
1

A novel method for derivation of a test with
guaranteed coverage for LTS

Gromov M.L.

Abstract—The paper addresses the problem of the rela-
tionship between tests with the guaranteed fault coverage
which are derived from two models of finite transition
systems: LTS with inputs and outputs and input/output
FSM. On one hand, there are well developed methods for
deriving such finite tests against FSM while the model of
input/output LTSs lacks such methods. On the other hand,
almost all FSM-based methods return preset test suites and
there are no good FSM-based methods for deriving adaptive
tests. For deriving adaptive tests, it is worth to use LTS
model where all the methods return adaptive test suites. We
propose the transformation between two models and show
how a complete test suite with respect to one model can be
transformed into a complete test suite with respect to another
model.

I. INTRODUCTION

Testing software systems, it is often necessary to take
into account potential nondeterministic behaviour, when
for a given input sequence several output sequences can be
produced. For example, the nondeterminism in the speci-
fication can be used for the description of implementation
options and/or allowable interleaving of outputs. In this,
paper we allow an implementation to be less deterministic
as its specification. Testing a reactive system, two finite
transition models are widely used for such test derivation.
Those are Labelled Transition Systems (LTS) with inputs
and outputs [1] and input/output Finite State Machines
(FSM) [2]. Corresponding conformance relations are the
so-called ioco relation for LTSs and the reduction relation
for FSMs. However, the model of input/output LTSs lacks
methods for deriving finite test suites with the guaranteed
fault coverage while there are well developed FSM-based
methods for deriving such finite tests. On the other hand,
the need for adaptive tests for nondeterministic machines
has widely been discussed in various work but almost all
FSM-based methods return preset test suites and thus, for
deriving adaptive tests, it is worth to use LTS model where
all the methods return adaptive test suites. Here by testing
we understand an experiment with an implementation, and
preset test means, that all input sequences to apply and
output sequences to observe are given beforehand, while
adaptive test imply that the next input action depends on
the previous input action reaction (so, preset test is an
algorithm, which is convenient to give in the form of the
same formal model in which specification is given) [3].
In this paper, we propose the transformation between two
models and show how a complete finite test suite with
respect to one model can be transformed into a complete
finite test suite with respect to another model, that is,
in fact, we propose a method how finite LTS-based test
suites with the guaranteed fault coverage can be derived.
This paper is organised as follows. Section II presents

the notions used in the paper. Section III defines the
transformation of an LTS to an FSM. In Section IV, we
define a fault model for LTSs and FSMs and complete test
suites with respect to such models. Subsection IV-C shows
how an LTS-based complete test suite can be derived using
FSM-based derivation methods. Section V concludes the
paper with the discussion on the future work.

II. DEFINITIONS

In this section, we briefly remind basic definitions for
a labelled transition system (LTS), taken from [1] and a
finite state machine (FSM), taken from [2].

A. Labelled transition system

Definition 1: A (finite, deterministic) Labelled Tran-
sition System (LTS) with inputs I and outputs O is a
quintuple 〈S, I, O, λ, s0〉, where S is a non-empty, finite
set of states with the initial state s0 ∈ S; I and O are
disjoint finite sets representing the set of input actions and
output actions, respectively. We denote their union by A.
The transition relation λ ⊆ S ×A× S defines a function,
mapping subset of S × A to S.

Let L = 〈S, I, O, λ, s0〉 be an LTS, and s, s′, . . .
range over S. Throughout this paper, we use the following
conventions: for all actions a, we write s

a
−→ s′ iff

〈s, a, s′〉 ∈ λ, and s 6
a
−→ iff for all s′ ∈ S s

a
−→ s′ does

not hold.
In ioco-based testing theory [1] the notion of quies-

cence is added to an LTS as follows:
Definition 2: A state s ∈ S of an LTS L =

〈S, I, O, λ, s0〉 is called quiescent – notation δ(s) – if for
all a ∈ O, s 6

a
−→.

Informally, a quiescent state is a state where LTS refuses
to provide outputs. Let δ /∈ A be a fresh label representing
the possibility to observe quiescence; Aδ abbreviates A∪
{δ}. Let σ, σ′, . . . range over A∗

δ , actions a range over Aδ,
and S′, S′′, . . . ⊆ S. We generalise the transition relation λ
to Λ ⊆ S×A∗

δ×S, and write s
σ

=⇒ s′ iff 〈s, σ, s′〉 ∈ Λ. We
define Λ as the smallest relation satisfying the following
four rules:

s
ε

=⇒ s

s
σ

=⇒ s′ ∧ s′
a
−→ s′′

s
σ·a

===⇒ s′′
s

σ
=⇒ s′ δ(s′)

s
σ·δ

===⇒ s′

Like for →, we write s
σ

=⇒ if s
σ

=⇒ s′ for some s′. For
the simplicity of presentation, we introduce the following
notations.

1) [s]σ
def
= {s′ ∈ S | s

σ
=⇒ s′}; generalised: [S′]σ

def
=⋃

s∈S′ [s]σ ;

2) out(s)
def
= {a ∈ O | s

a
−→}∪{δ | δ(s)}; generalised:

out(S′)
def
=

⋃
s∈S′ out(s);

3) in(s)
def
= {a ∈ I | s

a
−→}; generalised: in(S ′)

def
=⋃

s∈S′ in(s);

4) s-traces(s)
def
= {σ ∈ A∗

δ | s
σ

=⇒};

5) traces(s)
def
= s-traces(s) ∩ A∗;

6) der(s)
def
=

⋃
σ∈A∗ [s]σ ; generalised: der(S ′)

def
=⋃

s∈S′ der(s);

7) init(s)
def
= {a ∈ Aδ| s

a
−→}.

The conformance relation iocop is defined as follows:
Definition 3: Let L1 = 〈S1, I, O, λ1, s01〉 and L2 =

〈S2, I, O, λ2, s02〉 be two LTSs. LTS L1 is in iocop
relation with L2 – notation L1 iocop L2 – when the
following holds

∀σ ∈ s-traces(s02) :

(if s01
σ

=⇒ then in([s01]σ) ⊇ in([s02]σ))∧
∧(out([s01]σ) ⊆ out([s02]σ))

Note, that our definition of conformance relation is dif-
ferent from the classical ioco definition [1] that requires
the LTS L1 to be input-enabled. However original ioco
relation is not reflexive, while iocop is reflexive. Moreover,
for an input-enabled L1 it holds that L1 ioco L2 ⇐⇒
L1 iocop L2.

B. Finite State Machine

Definition 4: An (observable) Finite State Machine
(FSM) with the set of inputs I and the set of outputs O is
a quintuple 〈T, I, O, µ, t0〉, where T is a non-empty, finite
set of states with initial state t0 ∈ T ; I and O are disjoint
finite sets representing the set of input actions and output
actions, respectively. We denote their union by A. The
transition relation µ ⊆ T × I ×O × T defines a function,
mapping a subset of T × I × O to T .

Let F = 〈T, I, O, µ, t0〉 be an FSM, and t, t′, . . .
range over T . Throughout this paper, we use the following
conventions: for all input-output pair 〈i, o〉 ∈ I × O, we

write t
i/o
−−→ t′ iff 〈t, i, o, t′〉 ∈ µ, and t 6

i/o
−−→ iff for all

t′ ∈ T t
i/o
−−→ t′ does not hold.

Let η, η′, . . . range over (I×O)∗, input actions i range
over I , output actions o range over O, and T ′, T ′′, . . . ⊆ T .
We generalise the transition relation µ to M ⊆ T × (I ×

O)∗ × T , and write t
η

=⇒ t′ iff 〈t, σ, t′〉 ∈ M. We define
M as the smallest relation satisfying the following four
rules:

t
ε

=⇒ t

t
η

=⇒ t′ ∧ t′
i/o
−−→ t′′

t
η·i/o

====⇒ t′′

Similar to →, we write t
η

=⇒ if t
η

=⇒ t′ for some t′. For
ease of use, we introduce the following notations.

1) [t]η
def
= {t′ ∈ T | t

η
=⇒ t′}; generalised: [T ′]η

def
=⋃

t∈T ′ [t]η ;

2) out(t, i)
def
= {o ∈ O | t

i/o
−−→}; generalised:

out(T ′, i)
def
=

⋃
t∈T ′ out(t);

3) in(t)
def
= {i ∈ I | t

t
−→}; generalised: in(T ′)

def
=⋃

t∈T ′ in(t);

4) Tr(t)
def
= {η ∈ (I × O)∗ | t

η
=⇒};

5) der(t)
def
=

⋃
η∈(I×O)∗ [t]η; generalised: der(T ′)

def
=⋃

t∈T ′ der(t);

6) init(t)
def
= {〈i, o〉 ∈ I × O| t

i/o
−−→}.

In this paper we extend the well-known quasi-reduction
between FSMs, since the old notion [2] is incorrect
for partial non-deterministic FSMs with non-harmonised
traces.

Definition 5: Let F1 = 〈T1, I, O, µ1, t01〉 and F2 =
〈T2, I, O, µ2, t02〉 be two FSMs. FSM F1 is quasi-
reduction of F2 – notation F1 - F2 – when the following
holds

∀η ∈ Tr(t02) :

(if t01
η

=⇒ then in([t01]η) ⊇ in([t02]η))∧
∧(init([t01]σ) ∩ (in(t2) × O) ⊆ init([t02]σ))

III. LTS TO FSM TRANSFORMATION

Given LTS L = 〈S, I, O, λ, s0〉, we build an FSM
F L

ε = 〈S, Iε, Oεδ , µ, s0〉, where εi, εo 6∈ A are fresh input
and output actions (here and later in the paper we assume,
that Iε ≡ I ∪ {εi}, Oεδ ≡ O ∪ {εo, δ}), and µ is defined
by following rules:

s
a
−→ s′ ∧ a ∈ I

〈s, a, εo, s
′〉 ∈ µ

s
a
−→ s′ ∧ a ∈ O

〈s, εi, a, s′〉 ∈ µ

δ(s)

〈s, εi, δ, s〉 ∈ µ
.

Note, that according to our transformation in FSM F L
ε

there are no transitions with labels εi/εo, i1/i2, o1/o2,
i1/o1, o1/i1, where i1, i2 ∈ I , o1, o2 ∈ Oδ.

The following theorem holds:
Theorem 1: Let L1 = 〈S1, I, O, λ1, s01〉 and L2 =

〈S2, I, O, λ2, s02〉 be two LTSs. Then L1 iocop L2 iff
F L1

ε - F L2

ε .

IV. FAULT MODELS AND COMPLETE TESTS

A. A fault model and a complete test for an LTS

Definition 6: Given deterministic LTS
L = 〈S, I, O, λ, s0〉, Lδ is an LTS 〈S, I, Oδ , λδ, s0〉, for
which λδ = λ ∪ {〈s, δ, s〉|δ(s)}.
LTS Lδ differs from L only by added loops with labels
δ for quiescent states. It is known [1], that s-traces(L) =
traces(Lδ).

Definition 7: An LTS test case is a finite LTS C =
〈V, I, Oδ , λC , v0〉, which satisfies the following condi-
tions:

1) V ⊇ {pass, fail}.
2) Transition graph of the LTS C is acyclic.
3) For each v ∈ V \{pass, fail} either init(v) = Oδ,

or init(v) = {i}, i ∈ I holds.
4) init(pass) = init(fail) = ∅.

A finite set of test cases we call a test suite.
Note, that in practice we are interested only in finite test
suites and thus consider only this kind of tests.

Definition 8: An LTS L = 〈S, I, O, λ, s0〉 passes a
test case C = 〈V, I, Oδ , λC , v0〉 iff none of sequences
σ ∈ s-traces(L) takes LTS C from the initial state to the
state fail, that is (S × {fail}) ∩ der(Lδ ∩ C) = ∅.

Definition 9: An LTS fault model is a triple
〈LM , iocop , EL〉, where LM is the LTS-specification
(or simply specification), EL is a set of LTSs with input
alphabet I and output alphabet O, which called the fault
domain, such that for any LTS L′ ∈ EL holds: for each
σ ∈ s-traces(LM) if L′ σ

=⇒ , then in([L′]σ) ⊇ in([LM]σ).

2

Definition 10: A test suite T = {C1, . . . , Cn} is com-
plete with respect to the fault model 〈LM , iocop , EL〉 iff
for each LTS L′ ∈ EL that is not in the iocop relation
with LM there exists such a test case Ck ∈ T that L′ does
not pass (fails) Ck.

B. Fault models and complete test for an FSM

Definition 11: An FSM test case is FSM C =
〈V, I, O, µC , v0〉, which satisfies following conditions:

1) V ⊇ {pass, fail}.
2) Transition graph of the FSM C is acyclic.
3) For each v ∈ V \ {pass, fail} holds |in(v)| = 1

and out(v, i) = O, where in(v) = {i}.
4) init(pass) = init(fail) = ∅.

A finite set of test cases we call a test suite.
Definition 12: An FSM F = 〈T, I, O, µ, t0〉 passes a

test case C = 〈V, I, Oδ , µC , v0〉 iff none of input-output
sequences η ∈ Tr(F) takes FSM C from the initial state
to the state fail, that is (T ×{fail})∩der(F ∩C) = ∅.

Definition 13: An FSM fault model is a triple 〈FM , -
, EF 〉, where FM is the FSM-specification (or simply
specification), EF is a set of FSMs with input alphabet
I and output alphabet O, called the fault domain, such
that for any FSM F ′ ∈ EF holds: for each η ∈ Tr(FM)

if F ′
η

=⇒ , then in([F ′]η) ⊇ in([FM]η).
Definition 14: A test suite T = {C1, . . . , Cn} is a

complete with respect to the fault model 〈FM , -, EF 〉 iff
for each FSM F ′ ∈ EF that is not in the relation - with
FM there exists such a test case Ck ∈ T that F ′ fails Ck.

C. The complete test derivation for an LTS, based on a
complete test for an FSM

To the best of our knowledge, there are no methods for
the complete finite test derivation for an LTS fault model
〈L, ioco, EL〉, while for the FSM fault model 〈F, -, EF 〉
such methods are well-known (for example [2]).

We now show, how results of Section III can be used
to derive complete finite test for an LTS fault model
〈L, ioco, EL〉.

Given LTS fault model ML = 〈L, ioco, EL〉, where
EL = {L1, L2, . . .}, apply the transformation, described
in Section III, obtain an FSM fault model MF = 〈F L

ε , -
, EF 〉, where EF = {F L1

ε , F L2

ε , . . .} and derive a com-
plete finite test suite TF for MF . For each test case
CFε

≡ 〈V, Iε, Oεδ , µ, v0〉 from TF we build an LTS
∇(CFε

) = 〈V, I, Oδ , λ, v0〉, using the following rules for
λ:

in(v) ≡ {i} ⊆ I ∧ v
i/εo

−−→ v′

〈v, i, v′〉 ∈ λ

in(v) = {εi} ∧ v
εi/o
−−−→ v′ ∧ o 6= εo

〈v, o, v′〉 ∈ λ
.

It is possible to show, that ∇(CFε
) is an LTS test case,

and moreover the following statement holds:
Theorem 2: Given an LTS fault model ML =

〈L, ioco, EL〉, where EL = {L1, L2, . . .}, let TF =
{C1, . . . , Cn} be a complete test suite for the FSM
fault model MF = 〈F L

ε , -, EF 〉, where EF =

{F L1

ε , F L2

ε , . . .}. Then ∇(TF) = {∇(C1), . . . ,∇(Cn)} is
a complete test for the LTS fault model ML.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown how, using an FSM fault
model and complete finite test for, complete finite test
for an LTS fault model. The converse seems also to be
possible: there can be define such a transformation of an
FSM to an LTS and an LTS test case to an FSM test case,
that using those and some test suite for an LTS fault model
we can get a test suite for an original FSM fault model.
This is one of the directions of our future work.

Another part of our future work is application of
obtained results to the general case of non-deterministic
LTSs and unobservable FSMs.

REFERENCES

[1] J. Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software—Concepts and Tools, 17(3):103–120, 1996.

[2] A. Petrenko and N. Yevtushenko. Conformance tests as checking
experiments for partial nondeterministic fsm. In Proceedings of
the 5th International Workshop on Formal Approaches to Testing
of Software (Fates 2005), volume 3997 of LNCS, pages 118–133,
2005.

[3] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests
for nondeterministic and probabilistic machines. In 27th ACM
Symp.on Theory of Comp., pages 363–372, 1995.

3

