
Duplicate code detection using anti-unification
Peter Bulychev

Lomonosov Moscow State University, Russian Federation
Email: peter.bulychev@gmail.com

Marius Minea
Institute e-Austria Timisoara, Romania

Email: marius@cs.utt.ro

Abstract—This paper describes a new algorithm for finding
software clones. It is conceptually independent of the source
language of the analyzed programs, working at the level of
abstract syntax trees. The algorithm considers that two sequences
of statements form a clone if one of them can be obtained from
the other by replacing some subtrees. To our knowledge this
notion was not previously employed in the literature. It allows to
take into account all information on the syntactic structure of a
program. We have implemented this algorithm in the tool Clone
Digger. It currently supports the Python and Java languages.
Clone Digger is free and provided under the GPL license.

I. INTRODUCTION

Different researchers report that the amount of duplicate
code in software systems varies from 6.4% - 7.5% to 13% -
20% [1]. Duplicate code can occur as a result of approaches to
development and maintenance, due to language or programmer
limitations, or simply by accident [1]. Code duplication can be
a significant drawback, leading to bad design, and increased
probability of bug occurrence and propagation. As a result, it
can significantly increase maintenance cost (for instance, any
bug in the original has to be fixed in all duplicates), and form
a barrier for software evolution. Consequently, duplicate code
detectors are a useful class of software analysis tools. Such
tools can aid in measuring the quality of software systems
and in the process of refactoring. Techniques for detecting
duplicate code can be classified according to several criteria.
Code can be viewed as similar based on syntactic criteria or at
a semantic level (from the point of view of execution effects).
In this paper we consider only syntactic similarity. Within
this category, duplicate clone detection can be performed at
different levels of granularity: strings, tokens, abstract syntax
trees, feature vectors [1]. The first two are quite rigid and low-
level, therefore we use an approach based on abstract syntax
trees.

Two sequences of statements form duplicate code if they
are similar enough according to a selected measure of simi-
larity. Such measures can be defined using a set of allowed
editing operations and their cost. According to [1] there are
three different types of syntactic changes: adding/removing of
whitespaces and comments, changing names of variables, and
more complex modifications. We aim to detect a wide range of
clones, including the third type: e.g., expressions with similar
structure.

In essence, we wish to characterize the structural similarity
of two code fragments in order to determine whether they
should be classified as code duplicates. We can formalize
this by using the concept of anti-unifier, which denotes the

most specific generalization of two terms. Anti-unification
was first described by Plotkin [2] and Reynolds [3]. In the
current paper we use anti-unification to calculate the distance
between two abstract syntax trees and group similar trees into
equivalence classes called clusters. Anti-unification catches the
structural differences between two trees: it allows for instance
the replacement of a variable with a more complex expression,
but distinguishes between functions of different arities.

Our algorithm of finding duplicates consists of several
phases. In the beginning we partition all statements into
clusters using anti-unification distance; as a result, the code
is abstractly viewed as sequence of cluster identifiers. Next,
we find all pairs of identical sequences of cluster IDs. The
matching pairs of sequences, which have similar statements
in corresponding positions, are now globally checked for
similarity. This check is again performed using anti-unification
distance, and duplicates are reported if the distance is below
a certain threshold.

A fully syntactic abstraction in duplicate clone detection
is first reported in [4]. Their algorithm detects a similarity
between, e.g., a[1] and a[x+1] by reducing them to the
pattern a[?]. This pattern can be seen as anti-unifier of the
two expressions. Our work continues this approach based on
patterns, extending it to cover more complex programming
constructs such as sequences of statements. We use a more
natural and flexible way of building patterns; moreover we
provide metrics to assess similarity, whose quality increases if
the occurrences of the same variable (in the same scope) refers
to the same leaf in the abstract syntax tree. Our algorithm is
also conceptually independent of the programming language,
working at the level of abstract syntax trees.

II. PRELIMINARIES

A. Anti-unification

Anti-unification was first studied in [2], [3]. As the name
suggests, given two terms, it produces a more general one that
covers both rather than a more specific one as in unification.

Let E1 and E2 be two terms. Term E is a generalization
of E1 and E2 if there exist two substitutions σ1 and σ2

such that σ1(E) = E1 and σ2(E) = E2. The most specific
generalization of E1 and E2 is called anti-unifier. The process
of finding an anti-unifier is called anti-unification.

In this paper we use the anti-unification algorithm described
in [5].

Anti-unification is originally described for trees. Strictly
speaking, the abstract syntax trees we use are not always

trees, since leaves containing the same variable references
may be merged, but anti-unification can be extended in a
straightforward way to directed acyclic graphs.

The anti-unifier tree of two trees T1 and T2 is obtained by
replacing some subtrees in T1 and T2 by special nodes, con-
taining term placeholders which are marked with integers. We
will represent such nodes as ?n. For example, the anti-unifier
of Add(Name(i),Name(j)) and Add(Name(n),Const(1))
will be Add(Name(?1), ?2). In some abstract syntax tree
representations occurrences of the same variable refer to
the same leaf in a tree. In this case the anti-unifier
of Add(Name(i),Name(i)) and Add(Name(j),Name(j))
will be Add(Name(?1),Name(?1)).

B. Anti-unification features

The anti-unifier of two trees represents their “skeleton”,
inserting placeholders for subtrees which differ. The anti-
unifier of a set of trees can be seen as the most specific pattern
which matches each tree in the set. Therefore it can be used to
store the ”average value” of a set of trees. This anti-unification
feature was used in [6] to discover widespread patterns of
formulas in scientific articles.

An anti-unifier stores only the common top-level
tree structure. For example, the anti-unifier of the
two trees Add(Add(Name(a),Name(b)),Name(c))
and Add(Name(a),Add(Name(b),Name(c))) will be
Add(?1, ?2) and therefore it represents the first-level
similarity but lacks details on the second level, where the
structure of the subtrees does not match.

Let us define the anti-unification distance between two trees.
Let U be the anti-unifier of two trees T1 and T2 with substi-
tutions σ1 and σ2. Let n be the number of placeholders in U .
Then σ1 and σ2 are mappings from the set {?1,?2,...,?n}
to substituting trees. We define the size of a tree as a number
of leaves in it. This notion of size is robust to the particularities
of representing abstract syntax trees because it is equal to the
number of all name and constant occurrences in the program.
Define the anti-unification distance between T1 and T2 as a
sum of sizes of all substituting trees in σ1 and σ2.

For example, consider two trees Add(Name(i),Name(j))
and Add(Name(n),Const(1)). The anti-unification substi-
tutions are σ1={i/?1, Name(j)/?2} and σ2={n/?1,
Const(1)/?2}, the sizes of trees in the substitutions are
|i|=|n|=|Name(j)|=|Const(1)|=1. Therefore the anti-
unification distance for this example is 4.

Anti-unification distance can be seen as tree editing dis-
tance [7] with a restricted set of operations. It catches the
structural differences between two trees and doesn’t allow the
permutation of siblings or changing the number of child nodes.

III. DUPLICATE CODE DETECTION ALGORITHM

Our goal is to find duplicate fragments of code by discover-
ing similarities between sequences of subtrees in the program’s
abstract syntax tree. The focus on abstract syntax trees allows
a flexible level of granularity for our analysis: we can identify,
for example, renamed identifiers or modified subexpressions.

However, the smallest unit of duplicate code that we report
is a statement. We also work with definitions of classes and
functions, but since the latter two are very similar cases (their
bodies being essentially compound statements), we focus the
presentation on statements, for simplicity.

The abstract syntax tree of program is first linearized, i.e.,
all sequences of statements and definitions are presented in the
abstract tree as sibling subtrees. The same approach is used
in [8], [9].

Our method of finding duplicate code consists of three
phases:

1) Identify similar statements using anti-unification and
partition them into clusters. After the first phase each
statement is marked with its cluster ID – thus, two
statements with the same cluster ID are considered
similar in this preliminary view. For example, we can
obtain the cluster represented by the anti-unifier ?1+=?2,
which includes the statements i+=j and m+=2*n and
the cluster ?1++, which includes i++ and j++.

2) Find identical sequences of cluster IDs (corresponding
to statement sequences within a compound statement).
These are candidates to be reported as duplicate code
fragments.

3) Refine by examining the identified code sequences for
overall similarity. In this phase, every pair of candidate
sequences is checked for overall similarity at the state-
ment level, again using anti-unification.

In the very beginning of the whole algorithm an abstract
syntax tree for the program is built. Every statement in the
program is a root of some subtree. Thus we can compute a
similarity measure between two statements by computing the
anti-unification distance between two corresponding subtrees.

A. Partitioning similar statements into clusters

foreach tree in statement trees
bestcluster = argmax(cluster.add cost(tree))
if bestcluster.add cost(tree) < threshold

bestcluster.append(tree)
else

clusters.append(new Cluster(tree))

Fig. 1. Clustering Algorithm

We use a two-pass clustering algorithm. During the first
pass of it the most frequent patterns in the source code are
discovered. Than we mark each statement by its corresponding
pattern.

During this first pass, a preliminary clustering is performed.
As discussed above, the anti-unifier of a set of statements can
be viewed as its ”average value”. This can be exploited in the
clustering algorithm to avoid comparison with every tree of a
set by comparing only with their anti-unifier.

The first pass of the algorithm is shown in Figure 1. We
go over all statements and each new statement is compared
with the anti-unifiers of all existing clusters. If an appropriate

cluster is found, then the new tree is placed in this cluster,
otherwise the tree forms the new cluster.

Let us discuss the required characteristics of the add_cost
function. Its value should be high in the following cases:
• the cluster is large and its anti-unifier will change signif-

icantly after joining the new tree,
• the cluster’s anti-unifier is far away from the statement.
Suppose we want to compute the cost of adding a tree T to

the cluster consisting of n trees with anti-unifier au. Let au’
be the result of anti-unification of T and au with substitutions
σ1 and σ2: σ1(au’) = au, σ2(au’) = T.

We use the function add_cost = n*|σ1| + |σ2|,
which satisfies the given requirements.

The clusters grow during the clustering process, therefore
their anti-unifiers and the value of the add_cost function
change. This can lead to the situation when two matching
statements can be put into different clusters (although this
situation is uncommon, it is very bad). Nevertheless the anti-
unifiers of clusters are useful because they can be viewed
as the set of widespread patterns. Two statements which are
similar to the same pattern are supposed to be similar to one
another.

During the second pass all the statements are traversed again
and for each statement we search for the most similar pattern
from the set produced in the previous pass (again using the
anti-unification distance). All the statements marked with the
same pattern form the same cluster.

Hashing is used to speed up the clustering process. We
follow the approach of [4] using the notion of d-cap. The
d-cap of a tree is obtained by replacing all subtrees of
the level d and all leaves by placeholders. For example,
the 2-cap of Add(Add(Name(i),Name(j)),Name(k)) is
Add(Add(?1),Name(?2)). Only trees with the same hash
value are compared. The depth of d-caps is a parameter of
our algorithm.

B. Finding pairs of identical cluster sequences

After the first phase of our algorithm each statement is
marked with its cluster ID. We estimate the size of each
node in the suffix tree by the size of the anti-unifier of the
corresponding cluster. In the second phase we search for
all pairs of sequences of statements, which are identically
labeled (have the same labels on the same position). Only
sequences large enough are considered (according to some
selected threshold). This search is performed using a suffix
tree approach [10]. Detected pairs are clone candidates and
have to be checked for similarity on the statement level in the
next phase.

C. Examining code sequences for overall similarity

After the second phase of algorithm we have a set of
clone candidates. These candidates are checked as a whole
during the third phase. Assume that we have a candidate
pair consisting of the following sequences of statements:
{s1,s2,...,sn} and {t1,t2,...,tn}. To check this
pair for similarity two new trees Block(s1,s2,...,sn)

and Block(t1,t2,...,tn) are constructed and compared
using anti-unification distance. If the distance between them is
below a certain threshold then this pair is reported as a clone.

Let us discuss why the third phase is important and why all
clone candidates from the second phase can’t be reported as
real clones. Consider the two sequences from the beginning of
the paragraph. It is possible that they differ in each position,
therefore they can have n differences and can’t be reported as
clones. Therefore the third phase is meaningful.

The overall distance between two sequences can’t
be obtained by summing distances between correspond-
ing statements. Consider two sequences of statements:
{i=0;i+=1;f(i);} and {j=0;j+=1;f(j);}. The dis-
tance between corresponding statements is 2, the sum of these
values is 6. However, this value doesn’t represent a distance
because it doesn’t use information about shared variables.
A more sensible answer is 2 which can be computed by
calculating the overall anti-unification distance between the
two sequences.

The last example shows that the quality of the algorithm
increases if the occurrences of the same variable (in the same
scope) refers to one leaf in the abstract syntax tree.

IV. COMPARISON WITH EXISTING APPROACHES

There is a large body of prior work in the duplicate code
detection field. A comprhensive survey can be found in [1].
Our current work uses the abstract syntax tree approach.

The paper [4] is pioneering by performing fully structural
abstraction rather than lexical one. For example, structural
abstraction allows to catch the similarity between a[x] and
a[y+1] using the tree pattern a[?]. Their algorithm searches
for large common patterns in the abstract syntax tree. It is
based on heuristics and works in bottom-up manner, specifying
and increasing the patterns step-by-step. Anti-unifiers can also
be viewed as patterns, the difference is that anti-unifiers can
catch the sameness of names (but patterns can be enriched
to do it too). In the present paper anti-unifiers are built in
top-down manner by enlarging clusters and generalizing their
anti-unifiers. It is difficult to compare the method of finding
patterns, proposed in [4] and the method of building clusters
from the current paper. But the anti-unification based approach
is more flexible, because it is based on general notions such
as distance between two statements and an ”average value”
of a set of statements. Therefore another clustering algorithm
can be used instead of the chosen one. Though the anti-
unification distance between most pairs of statements will
be large (because the anti-unifier will be trivial) and not all
clustering algorithms fit.

The main advantage of anti-unification over a pattern-
based approach is that our algorithm is able to find duplicate
sequences of statements and a pattern-based algorithm can
find only duplicate statements (we remind that functions
and classes are also treated like statements). Suppose that
a fragment of duplicate code occupies only a part of two
functions. In this case our algorithm will detect this fragment

as a whole, while a pattern-based approach will be only able
to find a statement-to-statement correspondence.

V. DUPLICATE CODE DETECTION TOOL

Our duplicate code detection tool is called Clone
Digger. It is available under GNU General Public
License and can be downloaded from the site
http://clonedigger.sourceforge.net.

Clone Digger is written in Python and thus platform-
independent. We use adapters which convert source files
into an XML representation of their abstract syntax trees.
Currently there are adapters for two languages: Python and
Java 1.5. Python abstract syntax trees are built using the
standard CPython module ”compiler”. Java trees are built
using ANTLR [11]. Adapters for other languages can be
created, e.g. by using parser generators or using internal
compiler representations.

Clone Digger takes source file names and threshold values
as parameters. It produces a HTML file with a list of clones.
Each pair is reported statement by statement with a highlight-
ing of differences.

A comparative evaluation of existing clone detection soft-
ware is performed in the paper [12]. The authors have de-
veloped comparison methods and benchmarks and have tested
collection of tools in the same conditions. To our knowledge
there are two tools that work on the abstract syntax tree level,
CloneDR[8] and Asta [4]. Unfortunately, these tools are not
publicly available and therefore we cannot compare all tools
on the same program text corpora. Anti-unification has many
commonalities with the pattern-based approach used in Asta (a
more detailed comparison was made in the previous section).
The main difference is that our approach handles duplicates
consisting of sequences of statements. Therefore the quality
of duplicate search is expected to be better than in Asta. The
creators of Asta report that over a corpus of Java programs
they were able to save 20% of source code size by refactoring
found duplicates.

We have tested Clone Digger on sources of some open-
source projects. Results can be seen on the tool site
(http://clonedigger.sourceforge.net).

This work has been supported by INTAS grant (project 05-
1000008-8144).

REFERENCES

[1] C. K. Roy, J. R. Cordy. A Survey on Software Clone Detection Research,
2007.

[2] G. D. Plotkin. A note on inductive generalization. Machine Intelligence,
pages 153163, 1970.

[3] J. C. Reynolds. Transformational systems and the algebraic structure of
atomic formulas. Machine Intelligence, 5(1):135151, 1970.

[4] W. Evans, C. Fraser, F. Ma. Clone Detection via Structural Abstraction,
2007.

[5] M.H. Sorensen, R. Gluck. An algorithm of generalization in positive su-
percompilation, In Logic Programming: Proceedings of the International
Symposium, MIT Press, 1995.

[6] C. Oancea, C. So, and S. M. Watt. Generalization in Maple. In Ilias
S. Kotsireas, editor, Maple Conference 2005, pages 377-382, Waterloo,
Ontario, 2005.

[7] P. Bille. A Survey on Tree Edit Distance and Related Problems, 2005.

[8] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, Lor-
raine Bier. Clone Detection Using Abstract Syntax Trees. International
Conference on Software Maintenance (ICSM), 1998

[9] W. Yang. Identifying Syntactic Differences Between Two Programs,
1991.

[10] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, New
York, NY, 1997.

[11] T.J. Parr, R.W. Quong. ANTLR: A Predicated- LL(k) Parser Generator,
Software - Practice and Experience, 1995.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo. Comparison
and Evaluation of Clone Detection Tools, Transactions on Software
Engineering, 2007.

