A novel method for derivation of a test with guaranteed coverage for LTS

Gromov Maxim

gromov@sibmail.com

Tomsk State University

What is testing?

- Testing is experimenting
- There is a formal specificaion
- Implementation is a «black box» with known interfaces
- Test is prescription what to apply and what to observe at every moment
- There is a formal definition, what to consider conformant

FSM and LTS

Finite State Machine

- Specification is FSM
- Conformance relation
 is quasi-reduction
- Implementation is suposed to behavior as an FSM

Labelled Transition System

- Specification is LTS
- Conformance relation is ioco
- Implementation is suposed to behavior as an LTS

Finite State Machine

<S, *I*, *O*, *s*₀, λ>

- \cdot S set of states
- I and O disjoint sets of inputs and outputs

·
$$\lambda \subseteq S \times I \times O \times S -$$

transition relation;

 $(s, i, o, s') \in \lambda$

Conformance with FSM $Im \leq Sp$

 $\forall \sigma \in Tr(Sp)$ (for any valid word of specification)

IF $\sigma \in Tr(Im)$ (it's valid for implementation) THEN

in(*Im* **after** σ) \supseteq **in**(*Sp* **after** σ) (input behaviour of implementation **is larger** then one of the specification)

$\forall i \in in(Sp after \sigma)$

out(*Im* **after** σ *, i***)** \subseteq **out(***Sp* **after** σ *, i***)**

(output behaviour of implementation is **not larger** then one of the specification)

Labeled Transition System

<S, Ι, Ο, s₀, λ>

- \cdot S set of states
- I and O disjoint sets of inputs and outputs
- · $\lambda \subseteq S \times (I \cup O) \times S$ transition relation;

$$(s, a, s') \in \lambda$$

Quiescence

Conformance with LTS

Im iocop Sp

 $\forall \sigma \in s$ -traces(Sp) (for any valid word of specification)

IF $\sigma \in s$ -traces(Im) (it's valid for implementation)

THEN

in(*Im* **after** σ **)** \supseteq **in(***Sp* **after** σ **)** (input)

behaviour of implementation **is larger** then one of the specification)

out(*Im* **after** σ **)** \subseteq **out(***Sp* **after** σ **)** (output)

behaviour of implementation is **not larger** then one of the specification)

Fault model

FSM

- <*F*, ≤, *E*>, where
- F specification (a state machine)
- quasi-reduction
- E set of FSMs, describing faulty behaviour

LTS

<L, iocop, E>, where

- L specification (a state machine)
- **iocop** iocop relation
- E set of LTSes, describing faulty behaviour

From LTS to FSM

 $L_1 \to F_1^{\varepsilon}$ $L_2 \to F_2^{\varepsilon}$

 $L_1 \operatorname{iocop} L_2 \Leftrightarrow F_1^{\varepsilon} \leq F_2^{\varepsilon}$

If F^{ε} passes T^{ε} then L passes T If F^{ε} fails T^{ε} then L fails T

Test derivation for an LTS

- Given an LTS fault model;
- Transform all LTSes to FSMs to get an FSM fault model;
- Build complete test for the FSM fault model;
- Transform FSM test to LTS test;
- Obtained test will be complete in respect to the given LTS fault model

Questions?

Thank you for your attention!!