
 

 
 

Abstract—The paper presents a software tool for local network 
simulation. The tool includes GUI for constructing a network 
consisting of routers, application servers and switches connected 
to each other by communication lines. The simulator supports a 
number of widely-used protocols of TCP/IP stack. The network 
simulation tool also features a generator for errors and delays in 
communication lines that makes a data transmission process 
closer to real network environments. The error and delay 
generation algorithms are based on the Poisson distribution, that 
is proven to be adequate for wireless networks. The simulator is 
used for telecommunication system labs. 
 

Index Terms—Computer networks, error analysis, simulation 
software 
 

I. INTRODUCTION 
HERE are a number of network simulators for computer 
networks. Some of them support specific hardware and 

provide an opportunity for a user to gain the experience 
working with high-cost devices without necessity of buying 
them [1]. Others are generic simulators that are intended for 
studying data flows and network protocols behavior in an 
environment of a modeled network before applying the 
network configuration into real infrastructure [2]. 

In the paper, we present a simulator which was rather 
developed for educational purposes. It contains a simple 
graphical user interface (GUI) and supports several basic 
protocols of TCP/IP stack. With GUI a user may construct 
network topology by placing device icons into the workspace 
and by connecting them with communication lines. Then a 
user can set a network configuration for each device: host 
name, IP address and network mask. More complex 
configuration can be performed from a console using 
command line that is available for every device. When the 
network configuration stage is completed a user may initialize 
the simulator. There are several generators for network packet 
(ping, traceroute, etc) that allow to execute data flows in the 
network. The results can be observed either through output of 
a packet generator or through Wireshark – the network packet 
analyzer (formerly Ethereal) [3]. 

To make the network simulator more realistic, we add noise 
to communication lines. The reason is: given the environment 
where data losses and delays occur, it is much more 
interesting to observe communication protocols behavior, 
especially those which can detect and correct errors. If a 

 
Andrey V. Shabaldin, e-mail: psi@sah.tomsk.ru. 
Dmitry M. Timchenko, e-mail: timchenko_d@mail.ru. 
Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russia 

student can control the error rate, he or she can learn how 
stable the data flow is for different noise levels and for 
different communication protocols. 

For noise simulation we implemented error and delay 
generators. The noise generation algorithms are based on 
generating of pseudo-random Poisson-distributed values. 
Poisson distribution is known to adequately describe errors in 
wireless networks. Error rates in wired networks are lower 
compared to wireless networks; however, we assume that the 
error distribution in wired networks is close to the error 
distribution in wireless networks. We also use Poisson 
distribution to generate delays between adjacent packets, 
however, the nature of delay is not limited to noise in 
communication line, but also may appear due to network 
overload and other reasons. 

The rest of the paper is organized as follows. We briefly 
overview the Network simulation tool in Section II. In Section 
III, we remind necessary definitions and formulate the 
hypothesis of error probability distribution in communication 
lines, while in Section IV we describe experimental results 
which confirm the selected hypothesis. In Section V the 
implementation details of error and delay generation 
algorithms are considered. The conclusion is outlined in 
Section VI. 

  

II. NETWORK SIMULATION TOOL OVERVIEW 
Network simulator is a software tool that allows a user to 

construct a network diagram which consists of network 
devices linked to each other with communication lines; to 
configure devices using GUI and console and to simulate 
packet data transmission. The screenshot of the main window 
of our tool is shown in Figure 1. 

 
Fig. 1.  The main window screenshot. 

Error Generator for Communication Lines in 
Local Network Simulation Tool  

Andrey V. Shabaldin, Dmitry M. Timchenko, Tomsk State University, Tomsk  

T 



 

 
There are 3 basic types of devices: a computer, a router and 

a switch. A computer may host network services, such as: 
DNS server, DHCP server. It has exactly one external network 
interface, so it cannot route or switch packets. 

A router, a device that has up to 16 external network 
interfaces, is used to route packets between subnets attached 
to its interfaces. 

A switch works as a “dumb” switch with the automatic 
content-addressable memory filling. Number of ports can vary 
from 5 to 32. 

A user of the network simulator also can take an advantage 
of using helper devices. There are two types of them: an 
external connection helper and an ethereal file writer. The 
network simulator allows a user to construct shared network 
infrastructure with network segments on different physical 
PCs. To connect the segments to each other external 
connection helper is used. It redirects every received packet to 
other physical computer over UDP socket. In another PC this 
packet is received and is directed into a network segment 
attached to the corresponding external connection helper. 
Consequently we obtain two network segments on different 
physical computers connected to each other by two external 
connection helper devices (Figure 2). 

  
Fig. 2.  Two network segments on different physical computers connected 
with external connection helpers. 
 

When the network configuration is completed, the simulator 
could be initialized by pressing the “play” button at the top 
toolbar. This turns on the network traffic between network 
devices. 

The device configuration can be performed in two ways: by 
using GUI or through console tools. With GUI a user can set 
IP address, subnet mask, specify DNS servers and default 
gateway for computers. All other settings may be configured 
using console tools. Console opens when corresponding 
device is clicked with the left mouse button. Just now there 
are three configuration tools available: 

-- route – to set-up routing tables for a computer or for a 
router; 

-- arp – to query or to modify ARP tables; each row maps 
an internet address into Ethernet MAC address; 

-- iptables – a tool by which a user creates rules for packet 
filtering. 

Packets flow synchronously, one packet per single 
communication line for each cycle. Each device has its own 
buffers for incoming and outgoing packets. After a packet 

arrives to the incoming buffer, it is being processed by 
protocol modules and network services. The order in which 
packets are processed is determined by protocol stack which is 
specific for each device type. Actually there are two protocol 
stacks: input stack for incoming packets and output stack for 
outgoing packets. They may differ, for example, routing 
module on a computer does not process incoming packets 
from other devices, though it forwards outgoing packets to 
local interfaces according to their destination addresses. 
Figure 3 shows the input protocol stack for a computer that 
hosts DNS server.  

 
Fig. 3.  The input protocol stack for DNS-server. 

 
To simulate packet transmission several console tools can 

be used: 
-- ping – sends ICMP echo requests to target device and 

listens for ICMP echo response replies. It also estimates 
round-trip-time in cycles, records any packet losses, and prints 
a statistical summary when finished. 

-- traceroute – is the tool to find a path taken by a packet 
from a source to a destination device. 

-- nslookup – is used to query DNS servers to find various 
details relating to DNS: IP addresses, MX records for a 
domain, name servers of a domain, etc. 

The network simulator tool has plug-in architecture. The 
core consists of GUI and application programming interface 
(API) to interact with external plug-in modules. Plug-in 
modules are responsible for all other functionality. 
Consequently, it is possible to implement new devices, 
protocols and network services without rebuilding the tool. 

In our paper, we describe the implementation of a new 
device that adds errors and delays to communication lines. To 
develop an algorithm for error and delay generation, first we 
should select the proper error distribution function and 
estimate its parameters. 

 



 

III. SELECTION OF ERROR AND DELAY DISTRIBUTION 
According to [4] possible sources of errors in wireless 

networks are the following: 
-- signal attenuation; 
-- front end overload: if a very powerful transmitter of one 

frequency band is near a receiver of another band, the 
transmitter may overwhelm filters in the receiver; 

-- wave interference; 
-- wave dispersion; 
-- motion: if two communicating objects are moving with 

respect to each other, the frequency of the electromagnetic 
energy is being changed according to the Doppler effect. 

First, we should choose the function that corresponds to the 
distribution of errors appearing from sources listed above. 
Then the choice should be proven experimentally. 

We assume that: 
-- ti i=1, 2, …, N – time instances when errors occur are 

statistically independent; 
-- the probability of an error in ∆t time lapse is proportional 

to ∆t; 
-- the probability of two or more errors in ∆t time lapse is a 

higher order quantity than ∆t. 
According to these assumptions, the Poisson distribution 

function could be chosen: 

T
N

e
N
TTNP γγ −=

!
)(),( , 

where P(N, T) is the probability of the occurrences of N errors 
for the time lapse T;  
γ is a distribution parameter that describes the average error 
number per a time lapse. 

Given the frequency distribution function f(t), the 
probability of the error absence in the time lapse T can be 
determined as 

P(0,T)=P{t≥T}= ∫
∞

T
f(t)dt  =e-γT . 

After the differentiation we obtain the frequency 
distribution function 

f(t)= γ e-γt                          (1) 
where the average time lapse between error occurrences 
equals to 

∫
∞

=>=<
0

1)(
γ

dtttft  

IV. EXPERIMENTAL PROOF OF POISSON DISTRIBUTION 
ADEQUACY FOR DESCRIBING ERRORS IN COMMUNICATION 

LINES 
The experiments were performed in the following way. 

Each second we sent 32-byte ICMP echo request to remote 
host over WiFi network, and tracked ICMP echo replies. 
Overall experiment time was 6-8 hours. After that we 
constructed the distribution of time lapses between 
neighboring errors. By error we meant the expiration of 
maximum waiting time (5 seconds) for an echo reply. The 

resulting histograms are shown in Figure 4. 

 
Fig. 4.  The error frequency distribution of time lapses between errors in a 
wireless network. 

 
According to the results shown in Figure 4 it can be 

assumed that the frequencies of time lapses between errors are 
distributed by decreasing exponential function. Since Poisson 
distribution is decreasing exponential function as well, in 
order to prove that the function in Figure 4 is a Poisson 
distribution we have calculated <t> – the average time lapse 
between error occurrences. Then we have constructed a graph 
of the Poisson frequency distribution function (1). For each 
point in this graph dispersion were estimated. As the 
summary, root mean square derivations (RMS) between 
theoretical (function (1)) and experimental results were 
calculated. The results are shown in Table 1. 

TABLE I 
EXPERIMENTAL AND THEORETICAL RESULTS COMPARISON 

Experiment number <t> RMS 
1 38.46 4.6 
2 15.87 2.3 
3 33.33 3.3 
4 20.40 5.0 
5 58.82 6.2 

V. ERROR AND DELAY GENERATION ALGORITHMS 
There are a number of methods of stochastic process 

simulation using pseudo-random generator on PC. Pseudo-
random generator outputs the set of uniformly-distributed 
random values. So the challenge is to convert this set to 
arbitrary-distributed values. This can be done with non-linear 
transformation [5]. 

Let R be the probability of the error absence for the time 
lapse T and R is a value generated using pseudo-random 
generator, 0 < R < 1. According to (1): R=P(0,T)=e−γT, or 
Ri=e−γTi  

Consequently, the time lapse between errors ti could be 
derived as: 

]
 

)1ln(
[

γ
i

i
Rt =  (2) 

where square brackets denote the integer part of a value. 
Error generation algorithm is as follows: 
1) t0:=0, i:=1. 



 

2) A user assigns γ – a distribution parameter that describes 
the average error number per time lapse.  

3) Ri ∈ (0, 1) is a random value. 
4) Calculate the offset ti using (2). 
5) Invert the bit with the offset ti.  
6) i:=i+1. 
7) Repeat steps 3–6 until the communication session is 

finished. 
 
Delay generation algorithm is as follows: 
1) t0:=0, i:=1. 
2) A user assigns γ – a distribution parameter that describes 

the average error number per time lapse and max – the 
maximum delay for a cycle. 

3) Ri ∈ (0, 1), Di ∈ (0, max) are random values. 
4) Calculate the offset ti using (2). 
5) Delay the ti-th packet for Di cycles. 
6) i:=i+1; 
7) Repeat steps 3–6 until the communication session is 

finished. 
 

VI. CONCLUSION 
We have currently developed the network simulation tool 

that features scalable plug-in architecture. It allows us to 
extend the functionality of our tool by adding new protocol, 
device or network service modules. Currently the work is 
going on with implementing the device that adds a noise to 
communication lines. It will be able to randomly generate 
errors and delays with the Poisson distribution. A user will 
have an opportunity to configure the noise level by changing 
average error number per time lapse. In the meantime, we 
already have derived the proper error distribution, have 
developed the algorithm for error and delay generation. Now 
we are implementing GUI and core for error-generating plug-
in module. When plug-in is finished it will be used with the 
network simulation tool to make the data flow simulation 
more realistic. 

 

REFERENCES 
[1] Boson NetSim :: Cisco Network/Router Simulation Software [Online]. 

Available: http://www.boson.com/AboutNetSim.html. 
[2] Network Emulator 3.0 [Online]. Available: http://lionet.info/ne/ne3/. 
[3] Wireshark – free packet sniffer computer application [Online]. 

Available: http://www.wireshark.org. 
[4] D. Eckhardt, P. Steenkiste, “Measurement and Analysis of the Error 

Characteristics of an In-Building Wireless Network,” in proc. of ACM 
SIGCOMM '96 Conference, pp 243--254. 

[5] Пономарев Г.А., Пономарева В.Н., Якубов В.П. Статистические 
методы в радиофизике: практикум с применением диалого-
вычислительных комплексов. –Томск 1989. 


