

Abstract—Software development process is a complex

sequence of actions having source code of working system as a
result. All project participants should track changes in source
code during work process to know what’s happening. However to
make «manual» code review everyone should have corresponding
technical skills and a lot of time to spend.

This work describes usage of automated source code changes
classification aimed to control source code evolution. The method
bases on statistical clusterization of change metrics. In this work
we show usage of automatic classification of changes to optimize
code review and code change control on final development stages.
Development process report building is also shown.

Index Terms— Programming, Project management, Software
metrics, Code Changes Classification

I. INTRODUCTION
HE most important software development project’s asset is
its source code. Almost all modern software projects keep

all history of source code changes in special repository of
source code versioning system. Unfortunately this information
is available only for that project participants, who has been
trained for source code analysis, i.e. mostly for developers.
While testers, managers and other specialists are also work on
project and are also interested in information, retrieved from
source code in the form of functionality lists for concrete
version, different kinds of reports, etc. Moreover source code
change history analysis is hard because of a lot of incoming
information. For example, source code versioning system
repository of real project contains lots of small, insignificant
changes, making analyzer's task complicate.

Automated classification of changes, as an additional tool,
helps to increase source code history analyzer’s performance.
For example usage of automated source code change
classification helps to filter out unimportant changes for
analyzer. Developer or development team leader can find
changes, lead to new functionality and focus on them.

Using automated change classification team leader can
automate restriction of particular classes of changes on the

Manuscript received April 1, 2008.
E. G. Knyazev is with the Saint-Petersburg State University of Information

Technologies, Mechanics and Optics (phone: +7-911-251-7636; fax: +7-812-
325-3132; e-mail: evgeny.knyazev@gmail.com).

defined development stages. For example he can set up
automated classification tool to notify him when new
functionality was added on the final testing stage, what should
be usually prohibited.

This work also provides several use cases of automated
source code changes classification for that project participants,
who are not directly work with source code. Automated
changes classification gives testers an opportunity to get
information about changes, in which new functionality was
added, bugs fixed in the form of source code or comments,
provided with changes by its developer. Project manager can
build reports with change distribution on classes.

So usage of automated source code changes classification
leads to increase of speed and quality of code review. Also it
provides additional mechanisms to control development
project state.

Method of automated source code changes classification,
described in this work, bases on source code change metrics
clasterization using k-means algorithm by MacQueen [1].
Classification adequacy proved on the experiment, provided in
[1]. Coefficient of agreement Kappa [3] there was equal to
0.79. This value is on the border between significant and
excellent agreement rate of expert and automated
classification methods.

II. AUTOMATED CHANGE CLASSIFICATION USE CASES
Automated source code changes classification can be useful

for all software development project members. Use cases of
automated source code changes classification provided below.

A. Usage of changes classification by developer
Common software developer often faces to the need of

reviewing lots of source code changes. It takes place, for
example, when he’s starting to work on a project with existent
development history or just after vacation. In such cases he
has to read every change comment carefully and if there is not
enough information, than look through change contents. This
process can be very time expensive.

 Automated change classification will relieve him from
need to dive in every change details. It will be enough to
choose change classes interesting to him and look through
changes, belonging to the specified classes. Figure 1 shows
scheme of code changes review with selected change class

Automated Source Code Changes Classification
for Effective

Code Review and Analysis
Evgeny G. Knyazev

T

filter.

Fig. 1. Code change review with filtering by class.

Automated classification of code changes can help

developer to localize errors, inserted in source code in some
time period. In this case developer should extract classes of
changes, potentially affecting chosen module and find the
change, which break it capacity for work.

B. Usage of changes classification by development team
leader
Good development team leader performs regular code

reviews and control all changes at the current development
stage. Code review is a very useful practice. It is source code
look-through trying to find errors and style, design and other
problems. This practice can help to discover and fix a lot of
problems on early development stages, while these fixes don’t
become very time expensive. Change control on current
development stage is to reject changes, potentially able to
destabilize system on important development stages. That’s
why, for example, new feature implementation on the final
development phases is inadmissible.

Let’s examine code review task. One of common actions to
keep code quality high is permanently review changes, made
by developers. Average developers team generates a lot of
code changes, which can lead to physical inability of team
leader to review all changes. Table 1 provides data about
number of changes in different projects for the same period of
time. In some projects number of changes can be extremely
high.

In table 1 you can see change count for period about one
month for three projects: GUI for Subversion
TortoiseSVN [4], client-server application for fleet monitoring
Navi-Manager [5], developed by author of this work in
Transas Technologies company and window system for Linux
and Unix KDE [6].

During review of big number of changes reviewer choose
only the most important changes for review basing on the text
of change comments. However, choosing changes only by
comments, provided by change author, may lead to misses of

some important changes with non-clear or inadequate
comments. This is the way to miss control of product quality.

Solution of this problem is in usage of automated source
code changes classification. Code changes review with usage
of additional information about change class gives ability to
filter out changes that are not interesting for team leader for
more precise study of important changes.

Let’s examine task of changes control on current
development stage. During its implementation software
product has several stages. For example release preparation
stage called stop code allows any bug fixes. This stage is
needed to stabilize product before its release.

When all found bugs were fixed, stage freeze code is
declared, when only critical bug fixes can occur. For stability
control it needs to review each change by at least one team
member except change author. This state lasts for installed
product version while it is being supported.

 Every development stage limits development process with
some restrictions. For example during stop code and freeze
code stages developers should fix bugs with no new features
implementation.

Automated code changes classification can be used to
automate process of control change classes on current
development stage. To do this it is enough to provide
information about available on current stage change classes
and automated classifier will do the rest. Fig. 2 shows scheme
of module, controlling change classes on current development
stage.

Fig. 2. Restricted changes search with automated change classifier.

C. Usage of changes classification by white-box testing
team
In this section we will discuss only white-box testing (for

example, unit testing). Usage automated source code changes
classification for black-box testing (for example, acceptance
testing) is not yet appropriate.

During their work testers communicate to developers to
understand project state more clearly. Testers often have not
enough information about new functionality and bugs fixed in
concrete product version. Sometimes they have only one way

Developer

Source Code
Repository

K-Means

Automated
Change

Classifier

Restricted
Classes List

Team
Leader

Notification
of Restricted

Change

Code Change

Source Code
Repository

Code Review
Request

K-Means

Automated
Change

Classifier

Change Set Developer

TABLE I
SOURCE CODE CHANGE NUMBER BY PROJECT DURING ONE MONTH OF

DEVELOPMENT

Project Tortoise SVN Navi-Manager KDE

Time period
(~ 1 month)

Sept 22, 2007 –
Oct 22, 2007

Sept 22, 2007 –
Oct 22, 2007

Sept 17, 2007 –
Oct 14, 2007

Number of
changes

215 72 11841(!)

to get precise list of new features and bug fixes in concrete
version. This way is to ask developer to look through all code
changes starting from time when previous version was
shipped to the time of version of interest. Usage of automated
source code change classification dramatically decreases time
of such request execution by filtering out all change classes
except new functionality and bug fix.

D. Usage of changes classification by project manager
Project manager is interested in hi-level development

process parameters. Information about what part of changes
was made for new functionality implementation, comparing to
refactoring and bug fixes will help to measure work
effectiveness. Fig. 3 shows change distribution by classes for
Navi-Manager project during one month of new functionality
implementation stage. Looking on fig. 3 one can conclude that
Navi-Manager project has not enough progress in new
features implementation because of main developer forces
where focused on bug fixes, not on new features
implementation.

Fig. 3. Code changes distribution by classes.

III. CODE CHANGES CLASSIFICATION
In this work it is suggested to use source code changes

classification method, allows to automate separation of
semantically different changes basing on values of metrics of
source code. For example source code change can belong to
one of the following classes: new functionality
implementation, refactoring, bug fix, cosmetic change. There
are several methods of source code change classification.
They can be divided into following groups [7]:

– informal methods – such methods as automatic change
classification by comment analysis [8][9], refactoring
detection method [10];

– syntax methods – such methods as heuristic comparison
of syntax trees of code versions [11] and version difference
analysis with code tags [12].

Automated method of source code change classification [2],
described in this work, bases on clasterizaion of metrics
values of source code using method k-means MacQueen [1].

Result of this method work is set of source code changes
divided on predefined number of clusters. Each cluster
corresponds to particular class of changes.

A. Change classification task formalization
We define here source code change as mapping δr,

transforming state of source code Sr-1 to state Sr. Let C={ci} is
a set of source code change classes, defined by an expert.
Expert manually classifies any set of changes, providing for
each change δr appropriate class ci. Although this process is
hard and time expensive, we’ll try to automate it, using
expert’s knowledge only once at method study stage.

Here we suggest an algorithm of automated changes
classification (expert – a human expert, tool – an automatic
tool for changes classification):

1. An expert chooses learning set of changes – some subset
of full set of changes.

2. A tool performs change metrics sets calculation, and
clustering of change metrics sets of learning set of
changes.

3. An expert builds cluster interpretation – assigns expert
class for every cluster built on learning set of changes.

4. After these steps a tool can automatically classify any set
of changes (within the same project, from witch learning
set was extracted) by performing step (2) of this
algorithm and than using cluster interpretation, built on
step (3) to automatically assign every changes from each
cluster appropriate class.

Automated classification function IA, transforms set of
source code changes {δr} to the set of their classes {ci}:

}.,...,,{}{: 21r n
I

A cccI A⎯→⎯δ
Here we treat function IA as composition of clasterization

function IQ and cluster interpretation function IIQ:
,IQQA III o= },,...,,{}{: 21r m

I
Q qqqI Q⎯→⎯δ

 },,...,,{},...,,{: 2121 n
I

mIQ cccqqqI IQ⎯→⎯
where Q={qj} is a set of clusters qj.
 Clustering function IQ transforms set of changes {δr} to the
set of clusters {qj}. Cluster interpretation function IIQ

transforms set of clusters {qj} to the set of change classes {ci}.
This is two-step process: first split changes by clusters, than
interpret all changes from each cluster as a change class.
 Clustering function can be built using MacQueen k-means
algorithm [1]. Clustering algorithm groups code changes in
similarity clusters. Similarity here is proximity between
change metric sets. Clustering algorithm treats each change
metrics vector <M`δr>n = <M1`δr, M2`δr… Mn`δr> as point in

Code changes class statistics for 1 month
of Navi-Manager development

70%

22%

6% 2%
Bug fixes +cosmetic
changes: 70%
 Small functions +
refactoring: 22%
 Big new
functions: 6%
 Code deletion: 2%

TABLE 2
SOURCE CODE CHANGE METRICS USED FOR CHANGE CLUSTERING

Metric
Symbol Metric Name Change Metric Effect and Description

eLOC Effective
Lines of Code

Number of lines of code without
empty lines and comments

CC

Cyclomatic
Complexity

Number of linearly independent
execution paths [13]

CS Classes /
Structures

Number of classes or structures

n-dimensional space and splits these points on predefined
number of clusters basing on proximity between points.
 Metric M` of the change δr may be defined as difference
between source code metric M values of changed code Sr+1
and original code Sr:

M`δr = MSr+1 - MSr.
 In this work we used set of change metrics, based on three
source code metrics defined in table 2.

B. Clusters interpretation
Choosing learning set of changes, k–means clusterization

method parameter number of clusters and building cluster
interpretation function IIQ are expert tasks in current research.
Interpretation function can be built by choosing several
changes from each cluster and expert classification of these
changes to make a conclusion about what class of changes
represents this cluster. This task is significantly less time-
expensive than original classification task because there are
not so many classes on practice to be extracted.
 During interpretation function building expert analyses
some source code changes of each cluster and changes
comments. As a result expert defines class ci, which is
appropriate for analyzed cluster qj. When there’s no way to
classify one cluster unambiguously than it needs to choose
other set of metrics and/or set of classes.

After function IIQ has been built for some set of changes,
classification of other changes of the same project can be
performed in automatic mode without an expert.

IV. CONCLUSION
Described method can be used by participants of almost any

software development project. A tool was developed to
support automation of code changes classification. On the
moment of the publication it supports only one version control
system Subversion and programming languages C++, C#.
This tool allows calculating changes metrics based on
cyclomatic complexity [13], effective lines of code, and
common number of classes or structures.

Code changes classification experiment was set up in [2],
and Kohen’s agreement rate [3] between human expert and
automated classifier was measured: κ=0.79. This value shows
agreement strength of changes classification method based on
metrics clustering and human expert between significant and
excellent.

Described method faces with mixed changes problem,
consisting of several changes with different nature. Change
classification method not always can correctly classify such
changes. But probably complex non-clear changes should be
avoided in good development process. When exist, these
changes make code review and other work with history
harder.
Problem of mixed changes separation during clustering is to
be solved in future research. Other problem left for future
research is clustering stability problem in long-term analysis.
 Changes classification method, based on change metrics
have several advantages, comparing to other change
classification methods:

- Objectiveness: Analysis is performed on source code
itself, not on change comments, as, for example in
automatic change classification by comment analysis [8],
[9].

- Ability of tuning: Different sets of metrics can be chosen
for classification automation, depending on target
classification [2]. Other methods allow change
classification only by given set of classes, although in
some of their [8],[9],[11] not very big amount of
additional work can be performed to add new classes of
changes.

- Adaptivity: Resulting number of clusters and expert
classification of learning changes set passed to clustering
method. With this data project specific classes of
changes can be extracted thanks to data-mining
techniques (McQueen clustering) used in suggested in
this article method. Other methods of changes
classification, described here, possibly except [8],[9],
cannot be simply adapted to specific project.

- Formality: Change classification bases on formal statistic
methods, while some informal methods, bases on
heuristics of special words usage (as “bug”, “fix”,
“refactor”, etc) in comments [8],[9] or metrics values
changes by specific rules [10].

REFERENCES
[1] J. B. MacQueen: "Some Methods for classification and Analysis of

Multivariate Observations", Proceedings of 5-th Berkeley Symposium
on Mathematical Statistics and Probability, Berkeley, University of
California Press, 1967, vol.1 pp. 281-297

[2] E. G. Knyazev, D. G. Shopyrin, “Automated classification of source
code changes by means of multidimensional statistical analysis”,
Information Technologies, to be published in Russian.

[3] J. Cohen, “A Coefficient of Agreement for Nominal Scales”,
Educational and Psychological Measurement, 1960, pp. 37–46.

[4] TortoiseSVN, A Subversion client, implemented as a windows shell
extension. Available: http://tortoisesvn.tigris.org

[5] Navi-Manager Vessel Monitoring System. Available:
http://www.transas.com/products/shorebased/manager/
http://www.transas.ru/products/shorebased/fleet/navi-manager/

[6] KDE. A powerful Free Software graphical desktop environment for
Linux and Unix workstations. Available: http://www.kde.org

[7] H. Kagdi, M. Collard, J. Maletic, “Towards a Taxonomy of Approaches
for Mining of Source Code Repositories“, ACM SIGSOFT Software
Engineering Notes. Proceedings of the 2005 International Workshop
on Mining Software Repositories MSR '05, St. Louis, Missouri. 2005,
pp. 1–5.

[8] A. E. Hassan, R. C. Holt, “Source Control Change Messages: How Are
They Used And What Do They Mean?”, 2004. Available:
 http://www.ece.uvic.ca/~ahmed/home/pubs/CVSSurvey.pdf

[9] A. Mockus, L. G. Votta, “Identifying reasons for software change using
historic databases”, Proceedings of the International Conference on
Software Maintenance (ICSM), San Jose, California. 2000, pp. 120–
130.

[10] S. Demeyer, S. Ducasse, O. Nierstrasz, “Finding refactorings via
change metrics”, Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’00), 2000, pp. 166–178.

[11] S. Raghavan, R. Rohana, A. Podgurski, V. Augustine, “Dex: A
Semantic-Graph Differencing Tool for Studying Changes in Large
Code Bases“, Proceedings of 20th IEEE International Conference on
Software Maintenance (ICSM'04), Chicago, Illinois. 2004, pp. 188–
197.

[12] J. I. Maletic, M. L. Collard, “Supporting Source Code Difference
Analysis”, Proceedings of IEEE International Conference on Software
Maintenance (ICSM'04). Chicago, Illinois. 2004, pp. 210–219.

[13] T. J. McCabe, “A Complexity Measure”, IEEE Trans SE-2. 1976. №4.

