
The Automated Analysis
 of Header Files
for Support of the

Standardization Process
Eugene Novikov

Institute for System Programming, RAS
joker@ispras.ru

Denis Silakov
Institute for System Programming, RAS

silakov@ispras.ru

 2

Linux Standard Base (LSB)

 Large number of Linux distributions
 Different versions and specific modifications

of components
 Absence of complete compatibility at the

binary level
 Complexity of application maintenance and

porting
 LSB is aimed to help developers to

create and support portable applications
for Linux operating system

 3

LSB database

 LSB database is the LSB core
 From LSB database it is generated

 LSB standard text
 Primitive tests
 Environment for LSB-compatible

applications development

 4

LSB database basic objects

~1600С++ classes

~12000Macros

~16000Types

~47000Interfaces

~900Header files

~60Libraries

 5

LSB database population

 Libraries binary files
 With debugging information
 Without debugging information

 Header files

 6

Binary files analysis by
libtodb

 Interfaces exported by libraries
 Binary symbols versions
 Absence of some data (e.g. inline

functions, preprocessor directives, etc.)
 Insufficient C++ support
 Absence of interrelations between

complex types

 7

Header files analysis by
headertodb

 Obtaining of considerable part of data
from header files

 Insufficient analysis by ctags program
 Insufficient C++ support
 Absence of interrelations between

preprocessor directives and other
entities

 8

Goals of this work

 Develop a method for header files
analysis

 Allow automated header files analysis
 Provide necessary C++ support
 Allow to interrelate complex entities with

each other
 Allow to interrelate preprocessor directives

with other entities

 Develop a tool to implement this method

 9

Suggested approach

 Based on cpp preprocessor and gcc compiler
high-level representations

 Analyzers supported by third-party developers
 Simple and formal representation structure
 Most detailed analysis of Linux header files
 The openness of the cpp and gcc source code
 Absence of the detailed documentation
 Incompleteness of data
 Possible changes in high-level representations

 10

Gcc compiler parsing tree structure

 Gcc compiler parsing tree in text
representation

 Nodes corresponding to entities (@731)
 Their attibutes

 The first attribute
 Entity kind (integer_type)

 Subsequent attributes values
 Reference to another node (@2449)
 Some text information (long double)
 Entity location in header file (timer.h:241)

 11

Function declaration

 The first attribute is function_decl
 Subsequent attributes names and values

 name – reference to function name identifier
 type – reference to function signature
 srcp – function declaration location in header file
 scpe – reference to function scope, either class or

namespace
 accs (optional) – access to class method
 spec (optional) – class method specifier
 note (optional and multiple-valued) – constructor,

destructor, operator, etc.

 12

Function declaration extensions

 Extended attributes names and values
 ext_note (optional and multiple-valued) – explicit,

inline, throw
 ext_qual (optional) – class method qualifier
 ext_body (optional) – reference to expression

corresponding to function body
 ext_body_open_brace (optional) – opening

brace location, the beginning of function body
 ext_body_close_brace (optional) – closing

brace location, the end of function body

 13

Additional analyzers

 Preprocessor conditional compilation
directives

 Conditions (#if, #ifdef and #ifndef)
 Branches (#else and #elif)
 Conditional compilation end (#endif)

 Special comments
 LSB parameters
 LSB IDs

 14

headertodb3 tool

 Input is header files
 Major tool work stages

 Preprocessor directives and special
comments analysis

 Entities ordering
 Ordered entities analysis by means of

special handlers

 Output is SQL script

 15

headertodb3 application in Qt4
library standardization process

190290Macro definitions

16103087830
Properties and
interrelations

4031022760Entities

240290Typedefs

155 240 Templates

320 160 Enumerations

990 440 Classes

9720 4450 Interfaces

18385Header files

libQtGui libQtCore

 16

Conclusion
 It was developed the method that allows to

analyze header files on the basis of cpp and
gcc high-level representations

 Headertodb3 tool provides both C and C++
support

 Tool makes header files analysis substantially
automated

 Headertodb3 was successfully applied during
Qt3 and Qt4 libraries standardization process

 17

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

