

A novel method for derivation of a
test with guaranteed coverage for

LTS

Gromov Maxim

gromov@sibmail.com

Tomsk State University

mailto:gromov@sibmail.com

What is testing?

● Testing — is experimenting
● There is a formal specificaion
● Implementation is a «black box» with known

interfaces
● Test — is prescription what to apply and what to

observe at every moment
● There is a formal definition, what to consider

conformant

FSM and LTS

Finite State Machine

● Specification is FSM
● Conformance relation

is quasi-reduction
● Implementation is

suposed to behavior
as an FSM

Labelled Transition
System

● Specification is LTS
● Conformance relation

is ioco
● Implementation is

suposed to behavior
as an LTS

Finite State Machine

s s'
i/o

<S, I, O, s
0
, λ>

• S – set of states
• I and O – disjoint sets

of inputs and outputs

• λ ⊆ SIOS –
transition relation;

 (s, i, o, s')  λ

s''

i/o'

i '/o

Conformance with FSM
Im ≤ Sp

∀σ  Tr(Sp) (for any valid word of specification)

 IF σ  Tr(Im) (it's valid for implementation) THEN

in(Im after σ) ⊇ in(Sp after σ) (input

behaviour of implementation is larger then one of the
specification)

∀ i  in(Sp after σ)

out(Im after σ, i) ⊆ out(Sp after σ, i)
(output behaviour of implementation is not larger then

one of the specification)

Labeled Transition System

s s'
!a

s'

?b

<S, I, O, s
0
, λ>

• S – set of states
• I and O – disjoint sets

of inputs and outputs

• λ ⊆ S(I∪O)S –
transition relation;

(s, a, s')  λ

Quiescence

s

s''

!a s'

?b

?c

s

s''

!a s'

?b

?c





Conformance with LTS

Im iocop Sp
∀σ  s-traces(Sp) (for any valid word of specification)

 IF σ  s-traces(Im) (it's valid for implementation)

THEN
in(Im after σ) ⊇ in(Sp after σ) (input

behaviour of implementation is larger then one of the
specification)

out(Im after σ) ⊆ out(Sp after σ) (output
behaviour of implementation is not larger then one of the

specification)

Fault model

FSM

<F, ≤, E>, where

F – specification (a
state machine)

≤ – quasi-reduction

E – set of FSMs,
describing faulty
behaviour

LTS

<L, iocop, E>, where

L – specification (a
state machine)

iocop – iocop
relation

E – set of LTSes,
describing faulty
behaviour

From LTS to FSM

s

s''

!a s'

?b

?c

s

s''

ε/a

s'

b/ε

c/ε

ε/ε/

L F
L

L1 F1


L2F 2


L1 iocop L2⇔ F1

≤F 2



Test transformation

s

i/o
1
; ...;i/o

n
; i/

s'

i/ε

... ε/o
1
; ...;ε/o

n
;ε/

... ...

ε/ε

s

s'

i

o
1
; ...;o

n
;

...

......

......
......

If F  passesT  then LpassesT
If F  failsT  then L failsT

T ε T

Test derivation for an LTS

● Given an LTS fault model;
● Transform all LTSes to FSMs to get an FSM

fault model;
● Build complete test for the FSM fault model;
● Transform FSM test to LTS test;
● Obtained test will be complete in respect to the

given LTS fault model

Questions?

Thank you for your attention!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

