
The Boost.Build System
Vladimir Prus

Computer Systems Laboratory
Moscow State University, CS department

Moscow, Russia
vladimir.prus@gmail.com

Abstract—Boost.Build is a new build system with unique
approach to portability. This paper discusses the underlying
requirements, the key design decisions, and the lessons learned
during several years of development. We also review other
contemporary build systems, and why they fail to meet the same
requirements.

I. INTRODUCTION

For software projects using compiled languages (primarily
C and C++), build system is the key element of infrastructure.
Mature tools such as GNU Make[1] or GNU Automake[2]
exist. However, those tools are relatively low level, and hard
to master. They also have limited portability. For that reason,
many software project do custom work on build system level.
One such project is C++ Boost [3].

C++ Boost is a popular collection of C++ libraries, many
of which are either included in the next revision of the C++
Standard or planned for inclusion[4], [5]. This unique position
attracts a lot of users, who, in turn, use a wide variety of
operating systems and differently-configured environments.
This differs from most commercial projects — which target
a few platforms that are important from business perspective,
and are built in a well-controlled environment. This is also
different from most open-source projects — which tend to
focus on GNU/Linux environment. Developers’ background
also considerably differs — a person who is expert in C++ is
not necessary an expert in different operating systems.

This diversity in user and developer base lead to the
following requirements for a build system:

1) “Write once, build everywhere”. If a library builds on
one platform, it should be very likely that it builds on all
other platforms supported by the build system. It follows
that build description should be relatively high-level, and
avoid any system- or compiler- specific details, such as
file extensions, compiler options or command-line shell
syntax details.

2) Extensibility. Adding support for a new compiler or a
platform should not require changing build system core
or build descriptions for individual libraries. Ideally, user
would have to write a new module and provide it to the
build system.

3) Multiple variants. The build system may not require that
the build properties for the entire project are specified
up-front, during special “configure” step, and then re-
quire that all build products be removed before changing
build properties. Instead, it should be possible to change

build properties without full rebuild. Such change may
happen at three levels:

a) Between different parts of the project. The simplest
example is compiling a specific source file with an
additional compiler option. More complex example
is building a specific module as a static library, and
another as a shared library. It should be possible to
change every aspect of the build process — even
including the used compiler.

b) Between different builds. For example, one may
originally build a project in release mode for test-
ing and, after discovering a bug, wish to initiate
a build in debug mode. It would be wasteful to
remove the previously built object files, so the
build system must arrange for debug and release
products to be placed in different directories. The
mechanism should not be restricted to just debug
and release builds, but apply to any build proper-
ties.

c) Within one build. This means that one invocation
of the build system may produce several variants
of a build product — for example, static and shared
versions of the same library.

This paper describes Boost.Build[6] — a build system devel-
oped to meet the above requirements. Section 2 will describe
key concepts and mechanisms of Boost.Build. In section 3 we
review the lessons learned during development as well as some
unexpected drawbacks. Section 4 discusses other contempo-
rary build tools, and why they could not be used. Section
5 summarizes the article and suggests future development
directions.

II. DESIGN CONCEPTS

The best way to explain the key design elements of
Boost.Build is by following a few steps of gradual refinements,
starting from a classic tool — GNU Make. In GNU Make, a
user directly defines a set of targets, where a target is an object
that has:

• a name
• a set of dependency targets
• a command to build the target

Consider this example:
a.o: a.c

g++ -o a.o -g a.c



Here, the name of the target is a.o, the only dependency
is a target named a.c, and the command invokes the gcc
compiler. Given the set of targets defined in a build description
file (“buildfile” for short), GNU Make identifies targets that are
out of date with respect to their dependencies, and invokes the
commands specified for such targets. The description shown
above has two problems. First, the names of the targets and
the exact commands typically may vary depending on environ-
ment, and should not be hardcoded. This problem is typically
solved using variables — in the example below, the OBJEXT
and CFLAGS variables may be defined as appropriate for
platform.

a.$(OBJEXT): a.c

g++ -o a.o $(CFLAGS) a.c

While this makes build description more flexible, it also makes
it rather verbose, and hard to write. Second, depending on
build variant and platform, even the set of targets may vary. For
example, depending on platform and desired linking method,
building a library might produce from 1 to 4 files. Obviously,
conditionally defining 4 targets for every library is extremely
cumbersome.

Modern build systems do not require that user describes
concrete targets, but provide a set of generator functions, or
generators for short. A generator is called with the name of
primary target, a list of sources, and other parameters, and
produces a set of concrete targets. Sometimes, these concrete
targets are GNU Make targets. Sometimes, a different low-
level build engine is used. For example, a library might be
defined like this1:

library(helper, helper.c)

This statement calls a function library that constructs the
set of concrete targets that is suitable for the target platform —
which may include the library file proper, import library, and
various manifest files. The compiler and linker options are also
derived from both the platform and the way the build system
was configured. Thus, the user-written build description does
not include any platform-specific details. Instead, such details
are handled by the build system, which is separately main-
tained. Boost.Build also uses a similar description mechanism,
but advances it further.

First key observation is that using generators is not sufficient
to achieve portability. Requirements listed in section 1 include
using different build properties for different parts of the
project. This can be achieved using additional parameters
to generators. But if the set of those parameters, or their
values, is either incomplete, or depends on platform, the build
description is not portable. To achieve the portability goals,
Boost.Build defines a large set of build parameters with the
following characteristics:

• Every generator accepts the same set of build parameters
• The names of build parameters and their values are the

same everywhere

1For presentation purposes, we have abstracted away the syntax of modern
build systems.

For example, every generator in Boost.Build accepts a pa-
rameter named optimization, with none, speed and
space as possible values. Consequently, the example might
be modified as follows:

library(helper, helper.c,
optimization=space)

This change addresses requirement 1 (“write once, build
everywhere”).

The second key observation is that differences between
platforms are so significant that creating a single generic gen-
erator such as library is hard. Obviously, small behaviour
differences can be handled in an ad-hoc way — for example
by introducing a global variable set by platform-specific code
and checked by the generator. However, in existing tools there
are dozens of such variables, with the generator still containing
significant platform specific logic. More systematic approach
is needed. To that end, Boost.Build allows several generators
to exist, and uses a dispatching function to select the generator
to use. In example below:

library(helper, helper.c,
link=shared)

the description written by the user looks the same as before.
However, the library function is no longer responsible for
constructing targets. Instead, it merely selects and invokes a
platform-specific generator. This generator need only deal with
a single platform, and can be easily implemented. The specific
generator selection algorithm (that will be described below) al-
lows new generators to be defined in platform-specific modules
and automatically participate in generator selection, thereby
addressing requirement 2 (“extensibility”). It should be noted
that recursive calls are common — for example, the library
generator might use the object generator. In Boost.Build,
the dispatching function is also used for such recursive calls,
allowing for fine-grained customization.

The third key observation is that if a build description is
allowed to call a dispatching function when the build descrip-
tion is parsed, it severely limits the possibilities to further
build the same part of a project with different properties. To
address this issue Boost.Build introduces metatargets — which
are essentially closure objects. Consider an example using the
actual Boost.Build syntax:

lib helper : helper.cpp ;

This statement defines a closure of the dispatching function,
binding the name and the sources list. If we invoke Boost.Build
from the command line using the following command:

$ b2 toolset=gcc variant=debug
link=shared

then the closure object will be called with the specified
build parameters. The toolset=gcc and link=shared
parameters uniquely specify a generator — gcc.link.dll
— that is called to produce the concrete targets. In the example
below, we request a two-variant build:

$ b2 toolset=gcc link=shared --
toolset=msvc



In this case, the created closure object will be called twice,
once with toolset=gcc and link=shared parameters,
and once with toolset=msvc parameter. Different gen-
erators will be selected, and a substantially different set of
concrete targets will be produced. The metatargets mechanism
addresses requirement 3 (“multivariant builds”).

We have introduced the key design elements of Boost.Build.
The remainder of this section describes in detail the most
important mechanisms used to implement this design.

A. Requirements

It is uncommon for the entire project to be buildable for
all possible build parameters. Requirements is a mechanism to
restrict the possible build parameters for a specific metatarget.
Simple requirement merely state that a given build parameter
should always have a specific value for this metatarget. For
example:

lib helper : helper.cpp
: link=static ;

overrides the value of the link build parameter that was
passed to the metatarget, and causes the concrete targets to
be constructed as if link=static was passed. Conditional
requirements override a build parameter if some other param-
eters have specific values. For example:

lib helper : helper.cpp
: toolset=msvc:link=static ;

will override the link build parameter only if the toolset
build parameter has the value of msvc. Finally, indirect
conditional requirements specify that a user-provided function
should be called to adjust build properties.

For convenience, a buildfile may specify project require-
ments that are automatically added to requirements of all
metatargets in that buildfile.

B. Platform support

This section explains two mechanisms that facilitate easy
support for new platforms — selection of generators by the
dispatching function, and translation of build parameters into
properties of concrete targets.

Let’s look again at the syntax used to declare a metatarget:
lib helper : helper.cpp ;

As said before, this creates a closure of the dispatching
function, binding target name, list of sources, and — which
we did not say before — the metatarget type, in this case lib.
For the purpose of generator selection, Boost.Build maintains
additional information about each generator — the metatarget
type, and the set of required build parameters. For a concrete
example, consider the following table:

Generator Type Required parameters
gcc.link.dll LIB toolset=gcc

gcc.link EXE toolset=gcc
msvc.link.dll LIB toolset=msvc

When the dispatching function is called, it first selects the
generators associated with the metatarget type. In our example,
such generators are gcc.link.dll and msvc.link.dll.

Then, required parameters of the selected generators are
compared with the build parameters passed to the dispatching
function. If any of the required parameters is not present, the
generator is not considered. In our example, if toolset=gcc
is passed to the dispatching function, then msvc.link.dll
generator is discarded. All the remaining generators are called.
If exactly one succeeds in generating targets, then the dis-
patching function returns. Otherwise, an ambiguity is reported
and the build process stops. This selection mechanism allows
additional generators to be easily added, without modifying
core logic of the build system.

When a specific generator constructs a target, it should
establish the exact path and name of the target, as well as
the command to build it. All that typically depends on build
parameters. Of course, a generator may use arbitrary logic to
compute this information, but Boost.Build comes with conve-
nient default behaviour. The target path is constructed using
the values of build parameters. For example, a path might be
bin/gcc/debug/. Some mechanisms are used to make the
paths shorter — for example, for a few common parameter
the path includes only the values, but not the names. Also,
parameters that have default values are not included in path.
Target name is constructed from the name of the corresponding
metatarget. Boost.Build maintains a table, that is indexed
by metatarget type and the value of the target-os build
parameter, and gives suffix and prefix that should be added
to metatarget name. The mechanism to construct updating
command is the key to easy definition of new generators, and
is illustrated below:

actions gcc.link.dll {
g++ -shared $(OPTIONS)

}
flags gcc.link.dll OPTIONS

: <profiling>on : -pg ;

First, a command template is defined — by convention, it has
the same name as a generator. Command template may refer to
variables, in this case OPTIONS. The second statement in the
example establishes mapping between build parameters and
variables that are replaced in command template. Given these
declarations, a generator can create a new target specifying
gcc.link.dll as command template for that target. All
the flags statements for this command template are au-
tomatically processed. The flag statement above requests
that if build parameter profiling has value on, then the
-pg string be added to the OPTIONS variable. After all flag
statements are processed, every reference to a variable in the
command template is replaced by the variable’s value. This
mechanism proved to be highly beneficial, because it allows
to add support for a new build variable to any generator with
a very localized change.

III. CURRENT STATE AND LEARNED LESSONS

At this point Boost.Build is a mature tool that can be
successfully used in production environment, and has already
met its requirements. At the same time, it is being actively



developed. This section will describe the main issues that were
discovered.

A. Metatarget-induced indirection

In most existing build tools, buildfiles are written in some
interpreted language, and are executed at build system startup,
calling generators and constructing targets. Boost.Build differs
from this model by creating closure objects that are called
with proper build parameters at a later point. Furthermore,
Boost.Build does not require that project be “configured”, with
some of the build parameters fixed, before starting a build.
Consequently, when a buildfile is executed it does not make
sense to talk about “current” build parameters and no logic
that depends on build parameters may be implemented as
an if-statement on the top level of a buildfile. Rather, such
logic must be implemented as functions that will be called by
generators.

For many users, this trait cause understanding problems. We
believe that this complexity directly follows from the require-
ments and key design elements, and cannot be fully eliminated.
On the other hand, most users successfully adjusted to this
model.

B. Code-level extension mechanisms

One of the goals of Boost.Build was simple description
language. This lead to invention of concise syntax for many
tasks. However, often no suitable programmatic interface was
designed for the case when the concise syntax is not enough.
In other words, there are many areas where build behaviour
needs to be customized by the user, and there’s a wide
spectrum of possible customization mechanisms — from a
new build parameter to a new metatarget type. In a few cases,
this spectrum is not evenly covered, and user has to choose
between a very simple method that is not flexible enough, and
an extremely complex solution.

One example is the conditional requirements syntax shown
previously: toolset=msvc:link=static. This syntax
is sufficient for the majority of cases, but does not support
complex conditions — in fact, conditions using any logical
operators except for “and”. Until indirect conditional require-
ments were introduced relatively late during development,
users were forced to use a fairly verbose mechanism instead.

Another example is generators. It is very easy for user
to declare a new generator that produces one output target
from one input target. However, any conditional logic —
such as creating an additional target depending on some
build parameters — requires substantial complexity. While we
have described generators as functions in this article, they
are actually implemented as classes in certain programming
language, which adds some overhead for just declaring a
new generator. Furthermore, the implementation of the base
generator classes was not designed for easy extensibility, so
often, user had to reimplement significant amount of code.

We believe that issues of this kind have only small corre-
lation with the key design choices, and can be eliminated. In
fact, quite a few were already fixed as user report them.

C. User expectations

One unexpected issue during development was users’ ex-
pectations. It is safe to say that most users either have GNU
Automake background, or are not experienced with command
line tools, and these users have some specific, and often
different, expectations.

For example, GNU Automake allows to change compiler
by setting environment variables, such as GXX. Users often
try the same with Boost.Build, and find that it has no effect.
For another example, Boost.Build does not stop after a compile
error, but builds other targets that do no depend on the failed
one. At the end of the build, a summary of failures is printed.
This small change proved problematic. Many users did not
understand that the error was printed earlier, and interpreted
the summary as the original error. And on some operating
systems, finding an error in several thousand lines of build
output is a problem itself. Developers on Microsoft Windows
operating system usually expect that every tool checks system
registry for all configuration. Consequently, they found it
very unnatural when prior versions of Boost.Build required
to specify compiler location in a configuration file. Finally,
Boost.Build command line syntax is slightly unusual, having
separate syntax for command line options, build parameters
and arguments. Many users still try to use option’s syntax to
specify build parameters.

Some of those issues are natural consequences of a different
design and require users to adjust. But still, many issues are
independent, and can be easily addressed. We recommend that
design process for any project in an established area include
explicit gathering of user expectation to avoid unnecessary
differences in operation details.

IV. EXISTING SOLUTIONS

There are two build systems that are most commonly used
today – the one integrated with Microsoft Visual Studio, and
the Automake build system. However, neither of them is truly
portable. Below, we review a few solutions that work across
different platforms.

A. Eclipse CDT

The C/C++ Development Tooling (CDT) for the Eclipse
Platform comes with its own build system[7]. The CDT build
system keeps a repository of available tools, organized in
named toolsets. For each tool, input and output file types are
specified. Any project is required to specify the name and
type of the target that should ultimately be built, and CDT
automatically picks tools that can produce the desired final
target from all files in the source folders. Each tool can have
a set of options that are editable via user interface. Similar
to Boost.Build, tool options may be specified on individual
source folders or individual source files.

Let’s review how CDT build system can support the build
system requirements described in sectionI:

• The “write once, build everywhere” requirements is not
met. User can count on some functionality to be available
everywhere — in particular shared and static libraries



and predefined “debug” and “release” build variants.
However, any further fine-tuning is done via options that
are specific to each tool. Therefore, if building with a
different compiler, the options has to be specified anew.
CDT actually has an indirection level between the value
of an option as displayed in user interface, and the
command line flags used for compilation when that value
is selected. Therefore, it would have been possible to
implement a portable set of options, that every tools
would translate into appropriate command line options.
However, since such portable set is not defined, build
descriptions in CDT are not portable.

• The extensibility requirement is poorly met. The only way
to extend build system is via new tool definition, and
it not possible to completely override the build process
for a specific platform. Further, tool definition should be
be included either in CDT core or in a separate Eclipse
plugin, and cannot be easily packaged with a project. Tool
definition uses an XML-based language, which appears
to be inconvenient in practice.

• The multivariant requirement is partially met. CDT sup-
ports build configurations that include a complete set of
options for all tools, and allows one to freely change
build configuration every time a build is initialized.
Each part of a complex project may use different build
configuration. Note that this happens because a “project”
in CDT terminology may only contain a single final
target, so non-trivial user project has to be split into
multiple CDT projects. It is not possible to build the
same target in different configurations simultaneously. It
is also not possible to build using arbitrary ad-hoc set of
build parameters — one has to define a new configuration
instead.

CDT has one unique feature — it has a mechanism to specify
dependencies between build parameters. For example, 64-bit
compilation can be enabled only if the chosen processor indeed
supports 64-bit instructions. This feature can be worthwhile to
implement in Boost.Build.

B. CMake

The CMake [8], [9] build tool is designed as a abstraction on
top of existing “native” build systems. When invoked, CMake
reads its buildfiles, and then generators secondary buildfiles
using a selected “backend” build system – for example, GNU
make. The project is then build when the user explicitly runs
the secondary build system. Whenever CMake buildfiles are
modified, or any build properties must change, the secondary
buildfiles are regenerated. Such scheme improves build system
speed for the case where a project is repeatedly build with the
same settings.

Let’s review how CMake can support the build system
requirements described in sectionI:

• The “write once, build everywhere” requirement is not
met. The points we have raised when discussing CDT
equally apply to CMake.

• The extensibility requirement is not met. Platform-
specific modules in CMake essentially specify variables
used by CMake core, and it is not possible to completely
replace generators2. Support for some platforms, for
example, Microsoft Visual Studio, relies on special core
functionality.

• The multivariant requirement is not met. CMake requires
that a project is configured with specific set of properties,
and requires reconfiguration for any change in properties.
This appears to be result of an explicit design goal, meant
to make it impossible to accidentally mix modules built
with incompatible settings.

C. SCons

The SCons build tool[10], [11] is unique in two aspects.
First, it uses the Python language for buildfiles, as well as

implementation language. In contrast, both Boost.Build and
CMake use custom languages. On one hand, this means that
the syntax is not as concise, due to punctuation and quoting
rules of Python. On the other hand, the use of a mature and
widely known programming language reduces learning curve,
and simplifies many programming tasks. It also means there’s
no language boundary between buildfiles and build system
core.

Second, SCons uses cryptographic signatures to detect if a
target should be rebuild. When a target is built, signature of
content of all source files, as well as the command used to
produce the file is stored. These signatures are recomputed on
every build, and if they differ from the scored ones, the target
is rebuild. This approach means that a change in command
associated with a target will be detected, and cause a rebuild,
while other build system can build different parts of project
with incompatible commands.

For the simple usage, SCons provides a set of generators
that can be called from buildfiles, for example Program
and Library. The targets produced by those generators
use globally specified build parameters. However, SCons also
provides a mechanism called construction environment —
explicitly created collection of build parameters. It is possible
to invoke a generator in specific environment, consequently
building different parts of projects with completely unrelated
set of build properties. However, this mechanism does not
allow to easily build one target with different properties. SCons
does not assign different directories for target with different
properties, so user is required to explicitly specify different
names for final and intermediate targets.

Let’s review how SCons supports the requirements de-
scribed in sectionI:

• The “Write once, build everywhere” requirement is not
met. The points we have raised when discussing CDT
equally apply to SCons.

• The extensibility requirements is met. A platform specific
code can completely replace standard generators if so
desired.

2The “generator” is used in the sense defined in this article. CMake
documentation uses the word “generator” for an unrelated concept.



• The build variants requirements is partially met. Similar
to CDT, SCons allow to explicitly define several build
variants, and unlike CDT, all variants can be built simul-
taneously. However, SCons does not automatically place
products for different parameters in different directories,
so it is in general not possible to change any parameter
between two build invocation without discarding previous
build products.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the requirements for the
Boost.Build system and its key design decision, as well as
reviewed some existing solutions. We believe that the main
distinguishing characteristics of Boost.Build are:

• portable build properties, and associated mechanisms like
requirements

• true multivariant builds, specifically the metatarget con-
cept

• convenient extensibility, in the form of generator selection
and flags mechanisms

While some design complexities were encountered, we
believe that overall, Boost.Build is a step forward in the area
of software construction.

There are two key areas of future development:
• Use of the Python language for implementation and build

description. We find that Python has become sufficiently
popular and well-supported and the benefits of using it
will outweight slightly more verbose syntax.

• IDE integration. Because Boost.Build does not rely on
any legacy backend build tools, and because every
metatarget can be repeatedly constructed with different,
or same, build properties, it is particularly suitable for
integrated development environments — making it pos-
sible to quickly determine what products must be rebuild
as result of changes made by a user.

VI. ACKNOWLEDGMENTS

The author would like to thank Alexander Okhotin and
Sohail Somani for reviewing drafts of this paper.

REFERENCES

[1] R. M. Stallman, R. McGrath, and P. D. Smith, GNU Make. GNU Press,
2004.

[2] G. V. Vaughn, B. Ellison, T. Tromey, and I. L. Taylor, GNU Autoconf,
Automake, and Libtool. Sams, 2000.

[3] “C++ boost libraries,” http://boost.org.
[4] The C++ Standard (ISO/IEC 14882:2002). Wiley, 2003.
[5] “Technical report on c++ standard library extensions,” iSO/IEC PDTR

19768.
[6] “Boost.build website,” http://boost.org/boost-build2.
[7] C. Recoskie and L. Treggiari, “Extending the eclipse cdt managed

build system,” Dr. Dobb’s Journal, 2007. [Online]. Available:
http://www.ddj.com/cpp/197002115

[8] K. Martin and B. Hoffman, Mastering Cmake. Kitware, Inc., 2006.
[9] “Cmake website,” http://cmake.org.

[10] “Scons website,” http://scons.org.
[11] S. Knight, “Building software with scons,” Computing in Science &

Engineering, vol. 7, pp. 79–88, 2005.

http://boost.org
http://boost.org/boost-build2
http://www.ddj.com/cpp/197002115
http://cmake.org
http://scons.org

	Introduction
	Design concepts
	Requirements
	Platform support

	Current state and learned lessons
	Metatarget-induced indirection
	Code-level extension mechanisms
	User expectations

	Existing solutions
	Eclipse CDT
	CMake
	SCons

	Conclusions and Future Work
	Acknowledgments
	References

