Test data generation for LRU cache-memory testing

Evgeni Kornikhin
Moscow State University, Russia
Email: kornevgen@gmail.com

Abstract—System functional testing of microprocessors deals methods restrict on registers only and don’t consider cache-
with many assembly programs of given behavior. The paper memory.
proposes new constraint-based algorithm of initial cache-memory
contents generation for given behavior of assembly program (with II. TEST TEMPLATES DESCRIPTION
cache misses and hits). Although algorithm works for any types of
cache-memory, the paper describes algorithm in detail for basis ~ Test template defines properties of future test program.

types of cache-memory only: fully associative cache and direct Test template contains sequence of instructions. Each element
mapped cache. of this sequence has instruction name, arguments (registers,
. INTRODUCTION addresses, values) and test situation (relation between values

of arguments and microprocessor state before execution of

System functional testing of microprocessors uses marp_}/ . -
Instruction). Example of test template description for model
assembly programsgst programs Such programs are loaded.

to the memory, executed, execution process is logged a{rqiiructmn set: .

analyzed. But modern processors testing requires a lot o EGISTER regl : 32j

test programs. Technical way of test program generation Waé?EGISTER reg2 : 32;

proposed in [1]. This way based on the microprocessor’sADD regl, regz, reg2))

model. Its first stage is systematic generation abstract teskOADP regl, reg2 @ I1Miss, I2Hit

programs fest templatés This abstract form doesn't con- SUB reg2, regl, reg2 _

tain initial state of microprocessor but contain sequence of 1 NiS template has 3 instructions — ADD, LOAD and SUB.
instructions with arguments (registers) and witht situations 1emplate begins from variable definitions (it has name of

(behavior of this instruction; these can be overflow, cach@rnable and its bit length). Test situation is specified after

hits, cache misses). The second stage is generation of inﬁ@": test situation of the second instruction is "[1Miss, [2Hit":

microprocessor state for given test template. This stage is tesMiSS” means cache miss in first-level cache and "I2Hit”
data generation. Technical way from [1] is useful for aime@i€@ns cache hit in second-level cache. .
testing when aim is expressed by instruction sequence withModel instruction set contains only 2 memory operation:
specific behavior. Initial microprocessor state includes initial « "LOAD reg, address” loads value from memory by phys-
values of registers and initial contents of cache-memory. Based ical address "address” to the register "reg”;

on this state the third, final, stage is generation the sequence "STORE reg, address” stores value from register "reg” to
of instructions to reach initial microprocessor state. These the memory by physical address "address”.

sequence of instructions with test template get ready assemblyest data generation is generation of initial values of regis-
program. This paper devoted to the second stage, i.e. initi@ts and initial contents of cache-memory. This problem has

state generation. been solved for common microprocessor cache-memory. The
Known researches about test data generation problem cfiltowing consists of test data generation for 2 basis cache-

tain the following methods of its solving: memory organizations: fully associative cache with LRU and
1) combinatorial methods; direct mapped cache. Common cache includes aspects from
2) ATPG-based methods; both cache-memory organizations. The rest of paper deals
3) constraint-based methods. with one-level cache-memory although proposed method can

Combinatorial methods are useful for simple test templatfg applied to cache memory with more than one level.
(each variable has explicit directive of its domain, each value
in domain is possess) [2]. ATPG-based methods are usefu‘”'
for structural but not functional testing [3]. Constraint-based
methods are the most promising methods. Test template ig-ully N-associative cacheonsists of N cells (N means
translated to the set of constraints (predicates) with variablesche associativily Each cache cell may store data from
which represented test data. Then special solver generateg memory cell. All cache cells correspond to the different
values for variables to satisfy all constraints. This papenemory cells. Access to memory starts from access to cache.
contains constraint-based method also. IBM uses constraiearch data in cache performs for each cache cells in parallel.
based method in Genesys-Pro [4]. But it works inefficientiZache hitmeans existence data in cacl@ache missneans
on test templates from [1]. Authors of another constraint-basaldisence of data in cache. In case of cache miss one cache

T EST DATA GENERATION FOR FULLY ASSOCIATIVE
CACHE

Constraint lru(y) definesy as the least recently used
y address.
Z T the last use
Xy [z - hitxl ~o
X N o hItX2 ,,,,, : other
| ! addresses
Fig. 1. Fully N-associative cache imiSS X3—>y33

cell must be replaced on data from required address by spe-
cific replacement strategyThis paper uses LRU replacement

) Constraintiru(y) is disjunction of constraints corresponded
strategy (Least Recently Used). According to LRU the Ie"’ltgot cases of the(%z;st accjess to théefore its eviction.pEach

recentlyﬂ u;ed cache Cej” will be gwcted. At the fOIIOW'ths clause is conjunction of the following constrainisrieans
phrase "evicted address’ means evicted data by address . - 44ress-variable from the last access toythe
Proposed algorithm based on the following properties 0?1 '
r=Yy

evicted addresses: 2) L\ {y} = { 1, where are all
. . . . Yy = 1L1,L2, .0y T gy WI 1,2,y ..y Ty
1) any ewcted. address was inserted py mstr.ug:t.lon from test addresses accessed between accessesatad y (hits
template with cache miss or was in the initial contents and misses)

of cache;)
2) between replacing and the last access to the samérhe last access to thg can correspond to the previous

address (cache hit or cache miss) there are accesse@?guaion of test template or to the cell from initial cache
state.

the whole cache without address itself. .)
. . . Consider an example of test template and its test data
Proposed algorithm generates constraints on the fOHOW'B%neration for 3-associative cache

variables: o _ LOAD x, y @ Hit
1) o, 00,..,an — initial contents of cache (its count gTORE u, z @ Miss

equals to cache associativity); LOAD z, y @ Hit

2) hits-addresses (addresses of instructions from test teMpefine unique names for variables in test template (each new
plates with cache hit test situation); _ variable shouldn’t change its value). LOAD gives new version

3) misses-addresses (addresses of instructions from {@gtits first argument. STORE doesn’t generate new version
templates with cache miss test situation); _ of variables. Define new variablg, for evicted address from

4) evicted addresses (evicted addresses of instructions frqB second instruction (this variable won't be included to the
test templates with cache miss test situation); solution):

5) Lo, Ls,... — cache states LOAD z1,y0 @ Hit

Each instruction from test template with cache hit gives 1 STOREw, 2y @ Miss — 2
new variable, and each instruction with cache miss gives 3LOAD z,y, @ Hit
new variable (1 for miss address, 1 for evicted address, and Define variables for initial contents of cachgy, 5,~} (its
for cache state). Proposed algorithm generates constraintsd@lint equals to cache associativity).
each instruction from test template by the followig (neans S the task is looking for values afy, yo, 20, to, o, 3,7y

cache associativity): according to test template. This task has more than 1 solutions.
1) "initial constraints” are generated one time for any te®ut any solution is enough.
template: Ly = {a1,aq,...,an}, |Lo|] = N (other The first constraints describe cache hits and misses as
words, numbersyy, as, ..., ay are different); belong to the current state of cache:

2) "hit-constraints” are generated for each instruction from yo € {«, 3,7},
test template with cache hitz € L, whenz means 2z, ¢ {«, 3,7},
address from instructior, means a current cache state- z{, € {«, 3,7},
variable; yo € {a, B, \{z} U {20},

3) "miss-constraints” are generated for each instruction «, 3,y — different
from test template with cache missifeans evicting ad- Define constraintru(z)). Candidates of the last access
dressy means evicted address,means a current cacheto the this address arg,,~, 5,«. The first and the second
state-variable)y € L,z ¢ L, L’ = LU{z}\{y},lru(y), candidates aren't suitable because constraiffz} = X is
L' became a current cache state-variable for the ndatse because of different compared sets capacity. Remainder
instruction. candidates give the following disjunction:

2o =B A {a, 8,7\ {2} = {7, v} Each cache cell may store data only from its region. Access

\ to memory starts from access to cacl@@ache hit means
zy =aN{a, B, 7\ {0} = {87, v} successful match cached address with required address in its
Simplify it: region.Cache misgneans unsuccessful match cached address
20 =B AN {a,v} = {7, %0} with required address in its region. In this case data from cache
\% replaced by data from memory by required address.
2 =arN{B,7} =187, 0} Proposed algorithm generates constraints on the following
Further simplify: variables:
20 =0Nyo=a 1) ai,as,as,... are addresses of the initial cache state
\% (their count is regions’ count);
zp =aNyy € {B,7} 2) hits-addresses (addresses of instructions from test tem-
Consider the first clause with the rest of constraints (variable plates with cache hit test situation);

z{, isn’'t needed in solution): 3) misses-addresses (addresses of instructions from test
Yo =« templates with cache miss test situation);
20 ¢ {e, 8,7}, 4) evicted addresses (evicted addresses of instructions from
a, B, — different test templates with cache miss test situation);
Note thatzy andug don’t take part in constraints. So their 5) Lo, L1, ... — cache states

values may be arbitrary. Define functionR(y) which for address returns a set of

Lets bit length of addresses is 8. So domain of all variablell cells from the same region as regionpfR satisfies the
addresses is from 0 to 255. Satisfying constraints variables dallowing properties:

get the following values (these values are not unique): Vo (x € R(x))
a=yo=120=1uy =0 Vo Vy (z =y — R(z) = R(y))
p=1 Va Vy (R(z) = R(y) < = € R(y))
v=2 Vz Vy (R(z) = R(y) <y € R(x))
Verify test template execution with computed initial cache Proposed algorithm generates constraints for each instruc-
state and register values: tion by the following way (V means number of regions):
initial cache state is [2, 1, O] 1) "initial constraints” are generated one time for
LOAD x, 0 - Hit, because (&t {2,1,0}; according to LRU each template :|{ai,as,....,an}| = N (other
the next cache state is [0, 2, 1] words, numbers aj,as,...,any are different),
STORE 0, 3 - Miss, because @ {0,2,1}; according to H{R(a1), R(az),...,R(an)}| = N (other words,
LRU 3 goes to cache, 1 is evicted from cache, the next cache all setsR(ay), R(a2), ..., R(ay) are different);
state is [3, 0, 2] 2) "hits-constraints” are generated for each instruction with
LOAD z, 0 - Hit, because & {3,0,2} cache hit.x € L, wherexz means address from instruc-
All instructions from test template were executed according tion, L means a current variable-state of cache memory;
to given test situations. 3) "miss-constraints” are generated for each instruction

with cache miss £ means evicting addresg, means
evicted address means a current variable-state of
cache)y € L,x ¢ L, L' = LU{x}\{y}, R(y) = R(z),

L’ became the current variable-cache state for the next

instruction.
y R(y) Constraints for direct mapped cache differ from constraints

for fully associative cache by evicted address constraints only.
7 Consider test data generation for the already known test

template. Lets memory divided into 3 regions depended on
R(2) : ” gon dp

remainder from division address to 3 (i.B(z) = R(y) <

3|(z —y)).
LOAD x, y @ Hit

X STORE u, z @ Miss
X R(X) LOAD 7, y @ Hit
Define unique names for variables in test template (each new
variable shouldn’t change its value). LOAD gives new version
Fig. 3. Direct mapped cache for its first argument. STORE doesn’t generate new version
of variables. Define new variablg for evicted address from

Whole memory is divided into non-intersecting arees (the second instruction (this variable won't be included to the
gions. Direct mapped cache consists of 1 cell for each regiosolution):

IV. TEST DATA GENERATION FOR DIRECT MAPPED CACHE

STORE g, zo @ Miss — z|,

LOAD 215 Y0 @ Hit

Define variables of initial cache statéw, 3,~} (one for
each region).

So the task is looking for values afy, yo, 20, uo,

a, B,y

according to test template. This task has more than 1 solutions.

But any solution is enough.

The first constraints describe cache hits and misses as

belong to the current state of cache:

Yo € {Oé, ﬂa FY}'

20 ¢ {Oé, ﬂa ’7}'

zy € {a, 8,7},

yo € {a, 8,7} \ {2} U {20},

R(z0) = R(%),

a, 3, — different

R(a), R(B), R(~y) — different

Simplify this constraints set:

2y € {a, 8,7},

Yo € {a. 8,71\ {z},

20 ¢ {on B,7),

3|(20 — 2)),

a, B, — different

R(a), R(B), R(v) — different

Note thatxy, anduy don'’t take part in constraints. So their
values may be arbitrary.

Lets bit length of addresses is 8. So domain of all variable- R
addresses is from 0 to 255. Satisfying constraints variables car?(«;

get the following values (these values are not unique):
a=z9g=1uy=0

y RY) [y [y1 |
Z

Rz [z [21 |
X Rx) [x | [x1 |

Fig. 4. Common cache

LOAD T1,Y0 @ Hit

STOREwy, 2o @ Miss — z|

LOAD 215, Y0 @ Hit

Define variables for initial cache state;, o, for the first

region, 3, (- for the second regiony; , v- for the third region.
Constraints set is the following:

Yo € {1, 2, B, B2, 71,72}

2y € {1, a2, 51, B2,71, 72},

2o & {oa, a2, B1, B2, v1,72} N R(%),

Yo € {a1, a2, B, B2,71,72} U {20} \ {20},

R(z0) = R(z),
g, 2, ﬁla 627 Y172 — d|ﬁerent,
R(on) = R(az),

R(b1) = R(f2),

1) =
R(m) = R(72),
), R(B1), R(71) — different

From disjunction forlru(zj) (one clause is enough):
2y = Yo AN({aa, az, B1, B2, 71,72 \{20}) NR(25) = {wo} N

B=yo=1 R(z)
y=2 V
20—3

Verify test template execution with generated initial cache Slmpllfy

state and register values:
initial cache state isL =
1,(R=2) 2]
LOAD x, 1 - Hit, becauseR(1) = L[R = (1 mod 3)]
STORE 0, 3 - Miss, becaus®(3) # L[R = (3 mod 3)], 1
is evicted from cache, the next state of cachd.is- [(R =
0)—0,(R=1)—3,(R=2)— 2]
LOAD z, 0O - Hit, because?(0) = L[R =

([R=0)—0,(R=1)

(0 mod 3)]

All instructions from test template were executed according R(a)

to given test situations.

V. TEST DATA GENERATION FOR COMMON CACHE

Yo € {ai, ..., 72},

2y € {a1, .., 12}

20 ¢ {ala "'a72} N R(Z(l))’
Yo € {041, ce Y2, ZO} \ {Z{J}!
R(z0) = R()),

20 = Y2,

{n}=A{v}NR(2)

Qq, (g, 613 ﬁZa Y172 — diﬁerent!
= R(ag),

R(B1) = R(B2),

R(71) = R(72),

R(ay), R(31), R(y1) — different

This section consists of illustration only the constraints for Further simplify:

common cache.

!
20 = V2

Define functionR(x) as the same as for direct mapped yo = 1,

cache.

Consider known test template for memory consisted of 3 R(zy) =

regions R(xz) = R(y) < 3|(x — y)) of 2-associative cache:
LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique variables (ang, for evicted address):

20 & {71,72}
R(72),
aq, aQ,ﬁlaﬁ%Vla’)@ - diﬁerent!
R(ar) = R(az),
(B1) = R(f),
R(m) = R(72),
(a1)

R(a1), R(B1), R(m1) — different

Lets bit length of addresses is 8. So domain of all variable-
addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

oy = 0, Qo = 3,

B1=1,02 =4,

Y1 =2,72 =35,

o :O,yo :2,20 = 7,7.L0 =0.

Special algorithms can be used for solving constraints set.
These algorithms can take into account the following aspects:

« constraints can be solved symboalically;
« all sets of addresses are finite and subset of all initial
cache state addresses union with evicting addresses.

VI. CONCLUSION

The paper devoted to the test data generation problem. Test
data contains initial contents of cache-memory. The paper has
proposed the constraint-based algorithm. Constraints consists
of finite sets variables and sets operations. Test data generation
for fully associative cache and direct mapped cache has been
considered in details. Proposed algorithm is used in projects
of testing MIPS-compatible microprocessors. ECLiIPSe is used
as constraint solver.

REFERENCES

[1] A.S. Kamkin,Test program generation for microprocessdérBroceedings
of ISP RAS. \ol. 14(2). P.23-64. 2008.

[2] K. Takayama, F. FallahA new functional test program generation
methodology// Proceedings 2001 IEEE International Conference on
Computer Design: VLSI in Computers and Processors. P.7681. 2001.

[3] F. Ferrandi, D. Sciuto, M. Beardo, F. Bruschiy approach to functional
testing of vliw architecture8 Proceedings of the IEEE International High-
Level Validation and Test Workshop (HLDVTO00). P.2933. 2000.

[4] Y. Lichtenstein, M. Rimon, M. Vinov, M. Behm, J. Luddemdustrial
experience with test generation languages for processor verificadtion
Proceedings of the 41st Design Automation Conference (DAC04). 2004.

