Test data generation for arithmetic subsystem of
CPUs M| PS64

Evgeni Kornikhin, CMC MSU

Abstract—The main problem is test data generation for
arithmetic subsystem testing of CPUs M1PS64. A method
is proposed to solve this problem. The method uses a
formal description of processor functionality. A language
for thisdescription is proposed also. This language per mits
automatic test data generation.

I. PROBLEM

A computer system works correctly if al its compo-
nents work correctly. One of these component is CPU.
Testing is a well known method for checking of CPU
work. This paper deals with testing of MIPS64 [1]
CPU operations. Standard of this architecture describes
a functionality for each CPU operation. Depending on
parameters value an operations must work correctly and
return value or throw an exception. For example, integer
division must throw an exception when a divisor equals
to zero. Both variants of behavior define a test situation.
"Overflow caused” or "Result is ready” are examples of
test situations.

Testing deals with a lot of different test situations.
Standard of architecture MIPS64 contains 246 instruc-
tions. Among it 35 instructions are arithmetic instruc-
tions. There are another classes of instructions with
similar description facilities. So whole part of these
instructions reaches 90%. They produce a lot of test
situations. Since large amount of test situations an au-
tomation of its test data generation isimportant problem.

So, the main problem is constructing a system (com-
ponent) which generates values of arguments for specific
test situation of CPU operation. Given test situation
realizes while this CPU operation executes with these
values of arguments.

Il. EXISTENCE METHODS

Chip testing problem became an actua problem when
chips appeared. The first methods of chip testing were
pure electrotechnical methods. Instant software-based
methods of chip testing appeared only when computers
became more powerful.

Testing methods depend on chip representation. The
first chip representation was a circuit diagram. Chip

testing problem appeared in Richards Eldred's article [4]
in 1959. He named this problem as ATPG (Automatic
Test Pattern Generation). All ATPG-methods may be
divided into 2 groups such as functional and structural.
A functiona methods work with a chart as with a
function between input and output. It is a black-box
method. A structural method is a white-box method.
A structural method deals with wires of circuit dia-
gram. The first ATPG-algorithm was ”D-algorithm”.
"D-algorithm” was used for look for ”"constant errors’
(element always generates constant when it should gen-
erate different values). " D-algorithm” spreads an error to
the inputs and outputs and generates test data (on input)
and output. Another methods use SAT-tools (SATisfia-
bility), work with BDD (Binary Decision Diagram), etc.
Chip testing problem has influenced even to chip design:
there are requirements to chip design DFT (Design For
Test) for more powerful its testing.

Another chip representation is RTL-model (Register
Transfer Language). The first mention of RTL-models
was in 1980 [5]. A RTL-model may be translated to the
circuit diagram without functionality loss. Researchers
from Corsica University proposed to select paths from
RTL-model and generate atest data by constraint logical
interpreter [3] applying to this path [6]. This method
applied to the high-level programs also but great expres-
sive capabilities of high-level programming languages
prevented its effective using. Researchers from England
proposed to use SAT for this problem [7]. ltalian re-
searchers proposed to use genetic algorithms [8].

And the third chip representation uses pseudocode for
functionality description. Pseudocode is the most similar
to programs on a high-level programming language.
It describes chip functionality but not chip structure.
This representation is used in this article. However this
representations is used not so often. German researchers
proposed to use integer linear programming to the
verification problem [9]. But standard of architecture
MIPS64 uses multiplication which is non-linear oper-
ations. Moreover integer linear programming methods
don't guarantee its finishing for acceptable time.

I1l. CURRENT RESULTS

test data test situations
generator models
. parameter
situation 1d values
test test
generator situations
testing
program
Y
chip

Fig. 1. Testing system structure

Fig. 1 shows a structure of test system. The central
component is the test generator. It generates testing
programs for executing on a chip. But the goal of this
research is another component — the test data generator
(its the rest is given here only for illustration). The test
data generator takes a test situation identifier (name)
from the test generator and gives generates values for
arguments of operation which corresponds to taken test
situation. The model of test situation must be constructed
for each test situation manually. The test data generator
is based on this model when creates a test data. The
model of test data is the text on a proposed language
(see 111-B). This language is very similar to pseudocode
used in MIPS64 standard [1] for definition of operations
functionality. The sequence of actions including a model
creation and its using is the proposed method of test data
generation.

A. Method of test data generation

Using proposed method it is possible to construct
code with test data by formal or semi-formal operation
description. The method is based on constraint logical
programming [3].

1) find a formal or semi-formal description of given
operation behavior

2) find arguments of given operation

3) find test situations corresponding to given opera-
tion

4) determine ways of test situation obtaining

5) make up a test situation model by proposed lan-
guage (see 111-B)

6) run proposed test data generator (for example, by
API); it creates a file with intermediate represen-
tation if it doesn’t exist

The language of test situation description is very
similar to pseudocode. So in the most cases the manual
creating of a test situation model is come to standard
rewriting.

B. Language of test situation description

A language of test situation description contains all
operations of pseudocode from standard [1]:

« get bit by its index (for example, x [7] is 7th bit
of x)

« get range of hits by indexes of bounds (for example,
x[8..5] isrange of bits started at 8th and finished
at 5th including both bound bits)

» concatenation (for example, x.y is number which
binary notation started with binary notation of x
and continued with binary notation of y)

« bit power (itself concatenation by required times)
(for example, x” 5 is bit power of x)

« regular arithmetic operations (addition, subtraction,
multiplication)

» regular comparison operations (greater, less than)

« regular logical operations AND and OR

» assignment operator (for example, x := 4;)

« assertion operator (for example, ASSERT x = 5;
is assertion about value of x: it must be equal to 5)

The language doesn’'t contain a conditional operation
and loop operation because all MIPS64 test situations
may be described without them.

The language doesn’t contain a logical operator NOT.
This operator conflicts with the resolution method which
is base of CLP. Moreover all MIPS64 test situations
may be described without NOT. Therefore the lan-
guage contains all comparison operations, extra ver-
sions of functions (with invected NOT). For exam-
ple, the language contains Wordvalue (x) because
NOT (NotWordValue (x)) isused in test situations.

C. Test data generator

The test data generator requires a file with test data
model. The generator translates it to the intermediate
representation if this representation doesn’t exists. Then
the generator executes the intermediate representation.
And finally it analyzes results of execution and builds
values of operations parameters as the output.

The intermediate representation is a logical program.
It is executed by open-source constraint logical inter-
preter ECLIPSE [2]. Constraints is key technique of
proposed method. Each operator may be trandated to a
set of constraints (predicates) and logical interpreter tries
to find true values of variables (all constraints are true
with these values of variables). Variables are represented
by SSA-form [10].

The generator aways finishes because the language
doesn’'t contains a loop operator and call-mechanism (to
define recursive calculations).

The generator tries to create as many as possible
different sets of test data. This feature alows to get as
many as possible executions of testing program on chip
(and possibly to revea hiding errors).

D. Example

Consider the method at the operation ADD. There is
description of this operation in standard [1] on page
36. For the beginning let's looking for its arguments.
Read: "Description : rd < rs + rt”. So, rt and rs are
arguments of this operation. Then let’s looking for test
situations. Read an operation pseudocode from standard:

if NotWordValue (GPR[rs]) or
NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif

temp « (GPRI[rslsi||GPRIrslsi o) +
(GPR[rtlsi||GPRI[rt]s1.0)
if tempsy # temps; then
SignalException (IntegerOverflow)
else
GPR [rd]
endif
SignalException is used for denoting an ex-
ception. One of test sSituations is IntegerOver-
flow, i.e. overflow when summation is executed. Let's
looking for a way of execution a pseudocode to call
SignalException (IntegerOverflow). At first
caculation of "NotWordValue(GPR[rs]) or NotWord-
Value(GPR][rt])” mustn't get a true value (otherwise
execution of ADD is unpredictable because pseudocode

< sign_extend (temps;. o)

contains UNPREDICTABLE in case of calculation "Not-
WordValue(GPR[rs]) or NotWordValue(GPRJ[rt])” get
true value). Then an assignment to temp must be exe-
cuted. And finally values of 32nd and 31st bits of temp
mustn't be equal. This is only one way to call Sig-
nalException (IntegerOverflow). Let's write
this way by language proposed in 111-B:

VAR rs
VAR rt

32;
32;

ASSERT WordValue (rs) AND WordValue(rt) ;

temp :=

rs[31] .rs[31..0] + rt[31l].rt[31..0];

SITUATION temp[32] # temp[31]
IS IntegerOverflow .

NOT (NotWordValue (GPR[rs]) OR
NotWordValue (GPR[rt])) was re-
placed by Wordvalue (GPR[rs]) AND

Wordvalue (GPR[rt]) and using of GPR was
removed for simplicity. So, expression is transformed to
WordValue (rs) AND WordValue (rt).

It is enough to run the test data generator and get test
data (values of rs and rt).

V. FUTURE WORKS

The article has proposed the method of systemati-
cal test data generation for testing of arithmetic CPUs
MIPS64 subsystem. The language for test situtions
description and necessary tools have been proposed also.

The future plans are analyzing another architecture
standards. The goal is production a language applicable
to the wider CPU architectures. The generator prototype
will require a revision. The future plans are also wider
approbation of proposed tools. And another plan is
test data generation for non-arithmetic CPUs M1PS64
subsystem.

REFERENCES

[1] MIPS64 Architecture For Programmers Volumell: The
MIPS64 Instruction Set. Document Number: MDO00087. Re-
vision 2.00. June 9, 2003.

[2] K.Apt, M.Wallace. Constraint Logic Programming using
Eclipse. Cambridge University Press, 2007.

[3] K.Marriott, Peter.J.Stuckey. Programming with Constraints.
MIT Press, 1998.

[4] Richard D. Eldred: Test Routines Based on Symbolic Logical
Statements. J. ACM 6(1): 33-37 (1959)

[5] Davidson and Fraser; The Design and Application of a
Retargetable Peephole Optimizer; ToPLaS v2(2) 191-202
(April 1980)

€]

(7]

(8]

(9]

(10]

C.Paoli, M.-L. Nivet, J-F.Santucci, A.Campana. Electronic
Design, Test and Applications, 2002. Proceedings. The First
IEEE International Workshop on Volume , Issue, 2002
Page(s):382 - 386

F.Falah, S.Devadas, K.Keutzer. Functional Vector Genera-
tion For HDL Models Using Linear Programming and 3-
Satisfiability // in Proceedings of the Design Automation
Conference, pp. 528-533, June 1998.

F.Corno, A.Manzone, A.Pincetti, M.Sonza Reorda,
G.Squillero. Automatic Test Bench Generation for
Validation of RT-level Descriptions: an Industrial Experience
/I DATE2000: Design, Automation and Test in Europe, Paris
(F), March 2000, pp. 385-389.

R.Brinkmann, R.Drechdler. RTL-datapath verification using
integer linear programming // In |IEEE VLS| Design’0l1
& Asia and South Pacific Design Automation Conference,
Bangalore, pages 741-746, 2002.

R.Cytron, JFerrante, B.K.Rosen, M. N.Wegman,
F.K.Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph // ACM
Transactions on Programming Languages and Systems,
vol.13, no.4, ACM Press, pp.451-490, 1991.

