A Method for Automatic Runtime
Verification of Automata-Based
Programs

Oleg Stepanov Anatoly Shalyto

oleg.stepanov@gmail.com shalyto@mail.ifmo.ru

Saint Petersburg State University of Information Technologies,
Mechanics and Optics

Problem Statement

Existing Approaches

— Rely on static verification, most commonly
on model checking

— Use available verifiers like SPIN and Bogor

— Build Kripke structure which has
exponential size of the program used to

build it

Existing Approaches: Performance

— SPIN-based method can perform
verification of models containing 100 to

500 automata depending on the number of
transitions

— Methods based on model checking take

exponential time to verify a system of
automata

Runtime Verification

Runtime verification is verification of

Advantages of Runtime Verification

— Allows for verification of larger systems of
automata

— Verifies implementation, not model

— Can be used for soft handling of exceptional
cases in critical applications

Method Performance

Depends on trace size

Depends on formula complexity

Does not depend on program complexity

Method Drawbacks

Does not guarantee valid program

Even worse for parallel programs

Runtime Verification: Workflow

Specification

‘ Manual translation

LTL formula
Alternating
Biichi automata Program
| |
Verifier <-------------- Execution
' trace

1
\4

Counter-example

Samples of Alternating Buchi
Automata

] J
@ A(p) @ A(p)
Al o) A(O »)

10

Traversal of Alternating Buichi
Automata

1. Depth-first traversal

Choice depends on formula
v

2. Breadth-first traversal
3. Reverse traversal

Optimal choice when entire trace is available

11

Systems of Mealy Automata

<« (o)

12

Components of the Method

1. Trace construction algorithm
2. Set of atomic propositions

3. Algorithm for evaluating propositions
at each trace point

13

Trace Construction

51,1921 [@1,155155_251,2] [@1,255132 [@2,331552 Zq 52,2]§1,3]

] |

Trace header Handling section Nested section

Root event Variable values End state

14

Atomic Propositions

e;; — I-th automaton is handling event e,
x; — value of input variable x; is true
z; — output action z; is performed

s;; — I-th automaton is in state s;;

15

Verification time, ms

6000

5000

4000

3000

2000

1000

Method Performance

200

400

600 800

Trace length, thousands of records

—Gx1—>Fz1

........

Gx1V(Fz1AFz2)

.
.o
.
.
.®
.
.
o
.

1000

16

Further Research

— Apply test input generation algorithms

— Build an efficient implementation for
breadth-first algorithm

— Apply to real large systems

— Investigate applicability of automata
programming in dynamically executed
environments

17

Questions?

oleg.stepanov@gmail.com
shalyto@mail.ifmo.ru

http://is.ifmo.ru

mailto:oleg.stepanov@gmail.com
mailto:shalyto@mail.ifmo.ru
http://is.ifmo.ru/

	A Method for Automatic Runtime Verification of Automata-Based Programs
	Problem Statement
	Existing Approaches
	Existing Approaches: Performance
	Runtime Verification
	Advantages of Runtime Verification
	Method Performance
	Method Drawbacks
	Runtime Verification: Workflow
	Samples of Alternating Büchi Automata
	Traversal of Alternating Büchi Automata
	Systems of Mealy Automata
	Components of the Method
	Trace Construction
	Atomic Propositions
	Method Performance
	Further Research
	Slide Number 18

