

Abstract—Currently Model Checking is the only practically

used method for verification of automata-based programs.
However, current implementations of this method only allow
verification of simple automata systems. We suggest using a
different approach, runtime verification, for verification of
automata systems. We discuss advantages and disadvantages of
this approach, propose a method for automatic verification of
automata-based programs which uses this approach and conduct
experimental performance study of the method.

Index Terms—automata, software verification, runtime
verification, alternating automata

I. INTRODUCTION
Program verification — checking that a program satisfies

specified constraints [1] — is considered an important
problem. Two approaches for verification are currently used:
static verification and runtime verification. A static
verification method, namely Model Checking [2], is the widely
used approach to verification. Model Checking is a
verification approach based on analysis of models of a
program. For this method to be used the program must be
presented in a special form, a Kripke structure [2], which
describes possible changes of program’s computational state.
This structure is related to the main method’s drawback: size
of the structure grows exponentially with linear increase of the
program size. This problem is known as “exponential
blowup”.

Another approach for verification, runtime verification, is
used to verify a program’s behavior at runtime, e.g. when
there’s no access to the program source code or to verify
interactions between programs. Runtime verification is an
approach for verification which takes traces of program runs
and checks them against the specification. Although
verification of a particular program run cannot guarantee
satisfaction of the specified constraints, it can give reliable
results if one chooses input data carefully. Another advantage
of runtime verification is that its complexity does not depend
on complexity of the verified program; it only depends on
complexity of the specification and size of the program trace.
Finally, runtime verification is performed on the program
itself and not on its model thus avoiding possible mismatches
between the program and the model which can occur when
using Model Checking.

Static runtime verification uses various temporal logics
the specification language. The most commonly used of the
are linear temporal logic (LTL) and computation tree log
(CTL).

Verification of automata-based programs to date us
Model Checking as its primary tool. It is a promising directio
because models of automata-based programs can be bu
automatically with little or no errors at all and these mode
can be formally proven to match the source program. Als
computational state of automata-based systems is typical
relatively small so researchers’ best hopes were that it w
small enough to perform static verification in considerab
time of modern commodity hardware.

An important research is being done now ([2], [3]), a part
which is development and analysis of various approaches
static verification of automata-based programs. They list
number of different methods using a great variety
commercially available and custom developed verificatio
tools some of which are operating directly on the automa
model. However, current implementations are very limited
capabilities, and only allow verification of models wi
hundreds of transitions in reasonable time.

Complete methods for runtime verification of automat
based programs are virtually unknown. At the same tim
runtime verification of imperative programs is studied w
and has received significant attention recently. Our intent is
pick an available approach to runtime verification and apply
to verification of automata-based programs. Since automat
based programs are usually formally defined, it is usual
expected for a new approach to be introduced as a form
method.

The paper presents a method for runtime verification
automata-based programs based on a known approach
runtime verification [4]. The presented method is based o
traversal of alternating automata [5]. This allows verificatio
of program traces with computational complexity that linear
depends of trace size and complexity of the specification. T
primary components of the proposed methods are the set
propositions allowed in the specifications, the algorithm f
building the traces and the rules to evaluate values of t
propositions at each point of the trace.

An important constraint of runtime verification is thet
results are unreliable when the method is applied to program
containing blocks that execute in parallel. This is so becau
the order of execution of parallel blocks is nondeterminist
and can change from one run to another. In this paper w

A Method for Automatic Runtime Verification
of Automata-Based Programs

Oleg Stepanov, Anatoly Shalyto (research supervisor)
Fac. of Information Technologies and Programming

St. Petersburg State University of Information Technologies, Mechanics and Optics
Email: oleg.stepanov@gmail.com, shalyto@mail.ifmo.ru

