
Binary Compatibility of Shared Libraries Implemented in C++ on GNU/Linux Systems.

Pavel Shved
Institute for System Programming, RAS

email: shved@ispras.ru

Denis Silakov
Institute for System Programming, RAS

email: silakov@ispras.ru

Abstract

A shared library is a file that contains library code and
data in binary form. Application built against the library
references the data via symbols and the contents of what’s
being referenced get known only during the application
startup. Library is shipped with header file(s) the program
is compiled with.

The problem of the binary compatibility (sometimes called
,,backward compatibility”) arises when the new version of
library is installed into system and the program, having not
been recompiled, is attempted to run in the environment with
the new library. The incompatibility may result in fatal errors
during the startup or even during the runtime.

In this article we deduce the rules that must be followed
in order to keep the binary compatibility of a shared library.

Unlike most of researches in this area, we also assume
that the library may contain its own restrictions upon its
usage, more powerful than restrictions of C++ language
itself. So the possible restrictions are analyzed as well, and
we attempt to weaken the rules of binary compatibility when
such restrictions are enforced.

As a conclusion we list the rules a programmer should
follow to keep his or her library binary compatible. We also
conclude that possible restrictions limiting the use of library
allow to weaken these rules in relatively small number of
cases.

For the purpose of this study, we create formal notation
for the process of building and using a library, introduce
formal definitions of source and binary compatibility and of
program behavior. We base the assumptions about mapping
source code entities to binary level on the Itanium C++ ABI
standard, which describes gcc’s way of emitting binary code
and data.

Index Terms

Languages, Software libraries

1. Introduction

1.1. Premise

C++ nowadays is one of the most popular programming
languages [1]. It is complex, but the complexity made it

become one of the most powerful multiparadigm language,
that can combine low-level efficient code with high-level
concepts of generic and object-oriented programming.

Like any serious programming language, C++ needs the
concept of ,,library”. One of the doctrines of C++ design was
compatibility with C language at the source level (with a few
exceptions only) and with interfaces of C shared libraries.
The decision was necessary to make language more popular
by ability to re-use of existing C code [2]. But the questions
of C compatibility is still urgent since C is also one of the
most popular programming languages ([1]). So, the concepts
of C++, that are absent in C, use the same binary interface
architecture: the memory the object file occupies is addressed
with strings—,,symbols”. Their semantics is (as in C) not
described in binary file, but rather is enforced at compile-
time by the header file of the library.

But, compared with C++, libraries have notable peculiar-
ities. They can contain the code of a subroutine provided
either at source or at binary level (some libraries, like boost
or stdc++, contain few binary code; most of code is inlined
and instantiated in compile time). Further, C++ concepts are
much more complex than C’s ones, hence the semantics of
data being referenced by plain old symbols is also more
complex.

Sooner or later, each library faces the question of compat-
ibility with previous versions. For compiled languages the
library author should maintain not only source compatibility
(i.e. the ability to successfully compile same program code
with the new library headers), but also binary compatibility,
which lets the program to run with the new binaries of the
library without recompilation and to produce the same results
as with older version.

Maintaining binary compatibility is a complex task, and
it’s also important as it takes considerable time to generate
effective low-level code out of C++ source. But new versions
of popular libraries are released quite often, because every
library has numerous bugs that are to be fixed, improvements
that are to be implemented and new concepts that allow to
create better applications in the future. And the popularity
of the library also means that there exist many applications,
that use it. They all would have required recompilation if
binary compatibility would break with every new release.
Furthermore, in the new environment applications may also
work differently, but their developers usually promise fixed
behavior in advertisements and documentation.

Hence the binary compatibility problem is very important

Table 1. Special symbols used in this paper

↪→ A ↪→ B A class is an (indirect) base of B
B C.B set of all bases of C

BV C.BV set of all direct virtual bases of C
P C.P most derived primary base of C
V C.V array of C’s virtual tables.
− C.to− C.from offset

for C++ libraries. However, popular articles on this question
are not complete. Instead, they introduce mere list of rules
one should follow, the rules usually coming out of practice
and the completeness of their set never being claimed. No
wonder that these lists differ in such researches. No article
also takes into account that, apart from the restrictions of
C++ language, that are expressed in header files, a library
can have additional restrictions, imposed in free form by
documentation.1 It is possible for these additional restrictions
to widen the set of compatible library code.

This article aims to fill these gaps and use a formal
approach to binary compatibility problem. We first describe
the compiling and building process of library and applica-
tions that use it, then we study how the new environment
affects the application behavior. It is GNU/Linux system
and its default instruments: gcc compiler(,,GNU Compiler
Collection”) and ld, ,,The GNU Linker”. The toolset being
used is chosen to be best specified and popular enough ([6],
[7]).

We use [4] as a formal ground for binary analysis; GCC
follows this standard.

We will not study the questions of inter-compiler and
inter-platform compatibility. Also we keep aside compatible
exception handling (as most of libraries do not use them).
What we will concentrate our forces on compatibility of
classes and functions, which code is placed into object files.
1.2. Notation

To denote the objects discussed we decided to mix math-
ematical formalism and the notation used in object-oriented
programming. To denote subobjects of compound objects we
use C++ notation, where L.c means c subobject in L. The
same rule holds for member functions; for example, x.f(y)
may be treated as f(x, y).

Finally, the table that shows how special symbols are used
and what they mean is shown on figure 1.
1.3. Basic Concepts

1.3.1. GNU/Linux System. In this section the objects in-
volved in program life cycle in GNU/Linux system are
described in a formal way. In outline, there are compiler,
assembler, linker and underlying semantics of objects they
manipulate, regardless of whether they reside in RAM or on
disk.

1. Sometimes these restrictions are considerably significant. For
example, destructors of widget classes in Qt library, are called
during the destruction of parent widget. That forces programmer
to create widgets with new operator only and prevents user classes
from having widget members.

1.3.2. Compilation. Let’s mark out the stages involved in
compilation and running of a C++ program.

Source code of an application consists of several source
files (cpp files). Some of them have relevant header files
describing their interfaces. Each source file may include
headers both from the application in subject and from other
libraries. Then each cpp-file f.cpp is preprocessed and stored
in RAM. The preprocessed code, being then independent of
other program entities or environment, is compiled, resulting
in the object file f.o.

We combine these stages and will write as follows:

f.o = f.c.compile(f.h, lib.h).

As arguments this compile function takes header files f.c
includes. Indeed, if f.cpp contains #include <lib.h>
line, then preprocessed source will change subject to lib.h
contents. This change is represented in a natural way—as an
argument to function. For example, f.c.compile(f.h, lib′.h)
denotes that the contents of header file included via the
particular line with ,,include” statement are changed, its name
acting as reference only and being invariant.

After all sources are compiled, the work flow proceeds to
linking stage. Its result is an executable file f.exe, in which
the code of all object files and statically linked libraries is
comprised. We denote it as

f.exe = f.o.link (f1.o, f2.o ...fn.o) ,

where f.o is an arbitrarily chosen object file from the set of
all ones being compiled.

However f.exe still doesn’t ultimately define the code that
will be executed. If the application was compiled with a
shared library, then, at the start of its execution, dynamic
loader’s code is run. Its purpose is to link the symbols
used in application executable as references to the actual
code and data addresses in RAM. The libraries to be loaded
dynamically are chosen from the current environment via
sonames and may differ from the ones linked to during
preparing the application executable (see [5] for details).
Therefore, similarly to the compile function notation, the
dynamic linking function should also take shared objects as
arguments: f.exe.dynlink(lib1.so, lib2.so, ...).

The result of running an application and its consequent
possible dynamic linking is application context. The context
then consumes input data and produces output data. ,,Input
data” comprises very broad range of data: OS state, sequence
of random numbers returned by corresponding functions,
command line arguments, filesystem state and environment
variables. In other words, input data unambiguously define
output data.

The application context obtained is therefor a map from
set of all input data to set of output data. We denote it like
an usual function:

f.exe(input) = output (1)

f.exe.dynlink(lib.so)(input) = output (2)

1.3.3. Notes on Specifications. Talking over binary com-
patibility, not only we require the application to run in new
environment, but expect it to yield the correct results. The
most common way to define correctness of the behavior is to
use concept of specifications. Program behavior is described
by its context, which is a map from input to output. So, it’s
natural to define specification of a program as map from
correct input to output, the mapping being conformant to
library code.

Correct input is an input that doesn’t cause precondition
violation 2 for shared library functions, as if abstract C++
machine defined in C++ standard [3] is run.

By conformant mapping we mean the mapping, that exe-
cuting the library functions on abstract machine in such way,
that their return values and side effects are conformant to the
relevant library specifications.

Therefore we can define, that program conforms to spec-
ifications (,,works correct”) if its context and specification,
restricted to the set of correct inputs, are equal. We denote
it like this:

f.exe.dynlink(lib.so)
∩
= spec (3)

Contract library specifications may govern not only func-
tion calls but virtually every way of using of concepts defined
in header files. The consequences were discussed in .

A program or a library may be ,,badly written”, i.e. have
empty set of correct inputs. In further analysis we only take
,,well written” libraries and programs into account, their set
is denoted as P.

1.3.4. Shared Libraries. Let’s define our subject. A shared
library Lib is a structure

Lib = 〈H = {hi} , CPP = {cppj} , so, soname, spec〉 ,

where
• hi are header files;
• cppj are source code files that contains definitions of

(some) functions and variables declares in header files;
• so = link(..., cppj .compile(hj1 , hj2 ...), ...).makeso

— an object file compiled in a special way, which can
be used as an argument for dynamic linking function;

• soname is a library name via which the so-file is found
by dynamic linker;

• spec is an encapsulated object with the sense discussed
in 1.3.3.

The definition requires cpp files to comply with header
files declarations—i.e. compile without errors.

2. Binary Compatibility

2.1. Definition

To simplify the further study we will consider program p,
that consists only from one source file, and a library L, that
also consists from one source and one header file.

2. a library documentation practically doesn’t use the word ,,pre-
condition”. But its sense is comprised in phrases like ,,the value of
this parameter shall be more than zero” or ,,the behavior for NULL
pointer is unspecified”.

Table 2. Symbol versioning example

A′.h B′.h

namespace libA{
#include <A.h>
}
using namespace libA;

namespace libA{
#include <A.h>
}
namespace libB{
#include <B.h>
}
using namespace libB;

Let’s assume that a new version is released — L′. Then
L′ library is binary compatible with L, 3 if

∀p ∈ P→p.cpp.compile(L.h).link(L.so).

dynlink(L.so)
∩
=

∩
= p.cpp.compile(L.h).

link(L.so).dynlink(L′.so) (4)

If we would recompile program in the new environment
its context would look like that:

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so).

The behavior in new environment may hence differ; that’s
what we are to evade.

The definition of binary compatibility doesn’t really con-
strain itself to the cases where it’s useful. For example,
there’s no obstacle that prevents us from investigating the
issues of compatibility of math library and window manager
library. Therefore we should lay down one more condition,
namely source code compatibility.

Library L′ is source compatible with L, if

∀p ∈ P→ (∃p.o = p.cpp.compile(L.h)) (5)

⇒
`
∃p′.o = p.cpp.compile(L′.h)

´
.

Later on we will discuss only binary compatibility of
source compatible libraries.
2.2. Symbol Versioning Approach

Let’s examine first the following method referred to as
symbol versioning. We will now show that any libraries may
be made binary compatible even if they’re of different kind.
Indeed, assume A and B are libraries. Then let’s create A′

library, that’s source compatible with A, and such B′ source
compatible to B that it is binary compatible with A′.

To achieve this we keep cpp files intact, and link the
objects files into single so file, having rewritten the header
files as shown on figure 2.4

The libraries produced are binary compatible and same
programs may be compiled with them. Source compatibility
between B′ and A′ is equivalent to that between B and A.

However this approach suffers from the code duplication.

3. we say that the new version is compatible with the old one,
and not vice versa

4. C language doesn’t have namespaces, but gcc introduces the
other symbol versioning mechanism for C language; see [5]

Note that symbol versioning can not be used with every
bugfix release, as each bugfix forces us to create a new
function instance. Symbol versioning is used (for example, in
glibc) with major releases, the functions in bugfix releases
sharing the same version and having to be binary compatible.

To prevent duplication we might use aliases for duplicat-
ing code and data. But how can we be sure that code is
duplicated? The question of whether the code of function
is duplicated with version change is essentially equivalent
to the question of binary compatibility. Therefore, symbol
versioning doesn’t govern all binary compatibility problems
and further study is necessary.
2.3. Causes of Binary Incompatibility

There are different ways to build an run application:

p.cpp.compile(L.h).link(L.so).dynlink(L.so) (6)

p.cpp.compile(L.h).link(L.so).dynlink(L′.so) (7)

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so) (8)

Contexts (6) and (7) differ only in dynamic linking func-
tion arguments, i.e. in the set and internals of the symbols the
library exports. In C language it only means that during the
calls to the functions with external linkage the other code will
be executed. However, C++ libraries contain more symbols
than those of functions and static data, and some of auxiliary
symbols are used in an unobvious way. Binary compatibility
is caused by the difference between symbol sets and contents
in different versions of library.

According to the definitions of building the application the
object file p.cpp.compile(L.h) already contains information
about symbols it might need in the shared library. However,
an only source of information about the library so far is
header file L.h. Therefore, the set and internal structure of
symbols exported are completely defined by header file. The
source file L.cpp only defined internal code and some data
these symbols point to.

However, during the linking with L.so no code or data
defined in L.cpp is inlined into p.exe. This code is loaded on
dynamic linking stage only. But at this stage the application
requires the presence of symbols defined in L.h, but the
library L′.so the program’s being linked to provides sym-
bols, defined by L′.h. That’s one of the causes of binary
incompatibility.

Furthermore, if a code defined in cpp file is called via
symbol, the callee will consider that arguments are laid out
like in callee’s native header file, L′.h. However, the caller
assumes that all library data is laid out like in L.h—the file
the program was compiled with. That’s an important matter,
because the semantics may stay unchanged from the user
point of view (summarized in C++ ,,source” standard [3]), it
could change from binary point of view (ABI standard [4]).

We can now divide the causes of incompatibility into the
following groups:

1) implementation change, the case when constant or
function whose signature remains intact, changed its
definition;

2) compiled code notions incompatibility, the case
when the notion the function in cpp file has of layout
of its arguments has changes due to alteration of
declarations in header file. These alterations only
depend on L.h → L′.h change and may be studied
separately from 1.

3) altering or removing of special symbol, which def-
inition is deduced by the compiler based on header
file. The data the symbol refers to could be used in
application binary code as in notions given by L.h,
but handled in L′.so as in L′.h.

4) errors during dynamic linking, caused by absence
of definition of an entity from L.h in L′.cpp hence
L′.so.

3. Study of Incompatibility Sources

Let’s thoroughly study the sources described in 2.3.
3.1. Errors During Dynamic Linking

After the application is built against L.so, no static linking
errors can arise. However, at the time it’s run dynamic linker
tries to link it with L′.so instead (because L.soname =
L′.soname), so it may lack symbols the application refer-
ences and abnormally terminate before it has any chance to
run its code.

Dynamic linker searches all external dependencies of
f.exe in the libraries loaded. They’re fixed at compile-time
and marked at link time as external, when the linker finds
definition of symbol in a shared library rather than in static
one or application’s object file. Here the linker ensures
that all dependencies are satisfied. The dependency may be
global variable’s symbol, non-inline function, non-template
function of fully-instantiated template function.

We well use term ,,use symbol” instead of ,,use declaration
the symbol relates to”.

We should note that, among external dependencies, there
can be the symbols allowed to be used in userspace code.
Userspace code is a code that compiler takes as an input. It
therefore contains f.cpp and L.h; and inline functions de-
fined in L.h in particular. The rules for keeping compatibility
will be formulated in terms of userspace code, so the library
developer must follow the rules in his own inline functions
code as well.

We should also note that for a member function call
not only its own symbol may be required, but also virtual
table (vtable) may be involved for virtual functions and for
non-virtual member functions of virtual bases calls. Among
the other info (see 3.4.2 for details) it contains pointers to
virtual functions definitions as symbols, that are resolved in
runtime.

L′.cpp may lack symbol described in L.h only because
that symbol is not deduced from L′.h (by the property of
shared library definition — see 1.3.4). Among explicit non-
auxiliary symbols only non-inline functions and global data
present in header file. If one of such symbols is withdrawn,
and it can be used in p.exe, L′ would then be incompatible
with L′. As it is obligatory to explicitly use such symbol

Table 3. Similar functions but different external names

L.h L′.h
typedef int Type;
void function(Type);

typedef float Type;
void function(Type);

for dependency to appear, the incompatibility of library
is equivalent to the plausibility of this symbol usage in
userspace.

Therefore, it’s impossible to withdraw from header file a
symbol that is allowed to use in userspace code.

A symbol name is constructed out of its declaration
through use of ,,mangling”. The mangling procedure is fully
described in section 5.1 of [4]; here we only outline some
key conclusions.

A symbol (external) name for a declaration for GCC
compiler is uniquely and unambiguously defined by the
conjunction of the following properties:

1) filly-qualified name of declaration, the name of dec-
laration and fully-qualified name of enclosing scope
(class or namespace)5;

2) vector of argument types and vector of template
parameter types (for instantiations). The types with
all typedefs substituted are considered for this pur-
pose, however, structures, classes and unions are not
expanded—their name is taken only. For example the
functions shown on the figure 3 have different external
names.
All fully-substituted types are encoded in unique way,
the types and member functions being also distin-
guished by cv-qualifiers.

3) return type of a template function. If template
function is instantiated, its return type is also encoded
into external name.

4) set of function’s thunks. For functions that require
adjustment to this pointer (overloaded functions of
non-primary base, separately for virtual bases, virtual
base subobjects6 and all other bases) or to return value
(for covariant return types) special entry points are
created and then used in the function call algorithm.
Special functions called ,,thunks” for different ways to
call the functions are emitted into object file7.
The application, that doesn’t derive the defining class,
can’t have them as direct dependencies, because the
calls to them can only be encountered through use of
vtable. But if application is allowed to derive a class
with such functions and it actually does, then the use of
them in derived class’ members definitions will require
adjustment and henceforth the relevant dependency.
The set of thunks define the rules of confronting the
function call operator and the symbol that references
the actual code. Therefore, if the number of entry
points or the causes of their appearance is changed,

5. treat this as recursive definition
6. the term ,,morally virtual” is used to name such classes
7. they don’t have to be separate functions, sometimes they’re

merely different entry points into single piece of code

it should be encountered as symbol name change. 8

Let’s formulate the rule: let the virtual function C::f,
be such that C ∈ D.B. Then the alteration of
any of the following properties will cause binary
incompatibility:
• whether it has covariant return type or, if it has,

the return type itself
• whether C = D.P;
• if C 6= D.P , whether C ∈ D.BV ;
• class W , such that for W holds

W ∈ D.BV , C ↪→W ↪→ D (9)

W /∈ D.P (10)

∀W ′ ∈ D.B →“
C ↪→W ′ ↪→W ⇒W ′ /∈ D.BV

”
(11)

Compatibility issues that arise from thunks’ contents
are discussed in 3.4.1.

So, if a property of the definition alternates, the library los-
es binary compatibility. One of the most stunning examples
of it, described in [8], is when one adds default argument,
the mechanism initially designed to keep compatibility (un-
luckily, source one). Indeed, when you add a new default
argument to the function, its vector of arguments changes
and hence the external name changes as well.

In this list the property ,,whether function is inline” is
absent, because there’s no external names for inline functions
at all. However, many developers do treat it as function prop-
erty, so here’s the rule for that: to keep binary compatibility
the inline qualifier must not be added to the function
allowed to be called from the userspace code.

3.2. Implementation Change

New versions of libraries are released to add the new or
to remove the obsolete functionality, fix bugs or improve
the underlying implementation algorithms. From a newbie’s
point of view bugfixes do not cause any harm. because it
hardly changes anything, especially in the set of external
names. From a formal point of view only the improvement
of existing algorithm is insignificant as long as it doesn’t
change the contract of function. What we call ,,a bugfix”
is actually a change of specification and a confession that
L’s specification is not L.spec defined by help files, but
something else, and only L′.spec made true specifications
coincide with the alleged one.

When developer changes symbol specifications, the ap-
plication calls the new implementation, namely the one in
L′.so and may change behavior, what leads to losing binary
compatibility. It also may not.

Consider the following example. L contains a streq
function, that compares strings. L′ introduces a new feature
to compare them case-insensitively, if the global trigger vari-
able bool case_insen was set to true, its initial value
being false. The specifications and behavior of streq()

8. The set of thunks may be treated as a single ,,multisymbol” for
the current one.

are changed, but no program compiled with L is capable to
use the new L′’s functionality and actually yield improper
behavior.

The change of function implementation doesn’t lead to
binary incompatibility iff the new functionality is unreach-
able from any correct executable linked to prior library
version.

From this point of view bugfixing is a binary noncom-
pliance. The program will work better, but in the other way.
Sometimes bugfixes in L cause errors in p, if p implemented
a workaround for the bug fixed and it became broken with
the new version9. However bugfixes are considered useful
rather than harmful, because the abstraction of the code into
third-party libraries intends to separate the workflow of the
application and of the code it uses as backend.

We should note that sometimes binary compatibility is
understood as the ability of a program to behave in the new
way in the environment with the new library version. Of
course, from this point of view, bugfixes do not affect binary
compatibility.

However we think that this approach is incorrect. First of
all, the part of L and the notion about it is anyway inlined
into the application’s executable (as a side effect it could
even reduce the number of compatible libraries in the other
cases, if the alternative definition of compatibility is used).
Secondly, as it was said in the intro, an application developer
should fix the behavior of the program in a help file of
sorts, so the library changes would reduce the separation of
application and underlying library.
3.3. Compiled Code Notions Incompatibility

In this section we will look for the such ways of altering
the header file, that cause L′.cpp’s code, that implements
data access accordingly to L′.h’s notion, to access the same
data that are laid out as in L.h. In the other words, we will
study the raw memory layout semantics and how to prevent
incorrect access to it.

We can separate two different directions:
1) access to the library’s memory from the userspace

through global variables and specifications-compliant
operations with them;

2) the access to the application-allocated memory from
the library; the memory’s having been allocated for
the library’s types declared in L.h through functions
in L′.so.

In the point 1 we mean direct access to global variables.
Indirect access to the memory through interface functions is
under the library’s control and doesn’t cause incompatibility
directly (i.e. is studied somewhere else). Just as well, calls
to class static members or global variable’s members don’t
cause incompatibility immediately.

All operations considered are equivalent to reading the
variable of integral type and to direct writing to it or to
complex structure as a whole. When recording the structure,

9. The known example nowadays is a bug in Qt 4.4 fixed in
version 4.5, but many KDE 4 applications contained a workaround
and become incorrect

if its copy implementation is deduced by compiler (i.e. the
copy constructor is not overloaded) only semantic violation
errors my arise. Therefore, binary compatible access to
variable, that may be accessed from the userspace for
reading and writing, is possible only if the alignment of
T ′ coincides with alignment of T on the first sizeof(T)
bytes. In the other words, you only can add fields to T class,
but you can’t alter the ones defined in L.h.

The analysis of 2 should be more elaborative.
It differs from the point 1 by the capability of library to

call its own types with arbitrary class of operations that’s
broader (at least not more narrow) than what is possible from
outside the library. The ultimate principle can be formulated
like this: L′.cpp should be created in the way for it to be able
to distinguish the origin of the data being handled, whether
it’s L.h or L′.h. 10 This approach is equivalent to symbol
versioning, which, as shown in section 1.3.4, still requires
further study of what can be done without it.

Let’s assume that a function takes one value as an argu-
ment (member functions are implemented as simple C-like
functions that take pointer to this as its first argument),
the type (possibly, indirectly, via pointers and references)
depending on T type, declared in L.h and L′.h. Let’s call
T ′ what T became in L′.

If the argument is passed by value, then in binary com-
patible application T = T ′, because these types should have
equivalent sizes (as the memory in stack for them is allocated
via caller) and semantics on first sizeof(T ′) bytes. There-
fore, only the types that are passed via pointer/reference to
the library functions may be altered.

The rules from 1 are applicable also to the types, that
are returned by value from library routines, because caller is
responsible for copying values back from stack.

If object of type T is passed by reference into the function,
that expects reference to T ′, it can control the access to
memory access within the object.

However, if it’s possible for T to be allocated into au-
tomatic storage in userspace (that includes being base class
or class member), the pointer to it may address less memory
than T ′ denotes; the behavior being undefined upon access to
it. Moreover, if a class has an explicit constructor, its call may
lead to memory access violation. Therefore, the following
rule holds: the increase of size of a class that can be
allocates in the automatic storage in the userspace causes
binary incompatibility if the functionality, that accesses
the new memory, is reachable keeping the conformance to
,,old” library specifications. Note that new members may not
extend class size; that’s especially notable for bitfields (see
[8] for bitfields as a technique to maintain compatibility).

Note also, that class size may be increased not only with
new members, but with new bases as well. If such new
class requires more memory (it may not for a nonempty, but
relatively small class; however it may require for an empty
class as well; refer to [4]), then new memory is laid out

10. as an example, one may require to explicitly specify the
version of library used in the application by the special function
call or global variable or something else.

before any of the members, all data members shifting. For
a class with at least one accessible data field that causes
incompatibility.

Therefore, practically, the paragraph above means that
adding a new base that increases the size of the class leads
to binary incompatibility.

There are several techniques that allow adding functionali-
ty to the class maintaining binary compatibility: ,,d-pointer”,
described in [8], techniques that emulate interpreted lan-
guages elements (see [8], ,,Adding new data members to
classes without d-pointer”). One can avoid problems by disal-
lowing to allocate memory in automatic storage in userspace,
hence forbidding to derive the class, but that undermines the
basis of OOP and has limited use.

The conclusion follows: The change of class hierarchy
(except cases when it involves the change of size of
no bases), change of members’ order, size and increase
(change, in case the class can be passed to or returned
from library function by value) of their amount leads to
binary incompatibility.

To apply this rule into practice you might want to exper-
iment with size of your structures, but that’s hardly will be
useful. Empty bases (and these are nearly all bases that don’t
make class change) are best served virtual and the restrictions
on virtual bases are more strong, what you will see in section
3.3.

3.4. Auxiliary Symbols Change

Along with symbols described in 3.1, GNU C++ compiler
adds auxiliary symbols to binary level. They are used in
virtual functions call algorithm (vtables), expose support for
low-level inheritance-related code generation (VTT, several
variants of constructors and destructors) and several thunks.

This section investigates the class of L.h alterations that
don’t cause binary incompatibility through auxiliary symbols
alterations. The key problem is that part of C++ low-level
code support mechanisms are generated in compile-time and
the symbols are assumed to be laid out as in L.h. During the
dynamic linking the application references these symbols in
the way described in L′.h, what causes incorrect program
behavior. The bodies of these symbols also can change, but
part of these changes, namely L.cpp→ L′.cpp, has already
been studied in 3.1 and 3.2; we will elaborate the other part
here.

Let’s study how each symbol type influences the compat-
ibility.
3.4.1. Symbols Introduced via Functions.
• Constructors and destructors cause compiler to emit

symbols for compete object constructor with and with-
out memory allocation and for base object constructor
(for construction of non-static members and non-virtual
bases); the same symbols are created for destructor (but
with freeing the memory instead of its allocation). These
symbols should have played an important role in binary
compatibility, but unfortunately it’s not always possi-
ble to encapsulate memory allocation procedure in the
shared library. Therefore the possibility of compatibility

Table 4. Thunk names

_ZThn8_N7Derived3virEv non-virtual
_ZTv0_n48_N7Derived3virEv virtual
_ZTvn8_n48_N7Derived3virEv virtual+vbase offset

violation is restricted to matters discussed in 3.3, and
to that, upon withdrawing of all virtual bases (which
causes incompatibility, as we will see in 3.4.2), relevant
symbols also disappear from library, causing link-time
error.

• thunks. Thunks are described in section 3.1. Here we
will assume that set of thunks didn’t change; only actual
offsets could.
Part of these values, that concern this adjustment,
are described in 3.2.3 section of [4]. It clearly shows
that adjustment is done with different offset values,
that, as described in section 5.1.4 of that standard, are
encoded into external names of thunks, examples shown
on figure 4.
According to comments in gcc code11, entry point body
only depends on these values, on whether covariant type
presents and on external name of the function the thunk
is associated to.
In the other words for thunks with same names equiva-
lent bodies are emitted (limited to the possible discrep-
ancy in the actual function’s body).
As any shift of classes through the hierarchy is incom-
patible (see 3.3), thunk bodies will coincide in L.so
and L′.so if the other binary compatibility conditions
are held.

3.4.2. Vtables. In this section we will use concept of class
hierarchy, the tree, that depicts the class’ direct bases, then
their bases and so on, the edged representing direct deriva-
tion. Some rules will also be formulated in terms of class
hierarchy. The developer should remember that when the
hierarchy of C is alternated, hierarchies of some class-
es that derive C may also change (and most of them
will, unless the change is adding a new virtual base that
already presents in all classes derived from C before it
in preorder). Practically that means that without additional
internal requirements to inheritance (we’ve just outlined one
possible rule in parentheses) these rules are useless and it’s
best to prototype and check them, or apply to classes which
derivations developer can control.

Vtables is a structure that supports virtual function call al-
gorithm, virtual base access and RTTI for dynamic_cast.
In C++ all static types are known in compile time, therefore
virtual tables are referenced through pointers, each for every
primary base group. Every pointer references some data
placed in the translation unit, where first virtual function
body is emitted.

Vtable structure is fully described in [4], section 2.5. We
will only give some general information.

11. check the description in files gcc/cp/cp-tree.h,
line 3317, and gcc/cp/method.c, make_thunk(); function.

Table 5. Vtable group layout example

Classes Entry Offset
C vcall offset for B2 :: f3 −72
C vbase offset for D1 −64
C vbase offset for B1 −56
C B3 vcall offset for B2 :: f3 −40
C B3 vbase offset for B1 −32
C B3 B2 vbase offset for B1 −24
C B3 B2 B1 offset-to-top (zero) −16
C B3 B2 B1 RTTI (of C) −8
C B3 B2 B1 B1 :: f1 0
C B3 B2 B1 B1 :: f2 8
C B3 B2 B1 B2 :: f3 16
C B3 B2 B2 :: g1 24
C B3 B2 B2 :: g2 32
C B3 B2 B2 :: f3 40
C B3 B3 :: h1 48
C B3 B3 :: h2 56
C B3 B3 :: h3 64

C D2 vbase offset for D1 −24
C D2 D1 offset-to-top (nonzero) −16
C D2 D1 RTTI (of C) −8
C D2 D1 D1 :: g1 0
C D2 D1 D1 :: g2 8
C D2 D2 :: h1 16
C D2 D2 :: h2 24

Let’s consider vtable group C.V of C class. They’re laid
out consequently, in the same order the base classes are
placed in C’s body. Every vtable V ∈ C.V is aligned
around the point of origin referenced by C.ptrto(V); it
relates to the primary base group B1 ↪→ B2 ↪→ . . . Bn.
Immediately before the zero, with negative offset, RTTI
pointer and C−C.ptrto(V) offset (offset-to-top) are places.
Then, for i := 1..n, are appended the pointers to final virtual
function overriders of the functions first introduces into Bi.
To the beginning, at negative offset, if Bi.BV 6= ∅, offsets
Bi.BV

j −C.ptrto(V) (vbase offsets) are appended; the less
i is, the closer to point of origin offset’s placed. Then, for
each virtual function, declared in base S of Bi.Bj , such that
∀D : K ↪→ D ↪→ Bi.Bj ⇒ D /∈ V , and that it’s finally
overridden in Kk, the offsets Bi.BV

j −Kk (vcall offsets) are
appended in the same way as vbase offsets, but after them
in the ,,negative” direction.

So the information about primary bases is ,,sliced” so they
share vtable and vtable for base class is, at the memory such
vtable is allowed to access, coincides with vtable as if it was
allocated separately. See the example of vtable layout on
figure 5 (the hierarchy is B1 is a primary virtual base of B2,
which is primary base of B3, which is primary virtual base
of C, which also derives D2, which has a primary virtual
base D1; virtual function f3 is defined in B1 and overloaded
in B2).

We can see, that pointers to functions, offsets and data
pointers present in the vtable. It’s irrelevant if they all
have different sizes because they can’t intermix due to
carefully elaborated vtable layout. However as vtable group
is referenced by only one symbols, the size of each can’t
change, as offsets from the first vtable to any otherC.Vi are
precompiled in f.exe.

Hence C.V depends on mutual location of virtual base
groups, on the order of classes within these groups and on
their virtual functions.

Therefore an only C.V change possible is to add new
vtables or extend the last one in the group (C.V|C.V|).
However, if that’s the table of V such that V ∈ C.BV ,
developer can’t add virtual functions overridden in derived
classes as it would ass vcall offset shifting table the shift
to which is precompiled. But unfortunately the function will
most likely be added to virtual base as their vtables are places
at the end of C.V .

Furthermore, when you derive the class in the userspace,
the derived vtable is constructed like in L.h, but the library
functions will implement virtual functions call algorithm ac-
cording to L′.h notion. So, extension of vtable is impossible
without compatibility loss, if extending the table functions
or classes are used in userspace code. We will assume that
this rule holds. Let’s study the ways of table extending.

1) New base class
The extension may be achieved by increasing the
amount of dynamic bases; whenever a class made
virtual or a first virtual function is added to one of
them. But the new class can’t be virtual as it would
add vbase offset to the beginning of vtable. As change
of class mutual interposition is forbidden as well, only
two options remain.

a) Add class N that will share virtual table C.V|C.V|
with other classes. This would just add a new
,,slice” to the vtable. Such a change is only
compatible when nothing would be added to the
,,negative” side of vtable. That’s in turn possible
only when non-virtual dynamic class is added,
the class having no virtual derivant (otherwise
virtual functions of N would cause new vbase
offsets). Non-virtual class, that doesn’t define
virtual functions is not dynamic, therefore an
only compatible way to add a class sharing the
last vtable in the group, is adding a nonvirtual
base in case when C.BV = ∅

b) Add class N , that yields new vtable in the group.
As it’s non-virtual class, C.BV = ∅; and N will
be added after all dynamic classes in preorder.
The overload of virtual functions by other classes
will be studied in point 4, and the conclusion will
be that it won’t cause incompatibility. Therefore,
non-virtual dynamic class can be added to the
end (in preorder) of hierarchy of class without
virtual bases.

2) Adding a completely new virtual function
Let a virtual function be added to subclass B, the
virtual function being added not overriding and being
overridden by any other function. It can only be added
to the very end of vtable group, i.e. to the most
derived class of this group. Such an addition can’t
cause vcall offset only if B is virtual and B doesn’t
have virtual bases. However, if B does have virtual
derivants, C.BV 6= ∅, i.e. B, as most derived class of

C.V|C.V| group, is virtual base itself, what proves that
new vcall offsets would never be added.
Therefore, adding not overloaded and not overloading
virtual function to the end of the most derived class
of the last group of virtual base doesn’t break binary
compatibility.

3) Withdrawing a virtual function
The withdrawing of function may retain compatibility
if adding of it to the resultant classes causes appending
to the very end of virtual table. Of course, the same
rules as in 3.1 apply to the function being withdrawn,
if the function can be called from the userspace. But in
some cases virtual function’s symbol isn’t referenced
directly, so there’s no external dependency on it.
Okay, let’s assume that the function is called through
virtual table. If the class can be derived in userspace,
then the new vtable is created for it at compile time
and, upon the call of the virtual function in subject
through that vtable, it will fail. But then the call will
fail in runtime due to absence of the proper symbol.
Therefore an only conclusion possible is that with-
drawing a virtual function (and making nonvirtual a
virtual function12) breaks binary compatibility.

4) Adding an overloading virtual function
Let the new function K :: f be such that it overloads a
(probably pure) virtual function of some base class. In
case of covariant overloading it requires a new vtable
entry; point 2 applies in this case. Otherwise it’s re-
quired to overwrite all pointers to function by replacing
them with the relevant entry points; this doesn’t cause
binary incompatibility. An only condition remaining is
for a function not to add new vcall offsets. Therefore,
adding a virtual function to K class doesn’t cause
binary incompatibility iff the function doesn’t covari-
antly overload and ∀V ∈ C.BV ⇒ K /∈ V.B.

5) Adding a function becoming overloaded
Assume a function is added that doesn’t overload any
other. As this function is added relatively close to
vtable’s point of origin it can only keep compatibility
if its derivants the class is a primary base for do not
add more functions to the vtable and if this function
doesn’t add more vcall offsets (see 4).

3.4.3. VTT. VTT13 is a structure that keeps pointers to
virtual tables during construction. These tables do not possess
own symbols; it is only VTT they can be referenced through.
Each VTT entry refers to a vtable keeping information about
the state of object during construction within larger object.
The virtual function pointers will only point to the routines of
class constructed so far (in the process of complex hierarchy
initialization), its RTTI will be proper and vbase offsets will
point to virtual bases allocated as in bigger object. Only the
latter is the reason of introducing the new entities compared
to the usual vtables; therefor it’s only classes with more than

12. C++ rules state that if function f is declared as virtual in B
class, then ∀C : B ∈ C.B, C :: f is also virtual

13. most likely, it’s an abbreviation of ,,virtual tables table”

one (indirect) virtual base who have VTT assigned.
Where VTT is used is construction code for derived

classes. Let’s consider a class that can be derived in the
userspace code. Taking the conclusions of section 3.4.2
into account, we reduce the analysis to adding non-virtual
dynamic classes to the hierarchy of class that doesn’t contain
any virtual bases. However, no VTT is created for such
classes. Therefore study of VTT doesn’t yield any results.

4. Conclusion

4.1. How to Keep Compatibility

Let’s sum our study up. We have studied enough to
formulate the rules the developer is to follow to retain
binary compatibility with the old version of shared C++
library in GNU system, assuming that additional constraints
in addition to C++ rules apply. We called the code compiled
into application userspace code; it includes inline functions
of library headers and application code itself. The classes that
are allowed to be instantiated in userspace code are called
userspace classes, other classes are internal. The functions
that can be called from the userspace code are referred to as
userspace functions.

Let us have L library that we’re going to alternate and
get L′ library, the new version. Then, L′ will be binary
compatible with L, if all following rules apply:

1) any userspace function with ,,external linkage”
shall retain its external name (1.3.4). Therefore, you
should keep true arguments type as they appear after
all typedef substitutions and their number. To learn
what changes external name, refer to 3.1.

2) no userspace function may be removed or made
inline, either member or global, virtual or non-
virtual; no virtual function may be removed even
for internal class. Refer to sections 3.1 and, for virtual
function discussions, to point 3 of section 3.4.2;

3) no function implementation defined in cpp file may
be changed in incompatible way, i.e. if user calls
new functions in an old way, that must be plausible
and behavior must be the same (section 3.2). A special
exception holds for bugfixes, but note, that they may
break workarounds;

4) layout of the first sizeof(T) bytes of types of
directly accessible userspace global data must be
the same; this holds for both static class variables and
for internal classes (3.3, point 1);

5) the size of userspace class must be the same if it has
non-inline constructors; if all constructors are inline,
you should use symbol versioning of sorts to prevent
access to new part of the type layout from the new
function;

6) classes in hierarchy of all userspace classes must be
the same and in the same order unless the classes
being moved through hierarchy are empty bases of
non-dynamic class (but you still need an experiment
to ensure that sizes are the same). See 3.3 and 3.4.2;

7) dynamicity of classes in hierarchy of userspace class
must be the same except for userspace class without
virtual bases, where you can make non-dynamic
class after all dynamic classes in preorder see (3.3
and point 1 of section 3.4.2);

8) you can introduce new virtual functions overloading
the old ones, except for the case of covariant over-
loading and overloading of function of a virtual base
(point 4 of section 3.4.2). You should be assured that
the call to this function will yield the same results as
if it were called in a way allowed by L specifications;

9) a completely new virtual function may be added to
the end of the most derived class if its hierarchy
doesn’t contain any virtual base (point 2 of section
3.4.2).

4.2. Conclusion

We may compare the rules deduced by us and summarized
in 3.4.3 with the compatibility guide [8] suggested by the
KDE developers and known to be most complete.

We see that our formal approach didn’t yield more results
than the developers deduced from the practical experience.
It appears that requirements for binary compatibility can’t
be relaxed due to additional restrictions on the library use
except for a limited number of cases. Namely, there’s more
freedom for internal classes, that can’t be instantiated in
automatic memory or derived by user. However, such classes
can’t be considered as exhaustively using C++’s OOP flavors,
although implement quite a popular ,,singleton” concept
(see [9]).

Therefore we conclude that the current C++ ABI is in-
capable to provide more compatibility even with additional
restrictions upon the use of C++ constructs provided by
library’s headers.

We should also note that the current gcc ABI is influenced
by the desire to keep away from inserting elements of
interpreted languages into ABI and by ,,incremental” way of
binary representation (the architecture when the most com-
mon cases—single inheritance and simple virtual functions—
induce more simple and fast binary representation). As a
result, complex concepts are both considered unsafe and their
uncareful use causes incompatibility.

Perhaps, the other ABI model would better fit compatibil-
ity aims, but this question needs further research to discover
the best balance between maintainibility and performance,
and it also needs careful cost estimation, as the benifits of
its change should be greater than the expenses required to
adopt it.

References

[1] TIOBE Programming Community Index for January 2009.
http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html;

[2] Bjarne Stroustrup. A History of C++: 1979-1991. History
of Programming Languages conference, 1993;

[3] ISO/IEC 14882:2003. Programming languages — C++

[4] “informal industry coalition consisting of (in alphabetical
order) CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red
Hat, and SGI”. Itanium C++ ABI (Revision: 1.86)

[5] Urlich Drepper. How To Write Shared Libraries. 2006.

[6] B. Guptill, B. McNee. Booming Support for Mission-
Critical Application Workloads on Linux.
http://research.saugatech.com/fr/researchalerts/304RA.pdf

[7] IDC. Open Source in Global Software: Market Impact,
Disruption, and Business Models.
http://www.idc.com/getdoc.jsp?containerId=202511

[8] Binary Compatibility Issues With C++.
http://techbase.kde.org/Policies/
Binary Compatibility Issues With C%2B%2B

[9] E. Gamma et. all Design Patterns: Elements of Reusable
Object-Oriented Software

[10] Using the GNU Compiler Collection (GCC), chapter 8.
http://gcc.gnu.org/onlinedocs/gcc/Compatibility.html

