Software package for optimizing digital circuits

Maxim Gromov Kushik Natalya

Tomsk State University

Window approach

- We extract a combinational fragment of a large digital circuit for optimization
- For optimizing the fragment we divide it into two parts which are optimized independently

Optimizing a head component of a combinational circuit

The behaviour of a combinational circuit is described by three behavioral functions Ψ_{f} , Ψ_{a} , Ψ_{h}

The largest solution can be found as $(\overline{\Psi_{a} \wedge \overline{\Psi_{h}}})\downarrow_{x,y}$

• • • Can we select a function equal to 0?

• Derive a new function φ : $\varphi(x_1, x_2, ..., x_n, u_1, u_2, ..., u_k) = 1 \Leftrightarrow u_j = 0$ $(\varphi = \neg u_j)$ • Derive the conjunction $\varphi \land (\overline{\Psi_g \land \overline{\Psi_h}}) \downarrow_{x,u}$ The function u_j can be selected equal to 0 iff the formula $\neg ((\varphi \land (\overline{\Psi_g \land \overline{\Psi_h}}) \downarrow_{x,u}) \downarrow_x))$

is UNSAT

 Can we select a function as a function of two input variables?

• Let $p(x_i, x_j)$ be a function of 2 input variables x_i and x_j

• Add a new variable $u_{k+1} = u_s \oplus p(x_i, x_j)$

• The function u_s can be represented as $u_s = p(x_i, x_j)$ iff the function u_{k+1} can be selected as 0

Optimizing the tail component of a combinational circuit

- Represent the behavioural function of the tail component as DNF
- The function y_k can be represented as $u_i \lor u_j$ iff the column corresponding to y_k is the disjunction of the columns corresponding to u_i and u_j

 All names are hashed by integer numbers

 Sequential circuit is represented as an array of its nodes

 Behavioural functions are represented as BDD using CUdd package

Main methods of package

- Window extraction and head-tail splitment
- Largest solution derivation for head and tail components
- Optimization (using, for head optimization, MiniSAT included into ABC)
- Replacement the window subcircuit with optimized one

• • • Experimental results for the combinational circuits

- An average path length of an extracted fragment was 10 gates
- Around 15% of benchmarks were optimized (the most significant were s298, s838, s420 circuits)
- When resynthesised wit ABC the number of gates and the average length from primary inputs to outputs could be reduced in all circuits

- Improving the software implementations to deal with larger benchmarks
- Working on algorithms and software implementations for sequential fragments

Thank you for your attention!