

Abstract—In the paper the problem of extension of the

standard information taken from signatures of program
interfaces, for a possibility of automatic generation of the tests
calling chains of such interfaces with correct parameters and in a
correct environment is considered. This problem is actual at
testing systems with greater number of interfaces (more than
1000) in conditions of the limited resources on creation of tests.
For the description of the extended data the so-called specialized
types specifying semantics of types of objects, returned values and
parameters are entered. With their help it is possible to add the
initial description of signatures of interfaces for effective
generation of tests. Various kinds and properties of specialized
types are considered. The aspects accelerating input of necessary
additional data for groups of interfaces are discussed, too. The
example of realization of storage of the extended information on
interfaces in a database of Linux Standard Base standard is
shown.

Index Terms—Automatic testing, Software testing,
Standardization

I. INTRODUCTION
t testing the program systems consisting of the big
number of the interfaces (API) in conditions of limited

resources on creation of tests, use of the automated methods
and the tools allowing quickly and in a plenty to create the
tests checking at least the minimal functionality is necessary.
Tests thus can not check a full correctness of corresponding
interfaces, but can reveal cases of destruction of system, and
at successful passage of the test - to guarantee its minimal
working capacity.

To create though also the elementary, but the correct test
automatically, it is necessary to have the formal description of
rules of a call of tested interface. The signature of interface
(name, types of parameters and returned value) can be
received automatically completely in the different ways: from
header or binary files or from existing databases. However in
most cases types of parameters and returned values in the
signature are too general. For an example we shall consider
the function arcsin(double). The signature allows to call it on
any parameter of double type. However from mathematical
features of this function follows that value of actual parameter
on absolute value should not surpass 1. Otherwise there will
be an exception, and it will be impossible to consider such call

E. S. Chernov, Moscow (e-mail: ches@ispras.ru).

normal (within the limits of testing the minimal functionality).
Therefore for maintenance of correct formation of value of
parameter by a call of such interface it is necessary to set
either formal restriction (x >= -1 && x <= 1) or simply
concrete value, satisfying to this restriction (for example, x =
0,5). Rules of designing of correct value for complex types
can get more complex kind, for example for designing some
parameters it is necessary to call other interfaces or even the
whole chains of interfaces. Notice that, besides the description
of properties of parameters, for generation of tests it is
necessary to describe also a condition on returned value and
on object (when target interface is a method of a class).

In the given paper necessary expansions of standard
information containing in signatures are considered. It allows
to generate a chain of initialization of a correct environment
and parameters for a call of target interface automatically
completely and to check up a base correctness of its
performance. The central elements of this expanded
information are specialized types which comprise
specification of semantics of standard types of objects,
parameters and returned values and allow designing
corresponding correct values automatically. One specialized
type can be attached to various parameters and returned values
of various interfaces, that is it can be reused.

The information from the signatures of some interface,
added by specialized types, allows building automatically
completely tests of working capacity for this interface.
However describing of specialized types and its binding to
particular interface is a manual work. Therefore it is very
important to provide effective creation new and reusing
already created specialized types for different interfaces.
Because of it, the certain mechanisms for the specialized types
are entered. These mechanisms allow to reduce quantity of
created types and to increase speed of their binding to
interfaces.

The paper consists of four sections. Terms for a designation
of attributes (properties) of specialized types are entered in the
first section. In the second section the basic attributes
necessary for automatic generation of tests are considered.
And in the third - properties and mechanisms, allowing to
accelerate creation of tests for the big number of interfaces. In
the fourth part concrete realization of storage of the expanded
information and specialized types on an example of expansion
of a database of LSB standard [1,2] is described.

Extension of interface signature descriptions for
automatic test generation

Chernov E.

A

II. SPECIALIZED TYPES
For definition of some specialized type, it is necessary to

list values of its all attributes. The brief description of each of
them is given below:
• Name - reflects the basic purpose of creation of the

specialized type.
• Data type - type that is specified by the specialized type.
• Base type - specialized type which is inherited by the

given specialized type.
• Kind – there are 3 kinds of specialized types: normal,

once-only, common for parameters and common for
returned values.

• Value – the value by which the parameter using the
specialized type is initialized.

• Constraint – it defines the condition for returned value.
• Init/final code - program code which is necessary for

inserting accordingly before and after a call of interface.
• Auxiliary code - the program code which is made out in

the form of a set of functions and is used for initialization
of objects. Besides there is an opportunity of reusing
already created specialized types in it.

• Proxy-value – it’s useful in case of dependence of
parameters from each other. In this case one specialized
type specifies several parameters at once. All dependences
are stored in proxy-values, each of which are used by one
parameter and can have the reference to other parameters.

The name and data type attributes distinguish specialized
types from each other, i.e. for one data type cannot be two
different specialized types with the identical name.

The base type attribute defines the attitude of inheritance
between specialized types. Any other attitudes between them
it is not stipulated.

For the description of value, constraint, init, final and
auxiliary code attributes should be used the programming
language. In the given paper C++ language is used as an
example.

For the definition of specialized type it is necessary to list
values of its all attributes. Further in the paper, its nonempty
attributes will be listed for definition of concrete specialized
type. Name – is an exception, since it is not essential.

III. MAIN ATTRIBUTES OF SPECIALIZED TYPE
In the given section attributes of the specialized type,

allowing storing information which is necessary for automatic
generation of tests, are described.

A. Value of specialized Type
The simplest way to satisfy to constraint on entrance value

of parameter is the concrete notation of value for this
parameter. It is stored in value attribute of specialized type.

The several examples of specialized types with correct
values are shown below:
1) value = 3,
2) value = “Test string”,
3) value = true.

The following program lines are corresponding to these
specialized types:

Par_N = 32;
Par_N = “Test string”;
Par_N = true;
Here N – is a number of parameter, which is using the

specialized type with corresponding value.
Value can be the function defined in an auxiliary code of

specialized type, for example: value = create_param(). The
following line in generated program corresponds to it:

Par_N = create_param();
If the name of object is necessary then it’s possible to refer

to it by special structure: $obj. It is replaced by the name of
object in the generated program. For example, for value =
$obj.first() the next code is generated:

SomeClass Obj;
…
OtherClass Par_N = Obj.first();
…
As a rule, there is not a unique value for parameter with

which it is possible to call interface, therefore one specialized
type can have few values. It will lead to generation of several
tests for one interface.

B. Constraint of Specialized Type
Besides entrance values for parameter, the specialized type

can also store some constraints on parameter. This is a logic
expression which is true at correct work of target interface. As
well as for value of specialized type, special structures for the
description of constraints are used:
• $obj – is replaced by object’s name.
• $0 – is replaced by the name of parameter’s variable.

Several examples of such constraints: “$0 == 1”, “$0 !=
NULL”, “$obj.isEmpty() == false”. These constraints are used
by conditional operator in generated program:

SomeClass Obj;
…
Obj.someMethod(Par_1, Par_2, …);
If (!(Par_1 == 1)) {
/* printing error message:”Failed constraint $0 == 1” */
}
If (!(Par_2 != NULL)) {
/* printing error message:”Failed constraint $0 != NULL”*/
}
If (!(Obj.isEmpty() == false)) {
/* printing error message:”Failed constraint
 $obj.isEmpty() == false“ */
}
In this example the specialized type with the first and the

second constraints is used by the first and the second
parameters of interface. Specialized type with the last
constraint is used by object. If the result of one of these logic
expressions is false, then the corresponding error messages
will be printed.

C. Init and Final Code
Init code is a program code that is inserted up before calling

of target interface and final code – after. As for constraint, $0
and $obj are used for their description. For example, an array
can be filled by 10 elements in the init code:
for (int i = 0; i < 10; i++) {
 $0.append(i);
 }
The following code corresponds to it in generated program:
…
SomeClass Obj;
// Init code
for (int i = 0; i < 10; i++) {
 Par_1.append(i);
}
// Call of target interface
Obj.someMethod(Par_1,…);
…
In final code it’s possible to close a file, for example:
close($0);
Corresponding generated code:
…
Par_1 = fopen(“test.cpp”, “r+”);
Obj.someMethod(Par_1);
// Final code
close(Par_1);
…

D. Auxiliary Code
Set of additional functions, which it is possible then to use

in other attributes of specialized type (including value), is
made out in the auxiliary code attribute. At test generation,
definition of such functions are located in the beginning of a
file with initial codes of the test in which there is a call of the
target interface using given specialized type. Thus, unlike an
init code, the auxiliary code is not duplicated for various
parameters within the limits of one test. Besides it can contain
the additional structures specifying to the generator to
initialize a variable of certain type or to call interface with
automatically initialized correct parameters:
• $(type) – the instruction to the generator to create a

variable of type ‘type’.
• $[function] – the instruction to the generator to initialize

and call corresponding function.
These structures allow to lower time of creation of

specialized type and quantity of mistakes essentially since the
volume of a code which the developer should write decreases.
Besides it is not necessary to distract on learning, how to
initialize the certain data type correctly or with what
parameters to call an interface. Reusing of the information
brought earlier for these interfaces or data types allows to not
think of it. Besides such references, but not a concrete
program code, allows changing a way of initialization of
interface or a class only in one place, instead of in all
specialized types which use them.

It’s impossible to use $0 and $obj structures here, since the
auxiliary code is not bound to concrete parameter. However if

necessary it is possible to get access to the necessary
parameters, having transferred them as parameters of function
defined in the auxiliary code.

Often it is necessary to call some set-methods of an object
for its correct initialization. They can define as simple
properties of object (enabled - disabled, visible - not visible,
etc.), and complex, demanding initialization of other objects (a
color, a font, an icon, a cursor, etc.). For example, it is
possible to write the following auxiliary code in the
specialized type with value=“create_SomeClass()”:
SomeClass* create_SomeClass() {

SomeClass* Obj = new SomeClass();
Obj->setEnabled(true);
Obj->setFont($(QFont *));
Obj->setIconSet($(QIconSet));
return Obj;

}
The special structure in the setFont() and setIconSet()

methods specifies to the generator to initialize the values of
QFont* and QIconSet types itself.

If the created specialized type to set for object of
'SomeClass' class we shall receive the following program:
static const char * const XPM[]={
"16 15 8 1",
"a c #cec6bd"
}
SomeClass* create_SomeClass(SomeClass* Obj) {

Obj->setEnabled(true);
Obj->setFont(new QFont(“Times”, 10, Bold));
QPixmap Par_1_1(XPM);
QIconSet Par_1(Par_1_1);
Obj->setIconSet(Par_1);
return Obj;

}
int main() {

SomeClass* Obj = create_SomeClass();
 // Call of target interface
…

}
$(QFont *) is replaced by line "QFont ("Times", 10, Bold)",

which is constructor of QFont class with parameters specified
by specialized types with values “Times”, 10 и “Bold”.
$QIconSet) is replaced by few lines in which QPixmap object
is created by global variable XPM, defined in auxiliary code
of specialized type for QPixmap constructor. At a writing of
this code manually it should to understand how to initialize
objects of QFont, QIconSet classes and types which they
depend on (QPixmap in this case). Instructions to the
generator to create objects of these classes automatically help
to reduce expenses of time and efforts to creation of tests for
interfaces depending on them and to avoid mistakes arising at
it.

E. Proxy-value for Complex Specialized type
Usually specialized type includes the additional description

for only one parameter. Thus the test using only such

specialized types can be divided into independent blocks of a
code, each of which initializes own parameter. However in
practice there are dependences between descriptions of
parameters from each other, i.e. it is necessary to use value of
one parameter in lines of a code for initialization of other
parameter. Typical example of such dependence is the
situation when one parameter is a string, and another is equal
to length of this string. In this case the description of the first
and second parameter cannot be divided into independent
blocks of a code:

Par_1 = “Some String”;
Par_2 = strlen(Par_1);
Such cases are described by complex specialized types.

Actually, one complex specialized type contains description
for several parameters. Dependent parameters unite into one
parameter in extended signature of interface. All dependences
between initial parameters remain only inside of specialized
type, and dependences between parameters in the extended
description of interface are not present. Thus the final program
represents association of independent descriptions of groups
of parameters.

Proxy-value attribute of specialized type allows to unite
parameters by one description. The number of these values is
equal to the number of united parameters. Every proxy-value
stores an initializing string for corresponding parameter.

For the example above complex specialized type has two
proxy-value: “$1 = “Some string” - for the first parameter and
“strlen($1)” – for the second. Special structure $1 is used for
this description. Parameter with “$1 = “Some string” proxy-
value has “Some string” value in generated program. $1 is
replaced by the name of this parameter. So the second
parameter with strlen($1)” proxy-value has “strlen(Par_1)“
value in generated program.

Fig. 1. Extension of interface signature by specialized and complex
specialized types.

It’s possible to use some other structures instead of $1, but in
any case such mechanism of references to other parameters is
necessary. $1 is a reference to the first parameter here.
Besides, it’s possible to use $0 and $obj structures here that
replaced by a name of parameter and a name of object
accordingly.

IV. ACCELERATING OF TESTS CREATION
The main advantage of automatic creation of the elementary

tests is small expenses of work for one test. Manual actions
are the longest part of process of tests creation. It is creation
of specialized types and extension of interface descriptions (a
binding of specialized types to parameters of interface).
Developer does these actions by the special GUI tools that
allow editing of the information about specialized types. To
lower efforts to processing of each interface, some
mechanisms have been entered. These mechanisms allow to
decrease number of created specialized types and to facilitate
interaction of developer with the GUI tools.

A. Inheritance of Specialized Types
At creation of specialized type for some initial data type

there can be a need for reuse some attributes of other, already
created specialized type for similar initial data type. Value,
constraint, init and final code, auxiliary code are the attributes
that can be reused. For such reusing the mechanism of
inheritance has been entered. The specialized type that inherits
other type must have reference to other one in base type
attribute. At test generation the empty attributes from the
child-type are taken from parent-type. Thus, the specialized
type can be created quickly – it’s enough to specify its parent,
not specifying any other attributes. Such inheritance is useful
at creation of specialized types for intrinsic data types (int,
char, long, void *, etc.) for check of returned value. For
example, to have specialized type for check on NULL, it is
necessary to create the specialized type based on void * with
constraint = "$0 != NULL", and other specialized types of
nonzero pointers can be inherited from it.

In addition to this simple inheritance with capturing of all
parent’s attributes, it is possible to use more complex kind of
inheritance - with redefinition of some attributes in child-type.
Such inheritance is typical for initialization of objects, when
value and constraint of specialized parent-type needs to be
kept, but auxiliary code need to be changed a little.

Such mechanisms as plural (from several specialized types)
and multilevel (from the descendant) inheritance also can be
realized, however the need for them arises extremely seldom,
and their existence can lead to the confused dependence
between specialized types.

B. Implicit Inheritance of Specialized Types
By extension of interface description type of parameter is

replaced by specialized type. In other interface parameter of
the same type can be replace be this specialized type. Data
type attribute specifies data type that can be replaced by the
specialized type. But int, int *, const int & types are different
formally. Therefore for initialization of parameters of these
types, for example, by one, it would be necessary to create
specialized types for each parameter. It requires some efforts,
but created types will have identical semantic: everyone
initializes the parameter by one.

One of decisions of this problem is use of the mechanism of
inheritance. For example, it is possible to create specialized

type for int, and create its child for const int. In this case
creation of new type will take less time (since the basic
attributes are inherited from the parent), but it also requires
creation of new specialized type. Besides for int * type it is
impossible to inherit value from specialized type for int,
because of the first has the value = "new int(1)", but the
second has the value = "1".

To avoid the described problem, it is necessary to have an
opportunity to use one specialized type for parameters of
types that can be cast to each other. Then for parameter of
type int * it will be possible to specify the specialized type
based on int. The type of the variable generated at
initialization of parameter coincides with data type of its
specialized type. At use of this variable as parameter of
interface, it will be cast to the necessary type. For example, if
to specify specialized type with value="1" and based on int
for parameter of type int *, the following code will be
generated:

…
int Par_1 = 1;
someFunction(&Par_1);
…
Types which can be cast to each other form a class of

equivalence. The specialized type can be used instead of any
type from a class of equivalence of its data type. It can be
interpreted as a kind of inheritance: at discrepancy of type of
parameter and data type of specialized type, there is a creation
of the new specialized type based on type of parameter and
inheriting this specialized type. Actually it is not necessary to
create new specialized type - it is generated automatically, but
because of similarity with process of inheritance the given
mechanism is called as implicit inheritance.

C. Once-only Specialized Types
At extension of the description of interface the developer

should choose the necessary specialized type from the list of
created for the parameter type. Often this list is too big, so it is
difficult to find necessary type. But there can be types, each of
which is used only by one interface, because of its strong
connection with feature of interface. With a high probability
they will never be used more. Such specialized types are
called as once-only. This property is contained in kind
attribute of these types.

As it is clear from its name, once-only specialized type can
be used only once. Until it's used, it appears in specialized
types list.

As an example of once-only specialized type consider the
special type for returned value of a method className() for
any class from Qt3 library [3], for example for QPushButton.
This method returns the name of the class, that is
“QPushButton”. The corresponding specialized type has the
constraint = ”QString($0) == “QPushButton””. Data
type=char*. This specialized type and similar should be once-
only. Otherwise the list of specialized types for char type will
contain big number of types checking class name.

D. Default Specialized Types
If no specialized type bound with parameter, then generator

have to initialize this parameter by oneself. Depending on a
situation the generator can initialize parameter concrete value
(for intrinsic types), the constructor or a call of other interface
with suitable returned value. But sometimes such initialization
without use of specialized types leads to undesirable result. In
this case it is necessary to create (or to choose from already
created) suitable specialized type. As a rule, for classes there
is an allocated specialized type which creates object of this
class and sets its some general properties. This type is used by
developer as default specialized type. I.e. always, when it is
not necessary to initialize object in any special way, this
specialized type is used for it. It is convenient in that case to
specify to the generator to use this specialized type when no
type id specified for parameter by developer. For this purpose,
the necessary specialized type should be set as a default for
parameters specialized type. This property is contained in
kind attribute of this specialized type.

Similar situation and for the specialized types checking
returned values. Such type can be defined as default for
returned values specialized type. When no specialized type is
specified for returned value of any interface, but there is a
default for returned values type, the generator will take this
default type for check of correctness of the returned result.
Usually such specialized types check the general properties,
for example: "$0.isValid() == true", "$0.isEmpty == false",
"$0.isNull() == false", etc. Such checks compel to select
parameters that satisfied for these conditions, or to specify the
usual specialized types that checking reverse conditions
("$0.isValid() == false", "$0.isEmpty == true", "$0.isNull()
== true", etc).

In whole, default specialized types allow to lower efforts to
specification of the description of interface, and to make test
more right by correct ways of initialization of objects by
default and an automatic insert of checks of returned values.

V. EXTENSION OF LSB DATABASE
The mechanism of specialized types described in given

paper has been realized within the limits of LSB Infrastructure
project in ISP of the Russian Academy of Science. LSB
database has been taken as a basis. It contains the necessary
signature description of interfaces and data types. It has been
extended by the tables containing specialized types and some
auxiliary information, necessary for automatic test generation.
The scheme of this expansion is shown in figure 2.

Expansion of LSB database includes 8 tables. 4 tables from
them store the information about specialized types:
TGSpecType, TGSpecTypeValue, TGSpecTypeConstraint,
TGParameterProxy (these tables are separeted by a bold
dotted line in the scheme). TGParameter and TGInterface
tables bind the tables of specialized types with the Parameter
and Interface tables from LSB. TGType stores information
about initial base types for every data types.

 Fig. 2. Extension of LSB database.
TGInterfaceSupplemen stores code that create correct
environment for calling corresponding interface.

VI. CONCLUSION
The given paper discusses the problem of definition and

representation of the information necessary in addition to
signatures of interfaces for automatic generation of simple
tests that call these interfaces with correct parameters and in a
correct environment and check for blunders. This information
is represented in specialized types, which specify semantic of
parameters and returned value of tested interfaces, allowing to
create initialization of parameters and environment
automatically. Besides there are the various mechanisms that
allow to reduce quantity of created specialized types within
the limits of work with group of the connected interfaces, that
essentially reduces laboriousness of the extension information
for such groups.

Realization of storage of the extended information about
specialized types is shown in this paper. This realization is
based on LSB database and created within the limits of LSB
Infrastructure project [4]. Based on this realization the
extended information for almost 10000 interfaces from Qt3
library [3] has been set. Thus it has been created about 1600
specialized types, and productivity of creation of tests (with
debugging) is 70 interfaces in day per person on average.

REFERENCES
[1] http://www.linuxbase.org.
[2] http://www.linux-foundation.org/navigator/commons/welcome.php.
[3] http://doc.trolltech.com/3.3/index.html.
[4] http://ispras.linux-foundation.org/.

Parameter Interface Type

LSB

TGPint

TGPpos

TGPproxy

TGParameter

TGIid

TGIspecreturn

TGIspecobjecttype

TGInterface

TGIreadyfortest

TGIcomment

TGIkind

TGItestresult

TGTid

TGTbasetype

TGTlevel

TGType

TGTarch

TGTpriority

TGPPid

TGPPspectype

TGPPvalue

TGParameterProxy

TGISint

TGISpreamble

TGISinmain

TGInterfaceSupplement

TGISfinalization

TGSTid

TGSTname

TGSTcomment

TGSpecType

TGSTtype

TGSTbasetype

TGSTcode

TGSTkind

TGSTVid

TGSTVspectype

TGSTVvalue

TGSpecTypeValue

TGSTCid

TGSTCspectype

TGSTCkind

TGSpecTypeConstraint

TGSTCcode Tables for
specialized types

