathπ in P and extends the set
of predicatesEi+1 = Ei ∪ Fi;

• the incompleteness of the theorem prover may bring
the system to a state where no further refinements
are possible or all computer resources are exhausted;
in this case user input is required.

Nowadays CEGAR principles of program verification are
implemented in 3 systems for program analysis — BLAST
(Berkley Lazy Abstraction Software verification Tool) [7], [8],
[9], [17], SDV (Static Driver Verifier) [1], [2], [3], [4], [5], [6],
and DDVerify [22]. These systems differ in the techniques used
for checking the feasibility of trace and computing abstraction
refinement. Since BLAST is intended for academic research in
software verification, we chose this toolset for our experiments
with analysis of OS Linux drivers.

II. RULES AND ENVIRONMENT

The input data our verification system is applied to includes
a C-code of a driver, a formal specification of a property to
be checked (a rule), and a model of environment. The rules
specify safety requirements a driver should satisfy when it
interacts with the environment, e. g.

RuleR: “It is inacceptable to use functionmemsetto zero
all memory regions allocated bykmalloc function”.

An environment of a driver includes OS, hardware, application
programs, etc. whose behaviour should be specified in some
formal terms. Thus, in the example above, a behaviour of
OS may be specified by the statement “functionkmalloc
set the pointers only to the memory regions that were not
allocated so far”. As far as hardware is concerned, in most
cases it is simulated by introducing non-determinism in drivers
behaviour: for example, any time a call for memory allocation
may be refused andkmalloc returns null value.

Informal description of the environment should be formal-
ized and adapted to the program verification toolset. BLAST
gives us the following means for supplying drivers to be
analyzed with information about rules and verification model:

1) insertion ofassertstatements to selected program points;
2) using variable BLAST NONDET in conditional

jumps orswitchstatements to simulate non-deterministic
choice of branches and labels;

3) using function prototypes with empty bodies; BLAST
treats such cases as a functions that return arbitrary
values;

4) using auxiliary variables to store information about
states of verification model;

5) using auxiliary functions.

A verification model corresponding the ruleR can be built
as follows. First of all, one have to specify explicitly the
set of predicates (properties)R1, R2, . . . , Rn such that every
behaviour of a driver satisfies all these predicates iff it does
not comply with the ruleR. One can readily see that the rule
R is violated iff the requirements below are satisfied
R1: an address assigned to a pointer by the functionkmalloc

is used as an argument of the functionmemset;
R2: memsettakes zero for the second argument and releases

all memory allocated bekmalloc.
To check the requirementR1 we introduce an auxiliary vari-
able to keep track of all addresses returned bykmalloc. The
requirementR2 can be checked with the help of one more
auxiliary variable which stores the size of memory allocated
by kmalloc; we also need to check if the second argument
of memsetis equal to zero. It is also necessary to distinguish
pointers processed by different calls ofkmalloc. To this end
introduce a global counter which will keep track of all calls
of kmalloc: we will assume that in the framework of our
verification modelkmalloc always returns the registration of
this counter. As the result we obtain the following code which
specifies the verification model corresponding to the ruleR.

void * guard kmalloc Ptr = 0;
void * guard kmalloc counter = 0;
int guard kmalloc size = 0;

void * kmalloc(size t size, int flags)
{

guard kmalloc size = size;
guard kmalloc Ptr = ++guardkmalloc counter;
if (BLAST NONDET)

guard kmalloc Ptr = 0;
return guardkmalloc Ptr;

}

void memset(void * pdst, int c, sizet plen)
{

assert(pdst != 0);
assert(pdst != guardkmalloc Ptr ‖ c != 0

‖ plen != guardkmalloc size);
}

These pieces of code correctly specify the verification model
corresponding to the ruleR. Thus we brought a collection of
24 rules that may be used uniformly for verificatiopn of all
OS Linux drivers.

III. D RIVERS PREPROCESSING

All programs fall into two classes: reactive (interactive)
programs and non-interactive programs. Non-interactive pro-
grams, such as compilers, preprocessors, etc. get inputs and
stimulus only at program start and this is the only point
where the environment may affect at the program behaviour.
Drivers, network servers as well as programs augmented with
user’s interface are called reactive applications; these programs
are designed to respond to external stimulus and usually

they interact with the environment over the course of their
execution. The external stimulus for drivers are interruption
signals received from perepherial devices and service requests
received from other applications.

Since most of drivers are reactive programs, one needs to
supply BLAST with some information about interative capa-
bilities of drivers. This is achieved by inserting some additional
statements into the code of driver to simulate explicitly the
interaction of driver with its environment. The information of
interactive capabilities of drivers is extracted from the rules
or/and from the specifications of system functions. Based
on this information some appropriate prototypes of system
functions are added to the code of a driver to simulate all
possible stimulus and responses of the environment interacting
with the driver.

To explain the preprocessing machinery in
more details consider a driver LSI Fusion
(linux/drivers/message/fusion/mptctl.c) as an example.
The source code of the driver is unsuitable for verification
since it does not include an appropriate information about
event handlers registration. To build an adequate model of
interactive driver one needs to provide BLAST with some
description of system functions that are implicitly invoked
by the driver. To this end we designed a special-purpose
bash-script which generates a new functionmainand puts into
it all function calls to be checked. Themain function begins
with invocation of driver initialization procedure, next follow
event-handler function calls, and, finally, an invocation of
driver deactivation procedure. Initialization and deactivation
procedures (moduleinit and moduleexit) are separated
out of their logging macrocalls, whereas handler functions
are taken from the fields of logged structures in the driver
initialization procedure. Parameters of the handler functions
are declared but not initialized; this indicates that they may
be assigned an arbitrary value. On generating the function
main the transformation of the driver into non-interactive
form is completed.

IV. D RIVERS VERIFICATION

Our driver verification toolset operates as follows (see fig.).

'
&

$
%

driver
source
code

6

'
&

$
%

library of
verification
models ?

instrumentation

tool
- BLAST -verdict

The verification system takes a source code of a driver,
applies preprocessing to transform it into a non-interactive
form, inserts a verification model corresponding to some rule
into a preprocessed code, and inputs the file obtained thus to
BLAST. Using Boolean abstraction technique BLAST builds a
finite state model of a driver and checks the reachability of any

state which falsifies the assertions of the verification model.
If no such states are reachable then the driver complies with
the rule. Otherwise, BLAST extracts counter-example traces
from the abstract model of the driver and tries to check their
feasibility with the help of theorem-prover. If one of such
traces is proved to be feasible then BLAST outputs it to certify
that the driver does not meet the requirements of the rule. If
all counter-example traces are unfeasible then BLAST refines
Boolean abstraction and checks it again.

Thus, for example, when checking driver LSI Fusion against
the ruleR BLAST outputs a feasible trace

mem = kmalloc(sz, GFPKERNEL);
if mem == NULL)

{
err = -ENOMEM;
goto out fail;

}
memset(mem, 0, sz);

which demonstrates how the rule may be violated along some
execution of the driver.

V. A DVANTAGES AND SHORTCOMINGS

The advantages of this approach to drivers verification is
obvious: when the library of verification models corresponding
to the rules is assembled then verification of drivers against
the collected set of rules may be performed pure automatically.
Unfortunately, there are many important rules that are beyond
the scope of this technique. By the time of writing this paper
we have collected 55 rules and only 24 of them have been
accepted for formalization and checking with the help of
BLAST. We have built verification models for 15 rules and
run a series of successful experiments on checking these rules
for a number of Linux character device drivers. All rules fall
into the following classes:

1) safety rules,
2) liveness rules,
3) syntactic rules,
4) data rules.

Now we can deal only with reachability (safety) rules. It would
be nice also to show that a driver always terminates or that
some progress along its execution is achieved. However these
properties are not safety properties but liveness properties.
Both tools BLAST and SDV currently do not support analysis
of such properties. Some progress in this direction is achieved
in [13]. Syntactic rules require checking of deprecated types,
fields and functions. This can be put into practice with the help
of advanced syntactic analyzer; development of this analyzer
is a topic for our future work. Data rules refer to bounds,
types and attributes of data structures involved in drivers.
Unfortunately, BLAST is not well suited for the analysis of
such rules. Many of such properties can be checked via an
extended data-flow analysis based on abstract interpretations
supplied with counter-example guided refinement [14]. The
implementation of this new perspective approach to program

analysis is another direction for the future work on the
improvement of our verification tool.

REFERENCES

[1] T. Ball, S. K. Rajamani, Boolean programs: a model and process for
software analysis, MSR Technical Report 2000-14.

[2] T. Ball, R. Majumdar, T. D. Millstein, S. K. Rajamani. Automatic Predi-
cate Abstraction of C Programs,SIGPLAN Conference on Programming
Language Design and Implementation, 2001, p. 203-213.

[3] T. Ball, A. Podelski, S. K. Rajamani. Boolean and Cartesian Abstraction
for Model Checking C Programs, 2001, LNCS, v. 2031, p. 268–280.

[4] T. Ball, S. K. Rajamani. The SLAM project: debugging system software
via static analysis, InProc. of the 29th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, 2002, p. 1–3.

[5] T. Ball, B. Cook, S. Das, S. K. Rajamani. Refining approximations in
software predicate abstraction,Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), 2004, p. 388–403.

[6] T. Ball, E. Bounimova , B. Cook, J. Lichtenberg, C. McGarvey, B.
Ondrusek, S. Rajamani, A. Ustuner. Thorough static analysis of device
drivers. InProc. of EuroSys’06: European Systems Conference, 2006.

[7] D. Beyer, T. A. Henzinger, G. Theoduloz. Lazy Shape Analysis, InProc.
of the 18-th Int. Conf. on Computer Aided Verification, 2006, LNCS, v.
4144, p. 532–546.

[8] D. Beyer, T. A. Henzinger, G. Theoduloz. Configurable Software Verifi-
cation: Concretizing the Convergence of Model Checking and Program
Analysis, InProc. the 19-th Int. Conf. on Computer Aided Verification
, 2006, LNCS, v. 4590, p. 504–518.

[9] D. Beyer, T. A. Henzinger, R. Jhala, R. Majumdar. The Software Model
Checker Blast: Applications to Software Engineering,Int. Journal on
Software Tools for Technology Transfer, v. 9, N 5–6, 2007, p. 505–525.

[10] A. Chou et al., An Empirical Study of Operating System Errors, InProc.
of the 18-th ACM Symp. Operating System Principles, ACM Press, 2001.

[11] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-
guided abstraction refinement. InProc. of the 18-th Int. Conf. on
Computer Aided Verification, 2000, LNCS, v. 1855.

[13] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for
termination. InProc. of Static Analysis Symp., 2005, p. 87–101.

[14] P. Cousot, P. Ganty, J.-F. Raskin. Fixpoint-Guided Abstraction Refine-
ments, InProc. of the 14th Int. Symp. on Static Analysis, 2007, LNCS,
v. 4634, p. 333-348

[15] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[16] S. Graf, H. Saidi. Construction of abstract state graphs with PVS. In

Proc. the 10-th Int. Conf. on Computer Aided Verification, 1997, LNCS,
v. 1254.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions
from proofs,SIGPLAN Not., v. 39, N 1, 2004, p. 232–244.

[18] D. Kroening, A. Groce, E. Clarke. Counterexample guided abstraction
refinement via program execution, InProc. the 6-th International Conf.
on Formal Engineering Methods, 2004, p. 224–238.

[19] T. Reps, S. Horwitz, M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. InConf. Rec. of the 22-nd ACM Symp. on
Principles of Programming Languages, 1995, p. 49–61.

[20] H. Saidi. Model checking guided Abstraction and analysis.Static
Analysis Symposium, LNCS, 2000, v. 1824.

[21] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems. InSOSP’03: Symposium on Operating
System Principles, 2003, p. 207–222.

[22] T. Witkowski, N. Blanc, D. Kroening, G. Weissenbacher. Model check-
ing concurrent linux device drivers,ASE’07: Proceedings of the 22-nd
IEEE/ACM Int. Conf. on Automated Software Engineering, 2007, p. 501–
504.

