
Test data generation for LRU cache-memory testing
Evgeni Kornikhin

Moscow State University, Russia
Email: kornevgen@gmail.com

Abstract—System functional testing of microprocessors deals
with many assembly programs of given behavior. The paper
proposes new constraint-based algorithm of initial cache-memory
contents generation for given behavior of assembly program (with
cache misses and hits). Although algorithm works for any types of
cache-memory, the paper describes algorithm in detail for basis
types of cache-memory only: fully associative cache and direct
mapped cache.

I. I NTRODUCTION

System functional testing of microprocessors uses many
assembly programs (test programs). Such programs are loaded
to the memory, executed, execution process is logged and
analyzed. But modern processors testing requires a lot of
test programs. Technical way of test program generation was
proposed in [1]. This way based on the microprocessor’s
model. Its first stage is systematic generation abstract test
programs (test templates). This abstract form doesn’t con-
tain initial state of microprocessor but contain sequence of
instructions with arguments (registers) and withtest situations
(behavior of this instruction; these can be overflow, cache
hits, cache misses). The second stage is generation of initial
microprocessor state for given test template. This stage is test
data generation. Technical way from [1] is useful for aimed
testing when aim is expressed by instruction sequence with
specific behavior. Initial microprocessor state includes initial
values of registers and initial contents of cache-memory. Based
on this state the third, final, stage is generation the sequence
of instructions to reach initial microprocessor state. These
sequence of instructions with test template get ready assembly
program. This paper devoted to the second stage, i.e. initial
state generation.

Known researches about test data generation problem con-
tain the following methods of its solving:

1) combinatorial methods;
2) ATPG-based methods;
3) constraint-based methods.

Combinatorial methods are useful for simple test templates
(each variable has explicit directive of its domain, each value
in domain is possess) [2]. ATPG-based methods are useful
for structural but not functional testing [3]. Constraint-based
methods are the most promising methods. Test template is
translated to the set of constraints (predicates) with variables
which represented test data. Then special solver generates
values for variables to satisfy all constraints. This paper
contains constraint-based method also. IBM uses constraint-
based method in Genesys-Pro [4]. But it works inefficiently
on test templates from [1]. Authors of another constraint-based

methods restrict on registers only and don’t consider cache-
memory.

II. T EST TEMPLATES DESCRIPTION

Test template defines properties of future test program.
Test template contains sequence of instructions. Each element
of this sequence has instruction name, arguments (registers,
addresses, values) and test situation (relation between values
of arguments and microprocessor state before execution of
instruction). Example of test template description for model
instruction set:

REGISTER reg1 : 32;
REGISTER reg2 : 32;
ADD reg1, reg2, reg2
LOAD reg1, reg2 @ l1Miss, l2Hit
SUB reg2, reg1, reg2
This template has 3 instructions – ADD, LOAD and SUB.

Template begins from variable definitions (it has name of
variable and its bit length). Test situation is specified after
”@”: test situation of the second instruction is ”l1Miss, l2Hit”:
”l1Miss” means cache miss in first-level cache and ”l2Hit”
means cache hit in second-level cache.

Model instruction set contains only 2 memory operation:

• ”LOAD reg, address” loads value from memory by phys-
ical address ”address” to the register ”reg”;

• ”STORE reg, address” stores value from register ”reg” to
the memory by physical address ”address”.

Test data generation is generation of initial values of regis-
ters and initial contents of cache-memory. This problem has
been solved for common microprocessor cache-memory. The
following consists of test data generation for 2 basis cache-
memory organizations: fully associative cache with LRU and
direct mapped cache. Common cache includes aspects from
both cache-memory organizations. The rest of paper deals
with one-level cache-memory although proposed method can
be applied to cache memory with more than one level.

III. T EST DATA GENERATION FOR FULLY ASSOCIATIVE

CACHE

Fully N-associative cacheconsists of N cells (N means
cache associativity). Each cache cell may store data from
any memory cell. All cache cells correspond to the different
memory cells. Access to memory starts from access to cache.
Search data in cache performs for each cache cells in parallel.
Cache hitmeans existence data in cache.Cache missmeans
absence of data in cache. In case of cache miss one cache

N

x y z

x

y

z

Fig. 1. Fully N-associative cache

cell must be replaced on data from required address by spe-
cific replacement strategy. This paper uses LRU replacement
strategy (Least Recently Used). According to LRU the least
recently used cache cell will be evicted. At the following
phrase ”evicted addressx” means evicted data by addressx.

Proposed algorithm based on the following properties of
evicted addresses:

1) any evicted address was inserted by instruction from test
template with cache miss or was in the initial contents
of cache;

2) between replacing and the last access to the same
address (cache hit or cache miss) there are accesses to
the whole cache without address itself.

Proposed algorithm generates constraints on the following
variables:

1) α1, α2, ..., αN – initial contents of cache (its count
equals to cache associativity);

2) hits-addresses (addresses of instructions from test tem-
plates with cache hit test situation);

3) misses-addresses (addresses of instructions from test
templates with cache miss test situation);

4) evicted addresses (evicted addresses of instructions from
test templates with cache miss test situation);

5) L0, L1, ... – cache states

Each instruction from test template with cache hit gives 1
new variable, and each instruction with cache miss gives 3
new variable (1 for miss address, 1 for evicted address, and 1
for cache state). Proposed algorithm generates constraints for
each instruction from test template by the following (N means
cache associativity):

1) ”initial constraints” are generated one time for any test
template: L0 = {α1, α2, ..., αN}, |L0| = N (other
words, numbersα1, α2, ..., αN are different);

2) ”hit-constraints” are generated for each instruction from
test template with cache hit:x ∈ L, when x means
address from instruction,L means a current cache state-
variable;

3) ”miss-constraints” are generated for each instruction
from test template with cache miss (x means evicting ad-
dress,y means evicted address,L means a current cache
state-variable):y ∈ L, x /∈ L,L′ = L∪{x}\{y}, lru(y),
L′ became a current cache state-variable for the next
instruction.

Constraint lru(y) defines y as the least recently used
address.

hit x1

miss x3 � y3
...

hit x2

the last use

other
addresses

Fig. 2. LRU

Constraintlru(y) is disjunction of constraints corresponded
to cases of the last access to they before its eviction. Each
its clause is conjunction of the following constraints (x means
the address-variable from the last access to they):

1) x = y
2) L \ {y} = {x1, x2, ..., xn}, wherex1, x2, ..., xn are all

addresses accessed between accesses tox and y (hits
and misses).

The last access to they can correspond to the previous
instruction of test template or to the cell from initial cache
state.

Consider an example of test template and its test data
generation for 3-associative cache.

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique names for variables in test template (each new

variable shouldn’t change its value). LOAD gives new version
for its first argument. STORE doesn’t generate new version
of variables. Define new variablez′0 for evicted address from
the second instruction (this variable won’t be included to the
solution):

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables for initial contents of cache:{α, β, γ} (its

count equals to cache associativity).
So the task is looking for values ofx0, y0, z0, u0, α, β, γ

according to test template. This task has more than 1 solutions.
But any solution is enough.

The first constraints describe cache hits and misses as
belong to the current state of cache:

y0 ∈ {α, β, γ},
z0 /∈ {α, β, γ},
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0} ∪ {z0},
α, β, γ – different
Define constraintlru(z′0). Candidates of the last access

to the this address arey0, γ, β, α. The first and the second
candidates aren’t suitable because constraintL \ {z′0} = X is
false because of different compared sets capacity. Remainder
candidates give the following disjunction:

z′0 = β ∧ {α, β, γ} \ {z′0} = {γ, y0}
∨
z′0 = α ∧ {α, β, γ} \ {z′0} = {β, γ, y0}
Simplify it:
z′0 = β ∧ {α, γ} = {γ, y0}
∨
z′0 = α ∧ {β, γ} = {β, γ, y0}
Further simplify:
z′0 = β ∧ y0 = α
∨
z′0 = α ∧ y0 ∈ {β, γ}
Consider the first clause with the rest of constraints (variable

z′0 isn’t needed in solution):
y0 = α
z0 /∈ {α, β, γ},
α, β, γ – different
Note thatx0 andu0 don’t take part in constraints. So their

values may be arbitrary.
Lets bit length of addresses is 8. So domain of all variable-

addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α = y0 = x0 = u0 = 0
β = 1
γ = 2
z0 = 3
Verify test template execution with computed initial cache

state and register values:
initial cache state is [2, 1, 0]
LOAD x, 0 - Hit, because 0∈ {2, 1, 0}; according to LRU

the next cache state is [0, 2, 1]
STORE 0, 3 - Miss, because 3/∈ {0, 2, 1}; according to

LRU 3 goes to cache, 1 is evicted from cache, the next cache
state is [3, 0, 2]

LOAD z, 0 - Hit, because 0∈ {3, 0, 2}
All instructions from test template were executed according

to given test situations.

IV. T EST DATA GENERATION FOR DIRECT MAPPED CACHE

x

y

z

x

y

z

R(y)

R(z)

R(x)

Fig. 3. Direct mapped cache

Whole memory is divided into non-intersecting areas (re-
gions). Direct mapped cache consists of 1 cell for each region.

Each cache cell may store data only from its region. Access
to memory starts from access to cache.Cache hit means
successful match cached address with required address in its
region.Cache missmeans unsuccessful match cached address
with required address in its region. In this case data from cache
replaced by data from memory by required address.

Proposed algorithm generates constraints on the following
variables:

1) α1, α2, α3, ... are addresses of the initial cache state
(their count is regions’ count);

2) hits-addresses (addresses of instructions from test tem-
plates with cache hit test situation);

3) misses-addresses (addresses of instructions from test
templates with cache miss test situation);

4) evicted addresses (evicted addresses of instructions from
test templates with cache miss test situation);

5) L0, L1, ... – cache states
Define functionR(y) which for addressy returns a set of

all cells from the same region as region ofy. R satisfies the
following properties:
∀x (x ∈ R(x))
∀x ∀y (x = y → R(x) = R(y))
∀x ∀y (R(x) = R(y) ↔ x ∈ R(y))
∀x ∀y (R(x) = R(y) ↔ y ∈ R(x))
∀x ∀y (x /∈ R(y) → x 6= y)
Proposed algorithm generates constraints for each instruc-

tion by the following way (N means number of regions):
1) ”initial constraints” are generated one time for

each template : |{α1, α2, ..., αN}| = N (other
words, numbers α1, α2, ..., αN are different),
|{R(α1), R(α2), ..., R(αN)}| = N (other words,
all setsR(α1), R(α2), ..., R(αN) are different);

2) ”hits-constraints” are generated for each instruction with
cache hit:x ∈ L, wherex means address from instruc-
tion, L means a current variable-state of cache memory;

3) ”miss-constraints” are generated for each instruction
with cache miss (x means evicting address,y means
evicted address,L means a current variable-state of
cache):y ∈ L, x /∈ L,L′ = L∪{x}\{y}, R(y) = R(x),
L′ became the current variable-cache state for the next
instruction.

Constraints for direct mapped cache differ from constraints
for fully associative cache by evicted address constraints only.

Consider test data generation for the already known test
template. Lets memory divided into 3 regions depended on
remainder from division address to 3 (i.e.R(x) = R(y) ⇔
3|(x− y)).

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique names for variables in test template (each new

variable shouldn’t change its value). LOAD gives new version
for its first argument. STORE doesn’t generate new version
of variables. Define new variablez′0 for evicted address from
the second instruction (this variable won’t be included to the
solution):

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables of initial cache state:{α, β, γ} (one for

each region).
So the task is looking for values ofx0, y0, z0, u0, α, β, γ

according to test template. This task has more than 1 solutions.
But any solution is enough.

The first constraints describe cache hits and misses as
belong to the current state of cache:

y0 ∈ {α, β, γ},
z0 /∈ {α, β, γ},
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0} ∪ {z0},
R(z0) = R(z′0),
α, β, γ – different
R(α), R(β), R(γ) – different
Simplify this constraints set:
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0},
z0 /∈ {α, β, γ},
3|(z0 − z′0),
α, β, γ – different
R(α), R(β), R(γ) – different
Note thatx0 andu0 don’t take part in constraints. So their

values may be arbitrary.
Lets bit length of addresses is 8. So domain of all variable-

addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α = x0 = u0 = 0
β = y0 = 1
γ = 2
z0 = 3
Verify test template execution with generated initial cache

state and register values:
initial cache state isL = [(R = 0) 7→ 0, (R = 1) 7→

1, (R = 2) 7→ 2]
LOAD x, 1 - Hit, becauseR(1) = L[R = (1 mod 3)]
STORE 0, 3 - Miss, becauseR(3) 6= L[R = (3 mod 3)], 1

is evicted from cache, the next state of cache isL = [(R =
0) 7→ 0, (R = 1) 7→ 3, (R = 2) 7→ 2]

LOAD z, 0 - Hit, becauseR(0) = L[R = (0 mod 3)]
All instructions from test template were executed according

to given test situations.

V. TEST DATA GENERATION FOR COMMON CACHE

This section consists of illustration only the constraints for
common cache.

Define functionR(x) as the same as for direct mapped
cache.

Consider known test template for memory consisted of 3
regions (R(x) = R(y) ↔ 3|(x− y)) of 2-associative cache:

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique variables (andz′0 for evicted address):

x

y

z

x

y

z

R(y)

R(z)

R(x)

y1

z1

x1

Fig. 4. Common cache

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables for initial cache state:α1, α2 for the first

region,β1, β2 for the second region,γ1, γ2 for the third region.
Constraints set is the following:

y0 ∈ {α1, α2, β1, β2, γ1, γ2},
z′0 ∈ {α1, α2, β1, β2, γ1, γ2},
z0 /∈ {α1, α2, β1, β2, γ1, γ2} ∩R(z′0),
y0 ∈ {α1, α2, β1, β2, γ1, γ2} ∪ {z0} \ {z′0},
R(z0) = R(z′0),
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different
From disjunction forlru(z′0) (one clause is enough):
z′0 = γ2∧({α1, α2, β1, β2, γ1, γ2}\{z′0})∩R(z′0) = {y0}∩

R(z′0)
∨
...
Simplify:
y0 ∈ {α1, ..., γ2},
z′0 ∈ {α1, ..., γ2},
z0 /∈ {α1, ..., γ2} ∩R(z′0),
y0 ∈ {α1, ..., γ2, z0} \ {z′0},
R(z0) = R(z′0),
z′0 = γ2,
{γ1} = {y0} ∩R(γ2)
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different
Further simplify:
z′0 = γ2,
y0 = γ1,
z0 /∈ {γ1, γ2},
R(z0) = R(γ2),
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different

Lets bit length of addresses is 8. So domain of all variable-
addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α1 = 0, α2 = 3,
β1 = 1, β2 = 4,
γ1 = 2, γ2 = 5,
x0 = 0, y0 = 2, z0 = 7, u0 = 0 .
Special algorithms can be used for solving constraints set.

These algorithms can take into account the following aspects:

• constraints can be solved symbolically;
• all sets of addresses are finite and subset of all initial

cache state addresses union with evicting addresses.

VI. CONCLUSION

The paper devoted to the test data generation problem. Test
data contains initial contents of cache-memory. The paper has
proposed the constraint-based algorithm. Constraints consists
of finite sets variables and sets operations. Test data generation
for fully associative cache and direct mapped cache has been
considered in details. Proposed algorithm is used in projects
of testing MIPS-compatible microprocessors. ECLiPSe is used
as constraint solver.

REFERENCES

[1] A.S. Kamkin,Test program generation for microprocessors// Proceedings
of ISP RAS. Vol. 14(2). P.23-64. 2008.

[2] K. Takayama, F. Fallah,A new functional test program generation
methodology// Proceedings 2001 IEEE International Conference on
Computer Design: VLSI in Computers and Processors. P.7681. 2001.

[3] F. Ferrandi, D. Sciuto, M. Beardo, F. Bruschi,An approach to functional
testing of vliw architectures// Proceedings of the IEEE International High-
Level Validation and Test Workshop (HLDVT00). P.2933. 2000.

[4] Y. Lichtenstein, M. Rimon, M. Vinov, M. Behm, J. Ludden,Industrial
experience with test generation languages for processor verification//
Proceedings of the 41st Design Automation Conference (DAC04). 2004.

