

SYRCoSE 2009

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the Third Spring Young Researchers’ Colloquium on
Software Engineering

Moscow, May 28-29, 2009

Moscow
2009

Proceedings of the Third Spring Young Researchers’ Colloquium on Software Engineering
(SYRCoSE 2009). May 28-29, 2009. – Moscow, Russia:

This issue contains papers presented at the Third Spring Young Researchers’ Colloquium on
Software Engineering (SYRCoSE 2009) held in Moscow, Russia during May 28-29, 2009. The
selection was based on peer reviewing by program committee. Both regular and research-in-
progress papers were considered acceptable for this colloquium.

The topics of the colloquium include compatibility and portability of software, graphical
modeling, computer networks and telecommunication protocols, functional and performance
testing, automata-based programming, and others.

Труды Третьего весеннего коллоквиума молодых исследователей в области
программной инженерии (SYRCoSE 2009). 28-29 мая 2009 г. – Москва, Россия:

Сборник содержит статьи, представленные на Третьем коллоквиуме молодых
исследователей в области программной инженерии, который проводился в Москве 28-29
мая 2009 г. Отбор статей производился на основе рецензирования материалов членами
программного комитета. На коллоквиум допускались как полные статьи, так и краткие
сообщения, описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: совместимость и переносимость
ПО, графическое моделирование, компьютерные сети и телекоммуникационные
протоколы, функциональное тестирование и тестирование производительности,
автоматное программирование и другие.

ISBN 978-5-91474-013-6

© Авторы, 2009

Contents

Foreword……………………………………………………….………………………………….5

Organization……………………………………………………………………………………….6

Compatibility and Portability of Software

Designing a Development Environment to Support Creation of Standard-Compliant
Applications

D. Silakov………………………………………………………………………………….7

Binary Compatibility of Shared Libraries Implemented in C++ on GNU/Linux Systems

P. Shved and D. Silakov…………………………………………………………………17

The Automated Analysis of Header Files for Support of the Standardization Process
 E. Novikov and D. Silakov………………………………………………………………27

The Boost.Build System
 V. Prus……………………………………………………………………………………35

Graphical Modeling of Software

Verification and Testing Automation of UML Projects

N. Voinov and V. Kotlyarov…………………………………………………………..…41

Constraint-base Optimizations of Executable UML Models
 A. Karaulov and A. Strabykin……………………………………………………………46

Creation of Automaton Classes from Graphical Models and Automatic Solution for Inverse
Problem
 Y. Gubin, A. Shalyto, and K. Timofeev……………………………………………….50

Methods and Tools for Analysis and Optimization in Different Fields

Modeling Security Threats to Cryptographically Protected Data

A. Savelieva……………………………………………………………………………...56

Clustering Algorithms Meta Applier (CAMA) Toolbox
 D. Shalymov, K. Skrygan, and D. Lyubimov………………………………………….61

Dynamic Web-Components and Web Environment Behavior Analysis
 V. Suvorov……………………………………………………………………………….65

Software Package for Optimizing Digital Circuits
 M. Gromov and N. Kushik……………………………………………………………….68

Computer Networks and Telecommunication Protocols

UDD Network Model for Time-Limited Data Storing
 K. Scherbakov……………………………………………………………………………71

Robust Short Message Protocol
 V. Klimashov, R. Dmitrienko, A. Emelyanov, and V. Mokhin………………………….77

Telecommunication Protocols Development, Simulation and Code Generation Tool

R. Dmitrienko…………………………………………………………………………….79

Functional and Performance Testing

Application of UniTESK Technology for Functional Testing of Infrastructural Grid Software
 S. Smolov………………………………………………………………………………...82

Test Data Generation for LRU Cache-Memory Testing
 E. Kornikhin……………………………………………………………………………...88

Model-based Technology of Automated Performance Testing

B. Pozin, R. Giniyatullin, I. Galakhov, and D. Vostrikov……………………………….93

Automata-Based Programming and Its Applications

Inheritance of Automata Classes Using Dynamic Programming Languages (using Ruby as an
Example)

K. Timofeev, A. Astafurov, and A. Shalyto……………………………………………104

Automata-based Programming in Visual Studio 2005: State Machine Designer Tool
 E. Reshetnikov………………………………………………………………………….109

Application of Automata-Based Programming for Construction of Business Processes
Management Systems
 E. Mandrikov and V. Kulev…………………………………………………………….114

Declarative Language for SAX Handler Definition
 A. Vladykin……………………………………………………………………………..116

Application-Oriented Software Engineering

The Formal Approach to Computer Game Rule Development Automation
 E. Pavlova………………………………………………………………………………119

Information System of Scenario Strategic Planning

D. Tenchurin and M. Shatilov…………………………………………………………..123

Simulating Genes Operation and Interaction
 V. Rekubratskiy and M. Korotkova…………………………………………………….128

Information System User Interfaces Automatic Creation
 A. Korotkov…………………………………………………………………………….132

Foreword

In this year Spring Young Researchers’ Colloquium on Software Engineering (SYRCoSE)
observes the third anniversary. Certainly, three years are not too much for a conference, but in
spite of the age SYRCoSE is a recognizable young researchers’ forum on software engineering.
By tradition, colloquium takes two days at the end of spring, when the whether is usually sunny
and, what is even more important, students are still in universities, not on summer vacation.
During colloquium we try to create a friendly and well-wishing atmosphere that stimulates
communication between participants and facilitates making new friends and scientific contacts.

SYRCoSE 2009 is hosted by State University Higher School of Economics (HSE), famous
Russian university in the field of economics, business, and software engineering. The event is
organized by Institute for System Programming of RAS (ISPRAS) and Saint-Petersburg State
University (SPSU) jointly with HSE.

Program Committee has selected 25 papers that cover different topics of software engineering
and computer science. Participants of SYRCoSE 2009 represents well-known universities,
research institutes and IT companies such as Center “Bioengineering” of RAS, ISPRAS,
Moscow Engineering Physics Institute (State University), Moscow State University, RSFLabs,
Saint-Petersburg State Polytechnic University, SPSU, Saint-Petersburg State University of
Information Technologies, Mechanics and Optics, Tomsk State University, and ZAO “EC-
leasing”.

We would like to thank all participants of SYRCoSE 2009 and their advisors for very interesting
papers. We thank PC members and reviewers for their hard work. In this year we involve our
young colleagues for reviewing papers. Thus, colloquium can be called “Young Researchers’
and Young Reviewers’ Colloquium”. Finally, our special thanks to Prof. Sergey Avdoshin, chief
of Software Engineering Department of HSE, for his invaluable help in organization of the
colloquium.

See you next year at SYRCoSE 2010!

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
 May 2009

5

Organization

SYRCoSE 2009 is organized by Institute for System Programming of RAS, Saint-Petersburg
State University and State University Higher School of Economics.

Colloquium Chairs

Alexander K. Petrenko

Institute for System Programming of RAS, Russia

Andrey N. Terekhov
Saint-Petersburg State University, Russia

Organizing Committee

Sergey M. Avdoshin

Higher School of Economics, Russia

Alexander S. Kamkin
Institute for System Programming of RAS, Russia

Program Committee

Sergey M. Avdoshin

Higher School of Economics, Russia

Victor P. Gergel
Lobachevsky State University of Nizhni Novgorod, Russia

Vladimir I. Hahanov
Kharkov National University of Radioelectronics, Ukraine

Vsevolod P. Kotlyarov
Saint-Petersburg State Polytechnic University, Russia

Alexander A. Letichevsky
Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine

Igor V. Mashechkin
Moscow State University, Russia

Alexander S. Mikhaylov
Moscow Engineering Physics Institute (State University), Russia

Valery A. Nepomniaschy
Ershov Institute of Informatics Systems, Russia

Ruslan L. Smelyansky
Moscow State University, Russia

Valeriy A. Sokolov
Yaroslavl Demidov State University, Russia

Ivan I. Piletski
Belarusian State University of Informatics and Radioelectronics, Belorussia

Vladimir V. Voevodin
Research Computing Center of Moscow State University, Russia

Nina V. Yevtushenko
Tomsk State University, Russia

Designing a Development Environment to Support
Creation of Standard-Compliant Applications

Denis Silakov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

Email: silakov@ispras.ru

Abstract—This paper presents an approach of developing a
special environment to help application developers to create
programs compliant with some interface standard. The paper
suggests a design of the informational system aimed to make
it easier to develop and to maintain such an environment on
the basis of the existing systems, with necessary modifications
in the areas concerned by the standard. To store information
about existing systems and to facilitate their modification, it is
suggested to use a database with a set of accompanying tools.
Necessary aspects of the database schema design are described,
as well as some aspects of the tool architecture.

Index Terms—Data management, Reverse engineering, Soft-
ware requirements and specifications, Software standards.

I. INTRODUCTION

In the modern software world, it is a common situation
when several concurrent implementations exist that provide the
same functionality to their users (either human beings or other
software applications). From the user’s point of view, it would
be nice if all systems with the same functionality (that are
targeted to solve the same problems) have the same interaction
interface – in this case it wouldn’t be very hard to replace one
implementation with another (that was found to be faster, more
convenient, etc.) and users will not be bound to a particular
solution. In order to achieve such interchangeability, different
interface standards are being developed that specify the set of
interfaces that every compliant system should provide.

However, in addition to the standard set of interfaces every
system is usually not forbidden to provide some extra ones,
that can be unique to it and absent on other platforms. This
raises a problem for those developers who want to create ap-
plications interacting with the system by means of the standard
interfaces only (in order to guarantee that the application will
be able to interact with any other system compliant with the
same standard). For example, in order to make the application
sources be compilable by any C language compiler that is
compliant with the ANSI C standard, developers should use
only those language constructions and library routines that
are defined in that standard; in order to make the application
binaries able to be executed on any distribution compliant
with the Linux Standard Base [1], they should use only LSB
interfaces, and so on. But how to ensure that the application
doesn’t use any extra interfaces? To be sure, developers can
consult documentation on every external interface used by the
program. However, this can take significant time, especially if

developers are not yet familiar with the standard. Moreover,
sometimes dependencies on undesirable interfaces may appear
indirectly, as a side effect of the environment used to build the
program. For example, for binary executables some dependen-
cies on binary interfaces can be introduced by compiler on the
basis of its options, environment variables, etc. Sometimes it
can be rather hard to detect and eliminate such indirect usage.

One of the possible ways to automate the control of used
interfaces is to create a tool (or use an existing one, if any)
that will check used interfaces and report any violation of
the standard. If integrated in the build process as a part of
the tests, such a tool can be used to detect wrong interfaces at
early stages of the development process. However, the checker
itself can only state a fact of violation, but not to point out
the reason and help to fix it. In particular, it doesn’t solve the
problem of interfaces that are not used directly but introduced
by the build environment.

An ideal solution would be to use a real system that is
compliant with the standard and at the same time doesn’t
provide any non-standard interfaces. Unfortunately, for many
standards such implementations don’t exist, and it can be quite
expensive (or even impossible) to create one from scratch.
It appears to be more reasonable to take an existing system
compliant with the standard, to cut its non-standard pieces
and to set it up properly. Such a restricted environment
can be either a self-sufficient system (like the LSB Sample
Implementation [2]) or be integrated in the existing system,
providing only those components that are covered by the
standard (like the OpenGL Sample Implementation [3] or the
LSB Development Environment [4]).

One should keep in mind here that every standard evolves
over time, and all the tools accompanying the standard should
be kept in sync with it. Furthermore, it is not uncommon
when several versions of the same standard are demanded by
software developers, so specification developers should either
support a set of separate versions of helper tools or create
tools that can support any specification version from some
given set. Modern interface standards often describe hundreds
or even thousands of interfaces and evolve quickly by adding
more and more interfaces to satisfy market needs. Surely,
all accompanying tools should not be left behind; however,
the process of their development and support can be even
harder then the development of the standard itself. Nowadays,

7

an approach is required to organize, facilitate and automate
(where possible) this process to allow specification creators to
concentrate on their primary target – specification text.

The remainder of the paper is structured as follows: Section
2 observes some existing approaches of helping application
developers to create standard-compliant programs. Section 3
introduces an approach that uses a database with information
about standard elements to generate a desired environment in
a semi-automatic way and allows to keep the environment
in sync with the specification text and other relative tools.
Section 4 describes the application of the approach to the LSB
Development Environment creation process. Finally, Section 5
summarizes the main ideas.

II. EXISTING APPROACHES

One of the most popular approaches to check that the
software product is compliant with some standard is to run
appropriate tests (certification tests, if possible) against the
final product. For example, if application developers target
the Linux Standard Base specification, they can integrate the
Linux Application Checker tool [5] to the testing process.
When targeting Solaris OS, developers can use the appcert
[6] tool to check if their binary files satisfy the rules defined
in the Solaris ABI (e.g. don’t use private symbols or don’t link
Solaris libraries statically).

Both advantages and disadvantages of this approach come
from the fact that it doesn’t affect the development process
itself. The main advantage for the developers is that they
should not make any modifications to their usual process; they
should just add an additional test suite to be executed as a part
of the product tests. Surely, this will increase the execution
time of the tests, but this is usually not a great issue,

A real disadvantage of the approach is that it only allows
to give a verdict on whether the product meets standard
requirements. If the tests pass, then everything is alright; but
in case of failures, the tests can only postulate the fact that a
failure occurred, usually with description of the inconsistency
found. It is application developer who should find the reason
of the failure in the source code (or build environment) and fix
it. Sometimes this may require just a little code modification,
but in some cases this may lead to redesign of the product
architecture. If no special actions to satisfy the standard were
taken before the test execution, then nobody can predict how
compliant the result product is and how much efforts will it
take to make it fully compliant.

Any preliminary actions taken to make the product more
compliant with the standard potentially make this product
closer to the specification requirements, thus decreasing the
probability of discovering serious inconsistencies when ex-
ecuting the tests. The most evident action is to consult the
standard for every interface used by the program to check if it
is allowed, which restrictions are put over it, which alternatives
can be used, etc. This is probably reasonable in case when
developers and architectures are familiar with the standard
and can give the answer instantly, without actual addressing
of the specification text. Thus, a certain level of expertise is

required. Surely, the experience can be obtained through the
practice, but for many standards (and for many developers)
such straightforward practice as careful investigation of the
specification text can significantly delay the release of the
product.

A more complicated approach is to provide developers
with a special environment that will simplify the process
of achieving a standard-compliant product by discovering
the inconsistencies as early as possible. For example, the
environment can be constructed in such a manner that no
program can be built inside it until all standard requirements
are met.

The practice of providing such an environment is rather
widespread in those areas where direct programming in the
target system (where the application should be executed) is
difficult – the system can be expensive and difficult of access
for developers (e.g. operating systems on mainframes) or
have limited resources making it impossible to run such tools
as debugger or profiler (e.g. operating systems on mobile
devices). In most of such cases, the ideal implementation (that
is a system that provides those and only those interfaces that
can be used by applications) does exist, but is hard to access.
The common solution for this problem is to emulate the target
environment on some other system which is more accessible
for developers. In order to achieve this, one can either to
use a hardware emulator to execute an existing system inside
it, or recompile the system for another platform. The former
case usually doesn’t require any modifications of the system
itself, but requires an appropriate hardware emulator. On the
opposite, the latter one doesn’t require any additional tools but
its availability depends on adaptability of the system source
code.

An example of the first approach is a QEMU-based Android
Emulator [7] that provides a virtual ARM mobile device with
a full Android system stack running on it. Android Emulator
is an essential part of the Android SDK, which also includes
a set of tools to interact with the emulator. An example of the
second approach is the LSB Sample Implementation (SI) – a
Linux distribution build on the basis of Linux From Scratch
(LFS) [8] (until version 4.0) or rPath [9] (since 4.0). Both LFS
and rPath allow to obtain a system meeting given requirements.
However, none of these technologies is flexible enough to
create a system with any given set of functions (moreover,
it’s not only tools fault – Linux components are sometimes
interconnected very closely, and it can be impossible to cut one
component without affecting the others). This fact complicates
the development process of the LSB SI itself and it is actually
not guaranteed that the result system provides no forbidden
interfaces.

Another possible way of emulating a desired environment
is to provide some mechanism for one of the existing systems
to behave exactly as the desired one. Such approach can be
used even if the desired environment doesn’t exist in a pure
form (i.e. if there is no real system that provides only allowed
interfaces). However, required modifications of the system
can be significant, and in case of complex systems it can be

8

rather difficult to maintain these changes in parallel to the
development of the main system. So this way is acceptable
when implemented and maintained by developers of the main
system, and when required possibility is an integral part of
that system. As an example of this approach, we can mention
C and C++ compilers from the GNU Compiler Collection
that support ’-std’ option that can be used to determine the
language standard to be followed by compiler (such as ISO
C90 or ISO C++98).

The approaches mentioned above concern modifications
and adaptation of rather complex software systems, such
as operating system or compiler. Development of required
modifications is usually a separate project, whose complexity
depends on different conditions, such as size of required
modifications, source code adaptability and so on. Sometimes
the required efforts are minimalistic, sometimes they are not.
In any case, at the current state of art a specific approach
is used for every particular project of such kind, but almost
all these projects imply manual examination of the system,
detection of pieces that are not compatible with the given
requirements and investigation of possible fixes for these
pieces. Thus, such approaches are reasonable only if there is
already a system that is rather close to the desired one.

However, in many cases there is no need to modify the
whole huge software product (e.g. operating system). Instead,
it is enough to provide alternative implementation for some
of its parts. Note that there is a significant difference between
providing an alternative implementation that coexists with the
default one (or replaces the default one) and providing the
whole system where the desired implementation is the only
available one. The latter case requires a separate machine for
the system to be executed (either a physical or virtual). In the
former case, developers can use their usual systems in their
usual work and use alternative environment during application
development. In particular, this allows developers to use their
habitual IDE, debugger and other tools that are hardly provided
by the modified environment.

This way is actually the only reasonable approach for
those standards that specify only a small part of the system
interfaces. For example, the SGI’s sample implementation of
the OpenGL API [3] presents several hundreds of OpenGL
functions. The main purpose of the OpenGL Sample Imple-
mentation is to give a standard base for other vendors of
OpenGL implementations (in the first place, developers of
implementations that use hardware acceleration), but it can be
also used by application developers (since 1999, the Sample
Implementation is an open source product) to ensure that they
don’t use any non-standard GL functions. However, it makes
no sense to provide a separate operating system with this
implementation, since such a system would have a very small
difference with respect to any existing one. Moreover, such a
system would not be very convenient for everyday usage, since
the OpenGL SI doesn’t include any hardware drivers and thus
lacks for performance.

A similar way is followed by the LSB Development En-

vironment, also known as the LSB Software Development
Kit (LSB SDK), which is discussed in details in the Section
4. This product is designed for application developers and
only provides headers, compiler wrapper and stub files for
libraries to be used during the build process. The SDK can be
used only to compile applications, but not to execute or test
them. However, this is enough to guarantee that the application
doesn’t use non-LSB interfaces (except the cases when indirect
calls such as one using the dlopen function are used). LSB
SDK proved to be much more easier to be maintained than the
LSB Sample Implementation, and on the opposite of the latter
it guarantees that its header files and libraries don’t provide
forbidden interfaces. But since the SDK cannot be used to test
applications, it is actually the chain of the SDK and SI that
should be used in the development process.

This example is similar to the usage of cross-compilation
to create executables for the hardware architectures that differ
from the current one – in that case one needs a compiler
that supports cross-compilation for the target platform, with
appropriate header files and shared libraries. The whole op-
eration system is not required for compilation, though some
additional runtime environment is required to execute and test
the application.

But even providing of only a subset of the complex system
may require significant efforts on synchronizing the envi-
ronment with the underlying software standard, especially
if the standard evolves quickly. A promising approach of
facilitating this task was introduced by the original creators of
the LSB specification and its accompanying tools, including
the LSB SDK – it was suggested to store those properties
of the standardized items that are used by the tools in a
central database and generate appropriate parts of the tools
automatically using this database. Initially the LSB database
contained names of standardized interfaces, their signatures
and all types required to make these signatures complete.
At the very beginning, the database was populated with data
manually, but as LSB evolved, some tools were introduced to
automate this process.

The rest of this paper summarizes and generalizes the
approach used by the LSB team, giving general advises on
how to automate the process of environment generation using
the database, as well as appropriate data collection and manip-
ulation processes. In addition, some further developments of
this approach are given, including support of several versions
of the standard by the same set of tools. In the Section 4, we’ll
return to the LSB SDK and describe its current state, with all
improvements made by the authors.

III. DATABASE-DRIVEN ENVIRONMENT GENERATION

The approach under discussion suggests to pick out those
parts of the tools to be created that are either specified by the
standard or influenced by the standardized items. Information
about such elements should be separated from data about other
parts of the tools, that are not concerned by the standard
in any way. That is, one should create a template of every
tool – some kind of skeleton that just misses those parts that

9

concern standardized items. These “holes” should be filled by
additional generator on the basis of some external storage. In
this paper, we consider a database to be such a storage, though
the main ideas can be applied to any storage kind.

A. Database Design

First of all, one have to detect what should be stored in the
database and design appropriate database schema. For every
tool to be generated using the database, the following analysis
should be performed:

• Determine entities involved in the tool that are defined in
the standard.

• Determine entities that are influenced by the standardized
items. This step is recursive – one should also determine
entities influenced by those that are influenced by the
standardize items, and so on, until a closed set is obtained.

• Determine which properties of entities picked out during
the first two steps are necessary for the tool.

On the third step, it might be necessary to determine all
properties required for the tool, even those that are not con-
cerned by the standard. A clear rule can be used to determine
if one should store all properties of some item in the database
or only those that are concerned by the standard; to formulate
this rule, we should first give a definition of one important
term:

Imitating the relational data model, let’s say that a set of
properties of an item forms its primary key, if in the real world
(or in some restricted environment where we operate) this item
can be unambiguously identified by this set of properties.

For example, a binary interface exported by a library written
in C language is unambiguously defined inside the library by
the name of appropriate source-level item (either function or
global variable). That’s why name of the binary symbol of C
library is equal to the name of appropriate source item (to be
honest, with a small reservation for symbol versions). For C++
language, source-level name is not enough – one should add
names of all namespaces and classes to which the item belongs
(since functions with the same name can exist in different
classes), as well as list of parameters (since every function
can be overloaded, i.e. one class can provide several functions
with the same name, but with different parameters). That’s why
names of C++ binary symbols are constructed in a special way
(by means of the process known as mangling) to reflect all
these traits. In any case, if we consider the whole system, we
should add name of the library to the primary key of every
interface to unambiguously identify it; if we admit that the
system can provide several libraries with the same name in
different locations, then we should also add a library location,
and so on.

By means of the primary key definition, we suggest to use
the following rule to identify the properties that should be
stored in the database:

Advice 1. If it is detected that at least part of the primary
key of some item should be stored in the database, then all

properties of this item (including those that form the primary
key) should be stored there. Otherwise, it is enough to store
only those properties that depend on the standard.

This rule is based on the fact that if we can get the primary
key of some item without consulting the standard, then we
can unambiguously detect the place of this item in the code
of the tool to be generated. So we can simply put the item to
the appropriate place in the tool template, leaving holes for
secondary properties affected by the standard (if any). Since
the location of item can be calculated, then it will cause no
problems to create a generator that will detect the holes and
populate them with data.

In other case, we can’t detect the actual place for the
item in the code of the tool. Thus, we have to store all
information about this item in some external storage and pick
it up when necessary. Moreover, since we don’t know the
standardized primary key of the item, we can’t exactly identify
the item, and in general we should store information for all
primary keys that are acceptable by the standard requirements.
Fortunately, in many particular cases these possible primary
keys are restricted to a very limited set. For example, as
we saw above, in case of functions exported by libraries
written in C language, a function name (maybe together with
a library name) is enough – that is, there is no need to create
several entries in the database for the same function, since
all its attributes (parameters, return value) are unambiguously
identified by the name.

One may notice that the database itself needs some primary
key to store secondary properties of every item. This primary
key can be exactly the same as the one of the item, or
some artificial key that allows to calculate the ’real’ one (for
example, a result of some hash function can be used to achieve
a numerical artificial key to decrease the size of the database
and to speed up the database queries). So the gain of not
storing some properties in the database actually concerns only
those properties that are not included in the primary key and
don’t depend on the standard. In every particular case, this
gain can be estimated; if it doesn’t prove to be significant
it may make sense to store all properties of the item in the
database.

Thus, if we are not sure if some item is obligatory for the
tool and will appear there regardless of other conditions, then
we should store all properties of this item in the database. But
how generator will know if a given database entry should be
picked up during generation? The simplest way is to assign a
boolean flag to every database record:

Advice 2. If all properties (including the primary key) of
some kind of items are stored in the database, then additional
boolean flag should be attached to every entry corresponding
to this kind of items to indicate if a particular entry should
be picked up by the generator when creating the tool.

Let’s call this flag as appearance flag. With such a flag,
generators should only select those entries for which the flag
is set.

10

B. Handling Item Interdependencies

The most straightforward way to set the appearance flags
is to set them manually. However, in some cases this can be
a rather complicated task – the thing is that different items
can depend on each other, and such interdependencies should
be taken into account. For example, if we want to declare
some function in a header file, we should also declare all
types necessary for its declaration (that is, for parameters and
return value) or to include other header files that will provide
necessary declarations. The required types can have complex
structure and require other types to be declared, and so on.
Resolving such dependencies manually is tiresome; however,
usually these dependencies can be clearly formulated, and it
makes sense to automate the resolving process.

In order to do this, we suggest to create a markup tool, that
will check and resolve dependencies between different items.
In general, such a tool should be provided with a basis – a
set of items that should be included in the generated code.
This set should be formed manually and should contain all
items that are included in the specification. On the basis of
this information, the markup tool will decide which additional
items should be included to the generated code to make it
complete.

For example, let’s suppose that the specification defines a
set of C functions with signatures, and in the database we store
function names, as well as type names, and mapping between
function parameters and types, as well as mapping between
return values and types. In order to generate fully qualified
declaration, developers may only mark necessary functions as
included, and the types that should be marked as included will
be calculated automatically by the markup tool.

In this example we suppose that types are subordinate
objects – if a type is required for some functions, then it is
included without any discussion. However, another situation is
possible, when the items in question are equal in rights – that
is, it is not clear, if we should include a type or exclude all
interfaces that use it. In case of such situations, the markup
tool can only report the problem, but not solve it.

From the generator architecture point of view, there are at
least two ways of implementing markup functionality:

• Implement a separate tool that will set flags directly in
the database.

• Implement necessary functionality in generators; in this
case all dependencies are resolved during generation, and
database modifications are not required.

It’s hard to say if one of these approaches is better than
the other. The disadvantage of the second approach is that it
makes the generation logic more complicated, and can slow
down the generation process. On the other side, the first
approach implies that the markup tool should be executed after
any database change that can affect the generated code. For
confidence, one can execute this tool every time the generation
is launched, so the actual time of generation will also increase.
The first approach is more preferable in case when the markup
tool cannot resolve dependencies by itself and should interact

with the user.
One more important question is how to store information

about dependencies (that is, how the markup tool should
know that one item depends on another). The straightforward
way is to hardcode all the dependencies in the markup tool.
However, there is a more elegant solution – if the used DBMS
supports foreign keys, then it is enough to set such keys for the
necessary tables, and the markup tool will be able to use them
to detect dependencies. Considering again the example with
C functions, one may store functions and their return values
in the following way:

• Function names are stored in the Function table.
• Type names are stored in the Type table; let’s suppose

that this table has a primary key Tid.
• The Function table should also have RetValue field to

store the type of its return value. This field should be
a foreign key referencing appropriate Type record by its
primary key Tid.

In general, we believe that this way is much more flexible
than the hardcoded dependencies in the tools. So, one more
rule:

Advice 3. Interdependencies between different items should
be implemented as foreign keys of appropriate tables in the
database.

C. Populating Database With Data

To design the database schema and to create generators is
only a half of the problem. The database is useless until it is
populated with data. We have already considered one aspect of
the data management by suggesting a tool that will take care
of item interdependencies, but this is just an auxiliary tool,
a kind of consistency checker, though its usage can save a
lot of time. However, the main problem is to collect the ’raw’
data – that is, particular interfaces of different kinds with their
properties and accompanying items. There can be no general
method of solving such a problem, since in different cases
the data can have different sources. For example, the whole
set of standardized interfaces can be created from scratch
by standard developers (e.g. as a result of some scientific
research). In this case it is likely that there is no other
way of populating database with data except typing the data
manually. Some kinds of automation can be available in any
case – for example, transforming textual lists of interfaces
into SQL statements; however, these textual lists should be
also achieved somehow. But here we’d like to point out one
important situation when the significant part of necessary data
can be obtained automatically. We are talking about the case
when the standard is not created from scratch, but is based
on some existing system, or generalizes interfaces of several
implementations.

Advice 4. In order to populate the database with data, it
is useful to create a set of tools that will allow automated
extraction of necessary information from existing systems.

11

We suggest to extract as much data as possible from
existing systems. We believe that there is no need to apply
complicated filters to the collected data in order to select only
those that have some chances to be useful for the standard.
It is much more easier to set/unset the appearance flag for
lots of entries than to collect additional data in case if one
finds that we haven’t collected enough. With the modern
database management systems, it is unlikely that specification
developers will reach some database limitations on the data
size or performance – yes, the modern standards are large,
and if we collect and store all the data that can be useful
for the developers, we can achieve large amounts of data. For
example, the LSB, one of the biggest interface standards in
the world, contains about 40,000 interfaces. A usual Linux
distribution consisting of one DVD disc can contain up to
million interfaces, and theoretically, all these interfaces can
be useful for the LSB. However, even these numbers are not a
problem for the modern DBMS (in particular, for MySQL,
used as the DBMS for the LSB Database which currently
contains about 100 millions of records).

The task of data collection is a separate problem and can
be even more complicated than generator development. As
LSB developers’ experience shows, it is much more simple to
generate headers with declarations of functions and types on
the basis of structured database information, then to parse and
analyze existing headers in order to populate the database with
this structured data. However, even this task doesn’t seem to
be very time-consuming when compared to the task of manual
collection of data for 40,000 functions and similar quantity of
types, constants and macros necessary for their declaration and
usage.

Even more gain can be achieved if there are several tools
that are generated (at least partially) using the database.
Though these tools can require different generators to be
created, it is likely that they use similar information from the
database. If so, the same tool can be used to populate the
database with data satisfying all generators.

D. Supporting Multiple Versions of the Standard

In the “Database Design” section, we’ve suggested to use an
appearance flag to indicate that a particular item is included
in the standard. To be sure, a single flag allows to store
information corresponding to a single specification version.
However, as we have noticed in the beginning, sometimes
it is necessary to support several versions simultaneously.
Forking a separate copy of the database for every version
is a possible approach, but it introduces great data overhead
(especially in case when different versions have significant
intersection), complicates back porting of fixes for different
issues and can significantly increase the maintenance cost of
the whole system.

Another possible approach is to use the same database to
store information about all specification versions. In this case
the same tools can be used to generate data corresponding
to a given version (moreover, it is possible to generate a
single tool whose behavior can be adjusted by user to correlate

with a particular specification version). Detailed description of
possible approaches of improving the database to store such
data can be found in [10]. Here we’ll just summarize the main
statements of that work:

Advice 5. In order to store temporal data, one should
replace the ’appearance’ flag with the time interval that will
indicate a set of versions where the item was included in the
standard.

This statement actually suggests to add a temporal dimen-
sion to the database. This can be done by using either temporal
DBMS, or relational DBMS with additional fields indicating
the interval bounds. With respect to specification versions, we
may notice the following important features:

• The time is discrete; the possible values of interval
bounds are standard versions, broadened with at least one
specific value, that can be referenced as ’infinity’. If this
value is used as a lower bound of the time interval, then
this means that the entry has never been included in the
standard. If it is used as an upper bound and the lower
bound is not infinity, then the entry is included in all
versions of the standard starting with those pointed by
the lower bound of the time interval.

• When storing specification versions, one have to deal
with only one kind of temporal data, called valid time,
and don’t need to store transaction time. That is, we
should know in which version of the standard some item
appeared, but not the time when the appropriate change
was made in the database.

Thus, there is no need to track transaction time, and the set
of possible values for the valid time is usually limited to a
rather small set of values (fortunately, the standards doesn’t
introduce a new version every day). Moreover, a common
life cycle of an item in the standard looks like “appeared
in version A, withdrawn in version B”. In general, situations
when some item is returned back after been withdrawn are
quite rare. So for most cases the database will contain only one
time interval indicated by two bounds – that is, if compared
to a single appearance field, we just obtain one more field for
every record. Thus, this approach is much more efficient from
the data size point of view than a set of separate copies of the
database corresponding to particular standard versions.

IV. DEVELOPING THE LSB DEVELOPMENT
ENVIRONMENT

Let’s now return to the LSB Development Environment
and show how the ideas discussed above are used during its
creation.

First, let’s note that the main purpose of the Linux Standard
Base specification is to pick out those interfaces provided by
the operation system that are common to all major Linux
distributions. The following kinds of interfaces are taken into
account:

• Binary libraries (their runtime names).
• Binary interfaces (functions and global variables) pro-

vided by libraries.

12

• Commands (utilities and shell builtins).
• Modules of interpreted languages.
• Kinds of sections for the ELF files.
• RPM format tags.
That is, the LSB specifies the runtime environment where

the application is running, and concerns the problem of dis-
tributing the applications in a compiled form. Applications that
use only interfaces included in the LSB can be executed on any
LSB compliant system without recompilation or environment
adjustments.

LSB 4.0 contains specifications for 57 libraries with about
40,000 binary interfaces. These numbers might look large, but
not when compared to any desktop Linux distribution – usual
system on one DVD disk ships several thousands of libraries
and up to million of interfaces. So it’s not easy for application
developers to orientate themselves in the Linux and LSB
world. The developers who want to target LSB are supported
with the LSB Navigator – web system that represents the LSB
online, with lots of additional helpful information not included
in the standard itself – and Linux Application Checker that can
be used to check LSB compliance of executable files, shared
objects and scripts that form the application.

However, these two tools are not free from the issues
discussed in the beginning of this paper – consulting Navigator
for every interface requires a lot of time; Application Checker
can be integrated in the build process, but this will increase
the build time, and in many cases the checker will just report
the failure, but provide no suggestions on how to fix it.
Application developers can meet some issues with obtaining
LSB-compliant product when building their programs in the
real systems, even if they don’t directly use non-standard
interfaces. For example, the following two problems arise quite
often:

• LSB doesn’t include arithmetic routines of the libgcc s
library. However, the gcc compiler forces usage of these
routines if they are provided by the libgcc s library that
participates in the build process.

• Default behavior of the gcc compiler on some systems
leads to the usage of ELF sections that are supported
only by the last generation of distributions and thus
not portable and not yet included to LSB. For example,
Avinesh Kumar in his blog [11] explains why binaries
compiled on RHEL 5 with the default compiler options
will fail to run on RHEL 4.

Without a good knowledge of compiler operational princi-
ples, it’s not easy to find out the roots of such issues.

To save application developers from these problems, it was
decided to support them with the specific build environment,
whose usage in the build process will guarantee that the
obtained executables are compliant with LSB. At the moment
two projects exist that provide such possibility:

• LSB Sample Implementation – the whole distribution
built using the rPath technology that tries to limit pro-
vided interfaces to LSB ones.

• LSB Software Development Kit – a set of tools that can

be installed in any real system and used as alternatives
to the system build toolchain.

LSB Sample Implementation (LSB SI) is useful not only
for building applications, but also for testing them, since it is
guaranteed that implementations of its interfaces are compliant
with LSB. However, since LSB SI is a distribution, it requires a
separate machine to run; though it can be also used as a chroot
environment, but even this variant is not very convenient for
many developers. Another problem was already mentioned
in the Section 2 – the development process of the SI is
rather complicated and it is not guaranteed that it provides
no forbidden interfaces at all.

On the opposite, LSB SDK doesn’t suffer from these issues.
To understand the reason, let’s first consider the structure of
this environment. It consists of the three major components:

• Stubs for libraries specified by LSB. These stubs export
only those symbols that are included in the standard, but
they don’t provide their implementation.

• Header files that provide API (function declarations,
types, constants, etc.) for the LSB libraries. It is guar-
anteed that usage of this API cannot lead to incompliant
application.

• Compiler wrapper – a tool that should be called instead
of system compiler. This tool calls the system compiler
itself, forcing it to use libraries and header files provided
by the LSB SDK. The environment variables and com-
piler options are automatically set to eliminate possibility
of obtaining incompliant applications.

The advantage of the LSB development process, from
our approach point of view, is the existence of specification
database that stores different information about elements
included in the specification. In particular, the database stores
names of included libraries, as well as names and signatures
of included interfaces. This database is used to generate LSB
specification text and some primitive tests, and also serves
as a knowledge base for LSB Navigator and Linux Applica-
tion Checker. The data collection process that populates the
database with information is separated from all other tasks
and can be modified without affecting any other items of the
LSB infrastructure. Thus, no wonder that the idea raised to
use the database to automate the process of the LSB SDK
development by introducing an automatic generation of some
parts of the SDK, especially stub libraries and header files,
that hardly depend on the entities included in the standard.

Stub library generation process has been implemented in a
rather straightforward way. In order to obtain a desired stub,
a source file in C language is generated with declarations of
functions whose names are the names of binary symbols to be
exported. Return types and parameters don’t matter anything
– we may use void as a return type for all functions and
totally omit parameters. After this file is compiled, we’ll obtain
a shared library that exports exactly those symbols that are
required by LSB.

This approach uses the fact that for libraries written in C,
names of exported binary symbols (that are taken into account

13

by the dynamic linker) are equal to the names of functions and
global variables implemented in the source files; return types
and parameters are not taken into account. For C++ and other
languages that allow users to override functions, the situation
is different – names of binary symbols are constructed during
the mangling process on the basis of the function name itself,
its parameters and name of the class or namespace which it
belongs to. However, if we know binary symbol name of a C++
function, we may create a C source file with declaration of a
function with this binary name and compile it. The result will
be the same as if we create a C++ source file and place a proper
function declaration there (i.e. with all necessary classes and
parameters).

Thus, all that we should know to generate stub libraries are
binary names of symbols that should be exported by them.
The database fairly provides us with this information. Since
the generated source files don’t contain any actual code, then
there are no interdependencies among functions that should be
taken into account.

Unlike library stubs, header files should provide complete
declarations of functions. All non-intrinsic types used in these
declarations should also been declared. In addition, it is useful
to declare such elements as constants and macros. Though are
they are out of LSB scope, they can be useful for developers
(but one should ensure that the macros don’t invoke forbidden
interfaces). Thus, though we still don’t need function imple-
mentations, we have to declare complex types that sometimes
have rather tricky interconnections, so generation of correct
header files is a more complicated task then generation of
library stubs. In case of C++, we also have to deal with
templates that can affect runtime dependencies of applications.
Every template should be analyzed to decide whether its usage
can lead to calls to forbidden functions. This task was found
to be rather complicated, and it is not completely solved at
the moment, i.e. it is not guaranteed that C++ header files
shipped with the LSB SDK cannot lead to usage of non-LSB
functions. However, even if the latter happens and application
obtains a dependency on a forbidden interface, this will be
caught at the linking stage which will fail, since stub libraries
don’t provide the forbidden interfaces.

In the very beginning, the LSB database was populated
manually; at that time, no one thought about SDK generation,
and for the specification and test generation purposes the data
was complete enough. As LSB evolved, the size of necessary
data became too large to be handled manually, and additional
tools were developed to automate data collection process
(import* scripts, libtodb tool [12]). These tools were mainly
based on the analysis of binary library files with debugging
information, with slight header files analysis. However, though
debugging information from binary files could give enough
data to generate specification text and some tests, a lot of
manual adjustments were required to make generation of
header files possible. To improve data collection process, a
new set of tools called LibToDB2 were developed at ISP RAS
under the contract with the Linux Foundation [13]. The new

tools analyze both binary files and headers, extracting data
more accurately then their predecessors. The tools collect and
upload to the database all information about analyzed headers
and libraries. Then on the basis of lists of functions and
global variables included in LSB, a separate tool discovers
the types that should be present in header files to declare
included interfaces. Surely, LSB workgroup can point out that
some additional types are useful for developers and should be
included in headers; these types should be marked as included
manually. The same situation is with macros and constants,
that are mainly selected manually, though there is a tool to
check that included macros don’t require non-LSB interfaces.

One more challenge was to make the LSB SDK to be a
multiversion tool, that is, able to generate code complaint with
any given LSB version. The LSB database contains data about
all released versions of LSB (as well as about the one under
development), so it can give us all necessary information about
LSB history [10]. Thus, the task was to generate headers and
stub libraries that could be used to target any LSB version.
Depending on some environment conditions, the SDK should
behave as if it represents a particular LSB version. The actual
tool that user deals with is a compiler wrapper; to target a
particular LSB version, user should only specify an option for
it or to set appropriate environment variable, and the wrapper
should perform all other necessary actions.

Since the set of symbols exported by a particular library
cannot be affected by its environment, we can’t generate a
single stub file for every library to target several LSB versions.
Instead, we create a separate file for every LSB version where
the library appears, and let the compiler wrapper to choose the
file to link against at runtime, on the basis of its options and
environment variables. Unlike binary libraries, the contents
exported by header files can be manipulated using different
preprocessor directives. In the LSB SDK, every declaration
is embraced with conditions on the LSB VERSION constant,
which can be set either directly by user or by the compiler
wrapper. This results in smaller total size of files with respect
to the case when a separate header is generated for every
version, since we can create only one declaration of element
to target several versions, and most elements are present in
more than one version of LSB.

To estimate the gain achieved by usage of generators instead
of manual creation of the whole SDK, one can compare the
sizes of generated files with sizes of those part of the SDK
that are written manually and with the size of generators
themselves. Table I contains characteristics of the generated
C-language part of the SDK (as was mentioned above, for C++
elements only stub libraries are generated at the moment, and
generators of header files are under development).

Table II contains the same characteristics of the generators
and data collection tools, which are written in Perl.

Table III contains the characteristics of the LibToDB2 set of
tools (those part that collect C-language data), which is also
important for the SDK generation. Note, however, that the data
collected by these tools is used by many generators, not only
by the SDK ones.

14

TABLE I
LSB SDK GENERATED CODE CHARACTERISTICS

Stub libraries Headers

Source code size, loc 87,800 68,500

Development effort estimate,
person-years 22 17

Total estimated cost to
develop, dollars 2,950,000 2,300,000

TABLE II
LSB SDK GENERATORS CODE CHARACTERISTICS

Stub libraries Headers

Source code size, loc 400 2,100

Development effort estimate,
person-years 0,07 (1 month) 0,5 (6 months)

Total estimated cost to
develop, dollars 10,000 60,000

TABLE III
LIBTODB2 CODE CHARACTERISTICS

Source code size, loc 4,400

Development effort estimate, person-years 1

Total estimated cost to develop, dollars 126,000

The data is generated using David A. Wheeler’s ’SLOC-
Count’ [14] tool. Estimates are given by this tool using
the basic COCOMO model. Surely, the estimates suppose
that the code is created from scratch and don’t take into
account the nature of the code (such as absence of function
implementations in stub libraries). One may also note that the
SDK code can be created on the basis of appropriate upstream
code by dropping those parts that are incompliant with LSB.
However, such an analysis is rather difficult, and in any case
it’s not simple to support more than hundred of thousands of
lines of code manually.

Schema of the database tables that are used during the LSB
SDK generation is shown at Fig.1. Temporal data is stored in
the tables that implement many-to-many relationships between
entities and hardware architectures, since appearance of an
entity on some architecture is independent from its presence
on other platforms, as described in [10]. The only exception
is header files – if a header is included on one platform, it
is automatically treated as included on all others (even if it
is empty there). So there is no direct relationship between
headers and architectures, and temporal data is stored in the
Header table itself.

Starting with LSB 4.0, the LSB SDK can be used to create
executables and shared libraries compliant with any given
LSB version, greater or equal to 3.0 (earlier versions are not
supported by the database, since there was no great demand
for them). At the moment, the SDK allows to generate only
files fully compliant with LSB, with no exceptions (that is,
one cannot use libraries or functions that are not included in
LSB). In future it is planned to implement a relax mode for the

Fig. 1. Main Tables of the LSB Database Used During LSB SDK Generation

SDK that will allow applications to use certain symbols not
included in LSB, but still known to be stable and present on
most systems. Such possibility should increase the portability
of applications (though formally the programs compiled in the
relax mode will not be compliant with LSB). But even at the
current state of art the SDK is very useful, and is used to build
all programs involved in the LSB infrastructure (including
test suites, LSB Application Battery and the SDK itself).
Another good example of the SDK usage is the OpenPrinting
project that suggest to write all printer drivers using the
LSB DDK (Driver Development Kit) which is actually an
enhanced version of the LSB SDK (supplemented by tools and
libraries necessary for driver development but not included in
LSB – such as Ghostscript or CUPS DDK) [15]. All current
distribution-independent driver packages in the OpenPrinting
database are based on LSB 3.2.

V. CONCLUSION

When creating a portable application, developers are inter-
ested in using only those interfaces that are present on the
most of the target systems. One of the way of achieving this
is to use interface standards that are followed by the target
systems. However, direct consulting with the standard text
is not very efficient, and consulting appropriate specialists
can be expensive; in both cases, the development period can
increase significantly. That’s why it is important to support
developers with toolchains whose usage will guarantee that
the final product is compliant with the standard. However,
integration of new tools can be also expensive and requires
some time. So it is important to provide software developers
with the tools similar to those that are already used in their
development process, to make it cheap to replace existing tools
with the new ones (or use the two toolchains in parallel). One
of the possible ways of creating such tools is to modify the
existing ones.

15

Existing Implementation

Database

 Data Collection Tool

 Generator

Adopted Implementation

 Standard

Workgroup

Fig. 2. Developing Adopted Tool Using Existing Implementation

This paper discusses an approach that allows to automate
development and support of the tools based on the existing
implementations. Fig.2 illustrates the suggested organization
of the development process. The main idea is to collect data
about existing implementation and to put it to the database in
some intermediate format convenient for the specification de-
velopers. The data can be manipulated by developers in many
ways; in particular, they can use special markers to separate
those data that should appear in the tool from undesired or
useless information. The automatic generators will use the
adjusted data to create the tool itself; the tool achieved is
actually a modification of existing implementation, adopted
for the specification requirements.

Usage of the database allows specification developers to
deal only with those properties of the tool that are concerned
by the standard. All other aspects necessary for achieving a
working program are handled by automatic generators that
also propagate every change made in the database to all
places where it should take effect. Thus, the specification
developers can even have slight knowledge about the generated
tool structure – they just should point out which interfaces
are allowed, and which are not. Surely, complex interface
standards require creation of complex developer-oriented tools,
and the more complicated is a tool, the more complicated are
appropriate generators and data collection tools. Nevertheless,
development of complicated generators can be much more
cheaper than development of the tools from scratch. And
even more gain can be achieved if the same database is
used to support several versions of tools corresponding to
different versions of standards. Adding temporal dimension to
the database and support of this dimension by the generators is
not as expensive as support of several distinct tools or several
distinct databases.

The approach suggested in this paper is used to develop

the LSB SDK and proved to be useful and efficient, saving
lots of efforts and resources. Since the SDK functions in a
similar way as the system compiler toolchain does, its usage
is transparent for developers and it is now adopted by many
people who care about building software products portable
among different Linux distributions in the form of binary files.

REFERENCES

[1] Linux Standard Base. http://www.linuxfoundation.org/en/LSB
[2] Building Applications with the Linux Standard Base: Using the LSB Sam-

ple Implementation. http://www.linuxfoundation.org/en/Book/HowToSI
[3] SGI’s Sample Implementation of the OpenGL API. http://oss.sgi.com/

projects/ogl-sample/
[4] Building Applications with the Linux Standard Base: Using the

LSB Development Environment. http://www.linuxfoundation.org/en/
Book/HowToDevel

[5] All About the Linux Application Checker. http://ldn.linuxfoundation.org/
lsb/all-about-linux-application-checker

[6] Becky S. Chu. appcert: A Static Application Checking Tool.Sun De-
veloper Network, June 2001. http://developers.sun.com/solaris/articles/
appcert.html

[7] Android Emulator. http://code.google.com/android/reference/emulator.
html

[8] Linux From Scratch. http://www.linuxfromscratch.org/
[9] rPath. http://www.rpath.com
[10] Denis Silakov. Tracking Specification Requirements Evolution: Database

Approach. Proceedings of the First Spring Young Researchers’ Collo-
quium on Software Engineering (SYRCoSE’2007), Volume 2, pp. 15-22.
May 31 - June 1, 2007. - Moscow, Russia.

[11] Avinesh Kumar. Binary incompatibility between
RHEL4 and RHEL5. http://avinesh.googlepages.com/
binaryincompatibilitybetweenrhel4andrhel

[12] LSB DB Tools. http://ispras.linuxfoundation.org/index.php/LSB DB
Tools

[13] LSB Library Import Tools. http://ispras.linuxfoundation.org/index.php/
LSB Library Import Tools

[14] SLOCCount Tool. http://www.dwheeler.com/sloccount/
[15] OpenPrinting: Writing And Packaging Printer

Drivers. http://www.linuxfoundation.org/en/OpenPrinting/
WritingAndPackagingPrinterDrivers

16

Binary Compatibility of Shared Libraries Implemented in C++ on GNU/Linux Systems.

Pavel Shved
Institute for System Programming, RAS

email: shved@ispras.ru

Denis Silakov
Institute for System Programming, RAS

email: silakov@ispras.ru

Abstract

A shared library is a file that contains library code and
data in binary form. Application built against the library
references the data via symbols and the contents of what’s
being referenced get known only during the application
startup. Library is shipped with header file(s) the program
is compiled with.

The problem of the binary compatibility (sometimes called
,,backward compatibility”) arises when the new version of
library is installed into system and the program, having not
been recompiled, is attempted to run in the environment with
the new library. The incompatibility may result in fatal errors
during the startup or even during the runtime.

In this article we deduce the rules that must be followed
in order to keep the binary compatibility of a shared library.

Unlike most of researches in this area, we also assume
that the library may contain its own restrictions upon its
usage, more powerful than restrictions of C++ language
itself. So the possible restrictions are analyzed as well, and
we attempt to weaken the rules of binary compatibility when
such restrictions are enforced.

As a conclusion we list the rules a programmer should
follow to keep his or her library binary compatible. We also
conclude that possible restrictions limiting the use of library
allow to weaken these rules in relatively small number of
cases.

For the purpose of this study, we create formal notation
for the process of building and using a library, introduce
formal definitions of source and binary compatibility and of
program behavior. We base the assumptions about mapping
source code entities to binary level on the Itanium C++ ABI
standard, which describes gcc’s way of emitting binary code
and data.

Index Terms

Languages, Software libraries

1. Introduction

1.1. Premise

C++ nowadays is one of the most popular programming
languages [1]. It is complex, but the complexity made it

become one of the most powerful multiparadigm language,
that can combine low-level efficient code with high-level
concepts of generic and object-oriented programming.

Like any serious programming language, C++ needs the
concept of ,,library”. One of the doctrines of C++ design was
compatibility with C language at the source level (with a few
exceptions only) and with interfaces of C shared libraries.
The decision was necessary to make language more popular
by ability to re-use of existing C code [2]. But the questions
of C compatibility is still urgent since C is also one of the
most popular programming languages ([1]). So, the concepts
of C++, that are absent in C, use the same binary interface
architecture: the memory the object file occupies is addressed
with strings—,,symbols”. Their semantics is (as in C) not
described in binary file, but rather is enforced at compile-
time by the header file of the library.

But, compared with C++, libraries have notable peculiar-
ities. They can contain the code of a subroutine provided
either at source or at binary level (some libraries, like boost
or stdc++, contain few binary code; most of code is inlined
and instantiated in compile time). Further, C++ concepts are
much more complex than C’s ones, hence the semantics of
data being referenced by plain old symbols is also more
complex.

Sooner or later, each library faces the question of compat-
ibility with previous versions. For compiled languages the
library author should maintain not only source compatibility
(i.e. the ability to successfully compile same program code
with the new library headers), but also binary compatibility,
which lets the program to run with the new binaries of the
library without recompilation and to produce the same results
as with older version.

Maintaining binary compatibility is a complex task, and
it’s also important as it takes considerable time to generate
effective low-level code out of C++ source. But new versions
of popular libraries are released quite often, because every
library has numerous bugs that are to be fixed, improvements
that are to be implemented and new concepts that allow to
create better applications in the future. And the popularity
of the library also means that there exist many applications,
that use it. They all would have required recompilation if
binary compatibility would break with every new release.
Furthermore, in the new environment applications may also
work differently, but their developers usually promise fixed
behavior in advertisements and documentation.

Hence the binary compatibility problem is very important

17

Table 1. Special symbols used in this paper

↪→ A ↪→ B A class is an (indirect) base of B
B C.B set of all bases of C

BV C.BV set of all direct virtual bases of C
P C.P most derived primary base of C
V C.V array of C’s virtual tables.
− C.to− C.from offset

for C++ libraries. However, popular articles on this question
are not complete. Instead, they introduce mere list of rules
one should follow, the rules usually coming out of practice
and the completeness of their set never being claimed. No
wonder that these lists differ in such researches. No article
also takes into account that, apart from the restrictions of
C++ language, that are expressed in header files, a library
can have additional restrictions, imposed in free form by
documentation.1 It is possible for these additional restrictions
to widen the set of compatible library code.

This article aims to fill these gaps and use a formal
approach to binary compatibility problem. We first describe
the compiling and building process of library and applica-
tions that use it, then we study how the new environment
affects the application behavior. It is GNU/Linux system
and its default instruments: gcc compiler(,,GNU Compiler
Collection”) and ld, ,,The GNU Linker”. The toolset being
used is chosen to be best specified and popular enough ([6],
[7]).

We use [4] as a formal ground for binary analysis; GCC
follows this standard.

We will not study the questions of inter-compiler and
inter-platform compatibility. Also we keep aside compatible
exception handling (as most of libraries do not use them).
What we will concentrate our forces on compatibility of
classes and functions, which code is placed into object files.
1.2. Notation

To denote the objects discussed we decided to mix math-
ematical formalism and the notation used in object-oriented
programming. To denote subobjects of compound objects we
use C++ notation, where L.c means c subobject in L. The
same rule holds for member functions; for example, x.f(y)
may be treated as f(x, y).

Finally, the table that shows how special symbols are used
and what they mean is shown on figure 1.
1.3. Basic Concepts

1.3.1. GNU/Linux System. In this section the objects in-
volved in program life cycle in GNU/Linux system are
described in a formal way. In outline, there are compiler,
assembler, linker and underlying semantics of objects they
manipulate, regardless of whether they reside in RAM or on
disk.

1. Sometimes these restrictions are considerably significant. For
example, destructors of widget classes in Qt library, are called
during the destruction of parent widget. That forces programmer
to create widgets with new operator only and prevents user classes
from having widget members.

1.3.2. Compilation. Let’s mark out the stages involved in
compilation and running of a C++ program.

Source code of an application consists of several source
files (cpp files). Some of them have relevant header files
describing their interfaces. Each source file may include
headers both from the application in subject and from other
libraries. Then each cpp-file f.cpp is preprocessed and stored
in RAM. The preprocessed code, being then independent of
other program entities or environment, is compiled, resulting
in the object file f.o.

We combine these stages and will write as follows:

f.o = f.c.compile(f.h, lib.h).

As arguments this compile function takes header files f.c
includes. Indeed, if f.cpp contains #include <lib.h>
line, then preprocessed source will change subject to lib.h
contents. This change is represented in a natural way—as an
argument to function. For example, f.c.compile(f.h, lib′.h)
denotes that the contents of header file included via the
particular line with ,,include” statement are changed, its name
acting as reference only and being invariant.

After all sources are compiled, the work flow proceeds to
linking stage. Its result is an executable file f.exe, in which
the code of all object files and statically linked libraries is
comprised. We denote it as

f.exe = f.o.link (f1.o, f2.o ...fn.o) ,

where f.o is an arbitrarily chosen object file from the set of
all ones being compiled.

However f.exe still doesn’t ultimately define the code that
will be executed. If the application was compiled with a
shared library, then, at the start of its execution, dynamic
loader’s code is run. Its purpose is to link the symbols
used in application executable as references to the actual
code and data addresses in RAM. The libraries to be loaded
dynamically are chosen from the current environment via
sonames and may differ from the ones linked to during
preparing the application executable (see [5] for details).
Therefore, similarly to the compile function notation, the
dynamic linking function should also take shared objects as
arguments: f.exe.dynlink(lib1.so, lib2.so, ...).

The result of running an application and its consequent
possible dynamic linking is application context. The context
then consumes input data and produces output data. ,,Input
data” comprises very broad range of data: OS state, sequence
of random numbers returned by corresponding functions,
command line arguments, filesystem state and environment
variables. In other words, input data unambiguously define
output data.

The application context obtained is therefor a map from
set of all input data to set of output data. We denote it like
an usual function:

f.exe(input) = output (1)

f.exe.dynlink(lib.so)(input) = output (2)

18

1.3.3. Notes on Specifications. Talking over binary com-
patibility, not only we require the application to run in new
environment, but expect it to yield the correct results. The
most common way to define correctness of the behavior is to
use concept of specifications. Program behavior is described
by its context, which is a map from input to output. So, it’s
natural to define specification of a program as map from
correct input to output, the mapping being conformant to
library code.

Correct input is an input that doesn’t cause precondition
violation 2 for shared library functions, as if abstract C++
machine defined in C++ standard [3] is run.

By conformant mapping we mean the mapping, that exe-
cuting the library functions on abstract machine in such way,
that their return values and side effects are conformant to the
relevant library specifications.

Therefore we can define, that program conforms to spec-
ifications (,,works correct”) if its context and specification,
restricted to the set of correct inputs, are equal. We denote
it like this:

f.exe.dynlink(lib.so)
∩
= spec (3)

Contract library specifications may govern not only func-
tion calls but virtually every way of using of concepts defined
in header files. The consequences were discussed in .

A program or a library may be ,,badly written”, i.e. have
empty set of correct inputs. In further analysis we only take
,,well written” libraries and programs into account, their set
is denoted as P.

1.3.4. Shared Libraries. Let’s define our subject. A shared
library Lib is a structure

Lib = 〈H = {hi} , CPP = {cppj} , so, soname, spec〉 ,

where
• hi are header files;
• cppj are source code files that contains definitions of

(some) functions and variables declares in header files;
• so = link(..., cppj .compile(hj1 , hj2 ...), ...).makeso

— an object file compiled in a special way, which can
be used as an argument for dynamic linking function;

• soname is a library name via which the so-file is found
by dynamic linker;

• spec is an encapsulated object with the sense discussed
in 1.3.3.

The definition requires cpp files to comply with header
files declarations—i.e. compile without errors.

2. Binary Compatibility

2.1. Definition

To simplify the further study we will consider program p,
that consists only from one source file, and a library L, that
also consists from one source and one header file.

2. a library documentation practically doesn’t use the word ,,pre-
condition”. But its sense is comprised in phrases like ,,the value of
this parameter shall be more than zero” or ,,the behavior for NULL
pointer is unspecified”.

Table 2. Symbol versioning example

A′.h B′.h

namespace libA{
#include <A.h>
}
using namespace libA;

namespace libA{
#include <A.h>
}
namespace libB{
#include <B.h>
}
using namespace libB;

Let’s assume that a new version is released — L′. Then
L′ library is binary compatible with L, 3 if

∀p ∈ P→p.cpp.compile(L.h).link(L.so).

dynlink(L.so)
∩
=

∩
= p.cpp.compile(L.h).

link(L.so).dynlink(L′.so) (4)

If we would recompile program in the new environment
its context would look like that:

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so).

The behavior in new environment may hence differ; that’s
what we are to evade.

The definition of binary compatibility doesn’t really con-
strain itself to the cases where it’s useful. For example,
there’s no obstacle that prevents us from investigating the
issues of compatibility of math library and window manager
library. Therefore we should lay down one more condition,
namely source code compatibility.

Library L′ is source compatible with L, if

∀p ∈ P→ (∃p.o = p.cpp.compile(L.h)) (5)

⇒
`
∃p′.o = p.cpp.compile(L′.h)

´
.

Later on we will discuss only binary compatibility of
source compatible libraries.
2.2. Symbol Versioning Approach

Let’s examine first the following method referred to as
symbol versioning. We will now show that any libraries may
be made binary compatible even if they’re of different kind.
Indeed, assume A and B are libraries. Then let’s create A′

library, that’s source compatible with A, and such B′ source
compatible to B that it is binary compatible with A′.

To achieve this we keep cpp files intact, and link the
objects files into single so file, having rewritten the header
files as shown on figure 2.4

The libraries produced are binary compatible and same
programs may be compiled with them. Source compatibility
between B′ and A′ is equivalent to that between B and A.

However this approach suffers from the code duplication.

3. we say that the new version is compatible with the old one,
and not vice versa

4. C language doesn’t have namespaces, but gcc introduces the
other symbol versioning mechanism for C language; see [5]

19

Note that symbol versioning can not be used with every
bugfix release, as each bugfix forces us to create a new
function instance. Symbol versioning is used (for example, in
glibc) with major releases, the functions in bugfix releases
sharing the same version and having to be binary compatible.

To prevent duplication we might use aliases for duplicat-
ing code and data. But how can we be sure that code is
duplicated? The question of whether the code of function
is duplicated with version change is essentially equivalent
to the question of binary compatibility. Therefore, symbol
versioning doesn’t govern all binary compatibility problems
and further study is necessary.
2.3. Causes of Binary Incompatibility

There are different ways to build an run application:

p.cpp.compile(L.h).link(L.so).dynlink(L.so) (6)

p.cpp.compile(L.h).link(L.so).dynlink(L′.so) (7)

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so) (8)

Contexts (6) and (7) differ only in dynamic linking func-
tion arguments, i.e. in the set and internals of the symbols the
library exports. In C language it only means that during the
calls to the functions with external linkage the other code will
be executed. However, C++ libraries contain more symbols
than those of functions and static data, and some of auxiliary
symbols are used in an unobvious way. Binary compatibility
is caused by the difference between symbol sets and contents
in different versions of library.

According to the definitions of building the application the
object file p.cpp.compile(L.h) already contains information
about symbols it might need in the shared library. However,
an only source of information about the library so far is
header file L.h. Therefore, the set and internal structure of
symbols exported are completely defined by header file. The
source file L.cpp only defined internal code and some data
these symbols point to.

However, during the linking with L.so no code or data
defined in L.cpp is inlined into p.exe. This code is loaded on
dynamic linking stage only. But at this stage the application
requires the presence of symbols defined in L.h, but the
library L′.so the program’s being linked to provides sym-
bols, defined by L′.h. That’s one of the causes of binary
incompatibility.

Furthermore, if a code defined in cpp file is called via
symbol, the callee will consider that arguments are laid out
like in callee’s native header file, L′.h. However, the caller
assumes that all library data is laid out like in L.h—the file
the program was compiled with. That’s an important matter,
because the semantics may stay unchanged from the user
point of view (summarized in C++ ,,source” standard [3]), it
could change from binary point of view (ABI standard [4]).

We can now divide the causes of incompatibility into the
following groups:

1) implementation change, the case when constant or
function whose signature remains intact, changed its
definition;

2) compiled code notions incompatibility, the case
when the notion the function in cpp file has of layout
of its arguments has changes due to alteration of
declarations in header file. These alterations only
depend on L.h → L′.h change and may be studied
separately from 1.

3) altering or removing of special symbol, which def-
inition is deduced by the compiler based on header
file. The data the symbol refers to could be used in
application binary code as in notions given by L.h,
but handled in L′.so as in L′.h.

4) errors during dynamic linking, caused by absence
of definition of an entity from L.h in L′.cpp hence
L′.so.

3. Study of Incompatibility Sources

Let’s thoroughly study the sources described in 2.3.
3.1. Errors During Dynamic Linking

After the application is built against L.so, no static linking
errors can arise. However, at the time it’s run dynamic linker
tries to link it with L′.so instead (because L.soname =
L′.soname), so it may lack symbols the application refer-
ences and abnormally terminate before it has any chance to
run its code.

Dynamic linker searches all external dependencies of
f.exe in the libraries loaded. They’re fixed at compile-time
and marked at link time as external, when the linker finds
definition of symbol in a shared library rather than in static
one or application’s object file. Here the linker ensures
that all dependencies are satisfied. The dependency may be
global variable’s symbol, non-inline function, non-template
function of fully-instantiated template function.

We well use term ,,use symbol” instead of ,,use declaration
the symbol relates to”.

We should note that, among external dependencies, there
can be the symbols allowed to be used in userspace code.
Userspace code is a code that compiler takes as an input. It
therefore contains f.cpp and L.h; and inline functions de-
fined in L.h in particular. The rules for keeping compatibility
will be formulated in terms of userspace code, so the library
developer must follow the rules in his own inline functions
code as well.

We should also note that for a member function call
not only its own symbol may be required, but also virtual
table (vtable) may be involved for virtual functions and for
non-virtual member functions of virtual bases calls. Among
the other info (see 3.4.2 for details) it contains pointers to
virtual functions definitions as symbols, that are resolved in
runtime.

L′.cpp may lack symbol described in L.h only because
that symbol is not deduced from L′.h (by the property of
shared library definition — see 1.3.4). Among explicit non-
auxiliary symbols only non-inline functions and global data
present in header file. If one of such symbols is withdrawn,
and it can be used in p.exe, L′ would then be incompatible
with L′. As it is obligatory to explicitly use such symbol

20

Table 3. Similar functions but different external names

L.h L′.h
typedef int Type;
void function(Type);

typedef float Type;
void function(Type);

for dependency to appear, the incompatibility of library
is equivalent to the plausibility of this symbol usage in
userspace.

Therefore, it’s impossible to withdraw from header file a
symbol that is allowed to use in userspace code.

A symbol name is constructed out of its declaration
through use of ,,mangling”. The mangling procedure is fully
described in section 5.1 of [4]; here we only outline some
key conclusions.

A symbol (external) name for a declaration for GCC
compiler is uniquely and unambiguously defined by the
conjunction of the following properties:

1) filly-qualified name of declaration, the name of dec-
laration and fully-qualified name of enclosing scope
(class or namespace)5;

2) vector of argument types and vector of template
parameter types (for instantiations). The types with
all typedefs substituted are considered for this pur-
pose, however, structures, classes and unions are not
expanded—their name is taken only. For example the
functions shown on the figure 3 have different external
names.
All fully-substituted types are encoded in unique way,
the types and member functions being also distin-
guished by cv-qualifiers.

3) return type of a template function. If template
function is instantiated, its return type is also encoded
into external name.

4) set of function’s thunks. For functions that require
adjustment to this pointer (overloaded functions of
non-primary base, separately for virtual bases, virtual
base subobjects6 and all other bases) or to return value
(for covariant return types) special entry points are
created and then used in the function call algorithm.
Special functions called ,,thunks” for different ways to
call the functions are emitted into object file7.
The application, that doesn’t derive the defining class,
can’t have them as direct dependencies, because the
calls to them can only be encountered through use of
vtable. But if application is allowed to derive a class
with such functions and it actually does, then the use of
them in derived class’ members definitions will require
adjustment and henceforth the relevant dependency.
The set of thunks define the rules of confronting the
function call operator and the symbol that references
the actual code. Therefore, if the number of entry
points or the causes of their appearance is changed,

5. treat this as recursive definition
6. the term ,,morally virtual” is used to name such classes
7. they don’t have to be separate functions, sometimes they’re

merely different entry points into single piece of code

it should be encountered as symbol name change. 8

Let’s formulate the rule: let the virtual function C::f,
be such that C ∈ D.B. Then the alteration of
any of the following properties will cause binary
incompatibility:
• whether it has covariant return type or, if it has,

the return type itself
• whether C = D.P;
• if C 6= D.P , whether C ∈ D.BV ;
• class W , such that for W holds

W ∈ D.BV , C ↪→W ↪→ D (9)

W /∈ D.P (10)

∀W ′ ∈ D.B →“
C ↪→W ′ ↪→W ⇒W ′ /∈ D.BV

”
(11)

Compatibility issues that arise from thunks’ contents
are discussed in 3.4.1.

So, if a property of the definition alternates, the library los-
es binary compatibility. One of the most stunning examples
of it, described in [8], is when one adds default argument,
the mechanism initially designed to keep compatibility (un-
luckily, source one). Indeed, when you add a new default
argument to the function, its vector of arguments changes
and hence the external name changes as well.

In this list the property ,,whether function is inline” is
absent, because there’s no external names for inline functions
at all. However, many developers do treat it as function prop-
erty, so here’s the rule for that: to keep binary compatibility
the inline qualifier must not be added to the function
allowed to be called from the userspace code.

3.2. Implementation Change

New versions of libraries are released to add the new or
to remove the obsolete functionality, fix bugs or improve
the underlying implementation algorithms. From a newbie’s
point of view bugfixes do not cause any harm. because it
hardly changes anything, especially in the set of external
names. From a formal point of view only the improvement
of existing algorithm is insignificant as long as it doesn’t
change the contract of function. What we call ,,a bugfix”
is actually a change of specification and a confession that
L’s specification is not L.spec defined by help files, but
something else, and only L′.spec made true specifications
coincide with the alleged one.

When developer changes symbol specifications, the ap-
plication calls the new implementation, namely the one in
L′.so and may change behavior, what leads to losing binary
compatibility. It also may not.

Consider the following example. L contains a streq
function, that compares strings. L′ introduces a new feature
to compare them case-insensitively, if the global trigger vari-
able bool case_insen was set to true, its initial value
being false. The specifications and behavior of streq()

8. The set of thunks may be treated as a single ,,multisymbol” for
the current one.

21

are changed, but no program compiled with L is capable to
use the new L′’s functionality and actually yield improper
behavior.

The change of function implementation doesn’t lead to
binary incompatibility iff the new functionality is unreach-
able from any correct executable linked to prior library
version.

From this point of view bugfixing is a binary noncom-
pliance. The program will work better, but in the other way.
Sometimes bugfixes in L cause errors in p, if p implemented
a workaround for the bug fixed and it became broken with
the new version9. However bugfixes are considered useful
rather than harmful, because the abstraction of the code into
third-party libraries intends to separate the workflow of the
application and of the code it uses as backend.

We should note that sometimes binary compatibility is
understood as the ability of a program to behave in the new
way in the environment with the new library version. Of
course, from this point of view, bugfixes do not affect binary
compatibility.

However we think that this approach is incorrect. First of
all, the part of L and the notion about it is anyway inlined
into the application’s executable (as a side effect it could
even reduce the number of compatible libraries in the other
cases, if the alternative definition of compatibility is used).
Secondly, as it was said in the intro, an application developer
should fix the behavior of the program in a help file of
sorts, so the library changes would reduce the separation of
application and underlying library.
3.3. Compiled Code Notions Incompatibility

In this section we will look for the such ways of altering
the header file, that cause L′.cpp’s code, that implements
data access accordingly to L′.h’s notion, to access the same
data that are laid out as in L.h. In the other words, we will
study the raw memory layout semantics and how to prevent
incorrect access to it.

We can separate two different directions:
1) access to the library’s memory from the userspace

through global variables and specifications-compliant
operations with them;

2) the access to the application-allocated memory from
the library; the memory’s having been allocated for
the library’s types declared in L.h through functions
in L′.so.

In the point 1 we mean direct access to global variables.
Indirect access to the memory through interface functions is
under the library’s control and doesn’t cause incompatibility
directly (i.e. is studied somewhere else). Just as well, calls
to class static members or global variable’s members don’t
cause incompatibility immediately.

All operations considered are equivalent to reading the
variable of integral type and to direct writing to it or to
complex structure as a whole. When recording the structure,

9. The known example nowadays is a bug in Qt 4.4 fixed in
version 4.5, but many KDE 4 applications contained a workaround
and become incorrect

if its copy implementation is deduced by compiler (i.e. the
copy constructor is not overloaded) only semantic violation
errors my arise. Therefore, binary compatible access to
variable, that may be accessed from the userspace for
reading and writing, is possible only if the alignment of
T ′ coincides with alignment of T on the first sizeof(T)
bytes. In the other words, you only can add fields to T class,
but you can’t alter the ones defined in L.h.

The analysis of 2 should be more elaborative.
It differs from the point 1 by the capability of library to

call its own types with arbitrary class of operations that’s
broader (at least not more narrow) than what is possible from
outside the library. The ultimate principle can be formulated
like this: L′.cpp should be created in the way for it to be able
to distinguish the origin of the data being handled, whether
it’s L.h or L′.h. 10 This approach is equivalent to symbol
versioning, which, as shown in section 1.3.4, still requires
further study of what can be done without it.

Let’s assume that a function takes one value as an argu-
ment (member functions are implemented as simple C-like
functions that take pointer to this as its first argument),
the type (possibly, indirectly, via pointers and references)
depending on T type, declared in L.h and L′.h. Let’s call
T ′ what T became in L′.

If the argument is passed by value, then in binary com-
patible application T = T ′, because these types should have
equivalent sizes (as the memory in stack for them is allocated
via caller) and semantics on first sizeof(T ′) bytes. There-
fore, only the types that are passed via pointer/reference to
the library functions may be altered.

The rules from 1 are applicable also to the types, that
are returned by value from library routines, because caller is
responsible for copying values back from stack.

If object of type T is passed by reference into the function,
that expects reference to T ′, it can control the access to
memory access within the object.

However, if it’s possible for T to be allocated into au-
tomatic storage in userspace (that includes being base class
or class member), the pointer to it may address less memory
than T ′ denotes; the behavior being undefined upon access to
it. Moreover, if a class has an explicit constructor, its call may
lead to memory access violation. Therefore, the following
rule holds: the increase of size of a class that can be
allocates in the automatic storage in the userspace causes
binary incompatibility if the functionality, that accesses
the new memory, is reachable keeping the conformance to
,,old” library specifications. Note that new members may not
extend class size; that’s especially notable for bitfields (see
[8] for bitfields as a technique to maintain compatibility).

Note also, that class size may be increased not only with
new members, but with new bases as well. If such new
class requires more memory (it may not for a nonempty, but
relatively small class; however it may require for an empty
class as well; refer to [4]), then new memory is laid out

10. as an example, one may require to explicitly specify the
version of library used in the application by the special function
call or global variable or something else.

22

before any of the members, all data members shifting. For
a class with at least one accessible data field that causes
incompatibility.

Therefore, practically, the paragraph above means that
adding a new base that increases the size of the class leads
to binary incompatibility.

There are several techniques that allow adding functionali-
ty to the class maintaining binary compatibility: ,,d-pointer”,
described in [8], techniques that emulate interpreted lan-
guages elements (see [8], ,,Adding new data members to
classes without d-pointer”). One can avoid problems by disal-
lowing to allocate memory in automatic storage in userspace,
hence forbidding to derive the class, but that undermines the
basis of OOP and has limited use.

The conclusion follows: The change of class hierarchy
(except cases when it involves the change of size of
no bases), change of members’ order, size and increase
(change, in case the class can be passed to or returned
from library function by value) of their amount leads to
binary incompatibility.

To apply this rule into practice you might want to exper-
iment with size of your structures, but that’s hardly will be
useful. Empty bases (and these are nearly all bases that don’t
make class change) are best served virtual and the restrictions
on virtual bases are more strong, what you will see in section
3.3.

3.4. Auxiliary Symbols Change

Along with symbols described in 3.1, GNU C++ compiler
adds auxiliary symbols to binary level. They are used in
virtual functions call algorithm (vtables), expose support for
low-level inheritance-related code generation (VTT, several
variants of constructors and destructors) and several thunks.

This section investigates the class of L.h alterations that
don’t cause binary incompatibility through auxiliary symbols
alterations. The key problem is that part of C++ low-level
code support mechanisms are generated in compile-time and
the symbols are assumed to be laid out as in L.h. During the
dynamic linking the application references these symbols in
the way described in L′.h, what causes incorrect program
behavior. The bodies of these symbols also can change, but
part of these changes, namely L.cpp→ L′.cpp, has already
been studied in 3.1 and 3.2; we will elaborate the other part
here.

Let’s study how each symbol type influences the compat-
ibility.
3.4.1. Symbols Introduced via Functions.
• Constructors and destructors cause compiler to emit

symbols for compete object constructor with and with-
out memory allocation and for base object constructor
(for construction of non-static members and non-virtual
bases); the same symbols are created for destructor (but
with freeing the memory instead of its allocation). These
symbols should have played an important role in binary
compatibility, but unfortunately it’s not always possi-
ble to encapsulate memory allocation procedure in the
shared library. Therefore the possibility of compatibility

Table 4. Thunk names

_ZThn8_N7Derived3virEv non-virtual
_ZTv0_n48_N7Derived3virEv virtual
_ZTvn8_n48_N7Derived3virEv virtual+vbase offset

violation is restricted to matters discussed in 3.3, and
to that, upon withdrawing of all virtual bases (which
causes incompatibility, as we will see in 3.4.2), relevant
symbols also disappear from library, causing link-time
error.

• thunks. Thunks are described in section 3.1. Here we
will assume that set of thunks didn’t change; only actual
offsets could.
Part of these values, that concern this adjustment,
are described in 3.2.3 section of [4]. It clearly shows
that adjustment is done with different offset values,
that, as described in section 5.1.4 of that standard, are
encoded into external names of thunks, examples shown
on figure 4.
According to comments in gcc code11, entry point body
only depends on these values, on whether covariant type
presents and on external name of the function the thunk
is associated to.
In the other words for thunks with same names equiva-
lent bodies are emitted (limited to the possible discrep-
ancy in the actual function’s body).
As any shift of classes through the hierarchy is incom-
patible (see 3.3), thunk bodies will coincide in L.so
and L′.so if the other binary compatibility conditions
are held.

3.4.2. Vtables. In this section we will use concept of class
hierarchy, the tree, that depicts the class’ direct bases, then
their bases and so on, the edged representing direct deriva-
tion. Some rules will also be formulated in terms of class
hierarchy. The developer should remember that when the
hierarchy of C is alternated, hierarchies of some class-
es that derive C may also change (and most of them
will, unless the change is adding a new virtual base that
already presents in all classes derived from C before it
in preorder). Practically that means that without additional
internal requirements to inheritance (we’ve just outlined one
possible rule in parentheses) these rules are useless and it’s
best to prototype and check them, or apply to classes which
derivations developer can control.

Vtables is a structure that supports virtual function call al-
gorithm, virtual base access and RTTI for dynamic_cast.
In C++ all static types are known in compile time, therefore
virtual tables are referenced through pointers, each for every
primary base group. Every pointer references some data
placed in the translation unit, where first virtual function
body is emitted.

Vtable structure is fully described in [4], section 2.5. We
will only give some general information.

11. check the description in files gcc/cp/cp-tree.h,
line 3317, and gcc/cp/method.c, make_thunk(); function.

23

Table 5. Vtable group layout example

Classes Entry Offset
C vcall offset for B2 :: f3 −72
C vbase offset for D1 −64
C vbase offset for B1 −56
C B3 vcall offset for B2 :: f3 −40
C B3 vbase offset for B1 −32
C B3 B2 vbase offset for B1 −24
C B3 B2 B1 offset-to-top (zero) −16
C B3 B2 B1 RTTI (of C) −8
C B3 B2 B1 B1 :: f1 0
C B3 B2 B1 B1 :: f2 8
C B3 B2 B1 B2 :: f3 16
C B3 B2 B2 :: g1 24
C B3 B2 B2 :: g2 32
C B3 B2 B2 :: f3 40
C B3 B3 :: h1 48
C B3 B3 :: h2 56
C B3 B3 :: h3 64

C D2 vbase offset for D1 −24
C D2 D1 offset-to-top (nonzero) −16
C D2 D1 RTTI (of C) −8
C D2 D1 D1 :: g1 0
C D2 D1 D1 :: g2 8
C D2 D2 :: h1 16
C D2 D2 :: h2 24

Let’s consider vtable group C.V of C class. They’re laid
out consequently, in the same order the base classes are
placed in C’s body. Every vtable V ∈ C.V is aligned
around the point of origin referenced by C.ptrto(V); it
relates to the primary base group B1 ↪→ B2 ↪→ . . . Bn.
Immediately before the zero, with negative offset, RTTI
pointer and C−C.ptrto(V) offset (offset-to-top) are places.
Then, for i := 1..n, are appended the pointers to final virtual
function overriders of the functions first introduces into Bi.
To the beginning, at negative offset, if Bi.BV 6= ∅, offsets
Bi.BV

j −C.ptrto(V) (vbase offsets) are appended; the less
i is, the closer to point of origin offset’s placed. Then, for
each virtual function, declared in base S of Bi.Bj , such that
∀D : K ↪→ D ↪→ Bi.Bj ⇒ D /∈ V , and that it’s finally
overridden in Kk, the offsets Bi.BV

j −Kk (vcall offsets) are
appended in the same way as vbase offsets, but after them
in the ,,negative” direction.

So the information about primary bases is ,,sliced” so they
share vtable and vtable for base class is, at the memory such
vtable is allowed to access, coincides with vtable as if it was
allocated separately. See the example of vtable layout on
figure 5 (the hierarchy is B1 is a primary virtual base of B2,
which is primary base of B3, which is primary virtual base
of C, which also derives D2, which has a primary virtual
base D1; virtual function f3 is defined in B1 and overloaded
in B2).

We can see, that pointers to functions, offsets and data
pointers present in the vtable. It’s irrelevant if they all
have different sizes because they can’t intermix due to
carefully elaborated vtable layout. However as vtable group
is referenced by only one symbols, the size of each can’t
change, as offsets from the first vtable to any otherC.Vi are
precompiled in f.exe.

Hence C.V depends on mutual location of virtual base
groups, on the order of classes within these groups and on
their virtual functions.

Therefore an only C.V change possible is to add new
vtables or extend the last one in the group (C.V|C.V|).
However, if that’s the table of V such that V ∈ C.BV ,
developer can’t add virtual functions overridden in derived
classes as it would ass vcall offset shifting table the shift
to which is precompiled. But unfortunately the function will
most likely be added to virtual base as their vtables are places
at the end of C.V .

Furthermore, when you derive the class in the userspace,
the derived vtable is constructed like in L.h, but the library
functions will implement virtual functions call algorithm ac-
cording to L′.h notion. So, extension of vtable is impossible
without compatibility loss, if extending the table functions
or classes are used in userspace code. We will assume that
this rule holds. Let’s study the ways of table extending.

1) New base class
The extension may be achieved by increasing the
amount of dynamic bases; whenever a class made
virtual or a first virtual function is added to one of
them. But the new class can’t be virtual as it would
add vbase offset to the beginning of vtable. As change
of class mutual interposition is forbidden as well, only
two options remain.

a) Add class N that will share virtual table C.V|C.V|
with other classes. This would just add a new
,,slice” to the vtable. Such a change is only
compatible when nothing would be added to the
,,negative” side of vtable. That’s in turn possible
only when non-virtual dynamic class is added,
the class having no virtual derivant (otherwise
virtual functions of N would cause new vbase
offsets). Non-virtual class, that doesn’t define
virtual functions is not dynamic, therefore an
only compatible way to add a class sharing the
last vtable in the group, is adding a nonvirtual
base in case when C.BV = ∅

b) Add class N , that yields new vtable in the group.
As it’s non-virtual class, C.BV = ∅; and N will
be added after all dynamic classes in preorder.
The overload of virtual functions by other classes
will be studied in point 4, and the conclusion will
be that it won’t cause incompatibility. Therefore,
non-virtual dynamic class can be added to the
end (in preorder) of hierarchy of class without
virtual bases.

2) Adding a completely new virtual function
Let a virtual function be added to subclass B, the
virtual function being added not overriding and being
overridden by any other function. It can only be added
to the very end of vtable group, i.e. to the most
derived class of this group. Such an addition can’t
cause vcall offset only if B is virtual and B doesn’t
have virtual bases. However, if B does have virtual
derivants, C.BV 6= ∅, i.e. B, as most derived class of

24

C.V|C.V| group, is virtual base itself, what proves that
new vcall offsets would never be added.
Therefore, adding not overloaded and not overloading
virtual function to the end of the most derived class
of the last group of virtual base doesn’t break binary
compatibility.

3) Withdrawing a virtual function
The withdrawing of function may retain compatibility
if adding of it to the resultant classes causes appending
to the very end of virtual table. Of course, the same
rules as in 3.1 apply to the function being withdrawn,
if the function can be called from the userspace. But in
some cases virtual function’s symbol isn’t referenced
directly, so there’s no external dependency on it.
Okay, let’s assume that the function is called through
virtual table. If the class can be derived in userspace,
then the new vtable is created for it at compile time
and, upon the call of the virtual function in subject
through that vtable, it will fail. But then the call will
fail in runtime due to absence of the proper symbol.
Therefore an only conclusion possible is that with-
drawing a virtual function (and making nonvirtual a
virtual function12) breaks binary compatibility.

4) Adding an overloading virtual function
Let the new function K :: f be such that it overloads a
(probably pure) virtual function of some base class. In
case of covariant overloading it requires a new vtable
entry; point 2 applies in this case. Otherwise it’s re-
quired to overwrite all pointers to function by replacing
them with the relevant entry points; this doesn’t cause
binary incompatibility. An only condition remaining is
for a function not to add new vcall offsets. Therefore,
adding a virtual function to K class doesn’t cause
binary incompatibility iff the function doesn’t covari-
antly overload and ∀V ∈ C.BV ⇒ K /∈ V.B.

5) Adding a function becoming overloaded
Assume a function is added that doesn’t overload any
other. As this function is added relatively close to
vtable’s point of origin it can only keep compatibility
if its derivants the class is a primary base for do not
add more functions to the vtable and if this function
doesn’t add more vcall offsets (see 4).

3.4.3. VTT. VTT13 is a structure that keeps pointers to
virtual tables during construction. These tables do not possess
own symbols; it is only VTT they can be referenced through.
Each VTT entry refers to a vtable keeping information about
the state of object during construction within larger object.
The virtual function pointers will only point to the routines of
class constructed so far (in the process of complex hierarchy
initialization), its RTTI will be proper and vbase offsets will
point to virtual bases allocated as in bigger object. Only the
latter is the reason of introducing the new entities compared
to the usual vtables; therefor it’s only classes with more than

12. C++ rules state that if function f is declared as virtual in B
class, then ∀C : B ∈ C.B, C :: f is also virtual

13. most likely, it’s an abbreviation of ,,virtual tables table”

one (indirect) virtual base who have VTT assigned.
Where VTT is used is construction code for derived

classes. Let’s consider a class that can be derived in the
userspace code. Taking the conclusions of section 3.4.2
into account, we reduce the analysis to adding non-virtual
dynamic classes to the hierarchy of class that doesn’t contain
any virtual bases. However, no VTT is created for such
classes. Therefore study of VTT doesn’t yield any results.

4. Conclusion

4.1. How to Keep Compatibility

Let’s sum our study up. We have studied enough to
formulate the rules the developer is to follow to retain
binary compatibility with the old version of shared C++
library in GNU system, assuming that additional constraints
in addition to C++ rules apply. We called the code compiled
into application userspace code; it includes inline functions
of library headers and application code itself. The classes that
are allowed to be instantiated in userspace code are called
userspace classes, other classes are internal. The functions
that can be called from the userspace code are referred to as
userspace functions.

Let us have L library that we’re going to alternate and
get L′ library, the new version. Then, L′ will be binary
compatible with L, if all following rules apply:

1) any userspace function with ,,external linkage”
shall retain its external name (1.3.4). Therefore, you
should keep true arguments type as they appear after
all typedef substitutions and their number. To learn
what changes external name, refer to 3.1.

2) no userspace function may be removed or made
inline, either member or global, virtual or non-
virtual; no virtual function may be removed even
for internal class. Refer to sections 3.1 and, for virtual
function discussions, to point 3 of section 3.4.2;

3) no function implementation defined in cpp file may
be changed in incompatible way, i.e. if user calls
new functions in an old way, that must be plausible
and behavior must be the same (section 3.2). A special
exception holds for bugfixes, but note, that they may
break workarounds;

4) layout of the first sizeof(T) bytes of types of
directly accessible userspace global data must be
the same; this holds for both static class variables and
for internal classes (3.3, point 1);

5) the size of userspace class must be the same if it has
non-inline constructors; if all constructors are inline,
you should use symbol versioning of sorts to prevent
access to new part of the type layout from the new
function;

6) classes in hierarchy of all userspace classes must be
the same and in the same order unless the classes
being moved through hierarchy are empty bases of
non-dynamic class (but you still need an experiment
to ensure that sizes are the same). See 3.3 and 3.4.2;

25

7) dynamicity of classes in hierarchy of userspace class
must be the same except for userspace class without
virtual bases, where you can make non-dynamic
class after all dynamic classes in preorder see (3.3
and point 1 of section 3.4.2);

8) you can introduce new virtual functions overloading
the old ones, except for the case of covariant over-
loading and overloading of function of a virtual base
(point 4 of section 3.4.2). You should be assured that
the call to this function will yield the same results as
if it were called in a way allowed by L specifications;

9) a completely new virtual function may be added to
the end of the most derived class if its hierarchy
doesn’t contain any virtual base (point 2 of section
3.4.2).

4.2. Conclusion

We may compare the rules deduced by us and summarized
in 3.4.3 with the compatibility guide [8] suggested by the
KDE developers and known to be most complete.

We see that our formal approach didn’t yield more results
than the developers deduced from the practical experience.
It appears that requirements for binary compatibility can’t
be relaxed due to additional restrictions on the library use
except for a limited number of cases. Namely, there’s more
freedom for internal classes, that can’t be instantiated in
automatic memory or derived by user. However, such classes
can’t be considered as exhaustively using C++’s OOP flavors,
although implement quite a popular ,,singleton” concept
(see [9]).

Therefore we conclude that the current C++ ABI is in-
capable to provide more compatibility even with additional
restrictions upon the use of C++ constructs provided by
library’s headers.

We should also note that the current gcc ABI is influenced
by the desire to keep away from inserting elements of
interpreted languages into ABI and by ,,incremental” way of
binary representation (the architecture when the most com-
mon cases—single inheritance and simple virtual functions—
induce more simple and fast binary representation). As a
result, complex concepts are both considered unsafe and their
uncareful use causes incompatibility.

Perhaps, the other ABI model would better fit compatibil-
ity aims, but this question needs further research to discover
the best balance between maintainibility and performance,
and it also needs careful cost estimation, as the benifits of
its change should be greater than the expenses required to
adopt it.

References

[1] TIOBE Programming Community Index for January 2009.
http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html;

[2] Bjarne Stroustrup. A History of C++: 1979-1991. History
of Programming Languages conference, 1993;

[3] ISO/IEC 14882:2003. Programming languages — C++

[4] “informal industry coalition consisting of (in alphabetical
order) CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red
Hat, and SGI”. Itanium C++ ABI (Revision: 1.86)

[5] Urlich Drepper. How To Write Shared Libraries. 2006.

[6] B. Guptill, B. McNee. Booming Support for Mission-
Critical Application Workloads on Linux.
http://research.saugatech.com/fr/researchalerts/304RA.pdf

[7] IDC. Open Source in Global Software: Market Impact,
Disruption, and Business Models.
http://www.idc.com/getdoc.jsp?containerId=202511

[8] Binary Compatibility Issues With C++.
http://techbase.kde.org/Policies/
Binary Compatibility Issues With C%2B%2B

[9] E. Gamma et. all Design Patterns: Elements of Reusable
Object-Oriented Software

[10] Using the GNU Compiler Collection (GCC), chapter 8.
http://gcc.gnu.org/onlinedocs/gcc/Compatibility.html

26

The Automated Analysis of Header Files for Support of the Standardization
Process

Eugene Novikov
ISP RAS

joker@ispras.ru

Denis Silakov
ISP RAS

silakov@ispras.ru

Abstract

This paper considers the method of the header files

automated analysis. The method is intended for the LSB
standardization process support. The suggested
approach is based on the usage of the cpp preprocessor
and gcc compiler high-level representation, their
extensions and additional analyzers. The basic work
stages of tool implementing the suggested method are
introduced. Also tool application for the Qt library
header files analysis is considered.

1. Introduction

Now in the world a large number of Linux

distributions exists [5]. They are widely applied in
various systems. All distributions in their basis have the
same components. However, components versions
depend on system. Also distribution developers make
some specific changes for their systems. Therefore at
the binary level Linux distributions are not completely
compatible and programs, created for one operating
system, sometimes can not be started in another without
recompilation from their source code. So application
developers, who don’t publish source code, should
either make many efforts and spend much time for
maintenance of compatibility at the binary level or
release their products for the limited number of
distributions [1]. Because of such complexities there are
no fully reliable and valid applications in Linux for
some software areas [6].

The similar problem of Unix distributions
fragmentation has led to POSIX standard creation [7].
This standard contains requirements for core interfaces
(about 1000 functions) and does not describe other
interfaces. For example, it does not describe graphical
interface functions that are used by the most of modern
applications.

Project LSB (Linux Standard Base) [2], [4] is aimed
to help developers to create and support portable

applications for Linux operating system. In all
distributions, supporting the LSB standard, binary files
of these applications will be executed equally. In
comparison with POSIX, LSB standardizes essentially
more interfaces (about 40000 functions). The basis of
the whole LSB standardization process is the LSB
specification database. From its information it is
generated:
• LSB standard text;
• primitive tests;
• environment for LSB-compatible applications

development.
To estimate the scale, basic objects of the LSB

database and their quantity at the current moment are
shown in Table 1.

Table 1. The basic objects of the LSB database
Libraries ~60
Header files ~900
Interfaces ~47000
Types ~16000
Macros ~12000
Classes ~1600

From Table 1 it becomes clear that data volume is
large. In addition Linux operating system and
applications are constantly developed. So the LSB
standard covers more and more libraries. Therefore it is
necessary to support the database in up to date state.
This is done by updating of stored information and
uploading of the new one. Thus today the LSB database
population automation problem is very actual.

2. The review of existing methods and

tools for LSB database population

Data collection can be performed on the basis of

following sources:
• libraries binary files (with debugging information

and without it);
• libraries header files.

27

At the moment the LSB database is populated in
general with data obtained from the libraries binary files
analysis. Considerable data volume is modified and
uploaded manually.

There are tools that automate both binary and header
files analysis. libtodb and libtodb2 [8] allow to process
binary files. These tools are based on the readelf system
utility [11]. For header files processing the tool
headertodb [8] based on the ctags program [9] may be
used. These tools allow to automate the process
substantially but they do not give all needed
functionality.

The main advantages of the binary files analysis are
possibilities to obtain:
• the list of interfaces exported by library;
• binary symbols versions.

This data is important to provide with compatibility
at the binary level support. Disadvantages of the libtodb
and libtodb2 analysis are:
• absence of some data at the binary level (e.g. inline

functions);
• insufficient C++ support at the binary level;
• absence of interrelations between complex types at

the binary level;
• complexity of the large data volumes processing by

means of libtodb.
The tool headertodb allows to obtain a considerable

part of data from header files but, due to insufficient
analysis of the ctags program, it does not provide
demanded completeness and quality. The C++ analysis
also is not supported at the necessary level.

In this paper the header files analysis method that
allows to eliminate the most of disadvantages specified
above is described. This method makes analysis and
population the LSB database LSB with obtained
information essentially automated. Also the tool
implementing the suggested method is described. It is
necessary to notice that many features of the method
and the tool are connected with necessity of their
application for Qt library header files processing [12].
These header files are written in C++ language.
Previously they were processed mainly by hand. This
paper considers practical results of these header files
automated analysis.

3. The method of the header files analysis

To obtain data from header files the cpp

preprocessor and the gcc compiler parser [11] are used.
The suggested approach has such advantages in
comparison with the usage of other programs (e.g. ctags
mentioned above) and the creation of the own analyzer
as:

• Presence of analyzers (cpp and gcc) which are
constantly supported by third-party developers.
These analyzers allow to obtain data from the high-
level representations that posses considerably more
simplified and formalized structure in comparison
with initial representation of header files (i.e. a
standard text). This was the key feature in choosing
of the method to be used.

• Maintenance of the most detailed analysis of Linux
libraries header files. It is due to very close
connection of the cpp preprocessor and the gcc
compiler with the given operating system. Header
files are processed by them with specific Linux
features and different extensions, many of which are
made especially for the given preprocessor and
compiler. In addition, the third-party analyzers
automatically carry out the code correctness check
and connect header files with each other.

• The openness of the cpp and gcc source code. This
important feature is necessary for more accurate
understanding of their high-level representations
structure. Also this allows their modification needed
to obtain additional data.
Disadvantages of such approach are:

• Absence of the detailed documentation on the used
high-level representations. Syntax and semantics of
these representations were explored by testing on
different examples. It is important to notice that all
the necessary, what may be obtained from these
representations for the Qt library header files
analysis, was studied and implemented. Necessary
researches were performed basically directly on
header files from the given library and also on more
simple examples, including header files written in C
language.

• Incompleteness of data obtained from the high-level
representations. First of all this comes from the fact
that cpp and gcc are intended to compile programs
and do not specialize in these representations
generation. Therefore there may be no some needed
information in the preprocessor and compiler
representations. In that case some cpp and gcc
source code modifications, extending these high-
level representations, and additional analyzers are
made. Extensions and additional analyzers will be
introduced below.

• Possible preprocessor and compiler representations
changes by third-party developers require changes in
their analysis. It is necessary to tell that during the
time, while the tool processing these representations
was developed (about one year), syntax has not
changed at all while small changes in semantics for
some entities have facilitated their interrelations
analysis.

28

Thus, it becomes clear that disadvantages of the
suggested method may be eliminated and in many
respects it was already done. Therefore it is possible to
enjoy advantages of the approach. Following sections
describe this.

3.1. The cpp preprocessor high-level

representation structure

For parsing tree generation discussed below the

compiler gcc uses header files source code after
preprocessing by cpp. So the parsing tree does not
contain any information on preprocessor directives. The
cpp preprocessor output and the additional analyzer are
used for the preprocessor directives analysis. The
preprocessor output is used to obtain the lists of:
• macrodefinitions declarations (directive #define);
• removals of macrodefinitions declarations (directive
#undef);

• included header files (directive #include).
In this output there are auxiliary strings between

which there are directives #define, #undef and
#include and preprocessed code of the analyzed
header file and included header files. It is important to
notice that:
• Comments and non-significant spaces (for example

spaces between # and a directive name) are removed
from directives.

• Multiline directives are transformed into one-line
ones with corresponding additional empty strings.

• Lines numbers in the cpp output and directly in
header files coincide with each other. Also each
directive is fully placed on its own string. These
features are important to order preprocessor
directives with other entities from header files.
Here formats of auxiliary strings and directives

#define, #undef and #include are described:
 # a line number in a header file
“an absolute path to a header file”
o Subsequent strings, up to the next auxiliary string

or to the end of file, are content of the analyzed or
included to it header file. This content begins with
the given line number.

o Absolute paths uniqueness allows to distinguish
header files with identical short names, e.g. time.h
and sys/time.h. So this gives the way to order
entities from different header files. In addition,
absolute paths to included header files are remained
for their unique identification.

 # 1 “<built-in>”
o Following strings contain system macrodefinitions

that are declared by the preprocessor implicitly.
o This list may be obtained by means of the

headertodb3 tool described below.

 # 1 “<command-line>”
o Following strings contain macrodefinitions that are

declared by the user in the cpp preprocessor
command-line.

o User macrodefinitions may be declared by means of
the headertodb3 special option. In particular, it is
possible to redefine system macrodefinitions.

 #define a macrodefinition name a
macrodefinition value
o Macrodefinition declaration.
o A macrodefinition value is arbitrary string, in

particular it may be absent.
o Functional macrodefinitions are declared in form: a
functional macrodefinition name
(parameters names divided by
commas) a functional
macrodefinition value.

 #undef a macrodefinition name
o Macrodefinition declaration removal.
 #include “a header file name” or
#include <a header file name>
o This means that a currently processed header file

includes another one. Included files are searched
according to the standard preprocessor rules.
Therefore it is important to specify correct paths to
directories that will be explored for included
headers.

o Following two strings contain absolute paths to
including and to included header files.

3.2. The gcc compiler high-level representation

structure

Preprocessed header files are processed by means of

the gcc compiler parser. This parser allows to obtain the
parsing tree. The parsing tree is the internal compiler
structure that is used to represent information on source
code. The tree is generated by gcc after lexical,
syntactic and semantic analyses. Also the compiler may
write the parsing tree in the text representation. The
parsing tree text representation structure is not well
documented. Research of this structure on examples
allowed to make its description.

The parsing tree consists of nodes and their
attributes. Nodes correspond to entities. Attributes
describe their kinds and properties. In the text
representation all nodes are written at the beginning of
strings in the form @integer, e.g. @475. After a node
name a list of attributes corresponding to this node is
written. The first attribute specifies an entity kind. For
example, to represent the integer type the first attribute
integer_type is used. The first attribute has a name
and has no value. Below various entities kinds will be
characterized directly by the first attribute.

29

Subsequent attributes describe entity properties. In the
text representation they have the following form an
attribute name: an attribute value, e.g.
name: @249. An attribute value may be one of the
following kinds:
• a reference to another tree node (e.g. @12);
• some text information (e.g. long double);
• a place in a header file where an entity is declared

(e.g. /usr/include/time.h:412:12).
A reference to another tree node specifies that some

entity property is described by means of another entity
represented by another node. For example, the function
declarations function_decl may have attribute
name: @11 that refers to the identifier entity
identifier_node. In turn the identifier has the
attribute with the function name value. The function
name is written in the usual text form and belongs to the
second kind of attributes. An entity declaration place is
described in the following form an absolute path
to a header file: a line number in
this file: a column number in this
file. Such form is the gcc compiler extensions. These
extensions were made since the original declaration
place form looked like a header file name: a
line number in this file. It appeared that it
is not enough both to uniquely identify header files (for
example, entities from header files time.h and
sys/time.h were concerned as belonging to the same
header file time.h) and to order entities placed at the
same string. Thanks to compilers extensions these
disadvantages were eliminated. To designate system
entities <built-in> is used as a header file name.
System entities are, for example, intrinsic types
such as void, int, bool, etc. Thus attributes values
belong to one of three classes each of which is
processed in the appropriate way. Some attributes may
have identical names, e.g. note and spec. For such
attributes all their values are obtained as values vectors.
Despite attributes names coincidence for some entities
all properties are unambiguously and consistently
defined by a pair an attribute name, an
attribute value.

Entities, important to obtain the necessary
information from header files, belong to one of the
following classes:
• declarations;
• types;
• constants;
• auxiliary entities.

The complete description of all entities structure and
the method of their analysis is huge and is not
considered within the bounds of this paper.
Nevertheless the description of four representatives for

each class is given below. For such description the
analysis of entities attributes and properties that may be
obtained is done.

3.2.1. Function declaration. The first attribute of

this entity is function_decl. Subsequent attributes
names and values are:
• name is a reference to an identifier
identifier_node, a function name.

• type is a reference to a functional type
function_type, a complete description of a
function signature.

• scpe is a reference to a function scope, whether a
namespace declaration namespace_decl or a
parent class record_type.

• srcp is a function definition place in a header file.
• note (optional and multiple-valued) is member

(for a class method) or constructor (a class
constructor) or destructor (a class destructor) or
operator an operator name.

• accs (optional) is access to a class method. It may
be pub, priv or prot that accordingly designates
public, private and protected.

• spec (optional) is a class method specifier. It may
be virt or pure that is designations for virtual
and pure virtual accordingly.

• args is a reference to parm_decl, the first
element of a function arguments list containing their
types, names and qualifiers.
To obtain additional needed information on a

function declaration the following extended attributes
are added:
• ext_qual (optional) is a class method qualifier. It

may be const or volatile.
• ext_note (optional) is explicit (an explicit

class constructor), extern or static (a function
specifier), inline (an inline function), throw (a
throw function).

• ext_body (optional) is a reference to the
beginning of a tree expression corresponding to a
function body.

• ext_body_open_brace (optional) is an
opening brace place, the beginning of a function
body.

• ext_body_close_brace (optional) is a closing
brace place, the end of a function body.
According to attributes following information on a

function declaration is obtained:
• A function name or an overloaded operator name.
• Return value type.

30

• For function arguments their types, names, default
values and qualifiers are obtained. If a function
arguments list has not variable length, last parameter
is always intrinsic type void.

• A function parent, a namespace or a class.
• Whether a function is extern or static, inline, throw,

virtual.
• For methods access to them, whether a method is

const or volatile, whether a method is a constructor
or a destructor are obtained. For constructors
explicit property is obtained.

• An inline function body place in a header file. It is
necessary to take corresponding block directly from
a header file without expression parsing.

3.2.2. One-dimensional array type. The first

attribute of this entity is array_type. Subsequent
attributes names and values are:
• elts is a reference to an arbitrary type, a type of

one-dimensional array elements.
• domn (optional) is a reference to an integer constant
integer_cst, the number of one-dimensional
array elements.
It is important to notice that multidimensional arrays

are formed as a one-dimensional arrays sequence. A
base types sequence is ‘natural’ i.e. from the fullest type
to the basic one. Therefore processing of
multidimensional arrays is recursive. In case of empty
array usage (for example, int []) array_type has
not attribute domn, containing the number of elements.
Also it is necessary to pay attention, that in one-
dimensional (multidimensional) array passing to
function as argument, it is transformed to a pointer (an
array of pointers). For example, int [10][20][30]
becomes int * [20][30].

3.2.3. Integer constant. The first attribute of this

entity is integer_cst. Subsequent attributes names
and values are:
• type is a reference to an integer type
integer_type or to an enumeration type
enumeral_type that is an integer constant type.

• low is some arbitrary integer number, an integer
constant value.
Integer constants are enumerations elements values,

arrays and bitfields sizes, global variables default values
and function arguments or templates parameters default
values. In the case when used integer constant belongs
to some enumeration type, its name must be used
instead of corresponding numerical value.

3.2.4. One-linked list element. The first attribute of
this entity is tree_list. Subsequent attributes names
and values are:

 purp:
o for an enumeration type enumeral_type is a

reference to an identifier identifier_node, an
enumeration element name;

o for a functional type function_type (optional)
is a reference to an arbitrary constant, a function
argument default value;

o for a template declaration template_decl, an
attribute inst value is a reference to tree_vec,
an attribute prms value is a reference to
integer_cst.

 valu:
o for an enumeration type enumeral_type is a

reference to an integer constant integer_cst, an
enumeration element value;

o for a functional type function_type is a
reference to an arbitrary type, a function argument
type;

o for a template declaration template_decl, an
attribute inst value is a reference to
record_type (a template instance), an attribute
prms value is a reference to tree_vec;

 chan (optional) is a reference to tree_list, a
following element of an one-linked list.
One-linked lists are processed depending on a

context in which they are used.

3.3. The additional analyzers

There are not preprocessor conditional compilation

directives in the cpp output. Therefore they are analyzed
directly through header files. The following conditional
compilation directives groups are processed:
• Conditions are preprocessor directives specifying

the beginning of conditional compilation. #if,
#ifdef and #ifndef belong to this group.
Conditional expressions must be for these directives.
A conditional expression follows a directive name.

• Branches are instructions about possible variants in
execution. Directives #else and #elif belong to
this group. Conditional expression must be for
directive #elif.

• The end of conditional compilation is expressed by
means of directive #endif.
During the conditional compilation directives

analysis non-significant spaces and multiline strings are
processed. Such analyzer does not possess the cpp
preprocessor completeness. Therefore in future

31

some corresponding preprocessor output extensions will
be probably made.

Besides, auxiliary comments, having the special
form, are processed:

 LSB parameters are instructions about how included
header files must be analyzed. These comments are
placed at the beginning of header files from the
beginning of lines. They have such form /* LSB
PARAM: a parameter name */. At the
moment it is necessary to process the following LSB
parameters:
o fresh means that entities from an included header

file should be processed as well as entities of an
analyzed header file.

o print means that LSB IDs discussed below are
printed for entities from included header file.

o end means the end of a LSB parameters section.
 LSB IDs are unique integers which are associated
with entities from included header files. These
integers are obtained during the corresponding
header files analysis and kept into LSB database.
Comments are placed on strings before
corresponding entities. They have such form /*
LSB ID: an integer number */. Then
LSB IDs are used to refer on already processed
entities.
Special comments are written into header files

mainly automatically. This is done for files that were
already analyzed and generated on the basis of the LSB
database. These comments may be located in header
files of any acceptable inclusion depth. So they are
analyzed for all these levels. The latter is possible
because of the preprocessor output has all included
header files content. In the future new special comments
may occur to provide additional needed functionality.

3.4. The high-level representations

extensions

To obtain some additional information a number of

gcc parser extensions was made. Some extensions were
already mentioned above. At the moment the full
extensions list is the following:
• More detailed entities definitions place in header

files.
• Distinction between structure and class types joined

by the compiler together into the general internal
type record_type.

• Attributes correct form i.e. an attribute
name: an attribute value (e.g. attribute
bitfield for bitfields).

• Access to type declarations scoped in a class.
• Function declarations properties (inline, throw,

const, volatile, etc.).

• Function bodies trees included in the general parsing
tree.

• Function bodies in the form of their places in header
files.

• Exception types lists.
• Escape-sequences in string constants.
• Function definitions and type declarations

prototypes places.
• Absence of the unnecessary precompiled header

files generation.
• Absence of information on the unnecessary gcc

system functions in the tree text representation.
Extensions are made on the basis of the gcc

compiler source code analysis. Usually they do not
demand any considerable changes and do not affect the
gcc work. Extensions supplement the compiler high-
level representation and give more detailed set of
entities properties. It allows to avoid the difficult
manual analysis. So it automates populating of LSB
database with data in very considerable degree. Some
extensions optimize the compiler analyzer work.
Therefore in future the extensions list will be increased
to perform more and more detailed and qualitative
analysis as fast as possible.

4. The headertodb3 tool

The tool called headertodb3 was developed to

implement the high-level representations analysis. Tool
input is libraries header files. A great number of various
options allow to control the headertodb3 analysis and
output. Also many settings are available through the
special configuration file. Headertodb3 works
automatically after options specifying. If corresponding
options are enabled then headertodb3 informs about its
actions and displays additional debugging information.
In case of some critical error occurrence (e.g. error in
cpp or gcc work) the tool finishes work with the
corresponding return value. During the work the tool
performs the following steps:

 Command-line options processing. Depending on
these options the tool performs different analysis
kinds. Below the headertodb3 standard work scheme
is presented.

 Initializations that headertodb3 uses in the work.
The main is the primitives initialization. Primitives
consist of intrinsic types, C and C++ keywords
and some auxiliary information. Primitives are used
during the parsing tree analysis to connect tree
conceptions with the language ones.

 The preprocessor directives analysis on the basis of
the cpp output.

32

 The special comments analysis on the basis of the
cpp output with comments. It is made by means of
the additional analyzer.

 The conditional compilation directives analysis by
means of the additional analyzer.

 The gcc compiler parsing tree generation. Its
conversion to the tool internal representation that
will be used in the further parsing tree analysis.

 The parsing tree analysis. This is the main stage
during the tool work. The general work scheme at
this stage is the following:
o entities ordering in that sequence in which they are

encountered in header files;
o the ordered entities analysis by means of the special

handlers.
 Temporary folders and files removal.
During its work the tool generates the following

files into the special folders:
• The text file with information on preprocessor

directives. This information is used by other tools to
obtain inclusion interrelations between header files.
It is needed to construct a sequence in which header
files will be analyzed by headertodb3. By means of
the tool special option this analysis may be
standalone.

• The major SQL-script with information on all
entities, their properties and interrelations. The LSB
database may be directly populated with this script.
It is necessary to notice that some additional tables
are used in the database to store information from
C++ header files. Then other tools use information
from the LSB database to check different
dependencies and to generate header files and
corresponding to them HTML pages.

• The text file with information on function bodies
places in header files. This may be used for the
following functions bodies processing.

• The text file containing information on errors that
the tool faced during the work. Information on
failures kinds and failures locations is printed here.

• In addition by means of the tool special options it is
possible to obtain text and HTML representation of
the gcc parsing tree. The parsing tree in the HTML
page form is convenient for navigation between
nodes. Therefore everybody can walk quickly
through the parsing tree by means of a usual
browser.
The tool was developed by degrees. The tool first

version is headertodb2. It is intended to process header
files written in C language. During the headertodb3
creation the corresponding experience was taken into
account and many innovations were brought. Tools
were tested on real header files from C and C++
libraries. Also the test scenarios were made on the basis
of different real situations and arisen errors. They

consists of about 1000 various test cases that cover C
and C++ languages and the compiler extensions. All
these test cases may be passed automatically. It is very
important to immediately trace malfunctions that may
occur during tools development. Thanks to the
automated testing system both headertodb3 and other
tools errors were found out.

At the moment the most important check of
headertodb3 tool is its application in Qt4 library [12]
header files processing. By means of the tool
information shown in Table 2 was obtained.
Table 2. Headertodb3 application in the Qt4 library

header files analysis.
 libQtCore libQtGui

Header files 85 183
Interfaces and their
parameters

4450,
4520

9720,
10360

Classes, structures,
unions and their fields

440,
385

990,
610

Enumerations and their
constants

160,
1975

320,
2180

Templates, their
parameters, instances
and specializations

240,
340, 130,

80

155,
155, 150, 0

Type declarations by
means of typedef 290 240

Macrodefinitions 290 190
Included header files 190 460
Entities including
auxiliary ones 22760 40310

Properties and
interrelations of
entities

87830 161030

Also headertodb3 was applied in other Qt4 header
files processing and in Qt3 library processing.

5. Conclusion

At the moment the header files analysis needed for

populating the LSB database with data is one of the
most important stages of the LSB standardization
process. Initially header files written in C++ language
were processed either manually or with the usage of the
analyzers which do not correspond to all demands. As a
result huge human resources were required to solve this
problem.

This paper considers the method that allows to
automate the C++ header files analysis. The approach is
based on the usage of the cpp preprocessor and gcc
compiler high-level representations. It allows to use
analyzers for header files from third-party developers
and to process and extend the more strictly formalized
and simpler high-level representations. The suggested
method was implemented in the headertodb3 tool.

33

The tool was used to populate the LSB database with
data within the Qt library standardization process. On
the basis of tool application results it is possible to
make the following general conclusions:
• The method allows to analyze header files with high

quality.
• The approach provides required C++ support.
• The tool does not demand considerable computing

resources and time expenses.
• The tool makes the header files analysis

substantially automated.
In the future additional high-level representations

extensions are supposed. It will allow to analyze header
files in the more qualitative and automated way.

References

[1]. A.I.Grinevich, D.A.Markovcev, V.V.Rubanov.

Linux systems compatibility problems. The Institute for
System Programming proceedings, the 10th volume: “Linux
systems reliability and compatibility ensuring”. In Russian.

[2]. A.V.Horoshilov. Linux Standard Base: success
history? The Institute for System Programming proceedings,
the 10th volume: “Linux systems reliability and compatibility
ensuring”. In Russian.

[3]. D.V.Silakov. Current state and perspectives of the
LSB infrastructure development. The Institute for System
Programming proceedings, the 13th volume, the 1st part. In
Russian.

[4]. Linux Standard Base. http://www.linux-
foundation.org/en/LSB

[5]. The Linux distributions list.
http://www.lwn.net/Distributions

[6]. D.Shurupov. The programs lack as a barrier to the
Linux popularization. In Russian.
http://www.nixp.ru/articles/plugging_linux_holesD.Shurupov

[7]. IEEE POSIX® Certification Authority.
http://standards.ieee.org/regauth/posix

[8]. The LSB Infrastructure Project. http://ispras.linux-
foundation.org

[9]. The ctags program.
http://www.ctags.sourceforge.net

[10]. The cpp preprocessor and the gcc compiler.
http://www.gcc.gnu.org

[11]. The readelf system utility.
http://www.opensourcemanuals.org/manual/readelf

[12]. The Qt library. http://www.qtsoftware.com

34

The Boost.Build System
Vladimir Prus

Computer Systems Laboratory
Moscow State University, CS department

Moscow, Russia
vladimir.prus@gmail.com

Abstract—Boost.Build is a new build system with unique
approach to portability. This paper discusses the underlying
requirements, the key design decisions, and the lessons learned
during several years of development. We also review other
contemporary build systems, and why they fail to meet the same
requirements.

I. INTRODUCTION

For software projects using compiled languages (primarily
C and C++), build system is the key element of infrastructure.
Mature tools such as GNU Make[1] or GNU Automake[2]
exist. However, those tools are relatively low level, and hard
to master. They also have limited portability. For that reason,
many software project do custom work on build system level.
One such project is C++ Boost [3].

C++ Boost is a popular collection of C++ libraries, many
of which are either included in the next revision of the C++
Standard or planned for inclusion[4], [5]. This unique position
attracts a lot of users, who, in turn, use a wide variety of
operating systems and differently-configured environments.
This differs from most commercial projects — which target
a few platforms that are important from business perspective,
and are built in a well-controlled environment. This is also
different from most open-source projects — which tend to
focus on GNU/Linux environment. Developers’ background
also considerably differs — a person who is expert in C++ is
not necessary an expert in different operating systems.

This diversity in user and developer base lead to the
following requirements for a build system:

1) “Write once, build everywhere”. If a library builds on
one platform, it should be very likely that it builds on all
other platforms supported by the build system. It follows
that build description should be relatively high-level, and
avoid any system- or compiler- specific details, such as
file extensions, compiler options or command-line shell
syntax details.

2) Extensibility. Adding support for a new compiler or a
platform should not require changing build system core
or build descriptions for individual libraries. Ideally, user
would have to write a new module and provide it to the
build system.

3) Multiple variants. The build system may not require that
the build properties for the entire project are specified
up-front, during special “configure” step, and then re-
quire that all build products be removed before changing
build properties. Instead, it should be possible to change

build properties without full rebuild. Such change may
happen at three levels:

a) Between different parts of the project. The simplest
example is compiling a specific source file with an
additional compiler option. More complex example
is building a specific module as a static library, and
another as a shared library. It should be possible to
change every aspect of the build process — even
including the used compiler.

b) Between different builds. For example, one may
originally build a project in release mode for test-
ing and, after discovering a bug, wish to initiate
a build in debug mode. It would be wasteful to
remove the previously built object files, so the
build system must arrange for debug and release
products to be placed in different directories. The
mechanism should not be restricted to just debug
and release builds, but apply to any build proper-
ties.

c) Within one build. This means that one invocation
of the build system may produce several variants
of a build product — for example, static and shared
versions of the same library.

This paper describes Boost.Build[6] — a build system devel-
oped to meet the above requirements. Section 2 will describe
key concepts and mechanisms of Boost.Build. In section 3 we
review the lessons learned during development as well as some
unexpected drawbacks. Section 4 discusses other contempo-
rary build tools, and why they could not be used. Section
5 summarizes the article and suggests future development
directions.

II. DESIGN CONCEPTS

The best way to explain the key design elements of
Boost.Build is by following a few steps of gradual refinements,
starting from a classic tool — GNU Make. In GNU Make, a
user directly defines a set of targets, where a target is an object
that has:

• a name
• a set of dependency targets
• a command to build the target

Consider this example:
a.o: a.c

g++ -o a.o -g a.c

35

Here, the name of the target is a.o, the only dependency
is a target named a.c, and the command invokes the gcc
compiler. Given the set of targets defined in a build description
file (“buildfile” for short), GNU Make identifies targets that are
out of date with respect to their dependencies, and invokes the
commands specified for such targets. The description shown
above has two problems. First, the names of the targets and
the exact commands typically may vary depending on environ-
ment, and should not be hardcoded. This problem is typically
solved using variables — in the example below, the OBJEXT
and CFLAGS variables may be defined as appropriate for
platform.

a.$(OBJEXT): a.c

g++ -o a.o $(CFLAGS) a.c

While this makes build description more flexible, it also makes
it rather verbose, and hard to write. Second, depending on
build variant and platform, even the set of targets may vary. For
example, depending on platform and desired linking method,
building a library might produce from 1 to 4 files. Obviously,
conditionally defining 4 targets for every library is extremely
cumbersome.

Modern build systems do not require that user describes
concrete targets, but provide a set of generator functions, or
generators for short. A generator is called with the name of
primary target, a list of sources, and other parameters, and
produces a set of concrete targets. Sometimes, these concrete
targets are GNU Make targets. Sometimes, a different low-
level build engine is used. For example, a library might be
defined like this1:

library(helper, helper.c)

This statement calls a function library that constructs the
set of concrete targets that is suitable for the target platform —
which may include the library file proper, import library, and
various manifest files. The compiler and linker options are also
derived from both the platform and the way the build system
was configured. Thus, the user-written build description does
not include any platform-specific details. Instead, such details
are handled by the build system, which is separately main-
tained. Boost.Build also uses a similar description mechanism,
but advances it further.

First key observation is that using generators is not sufficient
to achieve portability. Requirements listed in section 1 include
using different build properties for different parts of the
project. This can be achieved using additional parameters
to generators. But if the set of those parameters, or their
values, is either incomplete, or depends on platform, the build
description is not portable. To achieve the portability goals,
Boost.Build defines a large set of build parameters with the
following characteristics:

• Every generator accepts the same set of build parameters
• The names of build parameters and their values are the

same everywhere

1For presentation purposes, we have abstracted away the syntax of modern
build systems.

For example, every generator in Boost.Build accepts a pa-
rameter named optimization, with none, speed and
space as possible values. Consequently, the example might
be modified as follows:

library(helper, helper.c,
optimization=space)

This change addresses requirement 1 (“write once, build
everywhere”).

The second key observation is that differences between
platforms are so significant that creating a single generic gen-
erator such as library is hard. Obviously, small behaviour
differences can be handled in an ad-hoc way — for example
by introducing a global variable set by platform-specific code
and checked by the generator. However, in existing tools there
are dozens of such variables, with the generator still containing
significant platform specific logic. More systematic approach
is needed. To that end, Boost.Build allows several generators
to exist, and uses a dispatching function to select the generator
to use. In example below:

library(helper, helper.c,
link=shared)

the description written by the user looks the same as before.
However, the library function is no longer responsible for
constructing targets. Instead, it merely selects and invokes a
platform-specific generator. This generator need only deal with
a single platform, and can be easily implemented. The specific
generator selection algorithm (that will be described below) al-
lows new generators to be defined in platform-specific modules
and automatically participate in generator selection, thereby
addressing requirement 2 (“extensibility”). It should be noted
that recursive calls are common — for example, the library
generator might use the object generator. In Boost.Build,
the dispatching function is also used for such recursive calls,
allowing for fine-grained customization.

The third key observation is that if a build description is
allowed to call a dispatching function when the build descrip-
tion is parsed, it severely limits the possibilities to further
build the same part of a project with different properties. To
address this issue Boost.Build introduces metatargets — which
are essentially closure objects. Consider an example using the
actual Boost.Build syntax:

lib helper : helper.cpp ;

This statement defines a closure of the dispatching function,
binding the name and the sources list. If we invoke Boost.Build
from the command line using the following command:

$ b2 toolset=gcc variant=debug
link=shared

then the closure object will be called with the specified
build parameters. The toolset=gcc and link=shared
parameters uniquely specify a generator — gcc.link.dll
— that is called to produce the concrete targets. In the example
below, we request a two-variant build:

$ b2 toolset=gcc link=shared --
toolset=msvc

36

In this case, the created closure object will be called twice,
once with toolset=gcc and link=shared parameters,
and once with toolset=msvc parameter. Different gen-
erators will be selected, and a substantially different set of
concrete targets will be produced. The metatargets mechanism
addresses requirement 3 (“multivariant builds”).

We have introduced the key design elements of Boost.Build.
The remainder of this section describes in detail the most
important mechanisms used to implement this design.

A. Requirements

It is uncommon for the entire project to be buildable for
all possible build parameters. Requirements is a mechanism to
restrict the possible build parameters for a specific metatarget.
Simple requirement merely state that a given build parameter
should always have a specific value for this metatarget. For
example:

lib helper : helper.cpp
: link=static ;

overrides the value of the link build parameter that was
passed to the metatarget, and causes the concrete targets to
be constructed as if link=static was passed. Conditional
requirements override a build parameter if some other param-
eters have specific values. For example:

lib helper : helper.cpp
: toolset=msvc:link=static ;

will override the link build parameter only if the toolset
build parameter has the value of msvc. Finally, indirect
conditional requirements specify that a user-provided function
should be called to adjust build properties.

For convenience, a buildfile may specify project require-
ments that are automatically added to requirements of all
metatargets in that buildfile.

B. Platform support

This section explains two mechanisms that facilitate easy
support for new platforms — selection of generators by the
dispatching function, and translation of build parameters into
properties of concrete targets.

Let’s look again at the syntax used to declare a metatarget:
lib helper : helper.cpp ;

As said before, this creates a closure of the dispatching
function, binding target name, list of sources, and — which
we did not say before — the metatarget type, in this case lib.
For the purpose of generator selection, Boost.Build maintains
additional information about each generator — the metatarget
type, and the set of required build parameters. For a concrete
example, consider the following table:

Generator Type Required parameters
gcc.link.dll LIB toolset=gcc

gcc.link EXE toolset=gcc
msvc.link.dll LIB toolset=msvc

When the dispatching function is called, it first selects the
generators associated with the metatarget type. In our example,
such generators are gcc.link.dll and msvc.link.dll.

Then, required parameters of the selected generators are
compared with the build parameters passed to the dispatching
function. If any of the required parameters is not present, the
generator is not considered. In our example, if toolset=gcc
is passed to the dispatching function, then msvc.link.dll
generator is discarded. All the remaining generators are called.
If exactly one succeeds in generating targets, then the dis-
patching function returns. Otherwise, an ambiguity is reported
and the build process stops. This selection mechanism allows
additional generators to be easily added, without modifying
core logic of the build system.

When a specific generator constructs a target, it should
establish the exact path and name of the target, as well as
the command to build it. All that typically depends on build
parameters. Of course, a generator may use arbitrary logic to
compute this information, but Boost.Build comes with conve-
nient default behaviour. The target path is constructed using
the values of build parameters. For example, a path might be
bin/gcc/debug/. Some mechanisms are used to make the
paths shorter — for example, for a few common parameter
the path includes only the values, but not the names. Also,
parameters that have default values are not included in path.
Target name is constructed from the name of the corresponding
metatarget. Boost.Build maintains a table, that is indexed
by metatarget type and the value of the target-os build
parameter, and gives suffix and prefix that should be added
to metatarget name. The mechanism to construct updating
command is the key to easy definition of new generators, and
is illustrated below:

actions gcc.link.dll {
g++ -shared $(OPTIONS)

}
flags gcc.link.dll OPTIONS

: <profiling>on : -pg ;

First, a command template is defined — by convention, it has
the same name as a generator. Command template may refer to
variables, in this case OPTIONS. The second statement in the
example establishes mapping between build parameters and
variables that are replaced in command template. Given these
declarations, a generator can create a new target specifying
gcc.link.dll as command template for that target. All
the flags statements for this command template are au-
tomatically processed. The flag statement above requests
that if build parameter profiling has value on, then the
-pg string be added to the OPTIONS variable. After all flag
statements are processed, every reference to a variable in the
command template is replaced by the variable’s value. This
mechanism proved to be highly beneficial, because it allows
to add support for a new build variable to any generator with
a very localized change.

III. CURRENT STATE AND LEARNED LESSONS

At this point Boost.Build is a mature tool that can be
successfully used in production environment, and has already
met its requirements. At the same time, it is being actively

37

developed. This section will describe the main issues that were
discovered.

A. Metatarget-induced indirection

In most existing build tools, buildfiles are written in some
interpreted language, and are executed at build system startup,
calling generators and constructing targets. Boost.Build differs
from this model by creating closure objects that are called
with proper build parameters at a later point. Furthermore,
Boost.Build does not require that project be “configured”, with
some of the build parameters fixed, before starting a build.
Consequently, when a buildfile is executed it does not make
sense to talk about “current” build parameters and no logic
that depends on build parameters may be implemented as
an if-statement on the top level of a buildfile. Rather, such
logic must be implemented as functions that will be called by
generators.

For many users, this trait cause understanding problems. We
believe that this complexity directly follows from the require-
ments and key design elements, and cannot be fully eliminated.
On the other hand, most users successfully adjusted to this
model.

B. Code-level extension mechanisms

One of the goals of Boost.Build was simple description
language. This lead to invention of concise syntax for many
tasks. However, often no suitable programmatic interface was
designed for the case when the concise syntax is not enough.
In other words, there are many areas where build behaviour
needs to be customized by the user, and there’s a wide
spectrum of possible customization mechanisms — from a
new build parameter to a new metatarget type. In a few cases,
this spectrum is not evenly covered, and user has to choose
between a very simple method that is not flexible enough, and
an extremely complex solution.

One example is the conditional requirements syntax shown
previously: toolset=msvc:link=static. This syntax
is sufficient for the majority of cases, but does not support
complex conditions — in fact, conditions using any logical
operators except for “and”. Until indirect conditional require-
ments were introduced relatively late during development,
users were forced to use a fairly verbose mechanism instead.

Another example is generators. It is very easy for user
to declare a new generator that produces one output target
from one input target. However, any conditional logic —
such as creating an additional target depending on some
build parameters — requires substantial complexity. While we
have described generators as functions in this article, they
are actually implemented as classes in certain programming
language, which adds some overhead for just declaring a
new generator. Furthermore, the implementation of the base
generator classes was not designed for easy extensibility, so
often, user had to reimplement significant amount of code.

We believe that issues of this kind have only small corre-
lation with the key design choices, and can be eliminated. In
fact, quite a few were already fixed as user report them.

C. User expectations

One unexpected issue during development was users’ ex-
pectations. It is safe to say that most users either have GNU
Automake background, or are not experienced with command
line tools, and these users have some specific, and often
different, expectations.

For example, GNU Automake allows to change compiler
by setting environment variables, such as GXX. Users often
try the same with Boost.Build, and find that it has no effect.
For another example, Boost.Build does not stop after a compile
error, but builds other targets that do no depend on the failed
one. At the end of the build, a summary of failures is printed.
This small change proved problematic. Many users did not
understand that the error was printed earlier, and interpreted
the summary as the original error. And on some operating
systems, finding an error in several thousand lines of build
output is a problem itself. Developers on Microsoft Windows
operating system usually expect that every tool checks system
registry for all configuration. Consequently, they found it
very unnatural when prior versions of Boost.Build required
to specify compiler location in a configuration file. Finally,
Boost.Build command line syntax is slightly unusual, having
separate syntax for command line options, build parameters
and arguments. Many users still try to use option’s syntax to
specify build parameters.

Some of those issues are natural consequences of a different
design and require users to adjust. But still, many issues are
independent, and can be easily addressed. We recommend that
design process for any project in an established area include
explicit gathering of user expectation to avoid unnecessary
differences in operation details.

IV. EXISTING SOLUTIONS

There are two build systems that are most commonly used
today – the one integrated with Microsoft Visual Studio, and
the Automake build system. However, neither of them is truly
portable. Below, we review a few solutions that work across
different platforms.

A. Eclipse CDT

The C/C++ Development Tooling (CDT) for the Eclipse
Platform comes with its own build system[7]. The CDT build
system keeps a repository of available tools, organized in
named toolsets. For each tool, input and output file types are
specified. Any project is required to specify the name and
type of the target that should ultimately be built, and CDT
automatically picks tools that can produce the desired final
target from all files in the source folders. Each tool can have
a set of options that are editable via user interface. Similar
to Boost.Build, tool options may be specified on individual
source folders or individual source files.

Let’s review how CDT build system can support the build
system requirements described in sectionI:

• The “write once, build everywhere” requirements is not
met. User can count on some functionality to be available
everywhere — in particular shared and static libraries

38

and predefined “debug” and “release” build variants.
However, any further fine-tuning is done via options that
are specific to each tool. Therefore, if building with a
different compiler, the options has to be specified anew.
CDT actually has an indirection level between the value
of an option as displayed in user interface, and the
command line flags used for compilation when that value
is selected. Therefore, it would have been possible to
implement a portable set of options, that every tools
would translate into appropriate command line options.
However, since such portable set is not defined, build
descriptions in CDT are not portable.

• The extensibility requirement is poorly met. The only way
to extend build system is via new tool definition, and
it not possible to completely override the build process
for a specific platform. Further, tool definition should be
be included either in CDT core or in a separate Eclipse
plugin, and cannot be easily packaged with a project. Tool
definition uses an XML-based language, which appears
to be inconvenient in practice.

• The multivariant requirement is partially met. CDT sup-
ports build configurations that include a complete set of
options for all tools, and allows one to freely change
build configuration every time a build is initialized.
Each part of a complex project may use different build
configuration. Note that this happens because a “project”
in CDT terminology may only contain a single final
target, so non-trivial user project has to be split into
multiple CDT projects. It is not possible to build the
same target in different configurations simultaneously. It
is also not possible to build using arbitrary ad-hoc set of
build parameters — one has to define a new configuration
instead.

CDT has one unique feature — it has a mechanism to specify
dependencies between build parameters. For example, 64-bit
compilation can be enabled only if the chosen processor indeed
supports 64-bit instructions. This feature can be worthwhile to
implement in Boost.Build.

B. CMake

The CMake [8], [9] build tool is designed as a abstraction on
top of existing “native” build systems. When invoked, CMake
reads its buildfiles, and then generators secondary buildfiles
using a selected “backend” build system – for example, GNU
make. The project is then build when the user explicitly runs
the secondary build system. Whenever CMake buildfiles are
modified, or any build properties must change, the secondary
buildfiles are regenerated. Such scheme improves build system
speed for the case where a project is repeatedly build with the
same settings.

Let’s review how CMake can support the build system
requirements described in sectionI:

• The “write once, build everywhere” requirement is not
met. The points we have raised when discussing CDT
equally apply to CMake.

• The extensibility requirement is not met. Platform-
specific modules in CMake essentially specify variables
used by CMake core, and it is not possible to completely
replace generators2. Support for some platforms, for
example, Microsoft Visual Studio, relies on special core
functionality.

• The multivariant requirement is not met. CMake requires
that a project is configured with specific set of properties,
and requires reconfiguration for any change in properties.
This appears to be result of an explicit design goal, meant
to make it impossible to accidentally mix modules built
with incompatible settings.

C. SCons

The SCons build tool[10], [11] is unique in two aspects.
First, it uses the Python language for buildfiles, as well as

implementation language. In contrast, both Boost.Build and
CMake use custom languages. On one hand, this means that
the syntax is not as concise, due to punctuation and quoting
rules of Python. On the other hand, the use of a mature and
widely known programming language reduces learning curve,
and simplifies many programming tasks. It also means there’s
no language boundary between buildfiles and build system
core.

Second, SCons uses cryptographic signatures to detect if a
target should be rebuild. When a target is built, signature of
content of all source files, as well as the command used to
produce the file is stored. These signatures are recomputed on
every build, and if they differ from the scored ones, the target
is rebuild. This approach means that a change in command
associated with a target will be detected, and cause a rebuild,
while other build system can build different parts of project
with incompatible commands.

For the simple usage, SCons provides a set of generators
that can be called from buildfiles, for example Program
and Library. The targets produced by those generators
use globally specified build parameters. However, SCons also
provides a mechanism called construction environment —
explicitly created collection of build parameters. It is possible
to invoke a generator in specific environment, consequently
building different parts of projects with completely unrelated
set of build properties. However, this mechanism does not
allow to easily build one target with different properties. SCons
does not assign different directories for target with different
properties, so user is required to explicitly specify different
names for final and intermediate targets.

Let’s review how SCons supports the requirements de-
scribed in sectionI:

• The “Write once, build everywhere” requirement is not
met. The points we have raised when discussing CDT
equally apply to SCons.

• The extensibility requirements is met. A platform specific
code can completely replace standard generators if so
desired.

2The “generator” is used in the sense defined in this article. CMake
documentation uses the word “generator” for an unrelated concept.

39

• The build variants requirements is partially met. Similar
to CDT, SCons allow to explicitly define several build
variants, and unlike CDT, all variants can be built simul-
taneously. However, SCons does not automatically place
products for different parameters in different directories,
so it is in general not possible to change any parameter
between two build invocation without discarding previous
build products.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the requirements for the
Boost.Build system and its key design decision, as well as
reviewed some existing solutions. We believe that the main
distinguishing characteristics of Boost.Build are:

• portable build properties, and associated mechanisms like
requirements

• true multivariant builds, specifically the metatarget con-
cept

• convenient extensibility, in the form of generator selection
and flags mechanisms

While some design complexities were encountered, we
believe that overall, Boost.Build is a step forward in the area
of software construction.

There are two key areas of future development:
• Use of the Python language for implementation and build

description. We find that Python has become sufficiently
popular and well-supported and the benefits of using it
will outweight slightly more verbose syntax.

• IDE integration. Because Boost.Build does not rely on
any legacy backend build tools, and because every
metatarget can be repeatedly constructed with different,
or same, build properties, it is particularly suitable for
integrated development environments — making it pos-
sible to quickly determine what products must be rebuild
as result of changes made by a user.

VI. ACKNOWLEDGMENTS

The author would like to thank Alexander Okhotin and
Sohail Somani for reviewing drafts of this paper.

REFERENCES

[1] R. M. Stallman, R. McGrath, and P. D. Smith, GNU Make. GNU Press,
2004.

[2] G. V. Vaughn, B. Ellison, T. Tromey, and I. L. Taylor, GNU Autoconf,
Automake, and Libtool. Sams, 2000.

[3] “C++ boost libraries,” http://boost.org.
[4] The C++ Standard (ISO/IEC 14882:2002). Wiley, 2003.
[5] “Technical report on c++ standard library extensions,” iSO/IEC PDTR

19768.
[6] “Boost.build website,” http://boost.org/boost-build2.
[7] C. Recoskie and L. Treggiari, “Extending the eclipse cdt managed

build system,” Dr. Dobb’s Journal, 2007. [Online]. Available:
http://www.ddj.com/cpp/197002115

[8] K. Martin and B. Hoffman, Mastering Cmake. Kitware, Inc., 2006.
[9] “Cmake website,” http://cmake.org.

[10] “Scons website,” http://scons.org.
[11] S. Knight, “Building software with scons,” Computing in Science &

Engineering, vol. 7, pp. 79–88, 2005.

40

http://boost.org
http://boost.org/boost-build2
http://www.ddj.com/cpp/197002115
http://cmake.org
http://scons.org

Verification and testing automation of UML projects

Nikita Voinov, Vsevolod Kotlyarov
Saint-Petersburg State Polytechnic University, Saint-Petersburg, Russia

voinov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.ru

Abstract – This paper presents an integrated approach to
verification and testing automation of UML projects. It consists
of automatic model creation from UML specifications in the
formal language of basic protocols, model’s verification by the
means of VRS technology and automatic tests generation in
TTCN language using TAT. The actuality of this task arises from
necessity of software functionality’s correctness checking,
including verification and testing, but there is lack of industrial
technologies which allow integrating these two activities. Results
of the developed approach piloting are also described.

I. INTRODUCTION

Documents describing software requirements can contain a
large amount of miscellaneous types of errors, the main of
which is difference between requirements adopted and
detailed by technical specialist and customer’s initial
requirements. Enormous help in solving this problem is
brought by using of formal languages and notations for
requirements development. These notations allow customer
and developer programmer to speak one language and lead to
extermination of specifications’ ambiguity of different types.
Formal notations and formal methods of software quality
control are often used in software development practices. The
most popular graphical formal language is UML (Unified
Modeling Language) [1]. This standard contains a wide range
of graphical objects and allows creating system description
from different points of view.

One of the main tasks the software developers have to solve
is software functionality’s correctness checking, which starts
from development of software requirements and lasts until
software withdrawal. This causes high demands to
completeness and productivity of this checking and leads to
appearance of new technologies and program instruments for
automation of software functionality’s correctness checking,
which includes verification and testing.

Although there are a lot of miscellaneous instruments of
verification (Spin (BellLabs laboratory), SCR (NavalResearch
laboratory), VRS (ISS organization), etc. (see [2, 3] for
review)) and testing automation (Rational Rose (IBM), TAT
(Motorola), Together (Borland), etc. (see [4] for review)), two
serious problems can be stated. The first one is lack of
industrial technologies which allow integrating testing and
verification. This is especially important when a huge amount
of system’s behavioral scenarios have to be verified in order to
guarantee its correctness and this have to be done in limited
time. Secondly, verification based on model checking (when a
model of the system is created and requirements for every
possible model’s state are checked) uses some formal
language to create a model of the system and the process of

model creation from formal specifications is quite long and
laborious.

This paper outlines the main principles of verification and
testing automation of UML projects, including automatic
model creation from UML specifications in the formal
language of basic protocols, model’s verification by the means
of VRS technology and automatic tests generation in TTCN
[5] language using TAT (Test Automation Toolset) [6].
Results of the approach’s piloting on large telecommunication
program project are also presented.

II. APPLIED TECHNOLOGIES

A. Basic Protocols

Basic protocol is a formal representation of an assertion
about some actions that have to be applied in a program or
algorithm under some conditions. In a general case a basic
protocol is a Hoare’s triplet [7] in the following notation:

 
where  and  are the pre-condition and the post-condition
respectively and µ – is the process part of the basic protocol.
Both  and  conditions are specified by logic formulas of
the basic protocols language (a variant of the first-order logic)
which can be evaluated for any state of the system.

Basic protocols can be consistently concatenated through
their pre- and post-conditions – if the state specified by the
post-condition of one basic protocol is to the same as the one
specified by the pre-condition of the next basic protocol
(actually, the pre-condition formula of the successor should be
derivable from the post-condition formula of the predecessor).
All such possible concatenations construct the model’s
behavior graph to be processed by verifier.

The language of basic protocols has an MSC-type syntax [8]
and basic protocols can be presented in two ways: textual and
graphical (MSC/PR and MSC/GR) [9].

В. VRS Technology

This technology is capable to verify models represented
with basic protocols, from small to huge ones. As a result,
various incidents of non-deterministic behavior, unreachability
of specified system states, or deadlocks are detected. If no
such defects are found, the system model is formally proved to
be complete and consistent within the specified constraints.

Automated verification of software systems with VRS
technology implies the functional requirements, which were
used for system implementation, and system’s model in the
form of basic protocols created from the source code, formal
specifications, etc. The technology checks that the model

41

meets the system requirements. This means that the software
system satisfies them as well.

For verification process an ordered list of signals or basic
protocols that contain required events (actions, signals, etc.)
should be specified. VRS can check that for this model the
behavior graph contains paths which include the specified
sequences in the specified order. The existence of such paths
(traces) is a proof of correctness of the model behavior with
respect to this criterion. Search of such traces is realized by
looking for respective signal interaction between agents or by
looking for the specified basic protocol names in the generated
traces and considering their actual ordering.

Thus, a trace is a scenario of a possible model behavior.
Since the model was derived from an actual implementation of
a program system, we can say, that a trace is a scenario of an
actual system behavior. Scenarios are represented as
consistent concatenations of relevant basic protocols into one
chain. VRS outputs traces in the MSC/PR view.

Results of verification are automatically summarized in a
verification report, which describes all found inconsistencies,
discrepancies, deadlocks, and other errors in the model. Traces
demonstrating the incorrect model behaviors are attached to
the report. They are used to identify the root causes of such
incidents.

Traces generated by VRS can be used for automated
creation of an exhaustive test suite for the program system.
The TAT (Test Automation Toolset) tool is used for
automated test generation from those traces along with the
respective testing environment and subsequent test runs.

C. TAT (TEST AUTOMATION TOOLSET)

A key to make testing technologies cheaper and more
efficient lies in the area of test generation techniques, i.e.
efficient and compact description of test sets and thus
significantly reduces tester’s manual efforts to develop them.
Another key is visualization of formal description by means of
graphs. These problems are solved by testing automation tool
– test generator TAT.

TAT is a joint toolset, which provides complete, fully
automated testing cycle based on user-defined scenarios
developed in formal language MSC - Message Sequence
Charts.

TAT encompasses several tools that offer complete set of
solutions for efficient specification analysis and test
generation.

In addition to standardized MSCs, TAT supports extended
MSC notations, enhanced with macros, allowing significant
reduction of code size developed manually. This extended
notation allows absolute, relative, and more complex time
specifications in test scenarios. With such framework, TAT
helps to get significant time and cost savings through reuse
and efficient workaround of time and macro definitions.

III. MAIN STEPS OF VERIFICATION AND TESTING AUTOMATION

A. Autoformalization of UML Specifications

Before using VRS for verification purposes, system’s
requirements shall be described in the language of basic
protocols. Manual creation of such description is laborious
process and can be compared with manual development of test
cases in this regard. In some situations the process of
formalization can be hastened by automatic creation of basic
protocols from initial specifications. This approach is called
“autoformalization”.

In those UML projects, where system’s specification is
presented as a state machine, respective set of basic protocols
can be generated automatically by using special tool –
uml2bp, which in fact is a module of VRS. This module
generates sets of basic protocols for every state machine in
Telelogic Tau G2 project with .ttp extension as well as creates
files with environment and events description, needed for VRS
project. All generated files can be imported to VRS for
verification.

Example of generated basic protocol is shown in Fig.1.

Fig. 1. Converting of a piece of UML state machine diagram into a basic

protocol

B. Vefification with VRS

Basic Approach to Verification with VRS

The procedure to check a requirement – is a direct
formulation of a sequence of observable causes and results of
some activities; after analyzing this sequence a conclusion can
be derived whether the requirement is satisfied or not. Such
procedure may be used as a criterion for meeting this
particular requirement. Basically, the criterion procedure is a
method for checking satisfiability of a requirement. Term
“chain” can be used for the criterion procedure.

After identifying in the behavioral scenario (hypothetical
one or implemented in a real system or system model) the fact
that such criterion is satisfied, one can state that the respective
requirement in the system being analyzed is satisfied as well.

42

A procedure for checking requirements (a chain) is specified
through formulating all its elements: initial conditions (causes)
required for performing a certain activity, the activity itself
and observed results of performing the respective activity.

In particular cases to describe the causes and results the
states of variables (in form of their values or constraints for
tolerance range) may be used. These variables are employed
by the activity to track the state changes. In case of non-
determinism, possible variants of state changes are tracked. A
direct transition from one state to another with a void activity
is also possible.

All the above refers to constructing a use-case for a
particular requirement. So, a chain or use-case with sequences
of activities and states may serve as a criterion for
satisfiability of a requirement, sufficient to demonstrate it.
Non-determinism in formulations is also covered with a
number of chains or use-cases.

Realization of verification stage

Step 1. Formulation of filters and heuristics for the current
project (after set of basic protocols as well as files with
environment and events descriptions have been generated).
They help to decrease number of traces by pointing the trace
generator to the definite direction.

Step 2. Performing an automatic trace generation cycle.
Step 3. Analysis of findings with deadlocks, inconsistency

and other issues, which prevent the tool from completing trace
generation in the Goal or Restricted states. Fixing problems
identified in findings and their review with the developers.
Based on the review results correcting the generated basic
protocols or initial requirements. Repeat steps 1-3.

Step 4. Analysis of generated traces with a script to check
whether the coverage criteria are satisfied. Repeat steps 1-4 if
needed.

Among traces generated by VRS user can choose those
which should be used for automatic tests generation with
TAT.

Manual creation of VRS traces

Another useful feature supported by VRS is manual creation
of traces with user defined order of basic protocols (on each
step of trace generation user himself chooses the protocol from
the list of protocols, which can be applied now). This helps to
cover concrete scenario of model’s behavior on all possible
levels of abstraction. Described below is example of this
feature.

Sample UML state machine diagram is shown in Fig.2.

Fig. 2. Sample UML state machine diagram

Its main part is four composite states (Suspended,

UDI_LDI, UEI_LEI, UEA) and transitions between them.
Each composite state is in turn a state machine itself with
complicated behavior inside.

Uml2bp module converts the whole state machine into the
set of basic protocols. They are imported to VRS for model’s
analysis.

Basing on the set of basic protocols, a graph of the model
can be constructed. Fig.3 shows the graph without detailed
behavior of four composite states.

Fig. 3. Graph with composite states

It is also possible to expand any composite state to examine

its detailed behavior. Fig.4 shows the same graph but with
detailed behavior of Suspended state.

43

Fig. 4. Graph with detailed behavior of Suspended state

Detailed behavior is represented by a number of states

(ovals) with transitions between them. Each transition is
performed by a basic protocol. So, in accordance with the
graph, one can construct his own trace in interactive mode of
trace generation with any abstraction level (high level or
detailed) for all composite states and for the whole initial state
machine. Traces covering high level behavior of initial state
machine and one of possible scenarios of Suspended state’s
detailed behavior are presented in Fig.5 and Fig.6 respectively.

Fig. 5. Sample trace of high level behavior of initial state machine

Fig. 6. Sample trace of Suspended state behavior

Now these two traces can be merged: the second trace can
be glued in to the respective part of the first one, where
Suspended state is covered as composite state. Traces merging
is presented in Fig.7.

Fig. 7. Traces merging

Traces created in interactive mode can also be used for

automatic tests generation.

C. Automatic Tests Generation with TAT

The approach described below is aimed at automatic tests
generation on standard language of telecommunication
applications testing – TTCN (Testing and Test Control
Notation). The proposed approach allows test engineers to
exclude manual development and focus on test scenarios,
which hastens testing and bugs detection process.

Tests generation process is supported by number of scripts
and templates of automatic generation of result TTCN-files.
Scripts and templates use auxiliary files with data types
description, signals templates description, configuration
description, etc.

Tests generation is based on using two input files: a trace
(scenario) with signals and their parameters and .xls file,
which contains values for parameters used in this trace.

Overall scheme of the process is shown in Fig.8.

Fig. 8. Automatic tests generation scheme

Several steps can be listed in generation process:
 Automatic generation of functions description, which

provide access to the system under test according to
signals in the diagram. File with functions description

44

is imported to test project. As a result, only functions
calls will be used in test scenario without their
bodies.

 Automatic assignment of values to signals parameters
in the diagram. Values are taken from .xls file. If one
signal is presented several times in the diagram and
values of its parameters change, it also should be
mentioned in .xls file.

 Generation of test suite from MSC file with assigned
parameters values. TAT’s template is used on this
step.

 Generation of auxiliary TTCN-file, which performs
test suite execution.

After that all generated files are imported to test project. As
project is compiled and built, test suite can be executed in
automatic mode. Test results are saved in log-file.

IV. RESULTS OF PILOTING

The described approach to verification and testing
automation was performed on one of the modules of
telecommunication project of wireless network. Estimated size
of the whole network’s model is about 50000 basic protocols.

About 4000 basic protocols were generated on the stage of
autoformalization of the module under test, which took three
minutes of uml2bp work. Concerning the fact that estimation
for manual creation of basic protocols is 10-50 per day, time
saving is obvious and considerable.

Model’s verification with VRS discovered about 100
findings. 12 of them were considered to be defects and fixed
in future versions of the product.

Automatic tests generation also takes just several minutes,
which is much less than manual development. Even
considering the efforts required on creation of UML diagram
and .xls file for concrete test run adjustment, time savings are
estimated as several hours. Besides, when initial requirements
are changed or new ones are added, it is enough just to modify
initial UML diagrams and spend several minutes on another
cycle of tests generation instead of long process of manual
correcting the test code with possibility to introduce new
errors. Requirements changes during the project realization
happen very often, which is caused mainly by large size of
projects. This makes the described feature more actual.

V. CONCLUSION

The developed approach to verification and testing
automation proved its advantages in a large
telecommunication project and can be further reused in other
projects based on UML specifications. As this development
process is one of the most preferable nowadays, the field of
this approach application enlarges.

REFERENCES
[1] UML Distilled Second Edition. A Brief Guide to the Standard Object

Modeling Language.

[2] Visser W., Havelund K., Brat G., Park S., and Lerda F. Model checking
programs. Automated Software Engineering Journal, 10(2), April 2003.

[3] Fernandez J.-C., Jard C., Jeron Th., and Viho C. Using on-the-fly
verification techniques for the generation of test suites. In Proc. 8th
Conference on Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, New Brunswick, August 1996.

[4] Drobintsev P.D. Integrirovannaia tehnologia obespechenia kachestva
programmnih produktov s pomoshiu verifikacii i testirovania. Kand.
dis., SPbGPU. 2006. 238 p.

[5] .ITU-T Recommendations Z.140-142 (2002): The Testing and Test
Control Notation Version 3 (TTCN-3).

[6] TAT+Beta User's Manual © 2001-2005 MOTOROLA.
[7] Hoare C.A.R. Communicating sequential processes, Prentice Hall,

London, 1985.
[8] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Volkov V., Baranov

S., Weigert T. Basic protocols, message sequence charts, and the
verification of requirements specifications, Computer Networks: The
International Journal of Computer and Telecommunications Networking,
v.49 n.5, p.661-675, 5 December 2005.

[9] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.

45


Abstract — this paper describes an ongoing research aimed on

the creation and implementation of a set of transformations of

executable UML (Unified Modeling Language) models that

would improve the execution performance while preserving the

behavior. Additional information useful for transformations can

be extracted from the constraints embedded in the model. The

article contains an example of informal description of a

transformation, a scheme of modeling environment extension

implementing such transformations, and a review of related tools.

Index Terms — Constraint Programming, Computer Aided

Software Engineering, Model Transformation, Object Constraint

Language, Program Optimization, System Modeling, Unified

Modeling Language.

I. INTRODUCTION
N recent years Model Driven Development methodology
(MDD) has drawn much attention among software

development industry. According to the MDD software
models become the only first class artifacts of the
development process; and the whole system creation is seen as
a sequence of model refinements starting with the very
abstract system model and ending with the model that can be
executed performing the functions of the system. This makes
models fully reflect the complexity of the system being
created and hence readdresses to models many problems
previously related to source code in traditional programming
languages like Java or C++. Moreover since models contain
the description of system behavior precise enough to be
executed, the efficiency of behavior specification becomes
crucial and cannot be ignored for example for systems that
have requirements on their performance. According to our
experience complex models usually have a great potential for
optimization, however such optimizations are time consuming
and error-prone if done manually. Therefore there is a strong
need for model optimizing tools.

This paper describes optimization of models in the Unified
Modeling Language (UML) [1], since it is de facto an industry
standard language for software modeling. However the future
results of our study may be applicable to other modeling
languages, e.g. domain specific, if they use similar formalisms
for specifying system behavior. Behavioral features of the
system can be expressed in UML by means of activity, state

Andrey Karaulov, Alexander Strabykin, Institute for System Programming
(ISP) of the Russian Academy of Sciences, Russia, 109004, Moscow,
Solzhenitsyna st., 25. Emails: {aka, alexs}@ispras.ru.

machine, and sequence diagrams. The latter rather describe a
behavior resulted from the interaction of all the participants,
but do not exactly specify the behavior of each single party
and are used more for scenario definition and logging. Often
the expressiveness of UML often is not enough to fully
describe the semantic details of a system. In such situations
constraints written in Object Constraint Language (OCL) [2]
can be used in order to better reflect the semantics. Also OCL
can be used to define queries, derived attributes etc, but
constraints are usually specified by means of class invariants
and pre- and post-conditions of operations.

The goal of our research is creation and implementation of
the new methods of optimizing executable UML models. The
distinguishing feature of selected approach to model
optimization is extraction of additional information needed for
model transformations by analyzing constraints embedded in
the model. The model therefore is considered as for sure
holding all the constraints it contains and the issues of
constraint violations are left out of the scope of the paper. This
is a common situation when constraints express hardware
limitations or other conditions the system should only perform
under.

II. RELATED WORKS
A typical model execution scenario consists of several

stages including generation of code in a programming
language, code compilation and execution. On each stage
some optimizing transformations can be applied. For example,
compilers that transform source code into executables can
apply a variety of optimizations like function inlining, loop
unrolling, etc [3]. All these transformations certainly can be
applied when a code generated from a model is compiled.
Despite most of such transformations can also be applied
directly to UML models, since the language standard provides
a way to specify all standard actions like loops, conditions etc;
in this paper we deal with the higher level transformations that
operate on UML models. This approach gives an optimizer the
advantage of viewing the system as a whole, since the models
fully describe the system behavior. Moreover on a UML level
even semantic details expressed in constraints, which are
usually unavailable on lower levels, can be analyzed while
performing optimization. Optimizations applied to source code
in traditional programming languages can have two usually
conflicting goals: optimizing either memory usage or
performance. Since UML standard lacks information related to
memory allocation and distribution our research concentrates

Constraint-based Optimizations of Executable
UML Models

Andrey Karaulov, Alexander Strabykin

I

46

on performance optimizations while memory issues are left to
be dealt with on lower levels.

Software refactoring is a process of changing the internal
structure of an object-oriented program that preserves the
observed behavior and is aimed on simplification of
modifications and improvement of the readability and design
[4]. Since UML is an object-oriented language a lot of
refactoring transformations can be applied to UML models
[6]; sometimes as a side effect of their application the
performance can be improved, but this is not the goal of
refactoring. UML models have some specific constructs like
state machines and activities that have no direct analogues in
traditional object-oriented programming languages. The
optimizations of our interest have to preserve the behavior of
the system being transformed like refactorings; however the
main purpose is a more effective execution of the model.
Moreover unlike compiler optimizations optimizing
transformations being studied should be visible to user and
may rely on user decisions.

UML state machines are based on finite automata
formalism, which has been proposed for more than thirty years
ago. There are a number of techniques created to minimize
automata by means of removing equivalent states [9].
Application of these methods to UML state machines is
complicated by the fact that transition equivalence cannot be
proved without proving the equivalence of the actions being
performed when transition is fired. However proving actions
equivalence is not a trivial task if complicated semantics of
UML actions is taken into account, since general problem of
equivalence of two programs is algorithmically unsolvable.

Another group of related works we are aware of studies the
problem of model transformations in general, since it is the
key activity of MDD. UML models are usually considered as
labeled multigraphs as in [6]. In this case transformation of
UML models can be based on graph rewriting formalism. A
model optimizer of our interest can be implemented as an
extension of a model transformation framework. The most
important features of such framework would be extensibility,
capability of defining complex and parameterized
transformations, and support of constraint analysis in models
being transformed.

GReAT language described in [5] is a Graph Rewriting and
Transformation language. It contains sublanguages for
specifying patterns, transformation rules and control flow for
advanced transformation. Extensibility of transformations is
achieved by adding user-defined code in a procedural
language to specify attribute mapping, which is performed
after all graph related operations are done. This approach does
not seem suitable for implementing heavy model analysis that
must be done before optimizing transformations are executed.

Visual Modeling and Transformation System [7] is
modeling environment that allows creating and transforming
UML models with OCL constraints. It has a visual language to
define complex transformations similar to UML activity
diagrams. Matching mechanism uses metamodel approach i.e.
is looking for a part of a model that can be identified as an
instance of a metamodel pattern. Transformation constraints

can be defined in OCL and are finally transformed to C# code.
The whole system is also implemented in C#, which limits the
platforms it is available for. There are no means provided for
simplification of the analysis and according to [15] the
performance of VMTS turned to be a number of orders of
magnitude worse than that of Fujaba.

FUJABA (From UML to Java And Back Again) [8] was
initially developed as UML modeling tool with code
generation to Java. Later a visual language for model
transformation based on graph rewriting was added.
Transformations are defined by means of Story Diagrams,
which can be seen as a mixture of UML activity and
collaboration diagrams. For each transformation Java code
implementing it is generated. The framework can be extended
by means of plug-ins and the Fujaba itself can be integrated
with Eclipse modeling environment [12]. Support of model
constraint analysis is also absent.

The only tool that provides some model analyzing
capabilities, which might be helpful when implementing
optimizing transformations, is MagicDraw with ParaMagic
plug-in [11]. However it uses System Modeling Language
(SysML) [10], not UML. Since SysML models can contain
parametric diagrams specifying relations e.g. equations among
system variables. Mentioned plug-in allows in some cases
resolving the equations, but cannot currently work with OCL
constraints in the model.

Any of the tools mentioned does not provide all the features
needed for convenient implementation of transformations
optimizing model performance. It means that this issue should
be studied further in detail before the final decision is made,
but a new solution designed with support of optimizing
transformation in mind is likely to be created by authors in
case no other tool is found to meet all the requirements.

III. CAUSES FOR MODEL DEFECTS
There can be many reasons why UML models may be

optimized. The most common case is a mistake of a user
creating the model. Modeling languages have higher level of
abstraction compared to those of traditional programming
languages and therefore operate with the concepts that are
closer to the problem domain, not to the programming
language domain. Even users that do not have a professional
knowledge in programming, but have it in the problem domain
can develop software systems with MDD. However such users
are more likely to make mistakes in design and
implementation and hence should be supplied with the tools
detecting and preventing them.

Another typical situation emerges in case of component
reuse. The reuse of components from other systems or
component libraries can save a lot of time and effort, but at the
same time can lead to ineffective or redundant models. This
drawback may be overcome if there is an optimizer that can
transform the components being reused in the system into
more effective ones taking into account the semantics of the
system being created. For example if we consider a
component that implements the process of organization of
computers into a tree-structure according to standardized

47

protocol. Tree structures are used for example to implement
multicast functionality in computer networks. Protocols
standards usually describe several roles that participants can
play during the interactions according to the protocol. For a
tree-structure organization there are three basic roles a
computer modeled as a class with a state machine can play in
the interaction: newcomer – a computer that would like to join
a multicast tree; root – a computer that accepts join requests of
the newcomers and ex-son – a computer that was a part of the
tree, but needs to find a new parent because of tree
reorganization [16]. A reusable component implementing this
protocol should cover all the roles and cases described in the
standard. However when being used in a particular system
such implementation can be redundant if for example a model
contains constraints that limit protocol implementation to
certain roles only. For instance a certain system can make ex-
son roles to be impossible. An optimizer in this case should be
able analyze the constraints, detect, and remove statemachine
elements needed only for implementation of redundant roles.

Behavioral features of UML models can even be generated
automatically, for example on the basis of the formal
specification or a complete set of test cases. Generated models
also need to be checked for their performance, since often
there is a lot of space for improvement.

IV. TOOL SUPPORT
The transformations we study can be implemented as an

extension to existing integrated modeling environment like for
example Eclipse Modeling Framework [12]. The module can
be divided into two parts Analyzer and Transformer as shown
in fig. 1. The following workflow looks natural when working
with the extension. When one wants to optimize the model he
activates the corresponding command in the modeling
environment. This can be done automatically when code
generation is performed. Analyzer then checks the model and
reasons about contained constraints.

Fig.1. The Scheme of Optimizers Work

The purpose of analyzer’s work is to provide additional

information that might be helpful for optimization. The

principles of its work are similar to those of partial evaluators
[13]. In the beginning as a feasibility study we limit the types
of supported constraints to algebraic expressions using
operation parameters and class attributes e.g. self.salary > 0.
Despite visible simplicity according to [14] such constraints
are quite common in real systems. Analyzer iteratively
propagates constraints over UML model actions. For example,
if an input parameter x : Integer of an operation is constrained
to be in range [0;c] and the first action of the operation
declares a local variable y, which is initialized as 2x, then the
constraint can be propagated to that statement and limit the
values of y to be within the interval [0;2c]. As a result of
analyzer’s work all actions in the model get a set of associated
constraints. These results are available to Transformer module.

Transformer contains a set of transformation descriptions.
For user convenience this set should be as flexible as possible,
i.e. a user should be able to include and exclude
transformations from that set. Moreover it is highly desirable
that a user can create new transformations from scratch or by
combining already existing transformations. A description of
the transformation contains a pattern that is matched against
user model and constraints defined on this pattern that must be
satisfied. The patterns are defined on a metalevel that makes
them independent on the model they are matched with.
Therefore the matching process is not a search for a part of the
model that is isomorphic as multigraph to the pattern being
matched, but a search for a part of the model that is an
instantiation of the metamodel pattern. In case all the pattern
constraints are observed the transformation is added to the list
of possible operations. After the matching for all active
transformations is completed a user is presented with the list
of possible operations for review and confirmation. In order to
avoid undesired changes, e.g. those caused by a mistake in
constraints, a user should be able to easily find out which
constraints in the model made certain transformation possible.
It is also important to keep the history of transformations for
convenient use; this will allow reverting changes later if
requested by user.

For a feasibility study the transformation that removes dead
branches from the condition action can be considered. The
pattern of this transformation matches all the choice pseudo
states of state machines in the model. The constraint of this
transformation should state that the estimated by Analyzer
range for the expression on which the decision is based
intersects with the only decision answer range. In this case all
other answer transitions can be removed from the model as
they are never fired. Transformation for decision nodes from
activities specifications is defined similarly. The ways of
formal specification of such transformations are currently
under investigation by the authors.

V. CONCLUSION AND FUTURE WORK
The spread and adoption of MDD by the industry of

software development not only requires availability of the
tools supporting MDD, but effective execution of the models
being created with such tools, therefore transformations that
can optimize performance of UML models are highly

48

demandable.
Current results of our research include the preliminary

analysis of available tools supporting UML model
transformation and the ways optimizing transformation can be
formally described. The work will be continued in the
following directions: new optimizing transformation will be
created; model transformation tools study should be completed
to decide the best implementation way; and the effectiveness
of the transformations application will be studied on real
industry projects.

REFERENCES
[1] Object Management Group. OMG Unified Modeling Language (OMG

UML), Superstructure. http://www.omg.org/docs/formal/09-02-02.pdf
[2] Object Management Group. Object Constraint Language

http://www.omg.org/docs/formal/06-05-01.pdf
[3] S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.
[4] M. Fowler. Refactoring. Improving the Design of Existing Code.

Addison-Wesley, 1999.
[5] D. Balasubramanian, A. Narayanan, C. vanBuskirk, G. Karsai. The

Graph Rewriting and Transformation Language: GReAT. The
proceedings of the Third International Workshop on Graph Based Tools,
2006.

[6] Mens, T., N. Van Eetvelde, S. Demeyer and D. Janssens, Formalizing
refactorings with graph transformations, Int’l Journal on Software Tools

for Technology Transfer 17 (2005), pp. 247–276.
[7] Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model

transformation with a visual control flow language. International Journal
of Computer Science 1(1) (2006) 45–53.

[8] FUJABA Homepage, http://wwwcs.upb.de/cs/fujaba/
[9] B.W. Watson, A taxonomy of finite automata minimization algorithms,

Eindhoven University of Technology, The Netherlands. Computing
Science Note 93/44 (1993).

[10] Object Management Group. OMG Systems Modeling Language.
http://www.omg.org/docs/formal/08-11-02.pdf

[11] InterCAX SysML Parametric Solvers. http://www.intercax.com/sysml
[12] Eclipse Modeling Framework Project (EMF)

http://www.eclipse.org/modeling/emf/
[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation

and Program Generation. PrenticeHall, 1993.
[14] Wahler, M., Ackerman, L., Schneider, S.: Using IBM Constraint

Patterns and Consistency. Analysis. IBM Developer Works, May 2008.
[15] A. Rensink, A. Dotor, C. Ermel, S. Jurack, O. Kniemeyer, J. de Lara, S.

Maier, T. Staijen, and A. Zündorf. Ludo: A Case Study for Graph

Transformation Tools. In A. Schürr, M. Nagl, and A. Zündorf, editors,

Applications of Graph Transformation with Industrial Relevance,
Proceedings of the Third International AGTIVE 2007 Symposium,
volume 5088 of LNCS, Heidelberg, 2008.

[16] Dolejs, O. Tree Building Control Protocol - State Machine. Prague:
CTU, Faculty of Electrical Engineering, Department of Control
Engineering, 2001. K335/01/210. 9 s.

49

http://wwwcs.upb.de/cs/fujaba/
http://www.omg.org/docs/formal/08-11-02.pdf

Creation of Automaton Classes from Graphical Models and Automatic

Solution for Inverse Problem

Yuri Gubin

 DataArt

ygubin@dataart.com

Kirill Timofeev

DataArt

ktimofeev@dataart.com

Anatoly Shalyto

SPbSU ITMO

Abstract

Graphical models – integral part of any program

development. Using graphical models facilitates

analysis of their architecture and understanding of

logic.

This work shows how to automatically transfer

automaton code into graphical isomorphic model,

using Java programming and DOT modeling

languages.

1. Introduction

Currently in the design of programs with complex

behavior actively used tools for graphical

representation of logic and structure, for example,

UML[1]. They make it possible to analyze the

program, working with its components, rather than

source code. The graphical presentation makes it easy

to debug, and provides the means to address possible

shortcomings and mistakes.

Automaton library for graphical representation of

state machine will be developed in this work using

language with static types Java. It should to provide the

possibility of creating automaton classes and

automatically transfer them to isomorphic graphic

model. This library implements the domain-specific

language (DSL, Domain Specific Language [2]), which

will allow:

• to check and modify the program without any

knowledge of Java programming language by

experts of the subject area;

• to provide failure–resistance of developed

program;

• to work with the code using terms of subject area -

to improve the readability of source code.

The library has been developing for object-oriented

programs with explicit allocation of states and state

machine to describe behavior of them [3].

The purpose of this work – the implementation of

the automatic transfer of automaton classes (automated

classes [3]) executable code to isomorphic graphical

model (reverse engineering). As an example,

automaton of user registration on Web site from the

Restful-authentication plug-in [4] will be implemented.

2. Description of the algorithm of

automatic transfer of the executable code

to isomorphic graphical model

The proposed algorithm converting the following

components of a state machine to a graphical

representation:

1) states that do not belongs to any group;

2) groups, and nested groups;

3) nested states and transitions.

Components of state machine can be read using

meta information of automaton class, or easily from

arrays of elements.

The result of the algorithm will be a model in text

language DOT [5]. This language provides ability to

describe different graphical components (applied to

automaton – states, transitions and groups). Also it

allows editing styles of components.

As an example, a model of two parallel processes

described in this language:

digraph G {// Name of oriented graph
 subgraph cluster0 {// process #1
 // Styles
 node [style=filled,color=white];
 style=filled;
 color=lightgrey;
 // Nodes and
 a0 -> a1 -> a2 -> a3; arcs
 // Name of the group
 label = "process #1";
 }
 subgraph cluster1 {// process #2
 node [style=filled]; // Style
 // Nodes and arcs
 b0 -> b1 -> b2 -> b3;
 // Name of the group
 label = "process #2";
 color=blue // Border color
 }
 // Nodes and arcs
 start -> a0;
 start -> b0;
 a1 -> b3;
 b2 -> a3;
 a3 -> a0;
 a3 -> end;
 b3 -> end;
 // Styles for the initial and final
 // nodes

50

 start [shape=Mdiamond];
 end [shape=Msquare];}

Dot (dot) utility from graphviz [6] package is using

to get the image from the DOT model description.

Figure 1 shows a graphical representation of the

model obtained from the description in DOT language

shown above.

Figure 1. An example image described using

the DOT language

It is known how to transform each component of

automaton class into DOT language. States, groups and

transitions can be represented as a formatted string. So,

we need to process states firstly, then groups and

nested states and later transitions. Using this order we

would not create duplicated nodes in DOT model and

result will be easy to use.

For example transition could be transformed into

start -> a0; where start and a0 is a names of

states. State could be saved just as a0 and group could

be saved as
subgraph clusterGroup{
label=”name of group”
;}
Getting presentation in DOT language from all

components we can create an output model.

3. The implementation of the library to

create an object-automaton programs

To ensure compliance with the objectives develop

the automaton library, which will allow effectively

implementing of the automaton classes firstly, and,

secondly, will contain a class that provides automatic

transfer of executable code to the graphical isomorphic

model. The development of automaton library is taken

into feature of further conversion of automaton Java

classes into DOT text description.

The developed library includes the following

classes:

• State – class, provides ability to specify functions

at the entrance to the state and at the exit from it;

• Transition – transition between states and groups.

Allows to specify functions during transition;

• StateGroup – group of states.

• DSL – base class for automaton classes. This class

contains all needed common functionality for

automaton class (i.e. methods for event reading,

default constructors and etc.).The DSL class also

includes method Compile for setting up initial

state of automaton using metadata of automaton

class.

Classes State, Transition and StateGroup inherited

from common class Entity. This class provides basic

properties, which allow uniformly processing of all

components.

This library published in «Projects» section on

http://is.ifmo.ru.

Creation of automaton classes for application is

based on the library classes. Each of such automaton

classes includes described method and all needed

common functionality.

Feature of the developed library is that it uses

anonymous classes for implementing functions in

states and transitions. Anonymous class – is a local

class without name. It has been creating and initializing

in single expression [7]. This allow us to use them

instead of lambda functions of Ruby language [4] for

creating states and transitions with all needed functions

without separated declaration of methods. Interfaces

Guard and Action have been using to create described

anonymous classes.

As an example, consider the graphical model of an

automaton (Figure 2).

Figure. 2. Model of an automaton.

Create Java automaton class for proposed model

with developed library.

51

import java.util.*;
import automaton.*;
public class Sample extends DSL{
 public State c = new State("C",
// Anonymous class for event on state
// entrance
 new Action() {
 public void go(){
 System.out.println(
 "Come to state C");}
 public String toDOT() {
 return "Print message";}
 },
 null,null); // No other events
 public StateGroup group =
 new StateGroup("Group");
 public Transition tgc =
 new Transition("GC","C",group,c);
 public Transition tcg =
 new Transition("CG","E",c,group);
// Will be created in constructor
 public Transition tbc;

// Constructor
 public Sample () {
 Vector <Entity> groupEntity =
 new Vector<Entity>();
 State a = new State("A");
 State b = new State("B");
 groupEntity.add(a);
 groupEntity.add(b);
 groupEntity.add(
 new Transition("AB","A",a,b));
 groupEntity.add(
 new Transition("BA","B",b,a));
 tbc = new
Transition("BC","D",b,c);
 group.setAll(groupEntity);
 }
}

Note that separated method for state entrance is not

required in this code, because code was developed

using anonymous class with implemented needed

logic. Using of developed library provides:

• creation of methods for states and transitions by

means of anonymous classes without duplicated

separated methods [8];

• inheritance of automaton classes without

additional tools;

• syntactic attractiveness.

4. Implementation of automatic isomorphic

transfer algorithm in the library

In previous section it was shown how to create an

automaton class with developed library. Proceed to

consider the inverse problem.

Consider this algorithm on an example of

automaton of user registration on Web site from the

Restful-authentication plug-in. User registration

consists from follow actions:

• fill the registration form;

• enter an activation code;

• fill the personal information.

Administrator can perform follow action:

• delete user and it personal information from

system.

Figure 3 shows the expanded graphical notation [9],

which describe automaton for registration.

Figure 3. Automaton for registration

This automaton includes the following states:

• Suspended – user is waiting;

• Pending – user should to confirm registration by

activation code;

• Active – user registered;

• Passive – user only logged in registration system;

• Deleted – user removed.

Group «ActivationG» contains states, in which user

acts with registration system.

For its creation, it is necessary to define the

collection of states and transitions for group.

Determination of the group’s structure occurs when the

defined collection is passed to the constructor of group.

Creation of group placed in constructor of automaton

class, so group keeps it structure during inheritance.

Create automaton class BasicUser (described on

Fig. 3):

import java.util.*;
import automaton.*;
public class BasicUser extends DSL{
 public State deleted =
 new State ("Deleted");
 public State suspended =
 new State ("Suspended");
 public StateGroup activation =
 new StateGroup("ActivationG");
 Vector <Entity> activationStates =
 new Vector <Entity> ();
 public Transition
 activation_suspend =
 new Transition(
 "Activation_suspend", "suspend",
 activation, suspended);
 public Transition
 activation_delete =

52

 new Transition(
 "Activation_delete", "delete",
 activation, deleted);
 public Transition suspend_passive;
 public Transition suspend_pending;
 public Transition suspend_active;
 void createActive() {
 State stateA = new State(
 "Pending enter mac");
 activationStates.add(stateA);
 State stateB =
 new State ("passive");
 activationStates.add(stateB);
 State stateC = new State (
 "Active enter DA");
 activationStates.add(stateC);
 Transition tran1 = new Transition(
 "passive_pending", "register",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard";}},
 null, stateB, stateA);
 activationStates.add(tran1);
 Transition tran2 = new Transition(
 "pending_active", "activate",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "";}},
 null, stateA, stateC);
 activationStates.add(tran2);
 suspend_passive = new Transition(
 "suspended_passive",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "not (guard1 or guard2)";}
 },
 null, suspended, stateA);
 suspend_pending = new Transition(
 "suspended_pending",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard1"; }
 },
 null, suspended, stateB);
 suspend_active = new Transition(
 "suspended_active",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard2";}

 },
 null, suspended, stateC);
 activation.setAll(activationStates);
}
 public BasicUser () {
 super () ;
 createActive () ;
 }
}

Implementation of algorithm for transform to

isomorphic graphic model requires additional methods

for all classes, used in automaton class. As described in

section 2, each component class should contain method

for transforming it to DOT. More over this each

actions and guard conditions should to be converted to

DOT too.

Implementation of the algorithm:
public String toString () {
 String res = "";
 String subgraph = "";
// Setup header
 res = "digraph " + "veryuniqname" +
" {\ncompound=true;\n";
// state, groups – extracted using
// reflection from automaton class
// method toString of State,
// Transition and StateGroup convert
// them to DOT representation
 for (State state:states) {
 subgraph+=state.toString(mode); }
 for (StateGroup state:groups) {
 subgraph+=state.toString(mode); }
// get all transitions described in
// class
 for (StateGroup sg:groups) {
transitions.addAll(sg.subtransition);
 getAllSubTransitions(sg);
 }
 for (Transition t:transitions) {
 subgraph += t.toString()+"\n";
 }
// adding border for model
 subgraph = "subgraph cluster0{\n"
+ subgraph + "\nlabel=\" "+dsl_name+"
\"}";
 res+=subgraph;
 return res;

 }

Get DOT text description of automaton class by

developed method DSL.saveToFile, which implements

algorithm of automatic transfer of code. Figure 4

shows image generated by dot utility from gotten text

description.

53

Figure. 4. Graphical model of BasicUser

automaton.

5. Analysis of image data obtained by the

algorithm of automatically isomorphic

transfer

Practical interest is in the reverse engineering of

complex inherited automaton classes.

Consider an automatic isomorphic transfer of

automaton class AdvancedUser inherited from

BasicUser automaton class. Automaton class

AdvancedUser is bringing to registration follow

functionality:

• to avoid spam registrations user should to type

value of CAPTCHA;

• administrator can block user;

To do this, add the following groups:

• Activation – includes group Active, extended by

«Captcha» state;

• Deleted – includes two states: «Blocked» – for

blocked users and «Deleted» – for deleted users.

Graphical notation for described automaton shown

on figure 5:

Figure 5. Extended automaton for registration.

Application of the developed algorithm and a

method for automatically isomorphic converting for

implemented AdvancedUser automaton class provides

graphic image presented in figure 6.

Figure 6. Graphical model of AdvancedUser.

Model obtained by automatic isomorphic transfer

(Fig. 6) in line with earlier developed model (Fig. 5)

Thus, the solution of transfer сode to graphical

isomorphic model problem provides an additional

analytical tool for debugging of existing logic,

introducing additional functionality or inheritance of

automaton classes.

6. Conclusion

Library for automaton classes creation had been

developed in this work. The library allows:

• inherit automaton classes and nest groups;

• create methods for states and transitions (also

guard conditions);

• eliminate duplication of code and multiply

separated methods by using anonymous classes.

Also algorithm of automatic transfer of automaton

classes executable code to isomorphic graphical model

had been developed. Automaton of user registration

from Restful-authentication plug-in developed and

described transfer of them into graphical model (Fig.

6). It was shown that the initial model of automaton

corresponding to a graphic representation, obtained by

library’s function for developed automaton class.

The results of this work will be used in further

studies:

1) dynamic and static verification of automata

displaying counterexamples in visual form, using the

reverse engineering;

2) the establishment of libraries, which will facilitate

the testing process of automaton classes.

7. References

[1] F. A. Novikov Visual design of programs, «Information

and control systems». 2005. # 6,

http://is.ifmo.ru/works/visualcons/

[2] T Parr. The Definitive ANTLR Reference: Building

Domain-Specific Languages. Texas: Pragmatic Bookshelf,

2007.

54

[3] N. I. Polikarpova, A. A. Shalyto Automaton

programming. SPb.: Piter, 2009.

http://is.ifmo.ru/books/_book.pdf

[4] A. A. Astafurov, K. I. Timofeev, A. A. Shalyto,

Automata Classes Inheritance in Dynamic Language Ruby ,

Software Engineering Conference (Russia) 2008.

http://www.secr.ru/etc/secr2008_artyom_astafurov_automata

_classes_inheritance_in_ruby.pdf

[5] E. Gansner, E. Koutsofios, S. North.Drawing graphs with

dot. http://www.graphviz.org

[6] Graphviz package. http://www.graphviz.org

[7] Academy of Modern Programming.

http://www.amse.ru/courses/oopjava/12.php

[8] E. A Zayakin., A. A. Shalyto, The method of eliminating

repetitive code snippets in the implementation of finite

automata. SPbSU ITMO, 2003.

http://is.ifmo.ru/projects/life_app/

[9] D. G. Shopyrin, A. A. Shalyto The graphical notation of

inheritance automaton classes. «Programming»" 2007. # 5

http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf

55

Modeling Security Threats to Cryptographically Protected Data

Alexandra A. Savelieva

Scientific Advisor: Prof. Sergey M. Avdoshin

In this paper, we introduce a mathematical model of threats for analyzing the security of cryptographic systems based on risk
management principles. We also provide economic indicators as a basis to build a rationale for investments to cryptographic systems.
Some points of designing software tools to support our methodology are covered in the paper. The new approach that incorporates the
threat model, automatic cryptographic strength verification tools and economic techniques, is instrumental for providing sound
arguments to choose a cryptographic system and for implementing an information security strategy. An overview of alternative
approaches is provided along with the results of comparative analysis revealing their drawbacks as compared to the method presented
in this paper.

Index Terms—risk management, threat modeling, cryptographic system, discounted cash flow.

I. INTRODUCTION

 Ross Anderson, Professor in Security Engineering at the
University of Cambridge Computer Laboratory and an

industry consultant, concludes his well-known paper [2]
saying “the evaluator should not restrict herself to technical
tools like cryptanalysis and information flow, but also apply
economic tools”. Our paper aims at providing a formal way of
analyzing cryptographic systems security.

The analysis of modern publications on security revealed a
lack of methods designed to facilitate the process of
cryptographic protection efficiency. Formalized security risk
analysis and management methodologies such as CRAMM
[10], RiskWatch [24] and GRIF [11] are focused on
information system security as a whole and do not consider
the peculiarities of evaluating cryptographic systems. There is
a mathematical model designed by V.P. Ivanov [16] which
applies the principles of the catastrophe theory and queuing
theory to computing of a cryptographic system efficiency
indicators. Although the approach incorporates economic and
technical perspective, its major restriction is that it can only
apply to the so-called restricted-use cryptographic systems [7]
whose security depends on keeping both the encryption and
decryption algorithms secret. The author reduces the problem
of breaking a cipher to engineering analysis of the program
that implements the encryption mechanism. This assumption
is inadmissible for modern cryptographic systems, being in
conflict with Kerckhoffs’s fundamental principle [17] that
encryption should not depend on the secrecy of the system -
which sooner or later would be compromised - but should
solely depend on the secrecy of the key. Finally, various tools
for cryptographic protocols analysis [5, 6, 8] focus only on the
high-level, conceptual design of a protocol on the supposition
that cryptographic algorithms satisfy perfect encryption
assumptions, so the strength of ciphers remains out of scope.

II. PROBLEM STATEMENT
The purpose of our work is to develop an approach to

analyzing the security of cryptographic systems. In order to
achieve the goal, we need to:
1) formulate the steps of cryptographic systems evaluation

process;
2) develop a mathematical model of security threats;
3) design software tools to facilitate the process of

cryptosystem efficiency assessment by a computer
security specialist;

4) select appropriate economic indicators as a basis to build
an economic rationale for investments to cryptographic
systems and to provide sound arguments for
implementing an information security strategy.

Results of the 1st stage of our research were published in
proceedings of SYRCoSE’2008 [26]. In particular, items (1)
and (3) from the above list were considered. In addition to it,
in [26] we described our multiple-category divisions of
cryptographic systems, adversaries and attacks designed for
developing of a mathematical model of security threats (2).
Therefore, in this paper we will focus on new results on (2)
and (4) achieved ever since; as for item (1), we will restrict
ourselves to providing a brief overview. We have also decided
it is appropriate to elaborate more on (3) since some important
aspects of designing new tools for cryptanalysis did not
receive much attention in the previous paper.

III. CRYPTOGRAPHIC SYSTEMS EVALUATION PROCESS
The process of cryptosystem efficiency assessment can be

described as a sequence of steps, each of them directed at
answering a specific question [26]:

• Step 1: What cryptosystem is the object of attack?
• Step 2: Who wants to attack the cryptosystem?
• Step 3: Which attack techniques are most likely to be

used to break the cryptosystem?
• Step 4: Is the cryptosystem capable of withstanding

such attacks?
• Step 5: Does the cryptosystem provide sufficient

security in the given context?

56

The environment typically imposes restrictions on the
attack scenarios that the cryptographic systems are exposed to,
so Steps 1 to 3 imply modeling threats to a cryptographic
system in a given context. Step 4 is about analyzing the
cryptographic system resistance to the types of attacks defined
at Step 3. Finally, Step 5 involves using various risk analysis
techniques and economic tools to evaluate the data obtained
during Steps 1-4.

IV. ABC-MODEL OF SECURITY THREATS
We can assume that the adversary is most likely to choose

the attack with the maximum benefit for a given cost, or
choose the least costly attack that gives them a particular
benefit [27]. Each cryptosystem has a set of attacks that is
applicable to it and a set of attacks that is not. These
hypotheses perfectly fit into common risk-management
methodologies and result in the following approach to
evaluating security threats.

Each cryptanalytic attack has a value of risk associated with
it and defined as the product of probability of the hazard and
its potential impact:

Risk = Probability ⋅ Impact

Impact refers to effect of an attack on a specific type of
cryptographic system. Probability reflects the likelihood that
an adversary will consider a specific type of attack appropriate
in terms of available resources and target secret data. Thus, a
formal model of the cryptosystem coupled with formal models
of the adversaries will yield a set of the most hazardous
attacks that the cryptosystem is exposed to. The model of
security threats represented as a composition of 3 elements
will be referred to as an ABC-model (‘A’ for attack, ‘B’ for
codebreaker and ‘C’ for cryptosystem). In [26], a description
of multiple-category divisions of cryptographic systems,
adversaries and attacks that we suggest as a basis for modeling
the components of a security threats is provided.

Let be a set of parametric models of
attack, where (

1 2 ...A A A× × ×Α ⊆ 9

iA 1, 9i =) represents a domain for the ith

parameter as per our taxonomy [26]. Each model a Α∈JG is a

vector ()1 2 9, , ... ,a a a , where . i ia A∈

Similarly, a parametric model for a code-breaker is b Β∈
G

,
where , (1 2 ...B B B× × ×Β ⊆ 6 jB 1, 6j =) represents a

domain for the jth parameter, and parametric model for a
cryptographic system is , where ,

 (
Cc ∈

G
1 2 ...C C C C× × ×⊆ 6

kC 1, 6k =) represents a domain for the kth parameter as per

our taxonomies. It is important to note that sets , , and
 are finite.

iA jB

kC

 For simplicity, we will further omit the word ‘model’ when
referring to parametric models of attacks, codebreakers and
cryptosystems.

Let be a function defining the level

of risk associated with an attack a

: Cℜ Α×Β× → [0; 1]

∈ Α
G as applied by a code-

breaker b ∈ Β
G

 for cryptanalysis of a cryptosystem Cc ∈G . Let
function define impact (as described above),

and function] define probability. Then risk

 is evaluated as follows:

: C [0; 1]× Α →Ι

: [0; 1Β× Α →Ρ

ℜ
(, ,) (,) (,)a b c c a b aℜ = Ι ⋅ Ρ
JG JGJG JG JG JG JG

The function ,(c aΙ)JG JG is recursively defined via a family of
functions , :gh g hC A +Ι × → \ 1,6g = , 1,9h = , where
is a set of nonnegative real numbers. defines the level of
interference between parameters and :

+\

ghΙ

gc ha

• , if an attack with parameter value
is inapplicable to a cryptosystem with parameter value

;

(,) 0gh c aΙ = ha A∈

gc C∈

• , if a cryptosystem parameter value
 reduces the likelihood that an attack with

parameter value can achieve a success;

0 (,)gh c a< Ι < 1

gc C∈

ha A∈

• , in case of no correlation between
parameters and ;
(,) 1gh c aΙ =

gc C∈ ha A∈

• , if a cryptosystem parameter value
points out a high probability that an attack with
parameter value will be instrumental for
cryptanalysis.

(,) 1gh c aΙ > gc C∈

ha A∈

To demonstrate the dependency, an illustrative example
will be useful. If a cipher is implemented in hardware, it
increases the probability that side-channel attacks [30] based
on information gained from the physical implementation of a
cryptosystem (including timing, power consumption, and
electromagnetic leaks) will be used to for cryptanalysis. The
quantitative level of interference is defined based on expert
knowledge.

Let :gh g hC AΙ × → [0; 1] be a normalized function:

(,)
(,)

(,)
g

gh
gh

gh
C

c a
c a

a
ξ

ξ
∈

Ι
Ι =

Ι∑

Then the level of damage from an attack a Α∈
G to a

cryptosystem Cc ∈
G is evaluated as follows:

1,9 1,5

() (,), min gh g h
h g

c a c a
= =

Ι = Ι∏
G G

If at least one parameter value contradicts the applicability
of a Α∈

G to breaking Cc ∈
G , the function yields 0: this is

achieved through using multiplicative criterion.
Accordingly, (,)b aΡ

G G is expressed in a similar way via

parameters of an attack ()1 2 9, , ... ,a a a and a code-breaker

()1 2 6, , ... ,b b b . An example of correlation between

parameters is that a brute-force attack (or any other attack
which can be parallelized efficiently) is most likely to be used
by an adversary who has access to distributed computation
resources.

Therefore, the formula defining the level of risk associated
with an attack a ∈ Α

G as applied by a code-breaker b for ∈ Β
G

57

cryptanalysis of a cryptosystem Cc ∈G is as follows:

1,9 1,91,6 1,6

(,) (,)(, ,) min mingh g h th t h
h hg t

c a b aa b c
= == =

Ι ⋅ Ρℜ = ∏ ∏
GG G

If the level of risk associated with an attack a ∈ Α
G in a

given context (defined in terms of Cc ∈
G and b ∈ Β

G
) exceeds

a threshold , i.e. [0; 1]θ ∈ (, ,)a b c θℜ >
GG G , then the attack will be

considered as a threat that the codebreaker imposes on the
cryptosystem. The admissible risk level θ is a customizable
parameter of the ABC-threat model. When defining , the
following two criteria are considered:

θ

• the significance of cryptographically protected data;

• the amount of computing and storage recourses
available to the specialist.

In the general case:

• a cryptosystem can comprise a number of sub-systems
Cc ′∈G (C), e.g. a symmetric cipher and a key

generator, each of them having a different set of
applicable attacks;

C′ ⊆

• a cryptosystem can be a target for several code-
breakers b ′Β∈

G () who differ in terms of
skills, resources etc.

′Β ⊆ Β

These assumptions yield a set of attacks
,)(

c Cb B

b cλ
′∈′∈

Λ =
G G

G G∪ ∪ , where

{ },) : (, ,)(b c a a b cλ θ= ∈ Α ℜ >
GG JG JG JGG . Thus, the process of

analyzing a cryptosystem’s security is reduced to evaluation
of its capability to resist the attacks in by means of
instrumental tools for cryptanalysis discussed in the following
section.

Λ

When designing the ABC-model, we stemmed from the
following admissions:

• the inaccuracy of expressing the interference between a
combination of cryptosystem parameters and a
combination of attack parameters through interference
between individual parameters is negligible;

• the inaccuracy of modeling code-breakers as
independent individuals who are not supposed to
cooperate is negligible.

The adjustment of the ABC-model to overcome these
admissions would require significant complication of the
model. The question of the admissions’ influence on the
model accuracy is subject to further research.

It is important to note that the taxonomy for cryptanalytic
attacks is applicable to modeling attacks not only on
cryptosystems but also on cryptographic protocols. This is a
very important property of the ABC-model: as shown in [28],
the interaction between cryptosystems and cryptographic
protocols has not been deeply studied and still remains an
open area of research.

V. SOFTWARE TOOLS FOR CRYPTANALYSIS
Our work on designing a new tool for cryptanalysis was

inspired by the need to constantly re-evaluate the
cryptographic algorithms strength. Such toolkits already exist
for some classes of cryptanalytic attacks and enable finding
out vulnerabilities, not only on new cryptographic systems
being proposed, but also on old schemes which for long have
been considered secure. In particular, in the last years
researchers have devoted much effort to develop techniques to
formally analyze cryptographic protocols [5, 6, 8]. Another
important research direction is that of designing tools for
high-level side-channel attack simulation developed with the
aim of automating analysis techniques to help a cryptanalyst
identify possible implementation vulnerabilities with minimal
effort on their side. In [22], an approach is presented based on
the SystemC 2.0 language [1], the de facto standard in
complex digital system simulations illustrated by a case study
of analyzing various implementations of AES [23] algorithm.

In our research, we focused on developing tools for
analyzing public-key cryptographic algorithms strength.
Before designing a new tool for cryptanalysis, we investigated
available solutions for solving discrete logarithms and integer
factorization problems which are the basis for various modern
cryptographic systems, such as RSA [25] and ElGamal
signature scheme [12]. Our analysis is supported by an
extensive survey of mathematical libraries [15]. The set of
evaluation criteria that we used is as follows:

• The tools should provide efficient implementation of
big integer arithmetic operations;

• The tools should be compatible with Windows
platforms given the large amount of cryptographic
products running under Microsoft operating systems;

• The tools should have a base upon which to write
implementations of integer factorization algorithms
and index-calculus algorithms for discrete logarithm
computation, including algorithms for creating factor
bases and linear algebra techniques for solving sparse
systems of equations;

• The tools should have extensible architecture so that
new methods could be easily added to the
implementation with the advent of new cryptanalytic
techniques;

• The tools should be completely automatic and should
carry out their job even when run by users having a
limited amount of expertise in the field.

The advantages of programs like Maple [13] or
Mathematica [29] are unlimited precision and easy-to-program
algorithms. However, they are extremely inefficient for
computations in number theory.

Java also has multiprecision capabilities and is highly
portable. However, it is very slow in terms of number-
theoretical operations. High performance can be achieved
through using of low-level programming languages. Although
C and C++ built-in numeric data types have limited precision,
there are a lot of multiprecision libraries with many of them
available as free software (GNU GPL), e.g. LIP, LiDIA, CLN,

58

NTL, PARI, GMP, MpNT etc.
One of the first multiprecision libraries was LIP (Large

Integer Package) [21] written by Arjen K. Lenstra and later
maintained by Paul Leyland. Despite being highly portable,
the ANSI C library is not appropriate for our purpose as it is
not efficient. In addition to it, the library provides no base for
developing number-theoretic algorithms.

A Class Library for Numbers (CLN) [9] written by Bruno
Haibleand and currently maintained by Richard Kreckel is a
C++ library that implements elementary arithmetical, logical
and transcendental functions. It has a rich set of classes for
integers, rational numbers, floating-point numbers, complex
numbers, modular integers etc. The drawbacks of this
universality are the lack of emphasis on speed, and hence no
optimization for the specific tasks of big integer operations.

GMP (GNU Multiple Precision arithmetic library) [14] was
developed by Törbjord Granlund and the GNU free software
group. Although this C library for arbitrary precision
arithmetic is faster than most multiprecision libraries due to its
highly optimized ASM implementations for the most common
inner loops and for a lot of CPUs, it has the drawbacks of
being incompatible with Windows and lack of primitives to
support integer factorization and DLP methods.

LiDIA [20] is a C++ library for computational number
theory developed at the Technical University of Darmstadt by
Thomas Papanikolau. LiDIA includes highly optimized
implementations for multiprecision data types and can use
different integer packages (like Berkley MP, GMP, CLN, libI,
LIP etc.). LiDIA’s drawback is that the library is not portable
to Windows platform.

NTL (a Library for doing Number Theory) [19] written and
maintained mainly by Victor Shoup is a high-performance
C++ library. As shown in [15], NTL outperforms other
libraries in terms of big integer operations, however it needs
to be extended to become instrumental for our purposes as it
has no implementation of either integer factorization or DLP
algorithms.

Another disadvantage that all the libraries have in common
is the high level of programming skills that a cryptanalyst
needs to use them.

Since no alternative solution matches all five criteria at

once, the rationale for developing new software tools was
clear (see Table I). We designed software tools CRYPTO [3,
4] having in mind the efficiency criteria stated above.
Multiprecision C++ library DESIGNER that is the core of
CRYPTO is an extension of NTL. To provide the user with an
easy access to integer factorization and DLP functions, an
application ANALYST was implemented in C#. For
illustration of the efficiency of CRYPTO, the timing for 55-bit
DLP computation on a 3.2 GHz Intel Pentium/1Gb memory
PC is 8 hours against 10 minutes that our implementation
takes to compute a discrete logarithm in 80-bit field.

VI. ECONOMIC PERSPECTIVE
We suggest that the discounted cash flow (or DCF)

approach [18] should be used to provide economic rationale
for investments to cryptographic systems. In finance, the DCF
is a method of valuing a project, company, or asset using the
concepts of the time value of money. All future cash flows are
estimated and discounted to give their present values. The
discount rate used is generally the appropriate cost of capital
and may incorporate judgments of the uncertainty (riskiness)
of the future cash flows.

The cash flow related to a cryptographic system can be
described using the following formula:

tR

(1)t t t t tR Cost Profit Loss= − + ⋅ − Ρ − ⋅ Ρt ,
where Cost is the cost of a implementation, deployment and

support of the cryptographic system;
t

tProfit is the value of information assets being
protected;

tLoss refers to the hazard in case of unauthorized
access to the asset by an adversary;
tΡ is the probability of an adversary to break the

cryptographic system;
t is the time (e.g. in years) before the future cash flow
occurs.

VII. CONCLUSION
The paper proposes a formalized methodology for

analyzing the efficiency of a cryptosystem. Model-based
analysis described in this paper is a part of the five-step
process designed to focus on the specific aspects of
cryptographic systems security. The methodology is supported
by software tools designed to evaluate the cryptographic
system capability to resist various types of attacks. We expect
that economic perspective introduced in this paper will be of
value to security specialists for justifying IT budget and
communicating their proposals to the co-workers with
financial background.

The direction of our future work is the development a
built-in expert knowledge base to aid in-house cryptographic
systems expertise. This involves evaluating the dependency
between the parameters of a cryptosystem model and the
applicable attacks on the one hand, and the parameters of an
attacker model and the types of attacks that they are likely to

A MULTIPLE-CATEGORY COM
SOLVING DISCRETE LOGARITHM

Alternative

Evaluation Criteria
High-performance
multiprecision operations
Compatibility with
Windows platform
Primitives for modern
cryptanalytic algorithms
implementation
Extensible architecture

Usability
TABLE I
PARISON OF AVAILABLE SOLUTIONS FOR
S AND INTEGER FACTORIZATION PROBLEMS

M
ap

le

L
IP

C
L

N

L
iD

IA

G
M

P

N
T

L

C
R

Y
PT

O

− − − + + + +

+ + + − − + +

− − − + + − +

+ + + + + + +

+ − − − − − +

use, on the other hand.

59

REFERENCES
[1] American National Standards Institute and Institute of Electrical and

Electronic Engineers. IEEE Standard SystemC Language Reference
Manual. Std 1666 - 2005, New York, 2006

[2] Anderson R. Why information security is hard - an economic perspective
// Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC '01), 10-14 Dec 2001, New Orleans, Louisiana,
USA, 2001.

[3] Avdoshin S.M., Savelieva A.A. Tools for asymmetric ciphers analysis:
Industrial registration certificate No. 10193 dated 18.03.2008 (in
Russian).

[4] Avdoshin S.M., Savelieva A.A. Tools for asymmetric ciphers analysis:.
Certificate of official registration in the register of software No.
2008612526 dated 10.04.2008, Federal Service For Intellectual Property,
Patents And Trademarks. (in Russian).

[5] Bodei C., Buchholtz M., Degano P., Nielson F., Riis Nielson H.
Automatic validation of protocol narration. In Proceedings of the 16th
IEEE Computer Security Foundations Workshop (CSFW 2003), IEEE
Computer Society Press, Washington, 2003. Pp. 126 - 140.

[6] Boreale M., De Incola R., Pugliese R. Proof techniques for
cryptographic processes. SIAM J. Comput., 31(3), 2002. Pp. 947-986.

[7] Brassard J. Modern Cryptology. Springer-Verlag, Berlin - Heidelberg,
1988. - 107 p.

[8] Cheminod M., Cibrario Bertolotti I., Durante L., Sisto R., Valenzano A.
Tools for cryptographic protocols analysis: A technical and experimental
comparison // Computer Standards & Interfaces, 2008.

[9] CLN // Available at: http://www.ginac.de/CLN/ 06.02.2007
[10] CRAMM V Official website // Siemens Enterprise Communications

Limited 2006. Available at: www.cramm.com
[11] Digital Security: GRIF //Available: http://www.dsec.ru/products/grif/
[12] ElGamal T. A Public-Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms // IEEE Transactions on Information Theory, v.
IT-31, n. 4, 1985. P. 469-472

[13] Garvan F. The Maple Book. Chapman & Hall/CRC, 2001. - 496 p.
[14] GMP // Available at: http://gmplib.org/ 06.02.2007
[15] Hriţcu C., Goriac I., Gordân R. M., Erbiceanu E. MpNT: Designing a

Multiprecision Number Theory Library. Faculty of Computer Science,
“Alexandru Ioan Cuza” University, Iasi, 2003.

[16] Ivanov V.P. Mathematical evaluation of information protection from
unauthorized access // "Specialnaya tekhnika". 2004, N 1. –Pp. 58-64.
(in Russian).

[17] Kerckhoffs A. La cryptographie militaire // Journal des sciences
militaires, vol. IX. P. 5-38, Jan. 1883, (P. 161-191, Feb. 1883).

[18] Kruschwitz L., Loeffler A. Discounted Cash Flow: A Theory of the
Valuation of Firms (The Wiley Finance Series). Wiley, 2005. 178 p.

[19] NTL: Library for doing Number Theory. Available at:
http://www.shoup.net/ntl/ 06.02.2008

[20] LiDIA // Available at: http://www.cdc.informatik.tu-
darmstadt.de/TI/LiDIA/ 06.02.2007

[21] LIP // Available at: http://www.win.tue.nl/~klenstra/ 06.02.2007
[22] Menichelli F., Menicocci R., Olivieri M., Trifiletti A. High-Level Side-

Channel Attack Modeling and Simulation for Security-Critical Systems
on Chips // IEEE Transactions on Dependable and Secure
Computing,Volume: 5, Issue: 3, July-Sept. 2008, Pp. 164-176.

[23] RIJNDAEL description. Submission to NIST by Joan Daemen, Vincent
Rijmen // Available at
http://csrc.nist.gov/encryption/aes/round1/docs.htm

[24] RiskWatch Official website // RiskWatch, Inc. Available at:
http://www.riskwatch.com/

[25] Rivest R.L., Shamir A., Adleman L.M. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems// Communications of the
ACM, v. 21, n. 2, February 1978. P. 120-126.

[26] Savelieva A. Formal methods and tools for evaluating cryptographic
systems security // St. Petersburg, ISP RAS, In Proceedings of the
Second Spring Young Researchers’ Colloquium on Software
Engineering (SYRCoSE’2008), 2008, Vol 1. ISBN 978-5-91474-006-8.
Pp. 33-36.

[27] Schneier B. Beyond Fear. Thinking Sensibly about Security in an
Uncertain World. Copernicus Books (September 2003)

[28] Verma R. Protocol Specification and Verification. Lectures on COSC
6397 – Information Assurance. University of Houston, 2006. Available
at: www2.cs.uh.edu/~rmverma/M2L1.ppt

[29] Wolfram S. The Mathematica Book, 4th edition. Cambridge University
Press and Wolfram Media, Cambridge, 1999, 1470 p.

[30] Zhou Y., Feng D. Side-Channel Attacks: Ten Years After Its Publication
and the Impacts on Cryptographic Module Security Testing // Physical
Security Testing Workshop (Hawaii, September 26-29, 2005. Available
at: http://eprint.iacr.org/2005/388.pdf

Manuscript received March 15, 2009.
Alexandra A. Savelieva is a first-year postgraduate student of Software

Engineering Department, State University – Higher School of Economics
(e-mail: alexandra.savelieva@gmail.com; optional phone:
+7(962)902-4310).

Research supervised by Prof. Sergey M. Avdoshin, Head of Software
Engineering Department, State University – Higher School of Economics,
Russia (e-mail: savdoshin@hse.ru; optional phone:
+7(495)771-3238).

60

Clustering Algorithms Meta Applier (CAMA)
Toolbox

Dmitry S. Shalymov
Mathematics & Mechanics department

Saint-Petersburg State University
Email: shalydim@mail.ru

Kirill Skrygan
Mathematics & Mechanics department

Saint-Petersburg State University
Email: kirillskrygan@gmail.com

Dmitry Lyubimov
Mathematics & Mechanics department

Saint-Petersburg State University
Email: ancient.punk@gmail.com

Abstract—Clustering is used in many fields, including machine
learning, data mining, financial mathematics, etc. There are many
different algorithms for cluster analysis. Nevertheless only a few
software tools are available to perform these algorithms with
user’s data sets and to compare results. We propose CAMA
software toolbox for the new clustering algorithms research. The
main character of this tool is a possibility to load as user’s
input datasets, as user’s algorithms and to compare results
with classical methods. Basic principles of CAMA and used
technologies are briefly described. Some ideas for new clustering
algorithms are also proposed for further development.

I. INTRODUCTION

Data clustering is the partitioning of a data set into subsets
(or clusters), so that the data in each subset share some
common trait, often proximity according to some defined
distance measure. It is a common technique for statistical
data analysis, which is widely used in machine learning,
data mining, pattern recognition, image analysis, financial
mathematics and bioinformatics.

After thirty years research there were proposed a great
amount of approaches. Most of them were developed for a
specific problem and are somewhat ad hoc. Those methods
that are more generally applicable tend either to be model-
based, and hence require strong parametric assumptions, or to
be computation-intensive, or both.

Researches face with many difficulties while investigating
an efficiency of their new algorithms. Especially it is important
when researcher have to prove that his method is the best one
for a special kind of data sets.

Unfortunately only a few number of software tools are
available to restrict such difficulties. These tools have essential
limitations in their functionality. For example it is impossible
to load your own algorithms and perform experiments with
it. The good example is an open sourced Cluster Validation
Toolbox CVAP [1]. ClusterPack [2] is a collection of MAT-
LAB functions for cluster analysis. It consists of the three
modules ClusterVisual, ClusterBasics, and ClusterEnsemble.
They contain general clustering algorithms as well as special
algorithms. But the number of available test data sets is very
few. COMPACT [3] is GUI MATLAB tool that enables to
compare some clustering methods. Only four clustering algo-
rithms are supported. Data Clustering & Pattern Recognition
(DCPR) [4] is MATLAB tool with friendly interfaces. It
supports 6 basic clustering algorithms and 4 data sets. The

Fuzzy Clustering and Data Analysis Toolbox [5] is a collection
of MATLAB functions. It supports 6 clustering algorithms
and over 7 clustering validation algorithms. The engine to
compare effectivenes of algorithms is also implemented. SOM
Toolbox [6] is a software library for MATLAB 5 (version 5.2
at least) implementing Self-Organizing Map (SOM) algorithm.
To compare effectiveness of SOM algorithm more than 11
clustering algorithms are supported. The engine for creation
artificial data sets is implemented. But there is also no possi-
bility to load and to perform your own clustering algorithms

All these tools are implemented with MATLAB which is the
commercial product with quite expensive license. Our toolbox
is free software. You can redistribute it and/or modify it under
the terms of the GNU General Public License [7].

CAMA toolbox allows to structure the known information
about existent clustering algorithms and to research new
effective user’s methods of cluster analysis.

In Section 2 we introduce basic principles of CAMA and
describe main steps of algorithm processing. In Section 3
Kernel module is described, Section 4 is about two modifi-
cations of CAMA implementation. Available set of preloaded
algorithms and data sets is introduced in Section 5. Main ideas
of new clustering algorithm are proposed in Section 6. We
conclude in Section 7 by discussing possible extensions of
CAMA software toolbox.

II. CLUSTERING ANALYSIS

The classification of objects according to similarities among
them and organizing of data into groups is the objective
of cluster analysis. Clustering techniques do not use prior
class identifiers. That’s why they are among the unsuper-
vised methods. The main potential of clustering is to detect
the underlying structure in data, not only for classification
and pattern recognition, but also for model reduction and
optimization. Different classifications can be related to the
algorithmic approach of the clustering techniques: partitioning,
hierarchical, graph-theoretic methods and methods based on
objective function.

Clustering techniques can be applied to data that is quanti-
tative (numerical), qualitative (categoric), or a mixture of both.
In this thesis, the clustering of quantitative data is considered.

Cluster is a group of objects that are more similar to one
another than to members of other clusters. In metric spaces,

61

Fig. 1. Basic principles of CAMA

similarity is often defined by means of a distance norm. Dis-
tance can be measured among the data vectors themselves, or
as a distance form a data vector to some prototypical object of
the cluster. The prototypes are usually not known beforehand,
and are sought by the clustering algorithms simultaneously
with the partitioning of the data. The prototypes may be
vectors of the same dimension as the data objects, but they can
also be defined as linear or nonlinear subspaces or functions.

Since clusters can formally be seen as subsets of the data
set, one possible classification of clustering methods can be
according to whether the subsets are fuzzy or crisp (hard).
Hard clustering methods are based on classical set theory,
and require that an object either does or does not belong to
a cluster. Fuzzy clustering methods allow objects to belong
to several clusters simultaneously, with different degrees of
membership.

III. CLUSTERING ALGORITHMS META APPLIER

The main goal of Clustering Algorithms Meta Applier is
the research and approbation of new and existent clustering
algorithms on a various number of data sets. CAMA contains
an engine to load user’s data and user’s algorithms, prepared
input datasets for experiments and the set of existent algo-
rithms in MATLAB (*.m files) format. CAMA is implemented
as a desktop application and as a web-service.

An oracle which knows the correct answer could be used. In
that case an accuracy of applied algorithms can be measured
due to oracle’s knowledge.

Now only hard clustering methods are implemented in
CAMA. Other clustering techniques support is a subject for
the further development.

Result of algorithm application in CAMA contains the fol-
lowing information: number of clusters in data set, coordinates
of cluster centers, number of iterations and character diagrams.
It is possible to save extracted results as images and statistic
data.

The basic principles of CAMA are shown in Fig.1.
Input data that was generated or was loaded as one of

prepared data sets comes to the kernel module with one of

Fig. 2. CAMA Toolbox. Algorithms and data sets drag and drop

the clustering algorithms. Kernel translates algorithm from
*.m format and computes the result which is processed with
animation module. All GUI interfaces and engines for loading
data are implemented with Java. Algorithms processing and
calculations are performed with .NET technologies in the
kernel which is compiled as DLL.

IV. KERNEL

Kernel is the interpreter of MATLAB language. First *.m
files are translated into *.cs files. After that C# compiler com-
piles it into DLLs. The main problem here is the translation
from MATLAB to C# because MATLAB is not the language
with pure types. It is partly functional and has a great amount
of complex inner functions.

The grammar and semantics are described with ANTLR
[8]. The lexical analyzer, parser and additional logics are
performed in C# level. Also with C# there were implemented
MATLAB functions that are not available in .NET and even
in Math.NET Iridium [9].

Interpreter also contains special utility for input data set
conversion (usually large number of multidimensional vectors)
to the .NET format.

Used technologies: ANTLR and ANLRWorks 1.2.3, MSVS
2008 and .NET 3.5 [10], .NET Reflector [11], Math.NET
Iridium.

V. WEB-SERVICE AND DESKTOP APPLICATION

CAMA is implemented in two modifications: desktop ap-
plication and web-service application.

All GUI interfaces and modules (except kernel) are imple-
mented with Java technologies.

GUI for desktop and web-service versions are almost the
same. Infrastructure of web-service is based on accounts. Each
user has its own account for loading and using data sets. After
registration user has an access to his personal page which
contains personal information, the list of available algorithms
and data sets (default data sets and previously loaded by user).

All available algorithms and datasets are visualized so that
user can simply drag and drop corresponding items to the
evaluation block. It is shown in Fig.2.

62

Fig. 3. CAMA Toolbox. Clustering algorithm text representation

Fig. 4. CAMA Toolbox. Data set representation

User can see the text representation of his algorithms. See
Fig.3.

It is possible to load data in csv and text format and
check separator between cells in rows. Also user is able to
manipulate with data sets by performing SQL queries. Data
sets representation is shown in Fig.4.

After execution server will generate a new page with results.
The example of clustering artificial data set with EM algorithm
[12] can be seen in Fig.5. The new page contains graphics
result, number of clusters, coordinates of cluster centers,
number of algorithm iterations and other statistics.

Used technologies: Java Server Pages (JSP) [13], Java
Servlets (JDK 1.6) [14] and Apache Tomcat Server [15].

In the desktop application multi user’s work is not sup-
ported. All web-service pages are replaced with dialogs and
no one server is implemented.

Used technologies: JDK 1.6 and Java Swing [16].

VI. PREPARED ALGORITHMS AND DATA SETS

A fundamental, and largely unsolved, problem in cluster
analysis is the determination of the ”true” number of groups
in a data set. Numerous approaches to this problem have

Fig. 5. CAMA Toolbox. Result of clustering artificial data with EM algorithm

been suggested over the years. We decided to start from such
kinds of algorithms. This is Calinski and Harabasz’s index
(1974), Hartigan’s rule (1975), the Kranowski and Lai test
(1985), silhouette statistic (Kaufman and Rousseeuw, 1990),
Gap statistic (Tibshirani, 2001) and ”jump” method (Sugar and
James, 2003).

There are three important problems in clustering algorithms:
determination of the ”true” number of clusters, initial values of
cluster centers and metrics. Now we implemented algorithms
that solve only first problem.

Classical data sets that are used to check consistency of
clustering algorithms are available by default. This is Iris
flower (Fisher, 1936), Wisconsin (Wolberg and Mangasarian,
1990) and Auto Data (Quinlan, 1993). Many data sets are
available in UCI Machine Learning Repository [17]. We
suppose to support possibility to load and update data from
this portal soon.

VII. NEW CLUSTERING ALGORITHM

The new clustering method is a modification of Sugar and
James algorithm [18] that determines the number of clusters.
The main procedure in this algorithm, which is called ”jump
method”, is based on ”distortion” that determines a measure
of within cluster dispersion. It has the following simple steps:

1. Run the k-means [19] algorithm for different numbers of
clusters, K, and calculate the corresponding distortions

2. Select a transformation power, Y > 0 (A typical value is
Y = p/2)

3. Calculate the ”jumps” in transformed distortion Jk =
d−Y

k − d−Y
k−1

4. Estimate the number of clusters in the data set by K∗ =
argmaxkJk the value of K associated with the largest jump.

K-means is a typical clustering algorithm but it has two
shortcomings in clustering large data sets: number of clusters

63

Fig. 6. SPSA algorithm in Sugar-James method. a) centered clusters; b)
smoothed clusters

dependency and degeneracy. Number of clusters dependency
is that the value of k is very critical to the clustering result.
This shortcoming is not essential in our case. Degeneracy
means that the clustering may end with some empty clusters.
To avoid this problem and to improve results for noisy data
it is proposed to use simultaneous perturbation stochastic
approximation (SPSA) [20] algorithms which keep appropriate
estimations under almost arbitrary noise [21].

The efficiency of modified Sugar-James method is demon-
strated in the Fig.6.

Red circles in the Fig.6 show approximated cluster centers.
As we could see they are similar with the ”true” values.

There are the other modifications of Sugar-James method
concerned with analysis of ”distortion” curve.

This algorithm is easy to implement and to invoke in CAMA
toolbox. Now all results were obtained with MATLAB.

VIII. CONCLUSION

Described CAMA software tool for clustering data sets with
a number of different algorithms is useful for researchers who
want to investigate advantages of their new algorithms and for
ordinary users who would like to determine the shape of their
data sets, extract atypical objects or reduce amount of stored
data.

CAMA also could help to gather and to structure known in-
formation about existent algorithms and data sets. Having such
information it is possible to tune some clustering algorithms
for special cases and even investigate the new ones.

For further development we hope to enrich the number of
available algorithms not only for determination of the ”true”
number of clusters, but also for determination cluster centers
with hierarchical algorithms. It is supposed to implement
possibility of working with many metrics at once. The engine
to load and to update data from UCI [17] portal will be
available soon.

Support of multithreading instructions for simultaneous
performing algorithms and integration into the GRID portal
is also planned.

REFERENCES

[1] Cluster Validation Toolbox CVAP,
http://www.mathworks.com/matlabcentral/fileexchange/14620

[2] ClusterPack MATLAB Toolbox,
http://www.ideal.ece.utexas.edu/ strehl/soft.html

[3] COMPACT Toolbox, http://adios.tau.ac.il/compact
[4] Data Clustering & Pattern Recognition Toolbox,

http://neural.cs.nthu.edu.tw/jang/matlab/toolbox/DCPR
[5] Fuzzy Clustering and Data Analysis Toolbox,

http://webscripts.softpedia.com/scriptDownload/Clustering-Toolbox-
Download-35404.html

[6] Self-Organizing Map Toolbox,
http://www.cis.hut.fi/projects/somtoolbox/download

[7] GNU General Public License,
http://www.gnu.org/copyleft/gpl.html

[8] ANTLR, http://www.antlr.org
[9] Math.NET Iridium,

http://mathnet.opensourcedotnet.info/downloads/IridiumCurrentRelease.ashx
[10] MSVS 2008 and .NET 3.5,

http://www.microsoft.com/events/series/msdnvs2008.aspx
[11] .NET Reflector,

http://www.red-gate.com/products/reflector
[12] G. McLachlan and T. Krishnan, The EM algorithm and extensions,

Wiley, New York, 1997.
[13] Java Server Pages (JSP),

http://java.sun.com/products/jsp
[14] Java Servlets,

http://java.sun.com/products/servlet
[15] Apache Tomcat Server,

http://tomcat.apache.org
[16] Java Swing,

http://java.sun.com/docs/books/tutorial/uiswing
[17] UC Irvine Machine Learning Repository,

http://archive.ics.uci.edu/ml
[18] C. Sugar and G. James, Finding the number of clusters in a data set :

An information theoretic approach, Journal of the American Statistical
Association (98), 2003, pp. 750 - 763.

[19] J. A. Hartigan and M. A Wong, A K-Means Clustering Algorithm,
Applied Statistics(28), 1979, pp. 100 - 108.

[20] J. C. Spall, Introduction to Stochastic Search and Optimization. Estima-
tion, Simulation and Control, Wiley, London, 2003.

[21] O. N. Granichin, B. T. Polyak, Randomized Algorithms of optimization
and Estimation under Almost Arbitrary Noise, Nauka, Moscow, 2003.

64

Dynamic web-components and web environment behavior analysis

Suvorov V.1

1Saint- Petersburg State University, Math and Mechanics faculty

A problem of automated interaction with complicated website at a user level is considered. The general case of

playing online game is considered as a model of any site usage. Three functional components – the user actions, the site
logic and other parties’ actions are distinguished. A method of reconstructing site components, their behavior and
interconnectivity is suggested. Practical results of using the method are shown - playing online game and getting
components from broadcast site.

Index Terms— website automation, web-component analysis, website behavior analysis, website integration

I. PREFACE
Nowadays internet applications are widespread. It is

declared that the era of Web 2.0 technologies came up – that
means the idea of the proliferation of interconnectivity and
interactivity of web-delivered content [1]. Sites incorporate
new technologies of creating dynamic web pages and
complicated user interaction scenarios. There are various
technologies of creating dynamic content and it is not so easy
to unite them or use some part of one site in the other as it was
in pure HTML –era. As content is generated at the server
side, it is not enough to send URL as request and analyze the
reply of the server, as it is just a static stamp of some
particular case.

As Web becomes some media for applications, the problem
of non-transparency occurs. Yesterday one could just analyze
the source code of webpage and understand the behavior –
now it is pretty hard and non-trivial, some parts comes as
black –boxes (for example flash container)

There exist tools that help to understand site structure, for
example, Firebug for Mozilla but this tool does not allow
automating information retrieval. The search robots distinct
text and links and not components or behavior. There are
cases when automation of using site is needed

Use some component from third-party site in your own
Automate actions on third-party site (post blog, play online

game, etc.)
These tasks are usually solved locally that means writing a

specific script for specific task. An example is various
Greasemonkey scripts. In the paper a method of
reconstructing site components, their behavior and
interconnectivity is suggested so that then it will be possible to
provide a visual environment of creating automation scenarios
and solve the problem of components’ reuse. The general
case of playing online game is considered as a model of any
site usage. The model is robust as it has three components -
the user actions, the site logic, and other parties’ actions.

Some difficulties to be faced
The plain HTML pages dissolve in the sea of the dynamic

content namely PHP, ASP, Flash and others. The AJAX
technology is also frequently used. One can name lots of other
technologies used in creating web pages but the idea is that

client –server communication is not based solely on hyperlink
clicking but on different other scenarios. It results in a
dynamically updated webpage. Dynamic content is generated
either on a server side, e.g. PHP or on the client side e.g.
JavaScript. For the moment let us neglect the problem of
indexing such dynamic pages - that problem the Google
successfully solves, but let us face other problem of linking
different web applications. That seems easy if you want to just
take some part of the webpage and encapsulate it in your own.
Nevertheless, you can expect some difficulties with AJAX
components and find out that as you moved a component it
does not work properly for example the authorization
procedure is missing. You have to reverse the code, which is
trivial for static html and non-trivial for dynamic content and
restore the communication model of the component you use.

 Another difficulty exists if you want to automate
information retrieval from the dynamic webpage. You may
need to authorize or to navigate through some links, as the
static link not always exists. That difficulty is now faced by
search engines - the search robot indexes page but then the
user follows the link provided and finds out other content. The
solution used is to provide the webpage cached by search bot.
This is not the best solution as it makes a security hole as one
can have access the information on a particular webpage
without required authorization and may have some copy
legacy aspects. The search bot indexed the page under some
account and cached page. That unintentionally reveals the
content of authorized user to unauthorized user or user
blocked by IP-filter.

 As it seems trivial at the first sight to get some content
from a webpage for your own use - it is not, so if the webpage
is complex, dynamic, and recent technologies make it even
worse. Usually some scripts for particular web content and
particular site are written and locally solve the problem of
retrieving information.

 Not so long ago interactive web-applications were
developed. They require the user to stay online for a
significant time and provide dynamically changed online
content. The example is online games - numerous of them.
One of the most well known is Travian. It has more than
1000000 players worldwide and about one-third online at any
moment. Another example is stock applications and online

65

broadcasts. These services sometimes provide tools for
automation and sometimes not, for example, online broadcasts
are not recorded. If it is a big project, then adding some
feature by its developers can take a long time. In addition, for
any third party is it not easy due to the complexity of webpage
structure.

 It will be nice if we have a tool that can use for dealing
with complex dynamic content – so we can distinguish the
dynamic components, analyze them in a simple way and use
them for our own needs. For example, we would like to have a
bot that will play online game or record interesting broadcasts
(the criteria can be based on number of active viewers) or
automatically place bets on an auction when it is near the end.

II. A GAME AS A GENERAL MODEL FOR A SITE

Let us construct a natural model of a game. In general, we

can describe a strategy game as follows:
Each player initially has some number of resources R (let us

say an army is a resource) and buildings B which provide
resources in time.

A player can construct buildings by spending resources but
new buildings provide resources faster

Resources can be exchanged one for other. Resources can
be exchanged between players, so the war is considered as a
resource exchange

There exist a set of actions that user can perform, that affect
the system state

 A simple model we can use is a model with feedback
propagating in time

First, we need to specify control elements. For that purpose,
a simple strategy can be implemented. A sniffer, browser and
a program-controlled mouse is needed. Let us consider an
action. First, we stay calm and do nothing and record some
number of system states. We use screen version of browser to
determine if anything changed and detect the regions where
picture changed. That way we determine the “noise” generated
by counters, banners. Then we try to check points on screen
by moving mouse to the point and clicking. Not many points
must be checked as the design is user-friendly and controls
have reasonable dimensions. If the click was successful –that
means something changed on a screen except “noise” then we
try to specify the area that changed and sniff packets at the
same time. Absence of packets may tell us that the control is a
JavaScript and we should iterate through some more so we
click around the area that changed or try to input some text –
that way we determine the behavior of the control. Presence
and type of packets can also give us information about control
usage. Next, we have to try to map control into code. That can
be done by using Firebug script for Firefox.

 Figure 1. A simple model of the game

E indicates interaction with other players’ actions. As we

defined that interaction involves only resource exchange so
we can say that given R(t) and R’(t) at the time t and applying
E we get some resource flow ΔR(t+Δt)=E(R(t),R’(t)) and
ΔR’(t+Δt) =E(R(t),R’(t)) respectfully. In fact we can consider
the Nash equilibrium to be reached –so E is predictable and
there exist a number of strategies that maximize the gain

function. That means the function A(R,E,G) is defined for a
chosen strategy G. F is a function that determines resource
growth and can be derived from game rules with respect to R
and B. As E can be determined either in a solid or in a
probabilistic form then F can be determined as well.

 That model can be spread on other applications for
example in recording online broadcasts the resources will be
the number of peers watching, the time of broadcast, disk
space.

For example, we would like to watch the most interesting
moments – then we should record only most viewed
broadcast. (Suppose we record from screen and have a limit of
one broadcast a moment)

 Why should we use this model? The reason is that we
want to deal with dynamic content in a nice way - have nearly
all useful properties of the component accessible and automate
our actions also in a nice way – just specify rules of the game
or even automate learning the rules.

Analyzing communication protocol and modeling
communication is considered in [2, 3]. There a finite state
machine model is proposed to analyze the behavior and it
works well if number of states is finite. In general we can
consider states finite but there is a problem of describing such
states as initially we do not know the component’s algorithm
and our goal is not model checking but finding out some
relations between actions and resources in time.

So we want an analyzer, which on the input get some URL
and maybe some rules (function G(R)) and on the output
provide us with analyzed dynamic components and maybe
some further rules of intercommunication (F, E)

III. COMPONENT ANALYSIS

Then we should determine the static and dynamic
components that are not controls and distinguish parts of the

R, E

A

The Game
Resources

R(t+1)=F(R(t),B,E)
Visible external

influence
E(R,R’)

Decision block
Compute the gain and
max it G(R)

66

webpage that change by applying a simple differential
scheme. That can be done using any client-imitating
environment. The environment must fully support HTTP
protocol and be able to track AJAX and JavaScript. The
easiest way is to implement a sniffer for packets tracking and
use custom scripts to control the Mozilla browser. Mozilla is
the best choice because it is open source and easy to integrate
with. Some part of the mechanism can be written even in
grease monkey plug-in using JavaScript. Therefore, we can
distinguish the dynamic part.

As a result, a set of dynamic components is created,
including controls. If by activating some control, we capture
communication we name it a resource and store to the
database the content. The content itself can also be static and
dynamic – that can be easily checked by series of tests by
activating the same control with all possible feasible values.

Every dynamic component even noise is marked as a
resource. Resources must have values so we must assign some
parameters to components. In general, it is array of strings.
The component can change its image, size (shape), text. First,
we try with the latter and analyze the corresponding piece of
code with regular pattern of readable letters. A dictionary or
some method of word recognition is applied at that stage. If
the procedure fails, we try to determine size change by
differential analysis of series of images of the component and
calculating overall estimate. If that approach also fail then we
consider set of images and enumerate them in some way.

IV. BEHAVIOR ANALYSIS
 We perform a series of tests and try to find out restrictions

and behavior. The user specifies the gain function and the
model to use. While testing the gain is maximized by the
following strategy:

Do nothing for some time and see what changes. Compute
gain and make decision: if nothing changes or gain decreases
–do some action, if gain increases do nothing for some time.

Do some action. Compute gain. Wait. Compute change in
time and make decision: if nothing changes or gain decreases
–do some action, if gain increases do nothing for some time.

In fact the idea is nearly to be Monte-Carlo method but with
some little improvements. As a result, we obtain parameters of
the behavior model of the site and a strategy of maximizing
gain function.

There is still a problem of choosing appropriate model and
it will be a further research which ones are better.

V. EXPERIMENTAL RESULTS
The idea was implemented in a computer program. The

main features of the program are the following:
• Separate static and dynamic content
• Use only natural user environment – that means

HTTP protocol
• Have some feedback mechanism
• In dynamic content distinguish resources and

action controls
• Provide some mathematical models for modeling

function F
• Determine parameters of the model in a test series.

The tests were provided for the online game Travian. The
account was manually created. Then the program worked.
First, it used sniffer and applied the differential analysis to
HTTP content, so resources were determined. Then by
automatic browser, control the program clicked on the
webpage and analyze if anything changed except the
previously determined resources or if we went to other page
by hyperlink. If something changed but we did not go to other
page, it tried to see if some data can be input first by analyzing
source code and if failed, by trying to “click and input”. The
number of manipulations (clicks and inputs) was limited by a
parameter. The “successful” combination meant resources
change or page change and was recordered in database.
Grouping was made by the webpage position of the
component. The initial step was 10 pixels (between clickable
points) and if a successful combination was found for some
point, the area of component was determined by repeating the
same actions for points nearby. The program distinguished
resources components and determined the dependency of
resources from time and actions, so that automated building
was easily available. The program was also tested at the site
smotri.com where the broadcast components and broadcast
indexes were distinguished so it made available to construct a
page similar to smotri.com broadcast page but without
advertisement. Many problems occur in analyzing complex
structures, model fitting, and war analyzing -that will be the
topic of further research and improvements.

VI. CONCLUSIONS

As web becomes more and more sophisticated, the problem

of analyzing sites at the functional level will grow. The
analysis at the user level provides large flexibility and
transparency. A game model is applicable to some even non-
game sites. A suggested concept of analyzing components and
behavior naturally and empirically proved its value and
however many problems emerge they are solvable and need
further research.

REFERENCES
[1] http://en.wikipedia.org/wiki/Web_2.0
[2] Analyzing conversations of web services T Bultan, X Fu et. al. IEEE

Internet Computing 2006
[3] Jyotishman Pathak, Samik Basu et al. On Context-Sensitive

Substitutability of Web Services In 5th IEEE International Conference
on Web Services -2007

[4] ANALYZING USER BEHAVIOR On The Web, Eelco Herder, Ph.D.
Thesis, University of Twente, 2006

[5] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
Introduction to Information Retrieval, Cambridge University Press.
2008.

67

http://en.wikipedia.org/wiki/Web_2.0

Abstract—In this paper, we describe a software tool for

optimizing the path length from primary inputs to primary
outputs as well as the number of gates in digital circuits. A frame
for optimization is extracted from a digital circuit; the extracted
frame is divided into two parts and the maximum flexibility for
each part is determined by the largest solution to an appropriate
FSM equation. We check whether one or some output functions
of each part can be replaced by a simple function of two primary
input variables that can be implemented as a single gate, while
preserving the behavior of the overall fragment. A developed
software package can deal with digital circuits which have
around 500 gates, and 40 primary inputs and outputs.
Experiments were performed for a pack of benchmarks that
were first resynthesised by ABC tool [1]. Our results show that
the developed package can improve around 15% of benchmarks.

Index Terms—Digital circuit, FSM equation, optimization

I. INTRODUCTION
HE complexity of digital circuits increases quickly and
there still are no tools which can guarantee the design of

an optimal circuit. For this reason, usually optimization tools
run for already designed circuit. There are a number of
optimization criteria such as reliability, fault-tolerance,
minimal number of communication lines, delay, area etc. The
problem of optimal design remains a challenging problem for
developing new information technologies. The best approach
for the optimization has been shown to be an iterative
component optimization that can be based on solving an
appropriate Finite State Machine (FSM) equation. A largest
solution, i.e. the solution with maximum flexibility can be
viewed as a reservoir for all possible optimizations of a frame
of interest, from which an optimal frame implementation can
be chosen. However, the complexity of solving an FSM
equation generally is exponential in the number of states of its
coefficients (FSMs). For this reason, a so-called window
approach for optimizing digital circuits is used for
optimization [2]. We iteratively extract a frame of an
appropriate size from a given digital circuit, divide it into two
parts and optimize these parts with respect to the given
criteria. The procedure terminates when we are satisfied with

1 This work is partly supported by RFBR grant N 07-08-12243 and by

RFBR-NSC grant N 06-08-89500.

the optimization results.
In this paper, when optimizing a circuit, we extract a

combinational frame and then divide it into two component
circuits (head and tail components) and optimize them based
on the idea that in general, a number of combinational circuits
can replace a head (or a tail) component without changing the
behavior of the overall frame. All permissible replacements
are represented as a nondeterministic circuit [3] that is derived
as the largest solution to an appropriate FSM equation. For
each primary output of a circuit component, we check whether
the corresponding output function can be replaced by a simple
function of two input variables. In this case, this function can
be implemented by a single gate. Correspondingly, in the
frame, length of some paths from primary inputs to primary
outputs can be shortened as well as some gates can be deleted,
i.e., there is a chance that the number of gates in the frame can
be reduced.

The structure of the paper is as follows. Section II contains
preliminaries. Section III is devoted to solving an equation for
the head and the tail component. Section IV discusses
software for optimizing digital circuits. Section V describes
experimental results while Section VI concludes the paper.

II. PRELIMINARIES
In this paper, we use a behavioral function in order to

represent a digital circuit behavior. For a combinational circuit
the behavioral function Ψ is defined over input and output
variables of the circuit and Ψ(x, y) = 1 if and only if the circuit
produces the output vector y to the input vector x. Consider
the combinational circuit in Figure 1.

Figure 1. The combinational composition of two circuits
The circuit implements a system of Boolean functions Φ (an

SBF Φ) and can be described by a corresponding behavioral
function ΨΦ(x1, …, xn, y1, …, ym): ΨΦ(X1, …, Xn, Y1, …, Ym) =
1 if and only if Y1 = ϕ1(X1, …, Xn), …, Ym = ϕm(X1, …, Xn). We

Software package for optimizing digital
circuits1

Maxim Gromov, Natalya Kushik

T

68

say that a function Ψ is an SBF-behavioral function if Ψ is a
behavioral function of some system of Boolean, possibly non-
deterministic, functions. Given a Boolean function θ, we
denote 1

θM the set of variable values, for which the function

equals 1. Given Boolean functions θ and Ψ such that 1
θM ⊆

1
ψM , we denote this fact as θ ≤ Ψ. The head component

implements the SBF Φ1; the behavioral function
1ΦΨ of the

head component is specified over the set {x1, …, xn, u1, …, uk}
of variables and we extend it over the set of variables {y1, …,
ym}. The tail component implements the SBF Φ2 and the
behavioral function

2ΦΨ of the tail component is specified

over the set {u1, …, uk, y1, …, ym} of variables and we extend
it over the set of variables {x1, …, xn}. The behavioral
function ΨΦ of the overall circuit which implements the SBF
Φ = Φ2(Φ1) is specified over the set {x1, …, xn, y1, …, ym} of
variables and ΨΦ = (

1ΦΨ ∧
2ΦΨ)↓x,y.

In order to optimize the head or the tail component of the
frame we should replace a circuit component with another one
preserving the external behavior of the composition. All such
replacements are captured by a largest solution to a
corresponding FSM equation. According to optimization
criteria, an optimal circuit can be then extracted from a largest
solution. In this paper, for each circuit component, we study
whether it is possible to replace a component with another
circuit which has less number of gates or has shorter paths
from primary inputs to primary outputs.

III. SOLVING AN EQUATION OVER THE HEAD COMPONENT AND
THE TAIL COMPONENT

A. Solving an equation over the head component

The most flexibility for the head component can be captured
by the largest solution to a corresponding FSM equation

ux ,)(
2 ↓ΦΦ Ψ∧Ψ , where ΨΦ is extended over the set {u1, …,

uk} of variables and a digital circuit that implements the SBF
Φ3 can replace the head component if and only if

3ΦΨ ≤

ux ,)(
2 ↓ΦΦ Ψ∧Ψ [4], where ϕ is the inversion of the function

ϕ.
The above statement gives a guide how to determine an

SBF that can replace SBF Φ1 without changing the behavior of
the overall system. We, thus, check whether one or more
functions of the head component can be selected as functions
of two input variables or as functions equal to the constant 1
(or to the constant 0) preserving all other functions. In this
case, this output functions can be implemented by a single
gate and all the gates of the path from inputs to a
corresponding output which do not influence other output
functions, can be deleted from the head component.

B. Solving an equation over the tail component

The set of all permissible behaviors of the tail component

can be captured by a partial FSM that is defined only for u-
patterns which are output patterns of the head component.
Thus, in order to get u-inputs where the behavior of the tail
component cannot be changed we take the projection
(

1ΦΨ ∧
2ΦΨ)↓u,y. This function is not really a behavioral

function, since it describes only a part of behavior. If for some
u-pattern there is no y-pattern in the set 1

ψM then the behavior
of the tail component for this u-pattern can be selected in an
arbitrary way (so-called input don’t care conditions). So we
consider (

1ΦΨ ∧
2ΦΨ)↓u,y as a largest solution for the tail

component and check whether there exits yi, i = 1, …, m, that
can be replaced by a function of two input variables or by a
function equal to the constant 1 or constant 0.

In our software we use Binary Decision Diagrams (BDD)
[5] for all operators over Boolean functions. We use operators
of the BDD package that is well known and is widely used
when manipulating with digital circuits.

IV. SOFTWARE
In this section, we briefly describe the software package

that is developed for optimizing digital, possibly sequential
circuits. At the first step, a combinational frame up to 100
gates and 20-23 inputs is extracted. At the second step this
frame iteratively is divided into two sequential parts which are
optimized according to the above description and if the
optimization occurs a component is replaced by a better
implementation, the frame is divided again into two parts etc.
The procedure terminates when we run out of time or are
satisfied with the optimization results.

A. Circuit representation

In our software package, we represent a sequential circuit
given in the bench format as a set of connected gates with
integer numbers. Each number uniquely identifies a gate.
Correspondingly, the information of all gate predecessors (or
successors) is represented by a Boolean matrix. The
optimization process relies only on integer arrays: all the
operations such as extracting a frame, optimizing a
component, composing two circuits after optimization result
also take place in integer arrays. Only at the last step this
representation is back converted into the benchmark format
(bench format). The use of such (hash) representation
accelerates the optimization process compared with the
representation where original strings of gate names are used
without hashing.

When operating with behavioral functions BDDs are of a
big help. All the operations such as deriving the behavioral
function for a circuit, given in the bench format, deriving the
largest solution, checking whether one or several output
functions can be selected as constants (1 or 0), checking
whether an output function can be a simple function of two
input variables are performed fast enough for circuits which
have up to 50 input and output variables. We use CUDD-
package to calculate a largest solution as BDD for the tail

69

component and transform it into a sum of products, as in this
case, such representation seems to be more convenient than
BDD representation.

B. Main methods of the software package

Frame extraction. When extracting a frame we need to
keep an eye on the correspondence between inputs and outputs
of the extracted frame and gates of the initial circuit. We
extract a frame without combinational loops and for this
reason, we first order the combinational part of the initial
circuit by layers depending on their distance from primary
inputs and flip-flop outputs. If there are n layers then we
extract a frame as the set of all gates which belong to layers j,
j + 1, …, k, 1 ≤ j ≤ k ≤ n.

Deriving a behavioral function for a non-deterministic
circuit that is the largest solution for the head component.
We use the BDD package in order to derive a behavioral
function for each component. The largest solution then is
obtained by BDD manipulation. Using the BDD
representation of the largest solution each output function is
checked whether it can be replaced by a constant or by a
simple function of two input variables preserving the behavior
of the overall composition.

Deriving a behavioral function for a non-deterministic
circuit that is the largest solution for the tail component.
For the tail component BDD representation of the largest
solution is converted into a sum of products, as this
representation seems to be more convenient for dealing with a
system of partially specified Boolean functions.

Optimization . If one or several output functions of a head
(or tail) component can be replaced by a constant or by a
simple function of two input variables then a corresponding
gate is added to the component and all gates of the initial
component which do not influence other outputs are taken
away.

Insert operator is used for inserting the optimized
component into the frame and then for inserting the obtained
frame into the initial circuit.

V. EXPERIMENTAL RESULTS
We have conducted experiments using the proposed method

with some benchmarks [6] in order to see how often our
package can reduce the number of gates and the length of a
path from primary inputs to primary outputs for a given
combinational circuit. We used ABC for logic synthesis and
verification. A given benchmark was first synthesized as a
logical circuit using ABC and our package was used for the
circuit optimization. Extracted frames have up to 25 inputs
and path length from primary inputs to primary outputs varies
from 5 to 19 being 10 on average. Ten functions of two
variables, such as AND, OR, etc., were used for optimization;
all of them can be easily implemented by a single gate. The
results show that the developed package can improve around
15% of benchmarks. The optimization is not huge but on the
other hand, those benchmarks were already optimized many
times using other packages.

VI. CONCLUSIONS
In this paper, we described the software tool for optimizing

the number of gates in digital circuits as well as the path
length from primary inputs to primary outputs. A
combinational frame extracted from a digital circuit is divided
into two components. Each component then is optimized
independently. We experimented on some benchmarks from
[6] and our results clearly show that there exist a number of
benchmarks such as s838.bench, s298.bench and s420.bench,
etc. for which our package returns optimized circuits. More
experiments with new benchmarks are needed in order to
estimate the efficiency of the developed package.

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group, ABC: A System for

Sequential Synthesis and Verification, http://www.eecs.berkeley.edu/
alanmi/abc/

[2] S.Zharikova, M.Vetrova, N.Yevtushenko Optimization of a multi
component digital circuit by solving a system of FSM equations //
Proceedings Euromicro Symposium on Digital System Design
Architectures, Methods and Tools, IEEE Computer Society. – Belek-
Antalya, Turkey, 2003, pp. 62-68.

[3] A. Mishchenko, R. Brayton, R. Jiang, T. Villa, and N. Yevtushenko,
"Efficient solution of language equations using partitioned
representations", Proc. DATE, 2005, pp. 412-417.

[4] N. Kushik, G. Sapunkov, S. Prokopenko, N. Yevtushenko. Minimizing
path length in digital circuits based on equation solving. In Proc. of
IEEE EAST-WEST design&test symposium, October, 2008, pp. 365-
370.

[5] CUDD [Electronic resource] –http://vlsi.colorado.edu/~fabio/CUDD/
[6] Education: Virginia Tech: The Bradley Department of Electrical &

Computer Engineering / College of Engineering; ISCAS89 Sequential
Benchmark Circuits. – Access mode to an electronic resource.
http://www.ece.vt.edu/mhsiao/iscas89.html is free.

70

UDD network model for time-limited data storing
Scherbakov Konstantin

SPbSU
Saint Petersburg,

Russia
konstantin.scherbakov@gmail.com

ABSTRACT
Different techniques of using peer to peer networks are
mentioned. The process of data distribution in peer to
peer network by the single node’s initiative for purpose
of further downloading by this node’s owner is
described. A common model of special peer to peer
network (UDD network), developed for single node
initiated data distribution, with its main characteristics
and used algorithms is introduced. Some ways of
improving existing peer to peer networks for the
purpose of compliance to UDD network specification
are mentioned. Experimental results of single node’s
initiated data distribution in one of the existing peer to
peer networks (with our improvements applied) are
analyzed.

Introduction and related work
Pure and hybrid peer to peer (p2p) networks are widely
used now in our life. There are at least two main ways
to use them:

- for grid/cloud computing/storage (Amazon S3,
Nirvanix SDN, Gridnut, Wuala etc.)
[1,5,9,13,19,25]

- for data exchange between interconnected
nodes (bittorrent, exeem, ed2k, kademlia,
gnutella 1,2 etc) [2,4,6,7,21,22]

If p2p network is designed for data exchange, new
nodes usually connect to it for the purpose of retrieving
some files, they are interested in, or share to other nodes
some files, they want to. But there is at least one more
alternative way of using such type of p2p networks. One
node can connect to network for storing its own
data/files over other nodes for the purpose of retrieving
this data by node’s owner from any other place. This
data may be uninteresting for other nodes of network
and may be encrypted. So let’s call such type of data the
u-data. This way is rarely used because of lack of data
access control, data availability control and u-data fast
distribution mechanisms in existing p2p networks.

Our main goal is to introduce the architecture of
prototype of such p2p network and search request
routing/data storing/indexing protocols for it, that
allows any node to store securely its u-data over the
network for some fixed time interval and also grants this
node’s owner ability to retrieve his data from any other
location during fixed period of time mentioned below
and control availability of this data over the network
during its limited storing period. Using of these
mechanisms by particular node should depend of some

coefficient of node’s usefulness for the whole network.
So nodes, that are more useful for the network, should
have opportunity to use these mechanisms more often
and more completely.

UDD P2P network model
Let’s assume that one person or group of persons have
some u-data, that is very useful for this person or group
of persons, but not interesting for other participants of
our future u-data distribution (UDD) p2p network. This
person wants to have access to this data from any place,
where he can connect to internet (and to our UDD p2p
network too). He also wants to have ability to extend his
data storing time and he expects that there is some
mechanism used in this network that prevents with high
probability his data from being deleted from all network
nodes during its limited storing time.

What properties we expect for our UDD p2p network?
Let’s assume that our network will have the properties
listed below:

1. Network nodes should have their own limited
long-term memory

2. Network nodes should have access to some
computing resources (for example their own
CPU) to calculate data content and keyword
hashes

3. Network should have some mechanisms for u-
data storing and effective distributing and
deleting

4. Network should provide high probability data
disappearance preventing mechanism

5. Network should have mechanisms of effective
data search request routing and metadata
storing [3,8,10-12,14,15,17,20,23,24,26,27]

6. Network nodes may connect and disconnect
from network constantly and therefore network
provide some mechanisms of retrieval node
connect/disconnect rate

This is ideal network for our purposes. Real p2p
networks (especially file sharing) often have 3-4 of
these properties, but we won’t examine them at this
point. It’s only important to note, that some of this
networks may be rather easily extended in special way
to have all properties of our ideal p2p u-data storing
network [16]. It’s important to introduce and describe
the method of u-data distribution in UDD network
initiated by some specific node.

In usual p2p network data distribution process usually

71

have some general stages:

- Data hashing (data content hashing, data
description keyword extraction and hashing
etc.)

- Data announcing (more precisely this stage
should be called “data hashes announcing”)

- Waiting for external requests for announced
data from other network nodes

- Data uploading to external network nodes
interesting in data announced

It’s a good way of distribution process for data that may
be interesting and useful for other peers in usual file
sharing p2p network, where waiting for external
requests stage hasn’t infinite durability for the data
being distributed. But we assumed that our data is
uninteresting for other nodes. Furthermore, our data
may be encrypted by its owner to prevent effective
using of it by other network node’s owners. Therefore
3rd stage of usual data distribution process will have
infinite durability for u-data in usual file sharing
network. So how we can effectively distribute data in
our ideal network? Nodes have some limited long-term
memory. If we try to send our data in all accessible
nodes, some of them may reject it, because of lack of
free disc space. Our first goal is to share u-data between
N nodes (including the initial one), where N is defined
by data and initial node’s (n_init) owner (N should be
limited according to the node n_init usefulness
coefficient, mentioned above). Lets assume that n_init
have M neighbors. If M>N we will ask them about their
free space and ask them to reserve sizeof(u-data) bytes
for our u-data storing with M queries and get M_ok
results with satisfying answer. If M_ok < N, we will ask
this nodes for their neighbor lists and then repeat our
first step. If M<N, we can ask them for neighbors first
and then ask extended node list for free space
reservation. But we can save some network bandwidth
by uniting these two types of requests into a single one.
So n_init can ask its neighbors to reserve some free
space for its u-data and in the same request it can ask
them to forward this request to their neighbors. After
receiving at least M satisfying results, n_init sends to
each of them full list of nodes from this list and offers to
receive his data. M nodes start to receive this data, using
swarm cooperation. After that they receives a unique
id’s, which are actually a structure with some fields:
data hash, data lifetime/finish storing date, replication
coordinator priority/id (this value will help to determine
current replication coordinator for stored u-data), M,
owner node’s data access key (a special access key for
this portion of data only), owner node’s id key, search
keywords, etc. This process is briefly described in the
code listing below
Listing 1:
$neighbors_arr = get_neighbors(); //neighbor list
$m_ok=0;
foreach ($neighbors_arr as
$neighbor_num=>$neighbor_value)
{

 if (reservespacerequest(
 &$neighbors_arr[$neighbor_num],&$m_ok,
 $space, $datahash)==1)
 $neighbors_arr[$neighbor_num]
 ['reserved']=1;
 $neighbors_arr[$neighbor_num]
 ['checked']=1;
}
$cur_neighbor= get_firstkey(&$neighbors_arr);
while ($m_ok<$n)
{
 addneighbors_callback(&$neighbors_arr,
 &$m_ok,$cur_neighbor,
 'reservespacerequest');
 if(($cur_neighbor=get_nextkey(
 &$neighbors_arr,$cur_neighbor))===
 false) break;
}
$invited=send_download_invitation(&$neighbors_arr);
/*some code deleted from listing*/
$resultnodes=send_data_info(&$neighbors_arr);

As was mentioned above our ideal network can be
constructed by extending some real p2p file sharing
network (for example bittorrent of ed2k/kademlia
network). But if we realize a possibility of distributing
u-data in some client application for these networks
without any limitation, very few nodes will use it,
because while being unlimited, this process can make a
lot of parasitic traffic in the network and slow down
downloading and uploading of usual files. So if we want
to extend these networks with u-data distribution ability,
we need to describe some methods that can guarantee
limited use of this function, for example by useful for
whole network nodes only. Usually coefficient of
usefulness is represented by formula

coef_usf=node_upl/node_dwn,

where node_down>0, and infinity otherwise.

When any nodes download some data they need, their
node_dwn values increases, and when they upload some
data to other nodes, their node_upl values increases.
These values can never decrease. For our extended
network, we can change this formula to

fair_coef_usf = (u_usual+ deltads*d_special) /
(d_usual + deltaus*u_special),

where u_usual – outgoing traffic value for usual data,
d_usual – incoming traffic value for usual data,
u_special and d_special – incoming and outcoming
traffic value for special data (distributed over our u-data
distribution mechanism), deltads, deltaus – special
weight coefficients, introduced for correcting value of
fair_coef_usf after using by some node possibility to
distribute u-data .

Now let’s return to the end of u-data distribution
process. Let’s assume that our network have some
special nodes, that allow storing data indices (it’s true, if
we’ll extent bittorrent or ed2k network, that are now).

All M nodes with our data stored on it sends data hash,
finish storing date, search keywords to their neighbor
nodes, which are marked as indexing nodes, which

72

stores these values in a special data structure, you can
see on the scheme 1 below.

As we can see on this scheme, our special node has 2
hash tables. First hash table contains hashes of search
keywords, stored in dynamic array as array keys. Each
value in this array contains link to a special list of
pointers to objects, where each object contains content
hash for data, relevant to this keyword, data note and
filename, node id’s or addresses, where this data is
stored. We can store ids for nodes with dynamic ip
addresses and raw ip addresses for nodes with the static
ones. But if we only have hash table for keywords, our
special nodes will be useless for search by data content
hash request routing. So we’ll create a second hash table
for this purpose. It contains known data content hashes
links to special node, with links to the head of special
object list, which also contains links to real objects with
data about data hash, keyword hash, node id’s and/or
ips, mentioned above. So, when search request arrives,
we split it to keywords and search for their hashes in
first table. Then we get data filenames, keyword
relevance in some way, data notes and send it back to
node, that initiated this request and let it decide, what to
do with the result retrieved. When hash search request
arrives, we send back to the request initiator ids / ip
addresses of nodes that can store this data.

How we can use this structure for updating storing-time
of u-data distributed in our network? Node n_init should
send special request with data hash and new storing
time to all known nodes with our hash table structures.
Then these special nodes should find a record about this
data by its content hash. And finally they should update
storing time for this record and send update request to
known nodes with this data stored. This is non-
guarantied way to update data storing time, but our goal
is to update data on some nodes. All other work should
do current data availability coordinator.

Listing 2:
$reqtype=get_rec_type($request);
if ($rectype==’updatetime’ &&
($newtime>time()+$delay))
{
 $dataobj=0;
 search_by_datahash($hashstructure2,

 $hash,&$dataobj);
 update_storingtime_delayed(&$dataonj,
 $newtime,$delay);
 mark_for_update(&$dataonj);
 send_updatetimerec_delayed(&$dataonj,
 $newtime);
}
elseif ($rectype==’deleterec’)
{
 $dataobj=0;
 search_by_datahash(&$hashstructure2,
 $hash,&$dataobj);
 send_deleterec_delayed(&$dataonj,
 $delay);
 delete_delayed(&$dataonj,$delay);
}
/* $delay represents time in seconds, after which this object is
actually deleted after it was disabled for search requests */

In the listing 2 we can see code that allows indexing
nodes to update or delete objects with data hashes and
nodes ids/ips lists. It’s significant that objects are not
deleted immediately, so we only mark them as deleted
and set some delay time, after that it will be actually
deleted during the regular indexing node’s maintenance
process. This process should take place regularly in the
periods of low CPU/network/etc load of indexing node.
While maintenance, indexing node should check all
objects for it’s data storing time and if necessary,
physically delete them, if undelete flag is not set. Else if
this flag is set, node indexing should take away delete
flag and update storing time, if it’s higher than current
time, and if there is no delete flag for this or higher
storing time for this data hash, else node should also
delete object permanently.

So, how we can use this structure for searching u-data,
distributed over the network and for updating its storing
time / non-guaranteed deleting etc.?

Here you can see this process:

Listing 3:
if (is_server_load_low())
{
 foreach ($hashstructure2 as $hkey =>
 $hvalue)
 {

73

Diagram 1. First set of experiments.

 $actionlist=getactions(
 &$hashstructure2[$hkey]);
 if ($actionlist)
 writelog(executeactions(
 &$hashstructure2[$hkey],
 $actionlist));
 while (!is_server_load_low())
 {
 sleep(5);
 }
 }
}

We have mentioned data coordinator below. Let’s
briefly describe its functions. Regularly all nodes,
storing our u-data sends requests to current coordinator
to check its availability, tell it that they are available and
receive a list of other nodes with u-data stored.
Coordinator monitors these requests and has a list of
currently active nodes with u-data presented. If
coordinator suddenly disconnects, other nodes elects a
new one by special data id, they have. They use last
received nodes list in this process. Node with minimum
data id (this may be UNIX time for example) wins the
election and became a new coordinator. When the old
coordinator arrives back in network, he sends requests
to known nodes with u-data stored and receives new
coordinator address. Then he tells new coordinator to
tell other nodes about new old coordinator send current
node list and became a regular node.

Experimental results
And now let’s make some experiments with our data

distribution mechanism in the real network. We have
extended existing bittorrent client bittornado, torrent
tracker tbdev [2,21,22] and a special tool to emulate
large number of different nodes (this tool is written on
PHP). We are using 2 servers: C2D E4400, 3GB ram,
Centos 5.0 and C2D E6400, 3GB ram, FC6. We know
some statistics for the normal bittorrent network, based

on this 2 servers: network average size = 4100 peers;
about 1700 peers connected to network with intervals
more 24 hrs. Average peer renewal speed: 0.08 peer per
second. Average incoming/outcoming speed of all peers
= 1.4 mbit/s

Nobody other then us was given modified p2p network
client, so we will create virtual nodes on server 1, make
server 2 indexing node and start to distribute data over
our virtual network with most characteristics equal to
the real one.

Firstly we’ll assume, that all peers have appropriate disc
space for our data and we wont’s actually save it on it’s
discs. We’ll only save data hashes, storing time and
indexes instead of it. 1700/4100 * 100% roughly = 41%.
So in all our experiments 41% of peers will be always
connected to network.

In first two sets of our experiments we’ll set and fix the
coordinators updating interval to 1 hour and start to
distribute data to varying number of nodes. We’ll also
vary average number of connected nodes (in experiment
set two). Our goal is to determine conditions, when last
node with our data will leave network and it became
inaccessible and how many nodes we need to have 25%
of nodes at the end of one coordinator update period.

Then we’ll also vary coordinator updating interval and
will determine the same conditions, when all stored data
will disappear. But firstly we’ll assume that our network
doesn’t have a constantly connected (core) nodes.

Every experiment we’ll repeat 100 times to determine
best and worst results for current conditions.

In the first set of experiments (100 nodes connected to
network in average, coordinator update time = 1 hour;
every hour 59 random nodes leaves network and 59
other connects)1 we can see, that when N (total nodes to

1 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcose09_set1.txt

74

Diagram 2. Second set of experiments.

Diagram 3. Third set of experiments.

which our data is distributed initially) reaches value of
14, more than 25% of nodes will still have our data on it
after 1 hour in the worst result acquired. Theoretically N
should reach the value of 60 to give as a guarantee of
data saving after one coordinator update period at least
on one node, but practical results are better, because
probability of the event “all nodes with data leave our
network after one coordinator update period” decreases
exponentially (and will be about O(10^(-59*2)) for
N=59). So in real network we don’t need to distribute
data on such huge amount of nodes to save our data
with probability very close to 1.

When taking a look to diagram 2 (second set of
experiments, where we have 41 persistently connected
nodes, and other properties are equal to set 1)2 we can

2 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcose09_set2.txt

see slightly higher number of minimum required nodes
for data saving on 25% of nodes at the end of
coordinator update period. It’s close to 25 nodes,
because in this set of experiments 59 unique nodes
leaves the network, and in set 1 this value is distributed
in the interval (1,59).

Now let’s vary total number of connected nodes with
other properties of network equal to set 2. At the
Diagram 3, which represents the 3rd set of experiments3
we can see results for 4000 connected nodes and for N
from 1 to 2996 with step 85. While N reaches value of

86, we have more than 50% of nodes with our data alive
after coordinator update period

3 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcose09_set3.txt

75

While network connect/disconnect rate is fixed, it’s
better to have more non-persistently connected nodes
for minimizing the number of nodes, to which our data
should be distributed for having the probability of
saving very close to 1 after one coordinator update
period. This probability will decrease with time very
slowly, so we’ll have its high enough at the end of our
data storing interval, because it’s not equal to infinity.
More experiments are required to determine maximum
satisfying storing time interval for high probability of
data saving. We can also say that varying coordinator
update interval can help us to increase the probability of
data saving. It’s important to rightly determine update
interval before distributing any data in network and vary
this interval while data life cycle to minimize the
number of nodes to which data is distributed and save
the network bandwidth and node’s computing resources.
We can do this by sending special requests to indexing
nodes for example (we have one of them in our
experiments – it’s an extended bittorrent tracker). These
actions will make a little additional non data-transfer
traffic over the network, but will save us significantly
more traffic between nodes.

Conclusions
So, we have described a model of ideal p2p network for
data distribution initiated by a single node. We also
introduced some methods, that should be used in such
type of network and make three series of experiments
with good results. But this work is unfinished now. Our
next work will be concerned to examining more deeply
routing mechanisms in that type of networks and
introducing methods that will allow making data
distribution and retrieval more secure.

REFERENCES
[1] Amazon S3 official documentation:
http://docs.amazonwebservices.com/AmazonS3/2006-
03-01/

[2] BitTorrent full specification (version 1.0).
http://wiki.theory.org/BitTorrentSpecification

[3] A. Crespo and H. Garcia-Molina. Routing Indices
for Peer-to-Peer Systems. In ICDCS, July 2002.

[4] Exeem project specification: http://www.exeem.it.
[5] I. Foster. Peer to Peer & Grid Computing. Talk at
Internet2 Peer to Peer Workshop, January 30, 2002

[6] Gnutella project specification:
http://www.gnutella.com.

[7] Kademlia: A Design Specification.
http://xlattice.sourceforge.net/components/protocol/kade
mlia/specs.html

[8] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yazti.
A Local Search Mechanism for Peer-to-Peer Networks.
In CIKM, 2002.

[9] J. Kubiatowicz, D. Bindel, Y. Chen. Ocean-store:
An architecture for global-scale persistent storage. In
ASPLOS, 2000.
[10] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and Replication in Unstructured Peer-to-Peer
Networks. In ICS, 2002.

[11] D. Menasce and L. Kanchanapalli. Probabilistic
Scalable P2P Resource Location Services.
SIGMETRICS Perf. Eval. Review, 2002.

[12] I.Nekrestyanov. Distributed search in topic-
oriented document collections. In SCI'99, volume 4,
pages 377-383, Orlando, Florida, USA, August 1999.

[13] Nirvanix SDN official documentation:
http://nirvanix.com/sdn.aspx

[14] S. Ratnasamy, P. Francis, M. Handley. A scalable
content-addressable network. In ACM SIGCOMM,
August 2001.

[15] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[16] K. Scherbakov. Search request routing in Bittorrent
and other P2P based file sharing networks, SYRCoDIS
2008, Saint-Petersburg, Russia

[17] I. Stoica, R. Morris, D. Karger. Chord: A scalable
peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM, 2001.
[18] M. Stokes. Gnutella2 Specifications Part One.
http://gnutella2.com/gnutella2_search.htm.

[19] D. Talia, P. Trunfio. A P2P Grid Services-Based
Protocol: Design and Evaluation. Euro-Par 2004

[20] A. S. Tanenbaum. Computer Networks. Pren-tice
Hall, 1996.
[21] TBSource official documentation: http://www.tb-
source.info

[22] TorrentPier official documentation:
http://torrentpier.info

[23] D. Tsoumakos and N. Roussopoulos. Adaptive
Probabilistic Search for Peer-to-Peer Networks. In 3rd
IEEE Int-l Conference on P2P Computing, 2003.

[24] D. Tsoumakos, N. Roussopoulos. Analysis and
comparison of P2P search methods. Proceedings of the
1st international conference on Scalable information
systems, Hong Kong, 2006

[25] Wuala project official documentation:
http://www.wuala.com/en/about/

[26] B. Yang and H. Garcia-Molina. Improving Search
in Peer-to-Peer Networks. In ICDCS, 2002.

[27] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
androuting. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April 2001

76

Nowadays, the software and hardware solutions based on
Linux OS and open-source software became popular not only
for server or desktop use; they are also widely employed by the
developers of the distributed control and telemetry systems,
including the mission critical ones. The goal of our research is
design and implementation of a reliable point-to-point message
transmission protocol.

ISO – International Organization for Standardization,
RSMP – Robust Short Message Protocol,
RTT – Round-Trip delay Time,
TCP – Transmission Control Protocol,
UDP – User Datagram Protocol

I.INTRODUCTION

odern computer communication systems are
crucial for different kinds of military,
government and civil applications.

Evergrowing demand for automated control and
management systems results in growing requirements;
especially strict are the robustness requirements for the
communication systems that operate in harsh conditions and
under heavy load. The same requirements apply for many
other different kinds of applications and systems that rely
heavily on the data transfer layer. In a modern dynamic
world where the computer networks appear and disappear
fast, the task of their interconnection is especially important,
as well as the common standardized interprocess
communication protocols.

M

Some large commercial organizations develop their own
protocols to suit their specific needs. Those protocols are
often designed to be used with certain kinds of hardware
and software, so that their range of possible applications is
narrowed severely.

II.PROBLEM ANALYSIS

Our company had taken part in the design and
implementation of a geographically distributed remote
control system where the messages were transmitted over
Internet. Some of the key requirements were: robustness,

Manuscript received March 26, 2009.
A. A. Emelyanov is an engineer of RSFLabs, Russia, N.Novgorod,

603104, Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz
R. M. Dmitrienko is an engineer of RSFLabs, Russia, N.Novgorod,

603104, Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz
V. U. Klimashov is an engineer of RSFLabs, Russia, N.Novgorod,

603104, Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz
V. V. Mokhin is an engineer of RSFLabs, Russia, N.Novgorod, 603104,

Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz

noise immunity, guaranteed data delivery and highest
performance possible. At first it was decided to employ TCP
for telemetry and remote control messages transmission
because of its wide recognition and known robustness. But
during the design phase of the project it turned out that most
of the target nodes are located in the distant areas far from
large settlements and hence out of the zone of reliable
Internet access. The actual quality of the available data
transmission channels was extremely poor: lost packet rate
up to 30%, average transmission delay up to 300 ms. It
became obvious that TCP didn't quite suit our needs. While
providing robust, guaranteed data transfer, it actually had
very poor performance because of large amount of auxiliary
data being sent. As the delivery time was of our greatest
priority, we were forced to cease using TCP. Such harsh
working conditions forced us to investigate profoundly
available data transmission protocols in order to find one
that would suit our specific needs.

The most widespread protocols, such as TCP and UDP,
are standardized by ISO. The developers are allowed to
employ them freely whenever needed. At the same time,
most of those protocols have quite strict limitations and thus
are not suitable for use with low quality data transmission
channels. Protocols governed by ISO are fundamental and
generic by nature, and do not perform well under extreme
conditions. In such cases, adaptation of the protocols is
required.

III.PROPOSED SOLUTION AND CURRENT STATUS

In order to solve the problem of reliable data transmission
over low-quality data transmission channels we had decided
to develop a new protocol based on UDP, which is fast
enough to suit our needs of building the real time distributed
systems. We had to extend UDP with certain features in
order to meet the requirements, i.e. guaranteed data delivery
and automatic protocol self-adaptation upon channel quality
changes.

The protocol is of peer-to-peer kind. All of the packets
being sent are grouped into sessions. The packet structure is
based on the UDP packet structure; the only difference is the
additional 1-octet field that carries the sequence number of
the packet. Such numbering allows for lost packet detection
and retransmission on demand. Instead of sending every
packet once, it was decided to use preventive
retransmission: every packet is sent in a given number of
copies called “a pack.” Sequence numbering and preventive
retransmission are the basic functions used to achieve
guaranteed data delivery. Packet structure is depicted at the
figure 1.

Robust Short Message Protocol

Vitaly U. Klimashov, RSFLabs

77

http://www.rsflabs.biz/

0 Sender port 15 16 Receiver port 31

32 Length 47 48 Checksum 63

UDP
header

64 Pack
seq. No

72 Payload

Figure 1. RSMP packet
Auxiliary messages are also implemented. They perform

connection establishment and release functions, as well as a
few others (retransmission request, lost packs detection,
etc). Unlike data messages, their payload is predefined: it
consists of command codes and auxiliary data whenever
needed. The structure of auxiliary messages is depicted at
the figure 2.

0 Sender port 15 16 Receiver port 31

32 Length 47 48 Checksum 63

UDP
header

64 0x00 71 72 Msg ID 81 Auxiliary data
Figure 2. Auxiliary RSMP packet

Data transfer itself is based on the UDP protocol. Hence,
we've achieved relatively high operating speed if compared
to TCP. At the same time, our extensions provide for
guaranteed data delivery.

This protocol was named RSMP (Robust Short Message
Protocol). It is intended to provide reliable data transfer
service with the lowest delays possible over the low-quality
data transfer channels with significant packet loss and RTT.
It is supposed that the protocol should be employed for short
telemetry and remote control messages transmission in the
distributed monitoring and control systems.

Its primary advantages are:
• guaranteed data delivery;
• high performance;
• automatic self-adaptation upon channel quality

changes
We have performed extensive testing of the implemented

protocol. It was confirmed that the software developed is
able to perform well in harsh conditions. The software was
tested and is already used in the several parts of the
geographically distributed telemetry and remote control
systems located in Volgograd and Nizhny Novgorod. The
protocol was proven to provide reliable service when used
with low-quality data transmission channels with random
delays and packet loss.

IV.FUTURE PROSPECT

The RSMP protocol is supposed to be employed widely as
a part of distributed remote monitoring and control systems.
Its features allow for building reliable telemetry and
telecontrol systems even in the distant rural regions.

78

The subject of our work is an original interactive
telecommunication protocols design, simulation, and prototyping
tool set. The following subjects were investigated during the
research phase of the project:

- Efficient modeling of dynamic, unpredictable data structures,
- Reliable yet tunable code generation routines.
The idea of this presentation is to show modern efficient

methods of design of efficient complex software solutions.

API – Application programming interface,
ASN.1 – Abstract Syntax Notation 1,
CASE – Computer-Aided Software Engineering,
DTD – Document Type Definition,
GCC – GNU Compilers Collection,
GPL – General Public License,
GUI – Graphical User Interface,
IPC – InterProcess Communication
LGPL – Lesser General Public License,
MSC – Message Sequence Chart,
OS – Operating System,
RTOS – Real Time Operating System,
SDL – Specification and Description Language,
SDL-RT – Specification and Description Language for real

time applications,
XML – eXtensible Markup Language

I.INTRODUCTION

ur research and development of the software is
conducted as a part of an internal corporate project
aiming the rapid prototyping of custom

telecommunication solutions. This project has two extremely
important distinguishing factors:

O
• The systems under development are subject to

continuous changes,
• The reliability of the systems being developed is

much more important than their performance.
In order to cut the systems prototyping and development

costs, it was decided to employ CASE rapid prototyping tools.
The two aforementioned factors imposed certain restrictions
and requirements on the software development process, tools
and algorithms involved, thus stipulating the need of in-house
CASE software development. As an additional cost-cutting
measure, only open Linux-based tools and libraries were
employed during the development phase.

Manuscript received March 20, 2009.
R. M. Dmitrienko is an engineer of RSFLabs, Russia, N.Novgorod,

603104, Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz

II.PROJECT INTERNALS

The idea of the software, while quite complicated, is fairly
straightforward. From the user's point of view, the standard
workflow should include defining the system using SDL-RT
[1] language, eliminating possible errors, running source code
templates generation routine, as well as optionally simulating
the work of the protocol and tracing its input/output,
estimating the characteristics of the protocol, generating and
running test scenarios. When all of the required phases are
finished, the user should inspect and complete the generated
source code templates as needed, deploy the system, run
smoke tests etc. The former is achieved using the software we
are developing; the latter is done by the user.

The major problems we met were:
• Efficient, reliable modeling of dynamic, constantly

changing data structures during the system design
phase,

• Entirely customizable yet user-friendly and non-
obscure code generation.

A.Dynamic systems modeling
As already mentioned, the user should be able to define the

system using the SDL-RT language. This language is powerful
enough and one is able to describe procedures, processes,
blocks and systems using it. However, some of the parts of the
target system have to be implemented manually; this is why we
are talking about the “source code templates” generation, not
the source code per se. At the moment, our software provides
the user with the means of describing processes and
procedures. It is planned to expand it with the means of
process blocks, classes and systems definition.

In order to cut the development time and costs and to
improve the user experience, we have chosen the
wxShapeFramework [2] library as the diagram drawing
engine. It is an open source library intended to be used with
wxWidgets. While being simple enough to integrate with our
project, it is a powerful, flexible and easy to customize tool
that suits our needs perfectly. We have expanded it with our
custom set of primitives according to the SDL-RT standard.

While the user draws the diagram, a corresponding graph is
being built. This graph represents the structure of the diagram;
it is an internal wxShapeFramework data structure. It is used to
store the information about the diagram itself, i.e. the types of
elements and relations between them; it also allows for such
basic operations as file input/output, clipboard operations,
undo/redo framework. Hence, it is of little interest for us.

Roman M. Dmitrienko, RSFLabs

Telecommunication protocols development,
simulation and code generation tool

79

At the same time, a complex system logics data structure is
being built. It stores information about the system itself, as
defined by the SDL-RT diagram. This information includes the
definitions of the processes, procedures, variables, signals,
gates etc. Every process, procedure, system etc. is described
by the corresponding C++ class instance. Such classes store
information about local data definitions, as well as the graphs
that represent the algorithms being described. Every node of
the graph stores its parameters, i.e. those that are specified by
the SDL-RT standard.

While the system logics data structure is being built, it is
being analyzed in real time; the errors and warnings are being
reported to the user.

The diagrams are serialized in XML [3] files by the means
of wxShapeFramework. Those are enough to store all the data
needed to recreate the diagram, the locations and the
parameters of all of the elements and their relations.

In order to provide our software with basic means of
interoperability with existing and future third-party products,
we are also working on a textual SDL-RT exporting routine
according to the SDL-RT standard definition. Textual SDL-
RT representation is actually an XML representation; its DTD
can be found in the text of the SDL-RT standard.

B.Customizable source code generation
When the system is defined and all the possible errors that

prohibit code generation are eliminated, the user is able to
launch the target code template generation routine. While
designing this routine, we have faced several challenges; not
all of our solutions are considered final yet and hence the
information given here is a subject to change.

Our goal at this stage is to provide efficient, robust source
code templates generation routine. Our specific requirement is
that it should be flexible enough in order to both provide users
with advanced means of controlling the code generation
process and to allow for code generation for different target
platforms and architectures.

While designing the code generation functionality, we kept
in mind the fact that different real-time operating systems have
different APIs and possibilities. However, in order to provide
for implementation of the SDL-RT defined systems, a
predefined set of functions should be supported by the target
OS API. These functions include real-time process creation
and destruction, fast signal-based IPC mechanism (including,
at least, means of signal description, allocation, exchange and
destruction), timers and semaphores. The debugging output
functions are also needed. Most of the other actions described
by SDL-RT are simple components of algorithms (flow
control, loops, jumps etc) and thus are possible to implement
using basic C89 [4] instructions.

Hence, it was decided to design an intermediate pseudo-
language that should be able to describe both basic algorithms
and basic IPC and synchronization functionality (signals,
semaphores, timers). The textual SDL-RT representation is not
quite suitable due to its structure (XML data). This pseudo-
language source code is generated upon the user request when

the system definition is finished and all the possible errors are
eliminated.

This pseudo-language code may be stored in external files,
but is not intended for user manipulation. As soon as this
representation is built, the parser is run and the target C89
source code template is built.

In order to allow for source code generation for different
target platforms (that obviously have different APIs), different
rule sets should be applied to the generated source code. They
describe the means of working with signals, timers and
semaphores. Those rule sets are defined in external files and
are available for user inspection and manipulation in order to
provide further flexibility and extensibility of our software.

C.Optional functionality
Apart from the system definition and source code templates

generation, our software should also be able to implement
other functionality. In order to allow for such extensibility, we
have designed the plug-in architecture which is quite simple
itself. The plug-in modules receive the definition of the system
as generated on the step 1, perform their actions and report
results to the user.

We are considering implementation of following plug-in
modules: debugging, tracing, simulation, performance analysis
(including bottlenecks detection), fine-tuning.

The overview of the workflow is given at the figure 1.

Figure 1: Workflow overview

III.LANGUAGES AND NOTATIONS

There is a variety of protocol description's methods,
languages, and algorithms. Most of them are governed by such
well-known international organizations as ETSI, ITU, OMG,
ISO etc. In order to achieve our goals, we had to choose the
most appropriate, relevant, recognized ones.

We have chosen SDL-RT [1] as the core systems
description language. The traditionally employed language,
SDL [5], did not suit our exact needs due to the following

Visual
system

definition

Run-time error
detection

Extended
plug-in

functionality

Target C89
code generation

Logical definition

Intermediate
pseudo-
language

80

drawbacks:
• Out-of-date data types and data description tools.

ASN.1 [6] notation has a lot of advanced means of
data types definition, but it is not quite convenient for
definition of systems and for automated code
generation.

• Out-of-date syntax. Formalization is not enforced
enough (i.e. different standards descriptions that
make use of SDL often have different conventions).

• No semaphores. It is especially inconvenient during
real-time systems design.

• No pointers. Most of the embedded and real-time
systems are implemented in C, which depends heavily
on pointers.

SDL-RT is designed to eliminate the problems of classic
SDL. Some of the original SDL features were eliminated as
well, as they are almost never used in modern real-time
systems design.

We have also chosen MSC [7] as a message flow
visualization and debugging tool. It is also extended as a part
of SDL-RT project.

IV.TARGET PLATFORMS AND APIS

Actually, a target platform for the source code templates
generated by our software is any OS (or RTOS) that both has
C89-compliant compilers available and supports such common
features as message exchange, semaphores and timers. A lot of
different hardware platforms is currently supported by
GNU/GCC [8] compilers. One of the specific requirements of
our project is allowing users to tweak code generation rules, in
order to make it possible to deploy the generated software for
different target OS APIs. Our primary target API is ENEA
LINX [9] library, which is intended to be used with Linux.

V.OPERATING SYSTEM, TOOLS AND LIBRARIES

We have chosen Linux as a host operating system. It has
gained popularity during last few years and is widely
recognized not only as an OS for servers or software
developers, but also as a desktop OS. Being a free, open
source operating system, Linux is a great yet low-cost software
development environment. As a consequence, we have decided
to use GNU/GCC g++ compiler.

Another problem we have faced was choosing the right GUI
toolkit. The most popular ones are Qt [10], wxWidgets [11]
and GTK+ [12]. All of them provide developers with similar
possibilities, but we have chosen wxWidgets. It is free from
license limitations (Qt was not licensed under LGPL at the
time when the decision was made), it uses native GUI controls
under target operating systems whenever possible, its build
system is not as complicated as the one of Qt. wxWidgets also
provides developers with auxiliary non-GUI classes, thus
simplifying crossplatform development. Hence, our software
will be portable and most likely available for Windows users.

VI.CURRENT STATUS AND FUTURE PROSPECT

At the current phase, an alpha version of the software was
developed. It provides users with basic diagram drawing tools,
error reporting and code generation tools.

A lot of work is being done to improve the code generation
algorithms. We are planning to introduce new debugging
features, real-time protocol simulation, performance
estimations. We also plan to extend the list of supported target
platforms to include the most popular and widely employed
systems. Our long-term plans include implementing automated
testing and test scenarios generation and detailed automated
analysis of systems being designed. One of the possible long-
term development plans is improving the project even further
and releasing it as a commercial product.

VII.RÉSUMÉ

The proposed solution of the efficient dynamically changing
systems design problem consists of the following:

• Correct decomposition of the problem,
• Thorough planning of data structures,
• Thorough modeling of algorithms,
• Using customizable source code generation routines,
• Using open development tools, libraries and solutions

REFERENCES

[1] SDL-RT. http://www.sdl-rt.org
[2] wxShapeFramework library. http://wxcode.sourceforge.net/components/
shapeframework/
[3] XML. http://www.w3.org/XML/
[4] ANSI C. ANSI X3.159-1989 "Programming Language C."
[5] SDL. ITU-T Z.100
[6] ASN.1. ITU-T X.680
[7] MSC. ITU-T Z.120
[8] GNU/GCC. http://gcc.gnu.org/
[9] ENEA LINX. http://www.enea.com/Templates/Product____27016.aspx
[10] Qt. http://www.qtsoftware.com/
[11] wxWidgets. http://www.wxwidgets.org
[12] GTK+. http://www.gtk.org

81

Application of UniTESK Technology for Functional Testing of Infrastructural
Grid Software

Sergey Smolov

ISP RAS

ssedai@ispras.ru

Abstract
In this article some questions of testing of

infrastructural Grid software on the standard

compliance are discussed. Nowadays Grid-systems are

one of the first-priority areas in computer science. The

primary task is an effective usage of their advantages

that is inseparably connected with the problem of

software portability in Grid-systems. One of the

simplest solutions of such problem is a development of

standards on bundled software. Particularly, the

compliance to the standard occurs as one of basic

requirements to a system that is why its

accomplishment should be checked with a high

validity. In this letter the development of test patterns

for infrastructural Grid software by means of

UniTESK technology is considered. The result of

program packet Globus Toolkit 4.2 testing upon

compliance with WSRF 1.2 basic standard is given.

1. Introduction

The term “Grid” appeared at the beginning of 1990
th

in “The Grid: Blueprint for a new computing

infrastructure” [1] collection under the editorship of Ian

Foster as a metaphor of such an ease of access to

computational resources as to power grid. According to

Ian Foster, Grid-system (hereinafter referred to as GS)

is a system, that:

a) coordinates the usage of resources in the absence

of a centralized management;

b) supports standard, open and universal protocols

and interfaces;

c) non-trivially supplies with a high-quality

services.

Following by this definition, GS is a universal

infrastructure of processing and storing distributed

data, and of different services, called Grid-services,

that are functioning in it. Different GS must support

standard protocols and interfaces, despite of possible

differences in architecture or specialties of realization.

The purpose of the Grid standardization is to guarantee

a portability of applications between different Grids,

including systems that are built upon different

infrastructural program packages.

1.1 Grid standardization

Realizations of GS had been appearing since 1995,

when infrastructural program package Globus Toolkit

appeared; nowadays it is de facto a standard of GS. It

was made by Globus Alliance – the major international

consortium in the area of Grid. By 1997 a European

project of creating a program package for GS had

begun, and it has brought to the infrastructural

UNICORE software. By 2004 under the aegis of

EGEE (Enabling Grids for E-sciencE) project, the

gLite package had been released. In the connection

with the great number of incompatible realizations of

infrastructural Grid software, the necessity of

unification and standardization became actual and

active work on Grid standards creation started. Three

groups of standards of the infrastructural Grid software

are existing nowadays: the WSRF (Web Services

Resource Framework), the OGSA (Open Grid Services

Architecture) and the WS-Management.

1.2 Questions of Grid realizations testing

One of the specialties of the application domain is

an existing of the incompatible, generally speaking,

standards and some independent realizations. It is

clear, that testing of the realization upon the standard

compliance is a very actual problem.

It is worth to notice, that in the application domain

the specificity of interaction between user applications

and GS means occurs – in this case they are Grid- and

Web-services and remote procedure calls.

The most widespread approaches to the GS testing

are:

a) unit testing – a testing of different software

modules. Particularly, Globus Toolkit developers use

82

JUnit for their realization checking.

b) integration testing – a testing of applications

execution upon the infrastructural Grid software

assembly. Typical examples of integration test

scenarios are data bulk transfers and routine

calculation implementations.

Both approaches are turned to realization errors

detection. But they have a considerable defect in the

context of compliance testing: there is no connection

between tests and standards requirements. That is, it is

impossible to draw a conclusion about compliance or

mismatching to the standard by test results.

1.3 Technology UniTESK of the automated

testing

Since 1994 the UniTESK technology of the

automated testing has been developed. It was

successfully used for testing of the different classes of

program systems – program interfaces,

telecommunication protocols and hardware. An access

to the infrastructural Grid software is realized by

different mechanisms of remote procedure calls and

official protocols that are very close to the domain of

applicability of the UniTESK, that’s why this

technology was chosen as a technology platform for

tests development.

The test development with the application of the

UniTESK technology accomplishes in the next seven

stages:

1) requirement analysis and its formalization,

formal specifications building;

2) requirements to the quality of testing

formulation;

3) test scenarios, that are realizing such coverage,

development;

4) test scenarios binding to the concrete target

system by mediator development;

5) tests translation and compilation;

6) tests debugging and execution;

7) testing results analysis.

The important advantage of the UniTESK

technology is an estimation of quality of testing

possibility by calculating the requirements coverage.

That is also the essential distinction from

overwhelming majority of test patterns for GS. The

calculation of requirements coverage and the

constructing of oracles (special components that are

checking the compliance of the target system to the

specification) are automated.

Thus, the UniTESK technology allows driving

widespread testing of a big class of program systems

and, particularly, to develop test patterns for

compliance problem solution.

1.4 OGSA and WSRF standards.

Applicable domain of problem

restriction.

The OGSA standard describes infrastructural

middleware OGSI (Open Grid Services Infrastructure)

between user applications and computational

resources. It means that applications have no any

possibility to interact with resources directly, but only

by using infrastructural software. At the root of OGSI

architecture the Grid-service concept lies that

represents a mechanism of remote calls and was

developed specially for Globus Toolkit 3.

At the same time with OGSA standard

development, in 2004 the OASIS consortium

suggested the WSRF standard. It also describes some

infrastructural software, but based on not Grid- but

Web-services. Correspondingly, the application

domain of this research is exactly infrastructural

software that is based on Web-services, because on this

concept the most widespread infrastructural Grid

software realizations are based.

In this research a possibility of UniTESK

technology application for the functional testing of

Grid software analyses, including the testing of

standard compliance. Particularly, the next problems

are considered:

1) representation of requirements to the services of

infrastructural Gird software in formal UniTESK

specifications;

2) development of mediators for impacts upon

infrastructural Grid software;

3) development of testing scenarios for infrastructural

Grid software.

2. Requirements to the realizations of

infrastructural Grid software

formalization

2.1 Regulating documents and requirements

83

to the realizations of infrastructural Grid

software

As it is mentioned above, there are two standards

that are used in GS development nowadays: OGSA and

WSRF. The OGSA standard is a description standard,

it does not contain any functional requirements,

existing requirements are uncertainly expressed,

descriptions of message formats and remote accessing

protocols are not given. Therefore, the OGSA standard

does not suit to be the base for the formal specification

and based on it test pattern development.

The WSRF standard for standard formalization

suites more. It contains 5 specifications:

1) WS-BaseFaults – determines format of error

messages and the mechanism of their processing;

2) WS-Resource – determines WS-Resource

concept itself, formats of messages and the semantics

of management services;

3) WS-ResourceLifetime – determines mechanisms

of destroying the WS-Resource;

4) WS-ResourceProperties – determines, in what

way a WS-Resource is connected with an interface,

that describes Web-service, and also represents the

mechanisms of getting, changing and deleting

properties of WS-Resource;

5) WS-ServiceGroup – determines an interface to

the set of heterogeneous Web-services.

The Resource is a logical entity that has the

following characteristics: identifiability, lifetime and

set of zero or more properties, which are expressible in

XML Infoset. The WS-Resource is a composition of

the Resource and the Web-service, by using its

methods or fields an access to the Resource is

accomplished. The WSRF standard is very convenient

to analyse because of its structuredness. For example,

the bigger part of functional requirements are supplied

with RFC 2119 keywords – MUST, SHOULD, MAY.

Moreover, most requirements are supplied with blocks

of descriptions and examples that have been written on

pseudocode that looks like WSDL 2.0 Web-services

description language.

Certain parts of standard have different levels of

obligatory in RFC 2119 gradation. That is, a WS-

Resource must realize requirements of WS-Resource

and WS-ResourceProperties specifications, also it

should realize requirements of WS-Base-Faults

specification and it may satisfy requirements of WS-

ResourceLifetime. Consequently, under the test pattern

development, the first two specifications should be

taken into account first of all. Such approach

considerably simplifies the test pattern structure and

reduces it, but retains tests correctness as solution of

the problem of compliance.

There are following message exchanges in WS-

ResourceProperties specification:

1) GetResourcePropertyDocument – getting all the

properties of the WS-Resource;

2) GetResourceProperty – getting the certain

property of the WS-Resource;

3) GetMultipleResourceProperties – getting

multiple properties of the WS-Resource;

4) QueryResourceProperties – determining the

structure of WS-Resource properties and querying the

requests upon them;

5) PutResourcePropertyDocument – changing of

the “old” Resource Property Document (a set of all

properties of the WS-Resource) by the “new” one;

6) SetResourceProperties – changing some

properties of the WS-Resource (i.e. a composition of

the three following message exchanges);

7) InsertResourceProperties – adding new

properties;

8) UpdateResourceProperties – changing values of

the existing properties of the WS-Resource;

9) DeleteResourceProperties – deleting some

properties of the WS-Resource.

In the course of the analysis of standard 325

functional requirements had been marked out, 29 – in

WS-BaseFaults specification, 12 – in WS-Resource, 51

– in WS-ResourceLifetime, 159 – in Ws-

ResourceProperties and 73 – in WS-ServiceGroup.

2.2 Formal specification development

Every message exchange in WSRF corresponds to

pair <request - response>, where in the capacity of the

response can be message with the returned value or

error message. Thereby WSRF message exchanges can

be modeled as function calls with the returned values,

error messages can be modeled as exceptions.

Due to in the concerned method of the

requirements to the infrastructural Grid software

formalization, the Web-service is modeled as an object

of some class, and message exchanges between client

and realization are represented as calls of this class

methods.

Altogether a half of all WSRF requirements was

formalized (nearly 160 requirements) and about 60%

requirements from WS-Resource, WS-

84

ResourceLifetime and WS-ResourceProperties

specifications. The whole set of requirements can be

separated into two basic groups: syntactical and

functional requirements. Syntactical requirements

impose constraints on a structure of messages and

relationships between the fields of one message.

Functional requirements correspond as restrictions

upon the functionality of requests processing and

connections between a content of request and a content

of response. It is recommended to check syntactical

requirements in mediators at the stage of message

parsing.

2.3 Mediator development

The main function of mediator, as a component of a

test pattern, is an establishment of correspondence

between a model object (object of specification class)

and a target system. In case of infrastructural Grid

software testing, there is no possibility to have an

access to fields and methods of system, that is why it

could be accomplished only by sending appropriate

requests and receiving and parsing responses. In

concerned method mediator transforms parameters of a

specification method into SOAP/HTTP message and

sends it to the target system on established TCP

connection. Received responses are checked by the

mediator, the correspondence to syntactical

requirements and parsed by mediator too. Then

mediator forms the returned value of the specification

function.

The peculiarity of the mediator development is that

existing realizations (particularly, Globus Toolkit 4.2)

do not satisfy to syntactical requirements of the

standard. For the testing implementation the adoption

of mediators by standard violations was needed. Also

by analyzing the source code of infrastructural Grid

software Globus Toolkit 4.2 and taking some

experiments with realization was established that

realization does not support the following message

exchanges – PutResourceProperties and

SetResourceProperties.

2.4 Test scenarios development

Under test scenario for testing of the infrastructural

Grid software of compliance to the WSRF standard

development, in the capacity of an automate state

identifier it is recommended to use the cardinality of

Resource Property Document of the WS-Resource, i.e.

an amount of WS-Resource properties. On the one

hand, such feature considerably reduces the complexity

of supposed state graph, and, appropriately, a time of

tests execution. On the other hand, under such

definition of state of the automate the determinacy of

graph retains that is important for a correct operation

of the UniTESK iterator.

Transitions between automate states are

accomplished by offering stimuli into the target

system. The role of stimuli in the case of development

of the test pattern for infrastructural Grid software play

mediator methods calls. As soon as synchronous model

of the target system is used, for every specification

method it is possible to create a separate scenario

method, which will go over the parameters of method

and will call (implicitly) mediator for testing impact

and an oracle for checking the returned value on

correctness.

3. Experience of practical testing of the

infrastructural Grid software

The method, which was represented above, was

used under development of the test pattern for

checking the compliance of the infrastructural Grid

software realizations to the WSRF standard.

3.1 Target system review

The object under testing in this research is a

program packet Globus Toolkit 4.2. Globus Toolkit 4.2

uses protocols of standard Web-services and

mechanisms of services description, detection, control,

authentication and authorization. This program packet

includes components that can be used for constructing

containers. In these containers Web-services, which are

written on Java, C and Python can be placed.

In accordance with Globus Alliance, the Java WS

Core component of Globus Toolkit 4.2 (it supports the

Web-services development and execution of Java

applications) realizes requirements of WSRF standard.

In this research the problem of compliance was

decided exactly for this component.

3.2 Implementation testing

Test scenarios that were developed by using

JavaTESK instrument include scenarios for eight

methods: GetResourcePropertyDocument,

GetResourceProperty, GetMultipleResourceProperties

85

Insert-, Update- and DeleteResourceProperties, and

also ImmediateDestroy and SheduledDestroy.

It is worth explain, why these eight message

exchanges (i.e. specification methods) were chosen. At

the time of test pattern development it was supposed,

that by test pattern using all services of the container of

the Java WS Core component will be tested. By

default, there is 34 Web-services in container, and only

23 of them support message exchanges, that are

mentioned above and are contained in WS-

ResourceProperties and WS-ResourceLifetime

specifications of WSRF standard. Correspondingly,

these 8 message exchanges is both simple enough to

specification methods development (the

QueryResourceProperties message exchange is not so

simple for testing) and allow to run testing of the

compliance to the WSRF 1.2 standard.

3.3 Testing results

In this research the realization of infrastructural

Grid software Globus Toolkit was tested by the

facilities of the UniTESK (JavaTESK) technology. In

the capacity of testing results reports about

requirements coverage, which were generated by the

instrument, acted. Nearly 60% of system functionality

was covered, wherein this test pattern does not yield to

tests that are used by Globus Toolkit developers. They

measures code coverage by tests for quality of testing

determination with the JUnit and Clover instruments.

These instruments allowed developers to determine

that their unit-tests had covered 60% of the

functionality of system too (i.e. Java WS Core

component). However, as it was mentioned above,

these tests cannot report about the compliance of

Realization Globus Toolkit 4.2 to the some standard.

Thus, existing and developed tests not only

complement each other, but allow considering the

realization from the different points of view.

Under the realization testing some semantic

discrepancies to the WSRF 1.2 standard (in

InsertResourceProperties and

UpdateResourceProperties message exchanges) were

revealed. Particularly, these methods allow to add and

change values of properties of the WS-Resource with

different identifiers (which are called QNames) that is

forbidden by the standard requirements.

4. Existing methods and approaching of

Grid infrastructural software testing

In 2006 ETSI (European Telecommunications

Standards Institute) organized an expert group for

development a test pattern for Grid compliance testing

[2]. Method that is being developed in ETSI is based

on the development on large amount of test cases on

TTCN-3 programming language. The prototype of

such test pattern on TTCN-3 language is represented in

[3]. Test pattern is not connected with any standard of

infrastructural Grid software. Instead of standard

requirements checking this test pattern checks

applicability of Grid in typical use cases – statement of

the computational task in query, task execution on one

of the computing nodes, result delivery.

In [4] authors propose an approach to the Grid

testing that is close to the approach presented in this

article. Authors offer to use a formalism of abstract

state machines (ASM) and automatically generate test

sequences from automate bypass. Questions of Grid

standards analysis and requirements formalization and

formal model building are not considering.

5. Conclusion

In this research the problem of testing of the

compliance of the infrastructural Grid software

realization Globus Toolkit 4.2 to the standard WSRF

1.2 was being solved. This standard was analyzed and

a catalogue of its requirements was created. Interfaces

and the structure of Java WS Core component of the

Globus Toolkit 4.2 were explored also. On basis of

these data the test pattern for this program packet was

developed by using UniTESK (JavaTESK) technology

and testing was carried out. The testing has showed

that the realization Globus Toolkit 4.2 complies with

the WSRF standard and has revealed a lack of some

unnecessary requirements accomplishment, both

functional and syntactical. Also testing has showed that

the UniTESK technology is applicable for testing the

infrastructural Grid software, particularly, there are the

following peculiarities of its application:

1) message exchanges with Web-services are

essentially modeled by specification functions;

2) for test pattern development a class library for

automatization of building different (and “incorrect”

also) messages of Web-services is necessary.

In the capacity of directions for the future research

we consider a development of test pattern, that is

checking a specific requirements to the services of the

infrastructural Grid software, like a service of bulk

data transferring, service of creation and management

of computational resources and so on.

86

6. References

[1] Ian Foster The Grid: Blueprint for a New Computing

Infrastructure. — Morgan Kaufmann Publishers. — ISBN

1-55860-475-8

[2] S. Schulze. Achieving Grid Interoperability: The ETSI

Approach. The 20th Open Grid Forum - OGF20/EGEE 2nd

User Forum. Manchester, UK. May 7 - 11, 2007

[3] T.Rings, H.Neukirchen, J.Grabowski. Testing Grid

ApplicationWorkflows Using TTCN-3. First International

Conference on Software Testing, Verification, and

Validation, ICST 2008, Lillehammer, Norway, April 9-11,

2008.

[4] Lamch, D.; Wyrzykowski, R. Specification, Analysis and

Testing of Grid Environments Using Abstract State

Machines. International Symposium on Parallel Computing

in Electrical Engineering, 2006. PAR ELEC 2006. 13-17

Sept. 2006 Pages:116 - 120

87

Test data generation for LRU cache-memory testing
Evgeni Kornikhin

Moscow State University, Russia
Email: kornevgen@gmail.com

Abstract—System functional testing of microprocessors deals
with many assembly programs of given behavior. The paper
proposes new constraint-based algorithm of initial cache-memory
contents generation for given behavior of assembly program (with
cache misses and hits). Although algorithm works for any types of
cache-memory, the paper describes algorithm in detail for basis
types of cache-memory only: fully associative cache and direct
mapped cache.

I. I NTRODUCTION

System functional testing of microprocessors uses many
assembly programs (test programs). Such programs are loaded
to the memory, executed, execution process is logged and
analyzed. But modern processors testing requires a lot of
test programs. Technical way of test program generation was
proposed in [1]. This way based on the microprocessor’s
model. Its first stage is systematic generation abstract test
programs (test templates). This abstract form doesn’t con-
tain initial state of microprocessor but contain sequence of
instructions with arguments (registers) and withtest situations
(behavior of this instruction; these can be overflow, cache
hits, cache misses). The second stage is generation of initial
microprocessor state for given test template. This stage is test
data generation. Technical way from [1] is useful for aimed
testing when aim is expressed by instruction sequence with
specific behavior. Initial microprocessor state includes initial
values of registers and initial contents of cache-memory. Based
on this state the third, final, stage is generation the sequence
of instructions to reach initial microprocessor state. These
sequence of instructions with test template get ready assembly
program. This paper devoted to the second stage, i.e. initial
state generation.

Known researches about test data generation problem con-
tain the following methods of its solving:

1) combinatorial methods;
2) ATPG-based methods;
3) constraint-based methods.
Combinatorial methods are useful for simple test templates

(each variable has explicit directive of its domain, each value
in domain is possess) [2]. ATPG-based methods are useful
for structural but not functional testing [3]. Constraint-based
methods are the most promising methods. Test template is
translated to the set of constraints (predicates) with variables
which represented test data. Then special solver generates
values for variables to satisfy all constraints. This paper
contains constraint-based method also. IBM uses constraint-
based method in Genesys-Pro [4]. But it works inefficiently
on test templates from [1]. Authors of another constraint-based

methods restrict on registers only and don’t consider cache-
memory.

II. T EST TEMPLATES DESCRIPTION

Test template defines properties of future test program.
Test template contains sequence of instructions. Each element
of this sequence has instruction name, arguments (registers,
addresses, values) and test situation (relation between values
of arguments and microprocessor state before execution of
instruction). Example of test template description for model
instruction set:

REGISTER reg1 : 32;
REGISTER reg2 : 32;
ADD reg1, reg2, reg2
LOAD reg1, reg2 @ l1Miss, l2Hit
SUB reg2, reg1, reg2
This template has 3 instructions – ADD, LOAD and SUB.

Template begins from variable definitions (it has name of
variable and its bit length). Test situation is specified after
”@”: test situation of the second instruction is ”l1Miss, l2Hit”:
”l1Miss” means cache miss in first-level cache and ”l2Hit”
means cache hit in second-level cache.

Model instruction set contains only 2 memory operation:
• ”LOAD reg, address” loads value from memory by phys-

ical address ”address” to the register ”reg”;
• ”STORE reg, address” stores value from register ”reg” to

the memory by physical address ”address”.
Test data generation is generation of initial values of regis-

ters and initial contents of cache-memory. This problem has
been solved for common microprocessor cache-memory. The
following consists of test data generation for 2 basis cache-
memory organizations: fully associative cache with LRU and
direct mapped cache. Common cache includes aspects from
both cache-memory organizations. The rest of paper deals
with one-level cache-memory although proposed method can
be applied to cache memory with more than one level.

III. T EST DATA GENERATION FOR FULLY ASSOCIATIVE
CACHE

Fully N-associative cacheconsists of N cells (N means
cache associativity). Each cache cell may store data from
any memory cell. All cache cells correspond to the different
memory cells. Access to memory starts from access to cache.
Search data in cache performs for each cache cells in parallel.
Cache hitmeans existence data in cache.Cache missmeans
absence of data in cache. In case of cache miss one cache

88

N

x y z

x

y

z

Fig. 1. Fully N-associative cache

cell must be replaced on data from required address by spe-
cific replacement strategy. This paper uses LRU replacement
strategy (Least Recently Used). According to LRU the least
recently used cache cell will be evicted. At the following
phrase ”evicted addressx” means evicted data by addressx.

Proposed algorithm based on the following properties of
evicted addresses:

1) any evicted address was inserted by instruction from test
template with cache miss or was in the initial contents
of cache;

2) between replacing and the last access to the same
address (cache hit or cache miss) there are accesses to
the whole cache without address itself.

Proposed algorithm generates constraints on the following
variables:

1) α1, α2, ..., αN – initial contents of cache (its count
equals to cache associativity);

2) hits-addresses (addresses of instructions from test tem-
plates with cache hit test situation);

3) misses-addresses (addresses of instructions from test
templates with cache miss test situation);

4) evicted addresses (evicted addresses of instructions from
test templates with cache miss test situation);

5) L0, L1, ... – cache states
Each instruction from test template with cache hit gives 1

new variable, and each instruction with cache miss gives 3
new variable (1 for miss address, 1 for evicted address, and 1
for cache state). Proposed algorithm generates constraints for
each instruction from test template by the following (N means
cache associativity):

1) ”initial constraints” are generated one time for any test
template: L0 = {α1, α2, ..., αN}, |L0| = N (other
words, numbersα1, α2, ..., αN are different);

2) ”hit-constraints” are generated for each instruction from
test template with cache hit:x ∈ L, when x means
address from instruction,L means a current cache state-
variable;

3) ”miss-constraints” are generated for each instruction
from test template with cache miss (x means evicting ad-
dress,y means evicted address,L means a current cache
state-variable):y ∈ L, x /∈ L,L′ = L∪{x}\{y}, lru(y),
L′ became a current cache state-variable for the next
instruction.

Constraint lru(y) defines y as the least recently used
address.

hit x1

miss x3 � y3
...

hit x2

the last use

other
addresses

Fig. 2. LRU

Constraintlru(y) is disjunction of constraints corresponded
to cases of the last access to they before its eviction. Each
its clause is conjunction of the following constraints (x means
the address-variable from the last access to they):

1) x = y
2) L \ {y} = {x1, x2, ..., xn}, wherex1, x2, ..., xn are all

addresses accessed between accesses tox and y (hits
and misses).

The last access to they can correspond to the previous
instruction of test template or to the cell from initial cache
state.

Consider an example of test template and its test data
generation for 3-associative cache.

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique names for variables in test template (each new

variable shouldn’t change its value). LOAD gives new version
for its first argument. STORE doesn’t generate new version
of variables. Define new variablez′0 for evicted address from
the second instruction (this variable won’t be included to the
solution):

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables for initial contents of cache:{α, β, γ} (its

count equals to cache associativity).
So the task is looking for values ofx0, y0, z0, u0, α, β, γ

according to test template. This task has more than 1 solutions.
But any solution is enough.

The first constraints describe cache hits and misses as
belong to the current state of cache:

y0 ∈ {α, β, γ},
z0 /∈ {α, β, γ},
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0} ∪ {z0},
α, β, γ – different
Define constraintlru(z′0). Candidates of the last access

to the this address arey0, γ, β, α. The first and the second
candidates aren’t suitable because constraintL \ {z′0} = X is
false because of different compared sets capacity. Remainder
candidates give the following disjunction:

89

z′0 = β ∧ {α, β, γ} \ {z′0} = {γ, y0}
∨
z′0 = α ∧ {α, β, γ} \ {z′0} = {β, γ, y0}
Simplify it:
z′0 = β ∧ {α, γ} = {γ, y0}
∨
z′0 = α ∧ {β, γ} = {β, γ, y0}
Further simplify:
z′0 = β ∧ y0 = α
∨
z′0 = α ∧ y0 ∈ {β, γ}
Consider the first clause with the rest of constraints (variable

z′0 isn’t needed in solution):
y0 = α
z0 /∈ {α, β, γ},
α, β, γ – different
Note thatx0 andu0 don’t take part in constraints. So their

values may be arbitrary.
Lets bit length of addresses is 8. So domain of all variable-

addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α = y0 = x0 = u0 = 0
β = 1
γ = 2
z0 = 3
Verify test template execution with computed initial cache

state and register values:
initial cache state is [2, 1, 0]
LOAD x, 0 - Hit, because 0∈ {2, 1, 0}; according to LRU

the next cache state is [0, 2, 1]
STORE 0, 3 - Miss, because 3/∈ {0, 2, 1}; according to

LRU 3 goes to cache, 1 is evicted from cache, the next cache
state is [3, 0, 2]

LOAD z, 0 - Hit, because 0∈ {3, 0, 2}
All instructions from test template were executed according

to given test situations.

IV. T EST DATA GENERATION FOR DIRECT MAPPED CACHE

x

y

z

x

y

z

R(y)

R(z)

R(x)

Fig. 3. Direct mapped cache

Whole memory is divided into non-intersecting areas (re-
gions). Direct mapped cache consists of 1 cell for each region.

Each cache cell may store data only from its region. Access
to memory starts from access to cache.Cache hit means
successful match cached address with required address in its
region.Cache missmeans unsuccessful match cached address
with required address in its region. In this case data from cache
replaced by data from memory by required address.

Proposed algorithm generates constraints on the following
variables:

1) α1, α2, α3, ... are addresses of the initial cache state
(their count is regions’ count);

2) hits-addresses (addresses of instructions from test tem-
plates with cache hit test situation);

3) misses-addresses (addresses of instructions from test
templates with cache miss test situation);

4) evicted addresses (evicted addresses of instructions from
test templates with cache miss test situation);

5) L0, L1, ... – cache states
Define functionR(y) which for addressy returns a set of

all cells from the same region as region ofy. R satisfies the
following properties:
∀x (x ∈ R(x))
∀x ∀y (x = y → R(x) = R(y))
∀x ∀y (R(x) = R(y) ↔ x ∈ R(y))
∀x ∀y (R(x) = R(y) ↔ y ∈ R(x))
∀x ∀y (x /∈ R(y) → x 6= y)
Proposed algorithm generates constraints for each instruc-

tion by the following way (N means number of regions):
1) ”initial constraints” are generated one time for

each template : |{α1, α2, ..., αN}| = N (other
words, numbers α1, α2, ..., αN are different),
|{R(α1), R(α2), ..., R(αN)}| = N (other words,
all setsR(α1), R(α2), ..., R(αN) are different);

2) ”hits-constraints” are generated for each instruction with
cache hit:x ∈ L, wherex means address from instruc-
tion, L means a current variable-state of cache memory;

3) ”miss-constraints” are generated for each instruction
with cache miss (x means evicting address,y means
evicted address,L means a current variable-state of
cache):y ∈ L, x /∈ L,L′ = L∪{x}\{y}, R(y) = R(x),
L′ became the current variable-cache state for the next
instruction.

Constraints for direct mapped cache differ from constraints
for fully associative cache by evicted address constraints only.

Consider test data generation for the already known test
template. Lets memory divided into 3 regions depended on
remainder from division address to 3 (i.e.R(x) = R(y) ⇔
3|(x− y)).

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique names for variables in test template (each new

variable shouldn’t change its value). LOAD gives new version
for its first argument. STORE doesn’t generate new version
of variables. Define new variablez′0 for evicted address from
the second instruction (this variable won’t be included to the
solution):

90

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables of initial cache state:{α, β, γ} (one for

each region).
So the task is looking for values ofx0, y0, z0, u0, α, β, γ

according to test template. This task has more than 1 solutions.
But any solution is enough.

The first constraints describe cache hits and misses as
belong to the current state of cache:

y0 ∈ {α, β, γ},
z0 /∈ {α, β, γ},
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0} ∪ {z0},
R(z0) = R(z′0),
α, β, γ – different
R(α), R(β), R(γ) – different
Simplify this constraints set:
z′0 ∈ {α, β, γ},
y0 ∈ {α, β, γ} \ {z′0},
z0 /∈ {α, β, γ},
3|(z0 − z′0),
α, β, γ – different
R(α), R(β), R(γ) – different
Note thatx0 andu0 don’t take part in constraints. So their

values may be arbitrary.
Lets bit length of addresses is 8. So domain of all variable-

addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α = x0 = u0 = 0
β = y0 = 1
γ = 2
z0 = 3
Verify test template execution with generated initial cache

state and register values:
initial cache state isL = [(R = 0) 7→ 0, (R = 1) 7→

1, (R = 2) 7→ 2]
LOAD x, 1 - Hit, becauseR(1) = L[R = (1 mod 3)]
STORE 0, 3 - Miss, becauseR(3) 6= L[R = (3 mod 3)], 1

is evicted from cache, the next state of cache isL = [(R =
0) 7→ 0, (R = 1) 7→ 3, (R = 2) 7→ 2]

LOAD z, 0 - Hit, becauseR(0) = L[R = (0 mod 3)]
All instructions from test template were executed according

to given test situations.

V. TEST DATA GENERATION FOR COMMON CACHE

This section consists of illustration only the constraints for
common cache.

Define functionR(x) as the same as for direct mapped
cache.

Consider known test template for memory consisted of 3
regions (R(x) = R(y) ↔ 3|(x− y)) of 2-associative cache:

LOAD x, y @ Hit
STORE u, z @ Miss
LOAD z, y @ Hit
Define unique variables (andz′0 for evicted address):

x

y

z

x

y

z

R(y)

R(z)

R(x)

y1

z1

x1

Fig. 4. Common cache

LOAD x1, y0 @ Hit
STOREu0, z0 @ Miss→ z′0
LOAD z1, y0 @ Hit
Define variables for initial cache state:α1, α2 for the first

region,β1, β2 for the second region,γ1, γ2 for the third region.
Constraints set is the following:

y0 ∈ {α1, α2, β1, β2, γ1, γ2},
z′0 ∈ {α1, α2, β1, β2, γ1, γ2},
z0 /∈ {α1, α2, β1, β2, γ1, γ2} ∩R(z′0),
y0 ∈ {α1, α2, β1, β2, γ1, γ2} ∪ {z0} \ {z′0},
R(z0) = R(z′0),
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different
From disjunction forlru(z′0) (one clause is enough):
z′0 = γ2∧({α1, α2, β1, β2, γ1, γ2}\{z′0})∩R(z′0) = {y0}∩

R(z′0)
∨
...
Simplify:
y0 ∈ {α1, ..., γ2},
z′0 ∈ {α1, ..., γ2},
z0 /∈ {α1, ..., γ2} ∩R(z′0),
y0 ∈ {α1, ..., γ2, z0} \ {z′0},
R(z0) = R(z′0),
z′0 = γ2,
{γ1} = {y0} ∩R(γ2)
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different
Further simplify:
z′0 = γ2,
y0 = γ1,
z0 /∈ {γ1, γ2},
R(z0) = R(γ2),
α1, α2, β1, β2, γ1, γ2 – different,
R(α1) = R(α2),
R(β1) = R(β2),
R(γ1) = R(γ2),
R(α1), R(β1), R(γ1) – different

91

Lets bit length of addresses is 8. So domain of all variable-
addresses is from 0 to 255. Satisfying constraints variables can
get the following values (these values are not unique):

α1 = 0, α2 = 3,
β1 = 1, β2 = 4,
γ1 = 2, γ2 = 5,
x0 = 0, y0 = 2, z0 = 7, u0 = 0 .
Special algorithms can be used for solving constraints set.

These algorithms can take into account the following aspects:
• constraints can be solved symbolically;
• all sets of addresses are finite and subset of all initial

cache state addresses union with evicting addresses.

VI. CONCLUSION

The paper devoted to the test data generation problem. Test
data contains initial contents of cache-memory. The paper has
proposed the constraint-based algorithm. Constraints consists
of finite sets variables and sets operations. Test data generation
for fully associative cache and direct mapped cache has been
considered in details. Proposed algorithm is used in projects
of testing MIPS-compatible microprocessors. ECLiPSe is used
as constraint solver.

REFERENCES

[1] A.S. Kamkin,Test program generation for microprocessors// Proceedings
of ISP RAS. Vol. 14(2). P.23-64. 2008.

[2] K. Takayama, F. Fallah,A new functional test program generation
methodology// Proceedings 2001 IEEE International Conference on
Computer Design: VLSI in Computers and Processors. P.7681. 2001.

[3] F. Ferrandi, D. Sciuto, M. Beardo, F. Bruschi,An approach to functional
testing of vliw architectures// Proceedings of the IEEE International High-
Level Validation and Test Workshop (HLDVT00). P.2933. 2000.

[4] Y. Lichtenstein, M. Rimon, M. Vinov, M. Behm, J. Ludden,Industrial
experience with test generation languages for processor verification//
Proceedings of the 41st Design Automation Conference (DAC04). 2004.

92

Model-based Technology of Automated Performance Testing

Prof. Dr. B. Pozin
ZAO “EC-leasing”

bpozin@ec-leasing.ru

R. Giniyatullin
ZAO “EC-leasing”

renat@ec-leasing.ru

Dr. I. Galakhov
ZAO “EC-leasing”

igalakhov@ec-leasing.ru

D. Vostrikov

ZAO “EC-leasing”
dvostrikov@ec-leasing.ru

Abstract

The Technology of the scaled-down experiment for

evaluation of the performance characteristics of wide
class of systems for business-process automation has
been developed. The Technology objectives are to
provide adequacy of the results of particular
experiment and its components: problem definition,
source data and analysis of results of the experiment.
The Technology is based on the set of metamodels that
define main components of the experiments.
Technology provides technique for adaptation of
metamodels to the parameters of any particular
automated performance testing experiment.

1. Introduction

The major works in the area of Model-based testing
(MBT) are mainly aimed at the use of various statistics
programs to generate tests data or to estimate tests
results at automated functional testing. Detailed
analysis of these works as well as creation and usage
methods at MBT is given in the papers of Whittaker
J.A. [5], Petrenko А. [6] and others. As for functional
testing, the use of models, reflecting tested programs
statistics properties (structure, data flow) is highly
effective. Model dimension can reach up to hundreds
and even thousands of vertexes.

In this work the model-based approach is treated in
the connection with information system (IS)
performance testing. Within its framework application
software testing in IS is carried out in functioning
environment, that is, in the environment, including
DBMS, data base, system software, hardware.

Few works are devoted to model-based
performance testing methods. Model-based methods
are most frequently applied in case a large number of
virtual clients generation is involved in the course of

web-systems and servers system testing in order to
define their workload capacity [7]. Service state
change structure, represented by web-system taking
into account service realization probabilities and their
sequence, is being modeled. There are also papers on
model creation for networks analysis at their
performance testing. [8]. Such a universal model, for
example, allows to unite different testing tools into
unified technology on the basis of several types, so
called Universal Probe (UP), that define architecture,
system element interaction policy and resources
constraints.

However, as it is seen from practical testing of
critical IS, the above said models do not cover
performance testing planning and evaluating adequacy
of results.

IS performance testing in the operational process is
mainly aimed at evaluation of operational
characteristics of information system (IS, in the
composition of which the application software) not at
application software functioning accuracy (as it is
assumed, application software functional testing has
been performed). More often than not, these
characteristics are called “performance characteristics”,
or non-functional requirements, that is, productivity,
responsiveness at functional tasks solution and others.

The main complexity at performance testing is
source data and IS performance test results adequacy
provision according to the customer understanding.
The problem is, that the customer is not always able to
define objectives of performance testing and to
comprehend in advance what result can and must be
drawn at the end of testing before it takes place. Thus,
planning and execution of performance experiment can
last up to two or three months. Inaccurate problem
definition can cause repeated performance
experiments, the cost of each being rather high.

93

For performance testing quality improvement and
cost reduction it is necessary to introduce automated
performance testing complex technology, that:

− is comprehensible both for the customer and for
the contractor,

− provides documenting opportunities
− of all testing scenarios;
− of structure and workload composition

suppositions;
− of the tested system composition and structure

as a tested object;
− IS performance characteristics measurement

principles and methods at the system points of
collection of performance characteristics.

The aim of this work is to develop performance
testing technology for wide class of systems for
business process automation, including banking
systems. Business process automation systems are
characterized by requirements on business processes
implementation within due time frame. Technical
specifications (orders) on these systems contain a set of
non-functional requirements, such as productivity,
concurrent end users number, restrictions on the
holding time of transactions in the system, or
responsiveness, etc., that is, explicitly set expected
performance properties (performance characteristics)
of information system.

In the Second Section of this paper there is
suggested IS performance testing type classification
and IS main performance characteristics interpretation.

Considering the fact, that performance experiments
are rather typical, Section Three proposes four
interrelated metamodels, comprising basic concepts
and their application beforehand known instructions
description (model parameters, basic concepts
interrelation schemes in models).

Section Four contains proposed automated
performance testing technology description with the
use of proposed models and IBM Rational tools as well
as tools, invented by the authors. It is shown how to
create particular models of tested system with the use
of basic concepts and instructions at performance
testing planning: requirement model, workload model,
system and measurement models, which define all the
source data for automated performance testing and
expected results. The models allow to automate tool
setting of testing automation to the particular
performance experiment parameters.

In conclusion, there are outlined major practical
results, obtained experimentally in the course of long-
term use of banking system performance testing
technology.

2. Performance test types and evaluated
characteristics

An important issue concerning performance testing
is to develop common understanding of a problem by
both the customer and the contractor (tester). Often,
achievement of such understanding turns into a long
and tedious process, as the elaboration of common
concept base for both sides is required.

Even if a single customer needs the performance
testing, the objectives of different experiments might
differ as there arise different issues related to
performance. Typical problems might be at least as
follows:

− Is the hardware in use powerful enough to ensure
information system specified productivity over
the nearest period (1-2 years) at given workload
annual growth?

− Can the information system, which provides the
specified throughput rate, at the same time,
provide the response time within certain limits
under workload increase conditions?

− Are there any signs of degradation of information
system after software modification?

− And some other.
In the course of numerous performance

experiments execution there is revealed the possibility
to typify a number of performance testing problem
definitions for the «typical» tasks.

This approach is based on three key elements:
− Performance testing types classification;
− Information system performance characteristics

classification;
− The principle of non-destructive control in the

course of the performance testing arrangement.

2.1. Testing types

Depending on the performance testing objectives,
the following types of performance testing can be
distinguished:

− Evaluation – performance characteristics
evaluation in a single performance experiment;

− Analytical – detection of dependencies (e.g.,
productivity on computing resources) in a series
of performance experiments;

− Configuration – performance characteristics set
up and optimization of an information system or
its components;

− Regression – multiple periodic performance
testing under constant conditions aiming at
degradation signs detection of the tested system.

These types of tests are usually carried out as
scaled-down experiment. Each type of testing has
special features in planning (single experiment, a series

94

of experiments, the need to store experiment results for
historical data statistics processing of the performed
experiments). At that the scheme of a single
experiment is stable enough for assessing each type of
information system performance characteristics.

2.2. Performance characteristics classification

Elaboration of productivity measured
characteristics list plays key role for performance
experiment planning, since the conclusions on
experiment results are made on the basis of these
characteristics values.

The main performance characteristics are
responsiveness, productivity and utilization (see
table 1).

They accordingly are divided into several
calculated (or directly measured) measures; the values
of each can be calculated on the basis of directly
measured values. Their structure and interrelation
under calculation may depend on system engineering
platform and the structure of the tested system.

Table 1. Performance characteristics

Performance
Characteristics Calculated measures

Average response time
Average waiting time

Responsiveness

Average service time
Throughput rate Productivity
Bandwidth capacity
Utilization factor Utilization
Relative capacity

2.2.1. Responsiveness. Responsiveness is important
for system operating in real time, i.e. for systems
requiring restrictions implementation within the period
of certain tasks or all of the functional tasks solution.
In this case information system operational
characteristics can be the following: system response
time to the user query or problem solution waiting time
(for example, the problem on waiting time reduction of
business transactions execution can be solved).

The responsiveness characteristics are defined as
the time between input data entering and output data
acquisition. Responsiveness can be measured both
from the point of view of end-user and of computer
system. Both business transaction and physical
(technical) transaction are subject to measurement.
A transaction is a business unit of work implemented
to solve a problem for the business. For example, a
banking transaction may consist of a double entry
transaction payment; thereby the customer is interested

in service time not only of the single input, but the
entire banking operation. The implementation of
banking transactions can be performed by several
physical transactions, for example, accesses
(references) to the database.

Responsiveness is estimated or calculated on basis
of the following performance measures:

− Transaction response time;
− Transaction service time;
− Transaction waiting time.
Response time for a transaction is the time between

the transactions initiation and the final execution of the
last transaction step.

Response time (Tr) in general is made of: service
time (the time during which the actual work is done)
(Ts) and waiting time (the waiting time for resource)
(Tw):

TwTsTr += .
Responsiveness measures depend on the type of

system and the structure of its entry and exit points.

2.2.2. Productivity. For a large number of systems
their integral capacity is important and measured as the
number of business transactions processed by the
system in a time unit (i.e.., productivity).

In productivity estimation, directly measured or
calculated values of the following performance
measures are typically used:

− Throughput rate (V);
− Bandwidth capacity (or absolute capacity) (C).
Throughput rate (V) is a measurement of the

number of completed transactions per specified time:

T
NV i

i = , where

ni ,1= - sequence number of the time period;

iN - number of completed transactions;
T - period of time.
Bandwidth capacity (C) – the maximum number of

completed transactions per time unit (maximum
throughput rate):

)V,...,max(n1VC = .
Productivity characteristics can be used to estimate

the system as a whole as well as its parts.

2.2.3. Utilization. Specifications of utilization are used
to define the extent the tested system resources are
used at the given workload.

The following performance measures relate to the
utilization:

− Utilization factor (resource utilization);
− Relative capacity.
Resource utilization measures how much a resource

delivers service in a timely basis. The general formula
is:

95

∑∑
==

×=
n

i
Sii

m

j jj

t
T

U
11

1 ρ
ρ

, where

Sit - service time of i-transaction
n - the number of serviced transactions;
m - the set of measurement intervals;

jρ - resources in the j-measurement interval;

iρ - resources for i-transaction;
T - timely basis.
Resource utilization characteristics and their values

depend on the hardware used in the system and its
constituent resources: CPU, RAM, external drives, I/O
channels, etc.

3. Models as properties definition means of
performance experiment artifacts

Ensuring the adequacy of the problem definition,
the source data and performance results testing require
understanding of the key aspects of planned
experiment between the customer and the contractor.
In a rapidly growing business such understanding
should be achieved as soon as possible.

The key aspects of the planned experiments are:
− The problem definition, determining the

experiment objective, is to be linked with the
system requirements;

− Source data, determining the object of testing and
required workload nature;

− Set of required characteristics, which determine
test results basis, is to be composed before the
experiment is started.

Upon the subject area formalization (for system
class) there are formed a few metanotions frames.
These metanotions are the metamodels, defining
possible concepts, that could be significant with the
subsequent performance testing and evaluating the
results adequacy.

Source data collection methods to prepare
performance experiment, ensuring its adequacy to
practical system functioning at the expected workload,
are to be defined in the metamodels.

These source data are:
− Information on the performance testing form

(assessment, analysis, configuration, regression);
− Information on measured performance

characteristics;
− Information on the system structure in the terms

of the load feed ways and measurements
methods;

− Information on the planned workload structure.
Four metamodels were elaborated, that accomplish

selection of required features, performance
characteristics and measured values, which adequately

characterize tested system functioning process at the
performance experiment problem definition:

− Requirement metamodel - characterizes the tested
system type and non-functional requirements
composition (business rules and technical
requirements) of tested system;

− System metamodel - defines the system structure
as a queuing systems network (including element
composition of “resource” type);

− Workload metamodel - defines system service
request number and types as well as service
request distribution law during the time of
experiment, the service request system entrance
rules, service request system entry points (logic
level);

− Measurement metamodel – defines composition
of characteristics and values collection, the
system requests entry points, data collection
method and transformation algorithms as well as
results evaluation criteria.

In the course of new performance experiment
planning using metamodel concepts, models of
requirements, system, workload and measurements are
shaped by the means of metaconcepts choice and their
values measurement, taking into account tested IS
characteristics and performance experiment objectives.
Making use of metamodels in the course of new
performance experiment planning ensures projected
models completeness and integrity.

The above said models may vary depending on the
types of performance testing and systems.

Metamodels provide a unified approach to the
object setting for both the customer and the contractor.
They offer such advantages as quick understanding and
experiment objectives agreement, quick elaboration of
ways to achieve the above mentioned objectives and
common comprehension of ways to achieve them.
Metamodels are the link between informal
requirements of customers with formal definition of the
performance experiment in the form of models. This
enables to significantly simplify the performance
experiment planning and execution automation.

3.1. Requirement metamodel

Requirement metamodel encloses requirements
formalization rules to system operational
characteristics. Such requirements do not contain
information on the functions performed by the system
and, therefore, they are called non-functional.

Non-functional requirements may be restrictions,
defined by the organization business rules, according
to which the system operates. Restrictions can specify
the time limits of various processes implementation in
the system. System capacities on compliance with the

96

time restrictions are directly linked with system
throughput rate.

Depending on the specified non-functional
requirements, performance experiment objectives are
composed and measured characteristics are selected.

Requirement metamodel is intended to define
system non-functional requirements. Requirement
metamodel can be presented as follows:

TBR ∪= , where
R - the set of requirements for the system;
B - the set of business rules;
T - the set of technical requirements.
Business rules include or relate to technological

processes, corporate regulations, policies, standards,
legislative acts, intra-corporate initiatives, accounting
practices, computing algorithms, etc.

A technical requirement pertains to the technical
aspects that one’s system is to perform, such as
performance-related issues, reliability issues, and
availability issues.

Requirement metamodel specifies definition rules
of verbal requirement model, containing system non-
functional requirements.

A tested system particular requirement model is
actually formed according to the metamodel upon the
choice of specific concept values or rules.

3.2. System metamodel

The system metamodel enables to define the system
structure as queuing systems network, consisting of the
«resource» - type elements and links between them.

The system metamodel holds a complicated
structure and determines the object of testing formation
rules, which is defined up to the level of the devices
involved in the testing and software (components,
services) with certain performance characteristics.

The metamodel presupposes that a certain class of
systems can be represented in the form of certain
package of some concepts and their interrelation rules.

A particular tested system model is projected
according to metamodel upon the choice of specific
concept values and rules.

The system metamodel can be represented as
follows:

{ }US KKSpU ,},{)},({=σ , where
)}({ pU - the set of devices of the object of testing

with the performance characteristics;
}{S - the set of bundled software (components,

services);
SK - bundled software communication matrix, the

rows of which are the sources, the columns are the
receivers, and the cells indicate links availability
between the latter two;

UK - software systems and devices link matrix,
which characterizes the number of resources involved
in the device for software system. The matrix rows are
software systems, the columns are the computer
systems. The matrix elements are the dedicated
resources vectors.

Load feed and characteristics collection points tend
to be any communications in the matrices SK and UK ,
which are particularly defined in the workload and
measurement models.

The tested object definition rules are rather
complicated. They are divided into software definition
and hardware, as well as communications between
them.

System specification level as tested object is
determined by the experiment objectives. It can be
either a single software system (the system as a whole),
or a set of software packages or applications
(modules).

The software definition is based on the principle,
that the tested system is considered as a black box with
multiple inputs and outputs. Depending on the needs,
the system can be decomposed into software systems,
which are also regarded as a black box with multiple
inputs and outputs, and that can communicate to each
other. Particular blocks communication can be defined
both as load feed points and characteristics collection
points.

Hardware definition is to include hardware static
characteristics, such as number of processors, memory,
and dynamic characteristics, for instance, resources
dynamic reallocation rules. These rules determine
sharing opportunities of certain resources, the priorities
of the resources usage by some software system and
weighting factor of corresponding resources allocations
to software systems.

3.3. Workload metamodel

The workload metamodel determines the input
workload flow structure.

The workload metamodel can be represented as
follows:

{ }IMFL ,,= , where
F - the functions set, defining the input workload

distribution;
M - the multi-dimensional matrix, dimensions of

which may be workload types, such as workload flow
sources, flow names and types, and the elements of
which are their quantities;

I - the interfaces set for the workload input (as a
link to the system model).

The workload flow is structured as per its dynamic
and static properties.

97

Dynamic properties of this workload imply their
distribution laws in the course of time. The distribution
laws can be:

− Deterministic;
− Probabilistic.
Deterministic workload distribution laws in the

course of time imply scheduled given workload
entrance into the system. In extreme case the schedule
can include the arrival time of each request into the
system. Probabilistic distribution laws of workload in
the course of time imply indication of normal, uniform,
exponential, or other law distribution.

The workload flow quantitative composition
determines its static properties. The workload flow size
can be structured as per some criteria, including:

− workload type;
− sender type.
For the considered system class there are three

basic workload types, namely:
− traffic;
− messages;
− events.
The workload as traffic is created by users in a

system built on client-server architecture. The most
common types of traffic are HTTP-and SQL-traffic.
The actions of users at the automated workplace cause
the queries formation (e.g., SQL-queries) to the server.
In every system there are different types of automated
workplaces - requests senders.

Another workload type is the workload in the form
of messages. Messages are used as information
exchange units between parts of bigger systems.
Depending on the destination, messages can be divided
into several types. Messages containing documents for
processing, in their turn, can be divided into types
according to their formats. In addition, messages can
be:

− single (containing a single document);
− package (containing a set of documents).
Depending on the sender, each message can be

encoded and signed with one or more electronic digital
signatures.

There is workload created by the tested system as
the result of different events. The latter include the
implementation of certain regulatory procedures
executed by either a schedule or an operator.

Particular tested system workload model is shaped
according to the metamodel at the choice of concepts
specific values or specific rules. The workload model
is defined at the planning stage of the experiment.

3.4. Measurement metamodel

The measurement metamodel is intended to unify
the definition of:

− Ways to get the measured values in the process of
the information system performance testing;

− Fundamental opportunities of measurement
process statement;

− Typical evaluation methods of measures and
characteristics;

− General tools properties to analyze their use
opportunities for measurements automation.

The measurement metamodel can be represented as
follows:

{ }ωμτ ,,,|},{| RU=Δ , where
|}{|U - the measured quantities list for each type

device of information system;
τ - measurement frequency and off-duty factor;
μ - the set of estimates and their interrelation with

the measured values;
R - estimates obtaining standard rules and

algorithms;
ω - standard criteria of obtained results evaluation.
Specific concept values or specific rules choice is

carried out at the stage of performance experiment
planning, that is, actually specific measurement model
is shaped according to the metamodel.

3.5. Models Interrelations

The presented models are interrelated and closely
interact with each other (see figure 1). All of the four
models are to be defined for every experiment.

Requirement
Model

Workload
Model

System
Model

Measurement
Model

Figure 1. Models interrelation

The requirement model is the initiating model.
After testing objectives formation, the following

can be defined:
− Characteristics and indices to be defined and

criteria they are to comply with - a requirement
model;

− Object of testing: the part of the system subject to
test - a system model;

− System requirements workflows from a
controlled process - a workload model;

− Parameters to be measured and points of
measurement to obtain required results - a
measurement model.

Some measurement model characteristics and
workload model can be defined only after the

98

completion of the system model definition. These
characteristics, for example, include a definition of the
load feed points and the characteristics collection
points.

4. Model-based performance testing
technology

The Model-based performance testing technology
consists of the following stages:

− Testing objectives definition;
− Program and testing methods development;
− Preparation for testing;
− Load feed;
− Data collection;
− Results interpretation and analysis.
Figure 2 shows the technology of performance

testing, highlighting automated operations.

Data collection

Results interpretation and analysis

Load feed

Preparation for testing

Program and testing methods development

Testing objectives definitions

Constraints

Information
System

Test data
generator

Testing
planning tools

Load feed
tools

Measurement
tools

Database

Analysis
procedures

Test data
database

Stand
check-up

tools

 : Requirement Model

 : Workload Model : Measurement Model : System Model

 : Testing program and methods

 : Stand

 : Test Data

 : Report

 : Requirement Metamodel

Requirements
management

tools

 : Measurement Metamodel : System Metamodel : Workload Metamodel

Data
warehouse

Processing
procedures

Figure 2. Model-based performance testing

technology (automated operations are
highlighted)

At the “Testing objectives definition” Stage the
requirement formalization rules for system
performance characteristics are defined and the

requirement model is projected with the help of the
requirement metamodel.

Performance testing objectives and performance
testing scenarios are agreed with the customer making
use of the requirement model.

At the “Program and testing method development”
Stage scenarios definitions, performance testing
objectives and tested performance characteristics
requirements are added into “Testing program and
methods” Document from the requirement model.

At the above said stage the workload metamodel is
used to determine static and dynamic possible structure
as well as workload flow composition. The workload
model is shaped on the agreement basis of the
workload flow composition and scripts with the
customer making use of the workload metamodel.

System metamodel enables to define the system
structure in the form of the system model as queuing
system network. System model contains performance
testing stand requirements, that are to be agreed with
the customer.

The set of the required tested characteristics and
calculated indices, measured in the course of the
experiment, performance methods and testing result
evaluation criteria are documented in the measurement
model on the basis of the measurement metamodel.

At the “Preparation for testing” Stage the setting of
testing planning tools and of testing data generator is
performed on the basis of the workload model.

Test data are generated automatically in accordance
with the qualitative workload type composition,
specified in the workload model. Generated test data
are stored into the test data database.

The stand check-up tools and measurement
automation tools setting is performed according to the
system model in the unit of data collection points and
data collection devices involved. The setting of
measurement automation tools in the unit of collected
characteristics list is performed according to the
measurement model.

At the “Load feed” Stage the automation tools
perform load feed procedures at entrance points,
specified for each workload type in the system model.
The workload is extracted from the test data database,
provided in advance, and is fed automatically as per
the schedule (the law of distribution in the course of
time), specified for each workload type in the workload
model.

At the “Data collection” Stage the automated
collection of the tested characteristics values is
performed. The measurement devices get the values
collection points from the system model, and measured
characteristics composition – from the measurement
model.

At the “Result interpretation and analysis” Stage all
of the four models are used by the automation tools.

99

The requirement model is used for the experiment
result compliance to the system requirements. The
workload model and the system model provide the
shaping of the report on the experiment performance
conditions. The experiment result comparison to the
evaluation criteria is carried out in the automated mode
on the basis of the measurement model.

A more detailed description of each stage is given
below.

4.1. Testing objectives definition

The testing objectives are defined on the customer
need basis for evaluation or predicting of IS
operational characteristics and corresponding non-
functional requirements.

The customer is not always able to define the
testing objectives adequately. In the process of the
main objective agreement and upon the program and
testing methods development, some secondary testing
objectives and restrictions can be detected, that are also
to be agreed. The developed requirement metamodel
can help properly inquire the customer at an early stage
and adequately define the testing objectives. The above
mentioned reduces the number of the objectives
agreement alterations as well as the number of
objectives setting together with the summarized time
allocated for determination of main and secondary
performance testing objectives.

4.1.1. Requirement model definition. At the stage of
testing objectives defining using requirement
metamodel, the tested object is analyzed and the
primary requirement model is shaped, which is later
discussed with the customer, edited and approved.

The requirement metamodel represents a verbal
definition of non-functional requirements. These
requirements are grouped in conformity with the types
and objects, to be applied to. This model also contains
criteria for evaluation of characteristics and calculated
indices obtained as the result of performance testing.

The IBM Rational RequisitePro tool is used for the
requirement model shaping automation.

4.2. Program and testing methods development

This is one of the most important ant difficult
stages of performance testing. At this stage the system
model, workload model and measurement model are
developed on the basis of the corresponding
metamodels.

The three models are developed simultaneously and
are closely connected with each other. For example,
the load feed interfaces definition and characteristics
collection points definition are possible only after the
system model is defined.

Upon completion of this stage all the approved
models are included in the document “Testing program
and methods” that represents the plan of performance
testing and is approved by the customer.

4.2.1. System model development. At the stage of the
program and methods development, according to the
objectives set, verbal and graphical models of the
system are developed, which is later discussed with the
customer, edited and approved.

System model represents the definition of the tested
object, which includes software and hardware, their
connections and allocated resources (storage, processor
etc.).

Figure 3 shows an example of system model in the
form of a graphical scheme of software and computing
systems interrelation.

Matrices SK and UK for the presented scheme
look as follows:

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01000
10110
01010
01101
00010

SK
;

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

4

4

3

2

1

000
000

000
000
000

p
p

p
p

p

KU

, where

ip - is the vector of performance characteristics,
that defines the number of resources allocated in a
computer system for a certain software system.

U1(p1)

U4(p4)

U3(p3)

U2(p2)

S2

S3

S4 S5

S1
(Client/TAS)

Figure 3. An example of a system model in the

form of a graphical scheme

4.2.2. Workload model development. At the program
and methods development stage the workload model is
developed according to the set objectives, which is
later discussed with the customer, edited and approved.

100

The IS workload values (extreme, as a rule), expected
by the customer, and set of workload sources, which is
to be emulated during the tests, are to be considered in
the model. In fact, the system workload scenario
corresponding to performance testing objectives is
developed in co-operation with the customer. The
workload model with all the workload parameters
defined is developed as a result of the scenario detailed
study.

The workload model represents the definition of
test data and their entrance rules into the system. In
fact, source data for tool-generated workload are
formed according to the workload model.

4.2.3. Measurement model development. At the stage
of the program and methods development according to
the set objectives, verbal measurement model is
developed, which is later discussed with the customer,
edited and approved.

The measurement model represents the definition
of the collected characteristics, methods of their
collection and interpretation.

Methods and means of the measured parameters
collecting values are defined in the measurement
model. It is very convenient to use the measurement
metamodel in which measurements standard
mechanisms are defined, usually supported by the tools
available in the market. Values collection methods of
measured parameters can strongly differ depending on
the set testing objectives.

Generally these methods can be subdivided into
methods of non-destructive control, methods of
destructive control and mixed methods.

In case of the non-destructive control system tools
of information system operational environment and
automated testing tools are used for collection of the
measured parameters values. In case of the destructive
control some part of measuring tools is integrated into
applied software of the information system. In case of
the mixed control integration of measuring tools is
possible both into the system tools and into applied
software.

At best measurement tools are not to influence the
tested system. In cases when it is necessary to take
advantage of the measurement tools, which influence
tested system (set interruptions and trigger events)
separate tests are performed in order to evaluate a level
of measurement tools influence on the tested object
performance. The obtained values of influence level
are taken into account further at interpretation of
results.

4.3. Preparation for testing

Preliminary accomplishment of the following
operations is required for carrying out of the
performance testing:

− Preparation of stand;
− Preparation of test data;
− Preparation of resources for the load feeding;
− Preparation of the measurement tools.
Preparation of the test stand is carried out according

to the approved system model and includes
organization of technical equipment and software and
ensuring of additional restrictions performance, for
example, time synchronization on all installations of
the tested object, etc.

Checking of the test stand based on the system
model is automated. Errors during stand preparation
can lead to the failure of the performance experiment,
as dysfunction of the stand parts can be detected after
the beginning of the experiment. Moreover, incorrect
customizations of the stand can distort the results of
performance testing that can lead to necessity of
repetition of the experiment. The existing formalized
system model has allowed automation of the stand
check, having reduced the time of such check. When
errors in configuration of the stand and its technical
equipment and software are detected, automated check
can be repeated many times at low labor input due to
the process automation.

Test data for the performance testing are prepared
according to the approved workload model. Test data
are either generated or are real data that meet the
characteristics according to the workload model used.

The planning of performance experiment and
generation of test data is automated on the basis of the
workload model. Planning time and quantitative
parameters of test data flow, as well as the load feed
script are defined in the course of testing. The
automation tool of performance experiment planning
allows entering appropriate input data on forthcoming
test into previously defined screen forms. On the basis
of this information the automated generation tool
prepares the test data. The automated preparation of the
test data provides their complete correspondence to a
current state of a tested system. Thus, it is guaranteed
that all test data are entered into the system and are
processed the same way as the real ones.

Workload feed interfaces (and appropriate tools)
are customized according to the system model.

By preparation of measurement tools according to
the measurement model, suppliers and receivers are
customized.

The result of the preliminary operations stage is the
test stand ready for testing (being in an initial state)
and test data ready for feed.

101

4.4. Load feed

At the stage of the load feed the prepared test data
are fed into the tested system according to the laws of
their allocation defined in the workload model.

The stage of the load feed is automated using
testing tools that can send different workload types in
accordance with the distribution laws. The workload in
the form of messages filed from a prepared base of test
data. The workload as traffic may be submitted in the
form of HTTP-, and SQL-traffic. The composition of
the traffic is generated on the basis of automated
analysis of queries code, which is sent by automated
workplaces of the tested system by execution of
different operations of any user. The workload as some
events is formed through emulation of the actions,
which the operator performs. The emulation is
executed thought testing tools.

4.5. Data Collection

The data collection is carried out by the tools of
measurement. The basic information on the values of
measured indices is automatically collected. This
information includes such indices as loading of CPU,
use of memory, time of incoming transaction into the
system, the system response time, etc. All of the data
are stored in the operational database for further
processing.

Depending on the methods of collection defined in
the measurement model, the data can be collected both
in the course of testing as they arrive, and after testing
performance. The first case is preferable because the
data collected in process of arrival can be used for the
control of testing process performance.

Data collecting lasts until the process of testing
meets the criteria of completion and moves to the next
stage, defined in the measurement model.

The data preprocessing also depends on the way of
processing defined in the measurement model and can
be fulfilled both in the process of the data arrival, and
after the experiment applied to the whole collection of
the gathered data.

4.6. Results interpretation and analysis

The obtained testing results are interpreted
according to the measurement model for further
analysis: metrics calculation and values evaluation of
the IS operating characteristics are carried out.

Based on the measurement model the multi-step
automated processing of raw data is performed. At
first, measurements on the basis of rules and
algorithms of the measurement model are formed.
Estimated measurements are stored in a data
warehouse for subsequent analysis. Based on the data

warehouse the analytical reports are produced
containing estimates of the values and criteria for
evaluation in accordance with the measurement model
and requirement model. Due to the presence of the
repository it is possible to analyze not only results of
the finished performance experiment, but also to
perform a comparative analysis of several regression
tests.

On completion of the results interpreting,
conclusions concerning the compliance of the IS to the
objectives are made, taking into account the
restrictions and criteria of the requirement model. The
test results in practice are drawn up in the form of the
protocol of performance testing.

5. Conclusion

The described technology has been applied for four
years. It was used for testing of some banking systems
built on different platforms: Windows, Linux, z/OS.
Up to forty applications and data bases functioned
simultaneously in a computing system in various
experiments on performance testing. The data base
maximum volume comprised 2.5 TB. Such
experiments, carried out at the customer site required a
lot of manual activity. The experiments ware
accompanied by the recording of the available
workload flows.

To carry out adequate testing to evaluate the IS
expected characteristics on the short-time basis was
technically impossible, as rather low man-hour rate
was involved (5-10 men/months).

The situation evaluation with the methods
employed was extremely tedious and in the majority of
cases was not performed. Systematical anticipatory
monitoring of performance characteristics degradation
was not carried out in the course of software
modification due to the high labour intensiveness of
the above mentioned works.

The volume of the experimental work over the last
4 years is as follows (Summary):

− Performance experiments amount: more than 40;
− The number of generated messages: more than 75

million;
− The average number of messages in a single

experiment: about 2 million.
Table 2 reflects the data on the average duration of

work in the past and now.

102

Table 2. Duration of work stages

Duration Stage
in the past now

Testing objectives
definition

2 week 1 week

Program and testing
methods development

5 weeks 2-3 days

Preparation for testing 3 weeks 2 day
Load feed
Data collection

is dependent on the
experiment plan

Results interpretation and
analysis

1 week 3-4 hours

The table shows that the developed technology and

tools of its automation make it possible to prepare and
conduct the performance testing within a reasonable
time frame for the customer. The number of repeated
experiments for obtaining the required characteristics
has decreased from 2-3 to 1 experiment.

During the testing of major systems, working on
expensive technology, it is important to minimize the
risks such as shift in time schedule of experiments
performance, repetition of experiments, etc.

Such risks occur, usually, due to the lack of
common understanding of the performance testing
objectives by the customer and the contractor, and
errors in planning of the experiment.

Applying the developed technology, it is possible to
reduce such risks, and lower labor intensity and
duration of performance testing, and hence to reduce
their cost.

The technology of automated performance testing
arrangement and performance is elaborated in this
work and it is intended for the IS class. The technology
is based on the use of the metamodels, that define
requirements to the performance experiment
performance as well as the tested object properties and
its workload. Within the framework of the technology
the models are created step-by-step on the basis of the
metamodels. The above said metamodels are
comprehensible for the customer and serve as
foundation to agree the experiment main parameters
and result evaluation criteria. The models assist in tools
setting, after which the experiment is performed
automatically under the guidance of the performance
testing tools. The technology covers all the planning
aspects, performance experiment execution and its
result analysis. The models use considerably (by
several times) reduces performance testing labour
intensiveness compared to the current practice and
enables to repeat the prepared experiment, for example,
in case of IS degradation control in its life cycle.

6. References

[1] Kostogryzov A., V.Panov, B.Pozin, V.Sablin.
Mathematical modeling of processes in systems life cycles in
compliance with standards requirements of ISO/IEC 15288
and ISO/IEC 12207, Spincose, Montreal, Canada, 2003.

[2] Kozlov А.N., Pozin B. A., Banking system complex load
testing technology. International Scientific and Practical
Conference «Business Processes Re-engineering on the
basis of modern knowledge management system IT», 2006
(RBP-SUZ-2006), Моscow, pp.130-131.

[3] ISO/IEC 1539 “Information technology – Software
engineering – Software measurement process”

[4] Prof. Flavio Oliveira. Performance Testing: an
Introduction FACIN-PUCRS, 2008.

[5] Ibrahim K.El-Far and James A.Whittaker. Model-based
Software Testing. Florida Institute of Technology. 2001.

[6] Alexandre Petrenko: Fault Model-Driven Test Derivation
from Finite State Models: Annotated Bibliography. MOVEP
2000.

[7] Kim G.-B. F method of generating massive virtual clients
and model-based performance test/ Fifth International
Conference on Quality Software, 2005, pp.250-254

[8] Changyou Xing, Guomin Zhang, Ming Chen. Research
on universal network performance testing model/
International Symposium on Communications and
Information Technologies, 2007, pp.780-784

[9] ГОСТ 34.602-89. ИНФОРМАЦИОННАЯ
ТЕХНОЛОГИЯ. Комплекс стандартов на
автоматизированные системы. Техническое задание на
создание автоматизированной системы

103

Inheritance of Automata Classes Using Dynamic Programming Languages
(using Ruby as an Example)

Kirill Timofeev
SPbSU IFMO

email: ktimofeev@dataart.com

Artyom Astafurov
SPbSU IFMO

email: astaff@dataart.com

Anatoly Shalyto
SPbSU IFMO

email: shalyto@mail.ifmo.ru

Abstract

This paper analyzed two libraries for
implementation of automata in dynamic languages.
The comparison has been made based on modifying
the functionality of the Restful-authentication plugin
for Ruby on Rails framework.

These libraries allow transferring a graphical
model into a source code. Moreover library developed
by the authors of the paper provide a method for
creation of state groups which reduces the number of
transitions required to implement the automaton in the
code. Also this library preserved the hierarchy of the
parent automata after inheritance. Using developed
library it is possible to perform a reverse engineering
and restore the original graphical model from the
source code.

1. Introduction

Year over year the dynamic programming languages
are used more often in software development. For
example, in 2008 the proportion of dynamic languages
to the languages with static type checking was 40% [1].
Dynamic languages allow for runtime program
extension by dynamic creation of new methods and
usage of macro scripts [2]. Ruby is a dynamic
programming language and is a part of top 10 most
popular languages in 2008 [1]. Also this language has
been used to develop a popular open source web-
application framework Ruby on Rails. One of the
features of Ruby on Rails is a flexible functionality
extension mechanism that uses plugins that can be
added into Ruby on Rails application. Restlful-
authentication [4] is one of such plugins that allows for
web application to support user registration
functionality. This plugin is used in 96% [5] of
applications developed on Ruby on Rails and is
implemented using Automata approach.

Restful-authentication plugin uses Acts as State
Machine [6] library that doesn’t allow preserve the
hierarchy of the parent automata when the automaton is
inherited and doesn’t have nested groups of states

concept. This leads to duplicated code, makes
debugging more complicated and also doesn’t allow an
isomorphic generation of the model based on code
when necessary. In paper [2] a method for inheritance
of automata classes has been proposed, also a State
Machine on Steroids library has been developed to
support the concept. This library uses the traditional
object-oriented paradigm applied to automata and
extended with some features of dynamic libraries,
which means that automata classes are created in
runtime. Using the method proposed by authors of
paper [2] will help to eliminate the drawbacks of the
Restful-authentication plugin implementation.

The goal of this research paper is to compare the
approaches to inheritance of automata classes
described above using Restful-authentication plugin
implementation as an example.

2. Graphical Notation Being Used

As a graphical model it is proposed to use state
diagram from UML 2 [7] extended with graphical
notation for inheritance of automata classes. This
notation has been proposed in [8], as in UML 2 it is
impossible to present inheritance of automata classes.
The sample use of an extended graphical notation is
shown on fig.1.

Fig. 1. Extended Graphical Notation

On this figure the automaton class SampleUser is
presented. This class is inherited from automaton class

104

BasicUser and contains the following changes to its
base class:
 added a new group deleted which is made of two

states: blocked and deleted. The initial state is
set to “blocked”;

 the group activation has been overridden. It now
contains captcha state which is marked as initial.
A transition from this group to the new group
deleted as been added;

 new state suspended has been added. There is a
transition from suspended state to activation
group.

3. Problem Statement

Let’s take Restful-authentication plugin and review
it in more details. Assume, for example, that in order to
register successfully the user has to take three steps:
1. Fill in the registration form on the website;
2. Receive an e-mail with activation code;
3. Confirm the registration by entering the activation

code into a special form on the website.
In case the user hasn’t registered in a given period

of time or entered the activation code incorrectly
several times, he will be blocked and won’t be able to
register on the site any longer. The site administrator
can block the users as well as delete from the system.

On fig. 2 using the extended graphical notation the
automaton for basic user registration (BasicUser) is
presented.

Fig. 2. Basic user registration

It consists of activation group and suspended
and deleted states. The nested group activation
contains three states: passive, active and pending,
the latter is marked as initial.

The AdvancedUser automaton (fig. 3) is inherited
from BasicUser automaton and has the following
functionality:
1. After entering the activation code the user should

perform two additional actions: recognize Captcha
(to avoid spam registrations) and submit user data
on a profile page. In order to do this, a nested
group active should be created.

2. The deletion of the user is performed in two
stages: on the first stage the user is blocked, but
his messages are still being stored in the system,
on the second stage both: the user and his data are
deleted. In order to do this a nested group
deleted should be created.

Fig. 3. Extended User Registration Automata

4. The Implementation of Inheritance
using Act as State Machine Library

Let’s look at the BasicUser class that represents a
basic user in Restful-authentication plugin using Acts
as State Machine library. It provides four methods:
 acts_as_state_machine :initial – sets the

initial state of the automata;
 state – creates the state. As optional parameters

it accepts lambda-functions [2]: the actions to be
done when entering or leaving the state;

 event – named transition;

105

 transitions – defines from/to states for
making a named transition. As an optional
parameter the method accepts a lambda-function
that can contain a guard condition.

This library doesn’t support nested groups. In this
case in order to make an isomorphic transfer of a
diagram with nested groups into the code it is required
to modify the original BasicUser diagram as shown
on fig. 4 by “flattering” it:

Fig. 4. A Basic User Registration Automata
Without Nested Groups

Below is a Ruby code snippet that implements the
model described above:
class BasicUser
 acts_as_state_machine :initial => :pending

 state :passive
 state :pending, :enter =>
:make_activation_code
 state :active, :enter => :do_activate
 state :suspended
 state :deleted, :enter => :do_delete

 event :register do
 transitions :from => :passive, :to =>
:pending,
 :guard => Proc.new {|u| !
(u.crypted_password.blank? &&
u.password.blank?) }
 end

 event :activate do
 transitions :from => :pending, :to =>
:active
 end

 event :suspend do
 transitions :from => [:passive,
:pending, :active], :to => :suspended
 end

 event :delete do
 transitions :from => [:passive,
:pending, :active, :suspended], :to =>
:deleted
 end

 event :unsuspend do
 transitions :from => :suspended, :to =>
:active,
 :guard => Proc.new {|u| !
u.activated_at.blank? }

 transitions :from => :suspended, :to =>
:pending,
 :guard => Proc.new {|u| !
u.activation_code.blank? }
 transitions :from => :suspended, :to =>
:passive
 end
end

Let’s create a new class AdvancedUser which is
represented on the fig. 5. This class will be inherited
from BasicUser class. The new class will inherit the
internal structure of the BasicUser automaton created
using the methods of Acts as State Machine library.
Since the library doesn’t support nested groups the
hierarchy of the parent BasicUser automata will be
lost in the inherited AdvancedUser automata.

Fig. 5. The Model of the AdvancedUser
Automata Class After Losing the Hierarchy of the

Parent Automata

Below is the code that implements the
AdvancedUser automaton:

class AdvancedUser < BasicUser
 state :captcha
 state :registered
 state :blocked

 event :activate do
 transitions :from => :captcha, :to =>
:actived
 transitions :from => :pending, :to =>
:captcha
 end

 event :register do
 transitions :from => :activated, :to =>
:registered
 end

106

 event :unsuspend do
 transitions :from => :unsuspend, :to =>
:captcha
 end

 event :suspend do
 transitions :from => [:passive,
:pending, :active, :suspended, :captcha,
:registered], :to => :suspended
 end

 event :delete do
 transitions :from => [:passive,
:pending, :active, :suspended, :captcha,
:registered], :to => :deleted
 end
end

The approach described above has the following
drawbacks:
 The loss of hierarchy of the parent automata. This

results the inability to do the isomorphic transfer
of the code into the diagram preserving the
structure of the original diagram;

 No support for nested groups of states which
results in increase of the number of transitions in
the automaton.

5. The Implementation of Inheritance
Using State Machine on Steroids Library

In order to eliminate the drawbacks of the described
above approach, the author of this paper have
implemented a new library called State Machine on
Steroids. Like Acts as State Machine it uses dynamic
programming language to implement automata classes.
The library provides the following six methods:
 automaton – the method accepts the block as an

argument. The block has a DSL-syntax (Domain
Specific Language) designed to describe the
automaton [2];

 group – creates the nested group of states;
 initial – sets the initial state for the automaton;
 state – creates the state in the automaton in

runtime. As an optional parameter it accepts a
lambda-function that represents an action on
entering/leaving the state;

 event – named transition;
 transitions – defines the starting and the

destination states for the named transition. As an
optional parameter the method accepts a lambda-
function that serves as a guard condition for the
transition.

Let’s implement the automaton presented on fig. 2:
class BasicUser
 include StateMachineOnSteroids

 automaton :user, :initial => :activation do
 state :deleted

 group :activation, initial => :pending do
 state :pending do

 transition :activate, :to => :actived
 end

 state :passive do
 transition :register, :to =>

:pending,
 :guard => Proc.new {|u| !
(u.crypted_password.blank? &&
u.password.blank?) }
 end

 state :activated do
 transition :suspend, :to => :suspended
 transition :delete, :to => :deleted
 end

 state :suspended do
 event :unsuspend do
 transition :to => :active,
 :guard => Proc.new {|u| !
u.activated_at.blank? }
 transition :to => :pending,
 :guard => Proc.new {|u| !
u.activation_code.blank? }

 transition :to => :passive
 end
 end
 end
end

In code above every call to the method of the library
creates a separate class. This approach preserves the
structure of the parent automata BasicUser after
inheriting it.

Let’s implement the inherited class AdvancedUser
(fig. 3):
class AdvancedUser < BasicUser
 automaton :user do
 group :deleted, initial => :blocked do
 state :blocked do
 transition :remove, :to => :deleted
 end

 state :”user::activation::deleted” do
 end
 group :activation do
 group :active, initial => :captcha do
 state :captcha do
 transition :activate, :to =>
:activated
 end
 state :”user::activated” do
 transition :register, :to =>
:registered
 end
 state :registered
 end
 end
 transition :”user::delete”, :to =>
:deleted
 transition :”user::activate”, :to =>
:actived
 state :suspended do
 event :”user::unsuspend”, :to => :active
 end
 end
end

107

Using the described above State Machine on
Steroids library we were able to eliminate the
drawbacks of Acts of State Machine library, discussed
in Part 3 of this paper:
 a method for creation of state groups has been

introduced which reduces the number of transitions
required to implement the automaton in the code;

 the hierarchy of the parent automata is preserved
after inheritance. This allows to reference to the
previously created classes, for example we can
reference :”user::deleted”. Also this helps to
solve the problem of automatic isomorphic transfer
of the source code back to the graphical model.

6. Side-by-Side Comparison of Acts as
State Machine and State Machine on
Steroids Libraries

State Machine on Steroids library retains all the
advantages of the dynamic and object-oriented features
of Ruby programming language, such as:
 the ability to create the code using domain specific

language. As a result, the domain experts will be
able to easier understand, verify and modify the
source code;

 the support for the development of self-
documenting code;

 increase of the quality, reliability and
maintainability of the programs;

 preservation of the hierarchy during the inheritance
of the automata.

On a special note, one of the advantages of the State
Machine on Steroids library is the ability to perform an
isomorphic transfer of the graphical notation into the
source code and vice versa. This also allows to avoid
duplicate code that is produced as a result of the
implementation of group transitions in Acts as State
Machine library.

The number of transitions and states required to
implement the automaton displayed on the fig. 3 is
shown in the table below for the libraries described
above. Please note that State Machines on Steroids
library simplifies the code making it less redundant.

Table. The Comparison of Libraries

Library Transitions States Groups

Acts as State
Machine

20 8 -

State Machine on
Steroids

9 8 3

7. Conclusions

In this paper we have analyzed two libraries for
implementation of automata in dynamic languages. The
comparison has been made based on modifying the
functionality of the Restful-authentication plugin.

These libraries allow for transferring a graphical
model into a source code. At the same time a well-
known Acts as State Machine library doesn’t preserve
the hierarchy of the parent automata after inheritance
and doesn’t support isomorphic implementation of
nested groups of states.

The State Machine on Steroids library developed by
the authors of the paper eliminates the drawbacks listed
above. Also using this library it is possible to perform a
reverse engineering and restore the original graphical
model from the source code.

8. References

[1] TIOBE. “TIOBE Software: Tiobe Index”.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index
.html

[2] Timofeev K. I., Astafurov A. A., and Shalyto A. A.
“Automata classes inheritance with dynamical language
Ruby” / Software Engineering Conference (Russia) 2008.
http://www.secr.ru/?pageid=4548&submissionid=5270

[3] David H. H. “Ruby on Rails”.
http://www.rubyonrails.com/

[4] Grant G. “Restful Authentication Generator”.
http://github.com/technoweenie/restful-
authentication/tree/master

[5] Szinek P. “Rails Rumble Observations, part II – trends in
gem/plugin usage”. http://www.rubyrailways.com/rails-
rumble-observations-part-ii-trends-in-gemplugin-usage/

[6] Scott B., “Acts as State Machine”.
http://agilewebdevelopment.com/plugins/acts_as_state_mach
ine.

[7] “Object Management Group. Official UML
Specification”. http :// www . uml . org /# UML 2.0

[8] Shopyrin D. G., and Shalyto A. A., “Graphical notation
for automata classes inheritance” // Programming. 2007. #5,
pp. 62–74. http://is.ifmo.ru/works/_12_12_2007_shopyrin.p
df

108

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://is.ifmo.ru/works/_12_12_2007_shopyrin.p
http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf
http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf
http://www.uml.org/#UML2.0
http://agilewebdevelopment.com/plugins/acts_as_state_machine
http://agilewebdevelopment.com/plugins/acts_as_state_machine
http://www.rubyrailways.com/rails-rumble-observations-part-ii-trends-in-gemplugin-usage/
http://www.rubyrailways.com/rails-rumble-observations-part-ii-trends-in-gemplugin-usage/
http://github.com/technoweenie/restful-authentication/tree/master
http://github.com/technoweenie/restful-authentication/tree/master
http://www.rubyonrails.com/
http://www.secr.ru/?pageid=4548&submissionid=5270

Automata-based Programming in Visual Studio 2005:

State Machine Designer Tool

Evgeny O. Reshetnikov
Saint-Petersburg University of Informational Technologies, Mechanics and Optics

ereshetnikov@ rambler.ru

Abstract

This article introduces State Machine Designer tool

for automata-based programming in Visual Studio

2005. State Machine Designer extends functionality of

Visual Studio 2005 and gives developer more abilities

for designing and realization of software products.

This tool allows developer to create UML-like visual

models of project, add automata behavior to any class

in the project, and generate a part of source code on

C# programming language.

1. Introduction

Currently it becomes obvious that there is no common
way in developing of software products because of
many different programming standards and techniques.
Programming requires more and more specifications to
make this process clear. Specification is a good
practice but it is not enough because it does not reflect
the code which developer will produce. Usage of visual
models is a good way to bring source code concepts
and specifications together. Modelling allows
developer to see main structure of a project and main
interactions between its components. The last problem
is to make models and source code being related.
UML-diagrams [1] may describe both of system
behavior and project structure simultaneously. State

Machine Designer allows usage of three UML-
diagrams during project developing. Those are Classes

Diagram, Objects Diagram and State Machine

Diagram. By using these three models a part of source
code could be generated automatically.

The following UML-diagrams are used in State

Machine Designer:

Classes Diagram – describes classes, interfaces and its
relations.

State Machine Diagram – describes behavior of the
entity whose lifecycle could be represented as a state
machine. This state machine consists of finite count of
states and transitions between them. States represent
some stable states of the system and transitions occur
on the specified system events and if corresponding
guard conditions are satisfied [2].

Objects Diagram – reflects instances of classes with
initial values of its properties and aggregation
relationships between these instances.

2. Automata-based programming

Automata-based programming is a programming
technology where finite state machines are used for
representing the whole program or some of its parts.

Finite state machines could be implemented using
different methods such as state design pattern [3] or
SWITCH-Technology [4] or any other well-known
method. But the main idea remains the same: introduce
finite number of states, provide transitions between
these states on some system events and make specified
actions on states entering, leaving and transitioning
between them.

Automata-based programming is helpful in
development of compilers, automation solutions and
every application whose logic could be represented as
finite state machines.

109

3. Implementation

State Machine Designer tool developed as a plug-in for
Visual Studio 2005 [5] and based on Domain-Specific
Language Tools [6] which is a part of Microsoft Visual
Studio 2005 SDK.

Domain-Specific Language Tools are used for creation
of custom visual editors. These editors serve for editing
each of the three following models: Classes Diagram,
State Machine Diagram and Objects Diagram.
Obtained diagrams represent a part of a project. Source
code for this part is generated automatically on C#
programming language [7].

3.1. Classes Diagram

Classes Diagram is intended for visual creation of
classes, interfaces of the project and setting of its
relationships. IDE Visual Studio 2005 has its own
classes diagram which also allows creating classes,
interfaces and so on. It has some disadvantages though:
it is not always synchronized with a source code. For
example, if we create any class on standard class
diagram and then delete this diagram created class will
stay in the project. And wise versa if we create a class
independently of the diagram this class will appear on
the diagram only after diagram‟s regeneration and
saving. It is unacceptable to have a source code and
diagrams which are different. Diagram and source code
should always be synchronized to prevent misleading
situations.

Classes Diagram introduced in this paper is completely
synchronized with the code it reflects. This diagram
also has possibilities for adding of automata behaviour
for the classes on it. On adding automata behaviour
from Classes Diagram to some class automatic
transition to the State Machine Diagram is performed.

Classes Diagram also has validation mechanism which
prevents creation of wrong constructions in meaning of
C# language concepts.

3.2. State Machine Diagram

State Machine Diagram is intended for creation of
visual models for the objects which lifecycle could be
represented by finite count of states with guarded
transitions between them.

State Machine Diagram has validation mechanism
which allows guaranteeing the following rules:

1. State machine has only one initial state.

2. State machine has at least one final state.

3. Every transition has specified event on which this
transition is performed.

4. Every state should be reachable from the initial
state.

5. Transitions with the same event and same source
state should have orthogonal guard conditions.

The fifth rule is very hard and has no accurate solution
in this work.

3.3. Objects Diagram

Object Diagram is intended for visual creation of
starting configuration of the application. For each
object on the diagram instance of specified type is
created and developer are able to set initial values of
properties for each object, set relationships between
different objects. And if there is object with automata
behaviour on the diagram, developer can mark
corresponding state machine as a start point of the
whole application.

3.4. Code generation text templates

Code generation for specified model is possible with
DSL Tools. Code generation is performed using text
template transformation. Text templates are different
for each of the three diagrams. On every model change
new source code is generated. Thanks to this approach
source code always completely represent visual model
for any of the three diagrams.

Developer should never modify auto generated source
code because it will be overwritten on the next saving
or compilation of the project.

4. Usage

State Machine Designer could be used during
development of a new project in Visual Studio 2005
and during adding of new functionality to existing
project as well. Usage of State Machine Designer is

110

useful in almost all cases when developer wants to add
some automata behavior to a project.

When State Machine Designer plug-in is installed
developer can add new entities in his project and edit
diagrams using implemented editors. There are three
items which are corresponding to diagrams:
ClassesLanguage, StateMachineLanguage and
ObjectsLanguage. Files with those extensions
automatically use custom editors which are described
below.

4.1. Classes Diagram editor

For editing of Classes Diagram developer adds new
item to the project with special extension
ClassesLanguage. When developer double-clicks on
such an item special editor is appeared in new
document window (Figure 1).

Figure 1. Classes Diagram editing in Visual

Studio 2005.

Digits on the picture specify the main windows of IDE

during classes editing:

1. Solution Explorer – tree list of modules and files
in the project. Using “Add New Item …” command
developer can add new files to the project as well
as files with ClassesLanguage,
StateMachineLanguage and ObjectsLanguage
extensions which represent supported by tool
diagrams.

2. Classes Diagram editor area. Developer is able to
add classes and interfaces to this area using
extended toolbox.

3. Toolbox which contains items for adding classes,
interfaces and inheritance relationships to Classes

Diagram.

4. Property window for the diagram„s active object.

Using this diagram adding of automata behaviour to
any class is possible. After right click on any class
figure on the diagram context menu is shown (Figure
2). Developer can choose “Add/Edit automat

behaviour” item and active window will be
automatically switched to the State Machine Diagram
for the chosen class. If there is no such a diagram it will
be automatically created.

Figure 2. Context menu for the class on

Classes Diagram.

All classes which have its own state machine are drawn
with “A” icon in the top-left corner (Figure 3).

Figure 3. Class with automata behaviour.

Implementation for all methods for all classes from the
diagram could be done using additional code editor
which is shown after double click on any method
(Figure 4).

Figure 4. Additional source code editor.

Classes Diagram supports model validation. For
example, it doesn‟t allow inheritance of interface from

the class or class from two or more classes because
such constructions are wrong in .NET languages. If
some of the restrictions are not satisfied message with
corresponding error is shown in error window.

111

4.2. State Machine Diagram editor

For editing of State Machine Diagram developer adds
new item to the project with special extension
StateMachineLanguage. Such items also have their
own editor (Figure 5). StateMachineLanguage item
could be created automatically when developer adds
automata behavior to some class on the classes
diagram.

Figure 5. State Machine Diagram editing in

Visual Studio 2005.

Digits on the picture mean the same areas as on Figure
1. Toolbox for state machine editor contains “Initial

state”, “State”, “Final state” and “Transition” items.
Using this items developer visually creates state
machine. State Machine Diagram also supports
validation. The following rules are always satisfied:
there is only one initial state, there are no unreachable
states and so on.

4.3. Objects Diagram editor

For editing of Objects Diagram developer adds new
item to the project with special extension

ObjectsLanguage (Figure 6).

Figure 6. Objects Diagram editing in Visual

Studio 2005.

This diagram is useful when application has fixed count
of different objects. In this case objects configuration
could be represented on the diagram. And those objects
which have automata behaviour will be having “A”

icon in the top-left corner of the shape (Figure 7).

Figure 7. Object with automata behaviour.

On Objects Diagram developer could assign some of
state machines to start when the whole application is
started.

5. Conclusions

 This paper describes a tool for Microsoft Visual Studio

2005 which allows developer to model and develop
application using three diagrams: Classes Diagram,
State Machine Diagram and Objects Diagram. This
tool extends abilities of Microsoft Visual Studio 2005

in applications designing and development. With this
approach a part of the source code is generated
automatically that follows to decreasing of errors
count. Thanks to visual models application becomes
more clear and logical.

Developed tool could be used in development of any
application but it is most helpful in cases of reactive
systems [8]. Usage of the tool in development helps
programmer to see static and dynamic models of the
application simultaneously that also makes
development process easier.

Currently there is no similar tool for Visual Studio

2005 which will help developer to combine traditional
programming techniques with automata-based
programming.

6. References

[1] Dan Pilone, Neil Pitman, UML 2.0 in a Nutshell,
O‟Reilly, 2005.

[2] Tukkel N.I., Shalyto A.A., “State-based
programming”, PC World, 2001, #8, pp.116-121; #9,
pp.132-138.

112

[3] Gamma E., Helm R., Johnson R., Vlissides J.,
Design Patterns, MA: Addison-Wesley Proffesional,
2001, p.395.

[4] Shalyto A.A., “SWITCH-Technology.
Algorithmization and Programming of Logic Control
Problems”, St. Petersburg: Nauka, 1998.

 [5] Microsoft Corporation, Microsoft Visual Studio

2005, http://msdn.microsoft.com/vstudio/.

 [6] Microsoft Visual Studio Developer Center,
Domain-Specific Language Tools,
http://msdn.microsoft.com/vstudio/DSLTools/.

[7] Jesse Liberty, Brian MacDonald, Learning C#

2005, O‟Reilly, 2006.

 [8] Harel D. et al. “Statemate: A working environment
for the development of complex reactive systems”,
IEEE Software Eng., 1990, #4.

113

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/DSLTools/

Application of Automata-Based Programming for
Construction of Business Processes

Management Systems
Evgeny Andreevich Mandrikov Vladimir Anatolievich Kulev

Abstract—In this article the problem of business processes
modeling languages consolidation in a uniform management
system is considered. It will be shown that it is reasonable to
use automata-based programs as a base for proposed system.

I. INTRODUCTION

The main objective of business process management sys-
tems is the automation of the processes taking place in
business [1]. When building software products, working with
business processes, there are three basic roles: the end-user,
business analyst and developer. Business analyst examines and
describes the business process and formulates the requirements
for software, the developer implements them in the final
product.

Traditional business process management systems are trying
to be based on the model created by business analyst, and
build executable program on the basis of this. Such a way of
automating business processes, has gradually forced to move
away to second place due to the fact that making even small
changes in the business process logic means time-consuming
and expensive reprogramming. As a result, applications are not
able to be updated at the desired speed, dictated by changing
business conditions and needs of the enterprise [2]. It should
also be noted that software products developed in such manner
are deeply attached to the specific business processes and end-
users. This does not allow software to be rapidly adopted in
other enterprises.

There is a trend of replacing traditional way of automating
business processes with usage of various domain-specific
languages [3], based on the description of specific types of
business processes, such as: task management (Issue Track-
ing, Bug Tracking) [4], document management (Document
Management System) [5], etc. Using this approach, business
analyst and the developer communicate in one language with
a graphical representation of the process. Business analyst is
responsible for the graphical representation and should not

E. A. Mandrikov is MSc student at the Computer Technologies Department,
Saint-Petersburg State University of Information Technologies, Mechanics and
Optics, Saint-Petersburg, Russia (e-mail: mandrikov@rain.ifmo.ru).

V. A. Kulev is MSc student at the Computer Technologies Department,
Saint-Petersburg State University of Information Technologies, Mechanics and
Optics, Saint-Petersburg, Russia (e-mail: kulev@rain.ifmo.ru).

The research is supervised by A. A. Shalyto, PhD, professor at the
Computer Technologies Department, Saint-Petersburg State University of
Information Technologies, Mechanics and Optics, Saint-Petersburg, Russia
(e-mail: shalyto@mail.ifmo.ru).

deal with technical details of the process. But without these
details the business process is not fully defined and thus can
not be done, so the developer is responsible for their program
implementation.

Most of existing software products allow usage of only one
or few languages to describe business processes. This makes it
difficult to integrate various business processes that occur on
the same enterprise, and force developers to do more work.
This article describes the approach to solving this problem
by translating business processes descriptions into automata
programs [6].

II. BUSINESS PROCESSES DESCRIPTION LANGUAGES

BPEL1 – a widely used language for describing business
processes, designed to work in the web-services environment
[7]. It is based on WSDL2, and while WSDL allow the use of
JavaBeans, the natural choice is web-services.

The deployment of business process in BPEL leads to the
publication of a web-service, which is the primary interface
for interaction with the process. Variables within the BPEL are
XML fragments or XSD3 basic types. BPEL hac structures to
describe the control flow logic and call other WSDL services.
Ultimately, BPEL – a language for describing web-services
management business processes.

Another popular language is jPDL, created by the Jboss
jBPM project [8]. One of its main purposes is task manage-
ment. For this the language has special design to allow creating
tasks in process. Changes in tasks (such as beginning or end
of execution) are also events which business process is driven
by. Also jPDL supports asynchronous execution of tasks and
business process branching into several parallel threads.

By the example of BPEL and jBPM it can be seen that the
existence of domain-specific languages is feasible because of
broad spectrum of challenges faced in enterprise automation.
But it is also easy to see that these languages have many
common features, in particular the representation model of
business process in the form of a graph.

1Business Process Execution Language
2Web Services Description Language
3XML Schema Definition

114

III. TRANSLATION OF BUSINESS PROCESSES
DESCRIPTIONS INTO AUTOMATA PROGRAMS

The proposed approach is to translate business processes
descriptions into a system of interacting state machines. They
may interact:

• by nesting – a machine nested into one or more states of
the other machine;

• by calls – a machine is called on a certain event generated
by some transition;

• by messages exchange – a machine receives a message
from another one;

• by states – a machine checks the state of another machine.
Figure 1 is an example of the simplest process description

in jPDL. This example will show how business process can
be translated into automata program.

Figure 1. An example of business process description in jPDL

In this example, task node is translated into nested state
machine, managing the internal state of the task. This automata
program is shown on Figure 2.

Figure 2. An example of resulting automata program

Similarly, all other high-level business processes languages
can be translated into automata programs. Resulting programs
can be executed in a single environment for all processes
(Process Virtual Machine), or translated into executable code.

IV. CONCLUSION

The benefits of the proposed approach are:
• possibility of a business analyst using conventional busi-

ness processes modeling software;
• ease of integration of different business processes descrip-

tion languages in a single system;
• extensibility of the system due to possibility of adding

new languages;
• possibility of business processes verification (in fact,

verification of resulting state machines [9]).

REFERENCES

[1] “Business process management.” [Online]. Available: http://en.wikipedia.
org/wiki/Business process management

[2] V. Kleban and F. Novikov, “Application of finite state machines in the
document flow,” Scientific and technical bulletin of SPbSU ITMO, no. 53,
Automata programming, pp. 286–294, 2008.

[3] “Domain-specific programming language.” [Online]. Available: http:
//en.wikipedia.org/wiki/Domain-specific programming language

[4] “Issue tracking system.” [Online]. Available: http://en.wikipedia.org/
wiki/Issue tracking system

[5] “Document management system.” [Online]. Available: http:
//en.wikipedia.org/wiki/Document management system

[6] “Automata programming homepage,” Programming Technologies dpt.,
SPbSU ITMO. [Online]. Available: http://is.ifmo.ru/

[7] “Business process execution language.” [Online]. Available: http:
//en.wikipedia.org/wiki/BPEL

[8] “Jboss jBPM.” [Online]. Available: http://www.jboss.com/products/jbpm/
[9] E. Kurbatsky and A. A. Shalyto, “Verification of programs built on

automata-based approach,” Scientific software in education and scientific
research. SPbSPU., pp. 293–296, 2008.

115

http://en.wikipedia.org/wiki/Business_process_management
http://en.wikipedia.org/wiki/Business_process_management
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Issue_tracking_system
http://en.wikipedia.org/wiki/Document_management_system
http://en.wikipedia.org/wiki/Document_management_system
http://is.ifmo.ru/
http://en.wikipedia.org/wiki/BPEL
http://en.wikipedia.org/wiki/BPEL
http://www.jboss.com/products/jbpm/

Declarative Language for SAX Handler Definition

Alexey Vladykin
St. Petersburg State University of Information Technologies, Mechanics and Optics

vladykin@gmail.com

Abstract

In this paper a declarative language for SAX
handler definition is proposed. This language allows
to describe complex XML parsing algorithms in a
simple manner. An algorithm is introduced for
automatic transformation of such handler descriptions
into finite state machines, and then into source code.
This approach reduces the complexity of SAX handler
development by eliminating the greater part of error-
prone manual work.

1. Introduction

XML is widely used for a variety of purposes: from
storing program configuration to transmitting data
packets over the Internet. More and more applications
require XML support, and programmers often have to
develop code that extracts data from XML documents.

Some XML documents are very large: up to
hundreds of gigabytes. E. g. a complete Wikipedia
dump including all articles with their change history
takes 148 Gb (bzip2-compressed).

How can one parse such document and extract
some useful information from it? The only feasible
approach for documents like Wikipedia dump is
Simple API for XML (SAX) [3], because SAX parser
is very effective about computer resources and passes
XML content to the rest of application in small
portions. Other well-known approaches to XML
parsing like Document Object Model (DOM) [6] and
Java API for XML Binding (JAXB) [1] need to load
the whole document into RAM, which is unacceptable.

The major SAX drawback is complexity of crafting
SAX handlers manually. [4] This paper describes an
approach which significantly simplifies development
of SAX handlers. A declarative language for XML
handler definition is introduced. Handler definition in
this special language is automatically translated into
finite state machine, and then into source code in any
programming language.

2. Simple API for XML

SAX is a low-level XML parsing technique. SAX
parser sequentially reads input document and notifies
SAX handler about every start and end tag, as well as
about character data between tags.

SAX parser implementations exist for many
programming languages as part of standard library or
as a 3rd party library.

SAX handler must be written by hand for each
document type that needs to be processed. Crafting
SAX handlers may be very hard task in case of
complex document structure.

Handler class in Java extends class DefaultHandler
and typically overrides the following three methods
with hand-written code:

void startElement(String uri, String localName,
String qName, Attributes attrs)

void endElement(String uri, String localName,
String qName)

void characters(char[] ch, int start, int length)

Handler calls startElement method when it
encounters start tag, endElement is called for end tag,
and characters – for character data between tags. [2]

For other languages SAX handler structure is
essentially the same.

3. SAX Handler as an Entity with Complex
Behavior

It is important to understand the reasons why
writing SAX handlers is so complex, and to eliminate
those reasons. This task can be accomplished with
automata based approach. [7]

SAX handler receives notifications from SAX
parser and translates those notifications into
commands or data structures that can be understood by
the rest of the application. It has to track current parser
position within the document and, according to that
position, handle notifications differently.

116

SAX handler is an entity with complex behavior
[7], because its reaction to incoming notifications
depends on previously received notifications. Handler
can be logically divided in two parts:

a) controlling part, which tracks current parser
position in XML document by remembering the
history of incoming notifications, and chooses one of
the possible commands for controlled part;

b) controlled part, which receives commands from
controlling part and translates them into commands or
data structures for the rest of the application.

The biggest challenge usually is controlling
(behavioral) part, because tracking of current parser
position in XML document within traditional approach
requires setting and checking many boolean flags, or
other tricks. Controlled part is typically simple, but its
code is spread and lost inside controlling part.

According to the paradigm of automata based
programming, an entity with complex behavior should
be represented as an automated object. Explicit
separation of controlling and controlled parts of SAX
handler can help crafting such handlers and make their
structure and behavior much clearer. Moreover, it is
possible to generate the code of controlling part based
on a declarative definition. The next section describes
a language that can be used for declarative definition
of SAX handlers.

4. Declarative Language for SAX Handler

We'll demonstrate the language and its usage on a
simple problem of extracting a list of departments and
all non-terminated employees from an XML document
describing company structure.

Such document could look like this:

<company>
<name>Mr. X and Partners</name>
<department>
 <name>Human Resources</name>
 <employee>
 <name>John Smith</name>
 </employee>
 <!-- more employees -->
</department>
<department>
 <name>Engineering</name>
 <employee terminated=”true”>
 <name>Zzyzzy Zzyrryxxy</name>
 </employee>
 <!-- more employees -->
</department>
<!-- more departments -->
</company>

Document structure shown here is relatively simple,
but it exposes a typical problem of distinguishing
between name of a company, name of department and
name of employee.

Another typical problem here is that extracting
John Smith from fragment <name>John
Smith</name> requires adding some lines of code to
all three of SAX handler methods: startElement,
endElement and characters. Thus a logically atomic
extraction of employee name is split into several
stages.

Both mentioned problems are related to the
controlling part of SAX handler and imply saving
handler state between invocations of its methods. This
is what makes writing SAX handlers complicated.

Let's see how these problems can be solved when
SAX handler is described using the proposed
declarative language. Handler definition in the
proposed language looks like:

(
<department>
 <name> { capture(); }
 </name> { obj.addDepartment(captured()); }
 (
 <employee terminated!=”true”>
 <name> { capture(); }
 </name> { obj.addEmployee(captured()); }
 </employee>
)*
</department>
)*

This definition consists of the following elements:
a) start and end tags. Start tag may have constraints

on its attributes (e.g. terminated!=”true”). Arbitrary
code may be specified after tag in braces. It will be
executed when such tag is encountered in document.

b) parentheses, used to group tags and specify zero-
or-one (?) and zero-or-more (*) quantifiers, or
enumerate alternatives separated by |.

Here is the formal grammar for this language:

S :: START_TAG | END_TAG | GROUP
START_TAG :: "<" ID OR_EXPR? ">" ACTION?
END_TAG :: "</" ID ">" ACTION?
GROUP :: "(" (START_TAG | END_TAG
 | GROUP)* ("*" | "?")? ")"
ACTION :: "{" CODE "}"
OR_EXPR :: AND_EXPR ("||" AND_EXPR)*
AND_EXPR :: TERM ("&&" TERM)*
TERM :: ID "==" STRING | ID "!=" STRING
 | ID "=~" STRING | ID "!~" STRING
 | "(" OR_EXPR ")"

In this grammar ID is any valid tag or attribute
name; STRING is arbitrary text enclosed in quotation

117

marks or keyword null; CODE is arbitrary code in
target programming language.

According to the paradigm of automata based
programming our SAX handler will consist of two
parts: controlling part (automaton) and controlled part.
Declarative definition of controlling part is shown
above.

Controlled part provides some interface to
controlling part. In our case this interface consists of
two methods: void addDepartment(String name) and
void addEmployee(String name). Implementation of
these methods and the whole controlled part class is up
to the developer.

Controlling automaton calls methods of controlled
object according to the declarative definition shown
above. Additionally it can use two utility methods
provided by controlling automaton: void capture() and
String captured(). The former tells automaton to
capture character data coming from parser into
temporary buffer. The latter returns character data
captured since last call to capture and clears the buffer.

5. Building Automaton for SAX Handler

To build controlling automaton from its declarative
definition we need to extract its states and build
transitions between states.

Both tasks are rather simple, because states and
transitions are implicitly present in the declarative
definition. Informally speaking, each place between
tags corresponds to one state, and tags correspond to
transitions.

There are some corner cases related to parentheses
and quantifiers, but overall algorithm is pretty
straightforward. Its implementation in Java can be
found at project website [5].

6. Code generation

Given the description of SAX handler controlling
automaton as a set of states and transitions, it is
possible to automatically generate source code in
virtually any programming language. Currently
implemented is code generation for Java. [5]

Code generator creates a class that extends
DefaultHandler and overrides aforementioned
methods startElement, endElement and characters. All
transitions on start tags are placed in startElement, and
all transitions on end tags – in endElement.

Automaton has only two member variables: current
state (integer) and temporary buffer for character data.
Thus memory consumption is minimal.

Every call to automaton's startElement, endElement
or characters is a quick constant time operation (not
taking into account what happens in invoked methods
of controlled object), so parsing XML document with
automated SAX handler remains an efficient linear
algorithm.

7. Conclusion

In this paper a declarative language for SAX
handler definition is introduced, and an automatic code
generation system is described. The system takes
declarative definition of SAX handler as input, builds
controlling automaton and then translates it into source
code in some programming language. Currently code
generation is implemented for Java programming
language. Implementation of the remaining part of
SAX handler – controlled object – is to be written
manually by the programmer, but this part is typically
trivial. Proposed approach features significant
simplification of SAX handler creation, and does not
bring any performance penalty.

This approach has been used in development of an
application that extracted contents of several kinds of
complex table-like structures from thousands of XML
documents.

8. References

[1] JAXB Reference Implementation.
https://jaxb.dev.java.net/

[2] McLaughlin B. Java and XML, Second Edition. O'Reilly,
2001.

[3] Official website for SAX. http://www.saxproject.org/

[4] Oleg Kiselyov. “A better XML parser through functional
programming”. LCNS, Springer-Verlag, 2002, pp. 209-224.

[5] SaxGen – Google Code.
http://code.google.com/p/saxgen/

[6] W3C Document Object Model. http://www.w3.org/DOM/

[7] Поликарпова Н. И., Шалыто А. А. Автоматное
программирование, Питер, СПб., 2009.

118

https://jaxb.dev.java.net/
http://code.google.com/p/saxgen/
http://code.google.com/p/saxgen/
http://www.saxproject.org/

Abstract—Computer game rules development is one of the

weakly automated tasks in game development. This paper gives
an overview of the ongoing research project which deals with
automation of rules development for turn-based strategy
computer games. Rules are the basic elements of these games.
This paper proposes a new approach to automation including
visual formal rules model creation, model verification and model-
based code generation.

Index Terms—Automation, Games, Formal Languages,
Software Verification and Validation

I. INTRODUCTION
OMPUTER games are one of the most dynamic and rapidly
evolving fields of information technology. Games are

widely used in entertainment, education and training of
personnel [1]. Still the percentage of successful projects in
computer game industry is very low [2]. Low level of
automation is one of the reasons of the problem. Game rule
development is one of the weakly automated tasks. Game rule
development includes rule design, rule-based code and data
generation and results verification [3].

In this paper we define game rules as the definition of a
game world entities, entity interaction rules, the main goal of
the game, secondary goals, start conditions, winning
conditions and a player state definition.

There is a special role of game designer in a game
development team [3, 4], who is responsible for game rules
design. She frequently has no technical background. In order
to avoid confusion between a game designer and a software
designer roles we’ll use hereinafter the term “designer” for a
game designer.
 A game rules definition usually consists of several large text
documents and a set of tables. Designers use text editing tools
and spreadsheets as automation tools. The typical process of a
game rules definition is shown in Figure 1

Manuscript received March 14, 2008. E. A. Pavlova is PhD student at the

Cybernetics Department, Moscow Engineering-Physics Institute (National
Nuclear Research University), Moscow, Russia (phone: +7-906-723-1189; e-
mail: elena.pav@gmail.com).

The research is supervised by M. V. Sergievsky, PhD, associate professor
at the Cybernetics Department, Moscow Engineering-Physics Institute
(National Nuclear Research University), Moscow, Russia (e-mail:
maxim.sergievsky@light-site.ru).

Fig.1. Computer game rule development process.

Voluminous (up to several thousand pages [3]) and ill-

structured rules definitions are difficult and time-consuming to
create, modify and maintain. An informal rules formulation
complicates rules development automation, automatic rule-
based code and data generation and rules verification,
particularly rules balance checking and balancing (balance
problem will be discussed further).

Some designers try to master general-purpose modeling and
programming languages and corresponding modeling
environments to solve the automation problem (this approach
is described in detail in [3, 4]).

Special-purpose game-oriented development environments
are used as an alternative (see for example [5-9], Torque
Engine Advanced
(www.garagegames.com/products/torque/tgea/features/), FPS
Creator (www.darkgamestudio.com), NeoAxis Engine
(www.neoaxisgroup.com), Offset Engine
(www.projectoffset.com/game.html), Unreal Engine
(www.unrealtechnology.com), C4 Engine
(www.terathon.com/c4engine)). These tools frequently need a
complex customization and add-in programming. The majority
of tools don’t allow for game genre-specific development, thus
loosing long reusable experience. The rules definition is mixed
with the definition of the graphics of the game, and in some
cases with the definition of game artificial intelligence
elements. Thus, it is difficult to modify, analyze, verify and
reuse game rules independently. The rapid game rules
executable prototype generation becomes almost impossible.

The tools under discussion don’t allow automatic rules
verification. Design-time errors could be caught at the
implementation stage or later. These errors are usually treated
by a manual rule definition documents review and tedious
testing [3, 4].

The above demonstrates the urgency of development of the
new approach to game rules automation. The goal of this paper
is to develop an approach allowing automation of the whole
game rules development cycle – from formal visual rule
design, through rule verification, to rule-based code and data

The Formal Approach to Computer Game Rule
Development Automation

Elena A. Pavlova

C

119

generation. The approach should consider the domain-specific
experience of the particular game genre. We took the turn-
based strategy (TBS) game genre [3] for our research as game
rules are the critical part for a game of this genre. The key task
in TBS game development is game rules development [4].

 As far as the author of this paper is concerned the
creation of the rule development environment supporting
visual game rule representation as a single formal model,
automatic formal verification of this model and model-based
automatic code and data generation is a new approach to game
rules development automation. Formal domain-specific
languages weren’t used for TBS game rules definition before.
Static analysis and formal property monitoring weren’t used
for computer game rules verification.

II. FORMAL BACKGROUND

A. The Turn-Based Strategy Game Rule Description
Language

The developed language is domain-specific (DSL) [10], i.e.
it considers a specificity of turn-based strategy computer
games. The language allows entity definition for the problem
domain of the concrete game (notably entity data and
behavior); behavior constraints; entity relationships and
reactions of entities to the other entity behavior.

Entities are represented as objects in the language. Entity
data correspond to object properties, and behaviors correspond
to methods. Object orientation allowed more flexibility and
simplicity compared to class orientation. The language type
system was developed. The language type system includes
simple types for evaluation of constraints and game genre-
specific types (types for the turn-based strategy domain). The
type system provided the necessary level of abstraction and
allowed to separate the object specification from the
implementation. Types are also used for model error detection.

The language is prototype-based [12]. The new (clone)
object maintains the independent copy of properties, methods
and the link to the initial (prototype) object. An object may
have only one prototype object. The modification of prototype
object doesn’t influence the clone object and vice versa. The
main object modification method is property and method
update. The specified prototyping mechanism allowed object
elements reuse and seems to be the natural object-creation
mechanism for the turn-based strategy games domain.

The language syntax was formally defined using a context-
free LL(1) grammar [13]. Both textual and graphical notations
for the language are available. We defined the formal
denotational semantics [13] for the language, using the λς –
calculus [12] for denotats and elements of Hoare logic [13] for
precondition and postcondition behavior constraints.
Conditions described in Hoare logic are used for model
consistency checking and correct method invocation planning
in game scenarios not for verification by deduction analysis.
Entities react to the behavior (i.e. method invocation) of other
entities by means of the special methods called reactors.

Several reactors may be attached to one method. Reactor
execution changes the state of the game. Reactors’
preconditions and postconditions depend on the game state.
Thus the reactors invocation order is important. Reactors’
invocation algorithm considers reactors’ preconditions and
postconditions to execute as much reactors as possible. The
developed language is described in detail in [11].

B. Turn-Based Strategy Game Rule Verification

Design-time game rule verification allows incorrect rule
detection and following correction prior to implementation.
This paper defines a correct rules model as consistent and
balanced. The rules model consistency is defined as syntactic
and semantic interface consistency of objects constituting the
model. Model consistency guarantees the correct interaction of
objects. The applied consistency checking method is fully
described in [14].

Balance is a game domain-specific concept. In general it
means rules fairness [3]. The rules of a particular game are fair
if the player success depends only on his abilities. Concrete
definitions of balance are given in [3, 4]. The example of a
misbalanced game is a game having unequal start conditions
for players, giving one player the advantage allowing winning
no matter what other players do. Rules balance verification is a
key task in TBS game development [3]. In this paper rules are
considered to be balanced if none of the competing sides
defined by the rules has an advantage; there are no invincible
troops and the result of the game is independent of who moved
first. In this paper rules balance is verified by means of formal
properties monitoring [15].

III. THE PROTOTYPE RULES DEVELOPMENT ENVIRONMENT
The architecture of the designed rule development

environment is considered in this section. The architecture
model is illustrated in Figure 2. The arrows connecting model
elements represent dataflows. The rules development
environment consists of the graphical user interface allowing
visual game rules model creation, the rules verification tool,
the rules translator and the data (rules models) storage.

120

Fig. 2. The rules development environment architecture.

The graphical user interface enables visual rules definition
in the rules model editor. Rules are defined using the graphical
language notation. The example screenshot of the prototype
rules development environment is shown in Figure 3.

Fig. 3. The rules development environment and the example rule model.

The toolboxes contain all necessary language graphical
primitives. Model element properties could be customized in
the property editor. The model description is stored in the
textual language notation.

 The verification tool checks for rules model consistency
and balance using methods defined in the section I.B. The
translator transforms the verified textual rules representation
into the C++ code. This programming language is considered
to be the most popular for game development.

 We developed the prototype rules development
environment for turn-based strategy game rule development
support. The prototype was developed using Microsoft Visual
Studio 2008 SDK that enabled using managed code and rapid

language and visual modeling tool creation.

IV. RELATED WORK
There are several approaches reported in literature for

dealing with the game rules development automation problem.
Moreno-Ger et al. [5] consider adventure games creation for
educational purposes. The textual adventure game-specific
language and the corresponding interpreter are created. One
will need to master the textual notation of the language to use
the proposed environment. That might complicate a game
designer’s job. Rule verification is not considered. Moreno-
Ger et al. [6] extend the environment proposed in [5] by new
reusable adventure game-specific entities.

Hu [7] also considers adventure games for education. The
proposed education model describes education roles (a
teacher, a student, a course-book, etc.). The education model-
based TorqueEngine script extension is developed. The rules
are stored in several files using basic TorqueEngine principles.
Rule verification is not considered. The educational adventure
game development is significantly restricted by the education
model proposed.

 Furtado et al. [8] suggest an approach and a general
framework for game development. The informal visual
modeling language is defined and the corresponding tool is
created. The language is intended to describe game rules,
game graphics and sound. The language operates the notions
of “game state”, “program”, “audio component”, etc.. Two
layers of abstraction are mixed in a single game model (the
game components layer and the specific component object
model layer). That may complicate game designer’s job. The
proposed framework supports the model inspection for states
reachability, states existence and constraints existence.
Balance checking is not supported.

Amory [9] deals with educational quest and adventure
games development automation. The approach includes the
development of interface library encapsulating concepts from
the corresponding game genre domains. An educational quest
or an adventure game could be created implementing the
interfaces of this library. Rules verification is not considered.

 Thus, the key advantages of our approach is separation of
the rules and the graphics definitions, the design-time rules
verification possibility (including balance verification) and
turn-based strategy game genre specificity consideration.

V. CONCLUSIONS AND FUTURE WORK
In the previous sections we presented a detailed description

of the new approach to game rule development automation for
the turn-based strategy game genre. The approach includes the
development of a visual formal rule description language, a
formal rule verification method and a rules development
environment supporting single formal rule model creation,
verification and rule-based executable prototype generation.
Following this approach we developed the necessary formal

121

basis and the prototype tool for game rules development. The
prototype considers turn-based strategy game-specific
experience, allows rule balance verification, rapid rules
prototype development and rule reuse.

The developed language simplifies rules development. The
application of domain-specific languages to TBS rules
definition is a new approach to TBS development. The
application of formal verification at design-time allowed error
detection prior to implementation.

 The main advantages of the proposed approach are as
follows: rules definition and game graphics definition
separation, rules verification automation and TBS genre-
specific knowledge consideration.

 Additional approach improvements include further
development of the balance verification method. We are going
to broaden the definition of balance and check for the so-
called dynamic balance [3], i.e. the balance at every turn of the
game. So players could be guaranteed positive experience
throughout the game. We plan the extension of the language
type system and the object cloning mechanism revision.
Finally, it is planned to extend the approach to the real-time
strategy game genre which is very similar to the turn-based
strategy genre. This will introduce a concept of mission
(missions do not exist in turn-based strategies) and will lead to
complex time-constraints consideration. It is expected that our
new results will facilitate the development of a development
environment for strategy games creation.

REFERENCES
[1] M. J. Taylor, M. Baskett, G. D. Hughes, S. J. Wade, “Using soft systems

methodology for computer game design,” Systems Research and
Behavioral Science, #24., pp. 359-368, 2007.

[2] M. Brydon, A. Gemino, “Classification trees and decision-analytic
feedforward control: a case study from the video game industry,” Data
Mining and Knowledge Discovery, vol. 17 , Issue 2, pp. 317–342, 2008

[3] A. Rollings, D. Morris, Game Architecture and Design. A New Edition.
Indianapolis: New Riders Publishing, 2004.

[4] G. Wihlidal, Game Engine Toolset Development. Boston, MA:
Thomson Course Technology PTR, 2006.

[5] P. Moreno-Ger, I. Martinez-Ortiz, J. L. Sierra, B. Fernandez-Manjon,
“Language-driven development of videogames: the <e-Game>
experience,” Entertainment Computing - ICEC 2006, pp. 153-164,
2006.

[6] P. Moreno-Ger, J. L Sierra., I. Martinez-Ortiz, B. Fernandez-Manjon, “A
documental approach to adventure game development,” Science of
Computer Programming, vol. 67 , Issue 1, pp. 3-31, Jun. 2007.

[7] W. Hu, “A reusable eduventure game framework,” Transactions on
Edutainment I , pp. 74-85, 2008.

[8] A. W. B. Furtado, A. L. M. Santos, G. L. Ramalho, “A computer games
software factory and edutainment platform for Microsoft .NET,” IET
Software, vol. 1, Issue 6, pp. 280 – 293, Dec. 2007.

[9] A. Amory, “Game object model version II: a theoretical framework for
educational game development,” Educational Technology Research and
Development, vol. 55, Number 1, pp. 51 – 77, Feb. 2007.

[10] J. Greenfield, K. Short, Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, 2004.

[11] E. A. Pavlova, “Design of formal domain-specific language for
computer game rules development for turn-based strategy game genre,”
Computer and Information Technology Reporter, Feb. 2009. (in
Russian).

[12] M. Abadi, L. Cardelli, A Theory of Objects, 1996.

[13] P. D. Mosses (2002). Fundamental Concepts and Formal Semantics of
Programming Languages – An Introductory Course. [Online]. Available:
http://wiki.daimi.au.dk/dSprogSem-01, 2002.

[14] A. V. Gavrilov, E. A. Pavlova, “Functional interface analysis for
formalization of complex information system design,” Information
Technologies, #9, pp. 9-15, 2008. (in Russian).

[15] V. V. Kulyamin, “Software verification methods,” Russian State
Analytical-Review Articles Contest for Priority Concept “Information-
Telecommunication Systems, 2008. (in Russian.).

122

Information System of Scenario Strategic Planning

Denis R. Tenchurin
State University - Higher School of Economics, Moscow, Russia

dtenchurin@gmail.com

Maxim P. Shatilov
State University - Higher School of Economics, Moscow, Russia

maxim.shatilov@gmail.com

Scientific advisor: prof. Sergei M. Avdoshin
State University - Higher School of Economics, Moscow, Russia

savdoshin@hse.ru

Abstract

This paper gives an overview of the concept of a
new system to support decision-making process in the
area of strategic management company - DEM. To
ensure that in the modern world the company remains
leader in its industry it needs to continually adjust its
development strategy to changes. Nevertheless, there
is no unified methodological framework for strategic
planning. Also there are no strategic planning
systems to help managers make strategic decisions (a
problem of choice of the one of the development
strategies). Software Engineering Department Higher
School of Economics, in collaboration with the EPAM
company, conducted research in this area; the interim
results have been examined in this work.

1. Introduction

Today modern fast-changing market of goods and
services is forcing companies to review their strategic
decisions and develop new ones. In order to succeed
companies should comprehensively evaluate the
existing internal problems, and problems that may
arise in the future. Moreover, they should be able to
predict the impact of external factors on internal
business processes, as well as the behavior of
competitors and possible changes in the environment.

Based on the analysis of the strengths and
weaknesses of contemporary strategic planning
methodologies the new concept and its software
prototype - Dynamic Enterprise Management (DEM) -
were developed. The research was conducted within
Software Engineering Department of Higher School of
Economics in collaboration with EPAM Systems.
DEM makes it possible to find the optimum of
strategic development plan provided by the company.

Thus with the right mix of resources the company can
succeed.

As has been proved in practice, even a plenty of
detailed information doesn’t help managers to make,
and the main thing, to implement strategic decisions.
Thus the concept of hierarchical and balanced
scorecard was proposed. This approach provides series
of "instant snapshots” of the desired detail level that
reflects the current situation in the company.

However, in order to actually organize a work
process in the company, constantly evaluate the
results, and adjust the development strategy of the
company to changes, you need to answer some
questions. How and where to take, or to measure the
actual parameters, and how to relate assess their
adequacy purposes with appropriate management
processes, if necessary, to implement manages impact.
In other words, a vicious management cycle with a
feedback is needed (see Figure 1).

2. Balance Scorecard

The concept of Balanced Scorecard (BSC) was
developed at the beginning of the 1990s by Robert
Kaplan and David Norton from Harvard School of
Economics. If the BSC was originally viewed as a tool
for measuring and evaluating the effectiveness of the
organization, in our time, it is a full-fledged
methodology for strategic management.

Balanced Scorecard – is a description format of the
organization for each of the four strategic aspects:
internal business processes, development and training,
customers, finance.

123

mailto:savdoshin@hse.ru
mailto:maxim.shatilov@gmail.com
mailto:dtenchurin@gmail.com

Figure 1

Each of the aspects contains main indicators for
measuring the effectiveness of various processes.
Another significant difference of BSC from its
predecessors is the ability to organize treatment of
intangible assets, all the more so in our time they play,
of course, a great role [1].

Another advantage of the BSC is a special focus on
the prospects of the company and their relationship
with the current indicators. Correctly designed
scorecard clearly shows a causal link between the
current processes and prospects.

However, the BSC - is not a solution for all
problems. Despite the fact that the system takes
account of cause-and-effect relationships, it is very
difficult to identify and build them on its basis.
Moreover, a scorecard itself does not provide any
assessments. Designing of the BSC cards - is a very
laborious process, and adapting built maps to the
processes of other companies is almost impossible.

However, BSC - is not a solution for all problems.
Despite the fact that the system takes into account
cause-and¬effect relationships, it is very difficult to
identify and build them on its basis. Moreover, a
scorecard itself does not provide any assessments.
Designing of the BSC cards - is a very laborious
process, and adapting built cards to the processes of
other companies is almost impossible.

Despite of all the advantages of BSC, the
methodology is more suitable for large scale
simulation projects. If small and middle size projects
are being developed it is more appropriate to use Goal-
Question-Metric (GQM) framework [2]. In that case
organizational goals are identified, then questions are

developed to determine whether the goals are being
met, and then metrics are identified that can help
answer the arising questions. The framework was
developed at the University of Maryland as a
mechanism for formalizing the tasks of
characterization, planning, construction, analysis,
learning, and feedback. The GQM paradigm was
developed for all types of studies, particularly studies
concerned with improvement issues.GQM consists of
three primary steps [3]:

1. Generate a set of organizational goals.
2. Derive a set of questions relating to the goals.
3. Develop a set of metrics needed to answer the

questions.
The goals are built according to the needs of the

organization, and they help in determining whether or
not organization was improved the way it wanted to.

The comparison of BSC and GQM can be found in
[4].

3. System Dynamics

Modeling - is one of the ways to solve problems
virtually rather than by working with them in the real
world. Modeling is used in cases where experiments
with real objects are impossible or too expensive. It
includes a display of real-world problems in the world
of models and subsequent analysis, and optimization
models, finding solutions, and display solutions back
to the real world. The popularity of system dynamics
can be explained be the following advantages of the
methodology [5]:

• the majority of real life complex systems with
stochastic processes cannot be precisely described by
analytically estimated mathematical models; that’s
why the modeling becomes the only available way to
study their behavior.

• using the modeling techniques it is easier to
provide much more effective control of experiment
conditions than just experimenting with the system
itself.

• modeling allows to study the long period of
system operation in a short period of time;

J. Forrester, a professor at Massachusetts Institute
of Technology, almost 50 years ago proposed a new
idea of simulation, according to which complex
systems should be modeled on the highest level of
abstraction, when researcher abstracts from individual
objects of the system and examine only the aggregate
indicators of such objects, their interaction and
interdependence in dynamics [6, 7]. Modeling
paradigm where the systems are built researched
charts causalities and global influence of some
parameters on the other parameters over time, and
then created on the basis of those diagrams on the
computer model simulates, has been named system

124

dynamics. In fact, this kind of modeling over all other
paradigms to understand the essence of what is
happening helps identify cause-effect relationships
between objects and phenomena.

Despite such simplification, as aggregation,
abstraction of individual characteristics, behavior and
physical characteristics of the environment in which
the process flow, system dynamics model proved quite
productive for the study of many difficult problems.
Models of business processes, city development,
production and the dynamics of population,
environment and development model of the epidemic -
are just some of the areas of simulation, which copes
with the system dynamics.

Nowadays System Dynamics approach to simulation
is widely used in the different areas of business [8, 9,
10, 11].

4. Methodology

The concept of the new methodology is based on
the fusion of the two existing methodologies -
Balanced Scorecard (BSC) and System Dynamics
(SD).

That kind of fusion in the proposed concept
significantly improves both the process of model
verification based on historical data and the process of
strategic planning (as it is shown in [13] on SD and
GQM fusion example).

Workflow - is a sequence of performed actions or a
hierarchy of activity.

The Dynamic Enterprise Management principle of
operation is implemented as a workflow concept,
which includes the following stages of work with
DEM projects .

Following the establishment of a new draft the
analyst builds up an enterprise model "as is" in terms
of system dynamics, then performs validation of the
model according to the real-world data provided by the
company: the model should be specified until the
level of correctness becomes sufficient for the
continuation of the work - checking all possible
scenarios. Once the model is validated and enterprise
development scenarios are set up, the expert chooses
the best scenario (business plan) which meets specified
business objectives. For example, the optimal scenario
is the development scenario, in which the company
remains resistant to the effects of the environment
throughout its development process.

Building up an enterprise
"as is" model

Validation of the model

Decision on model
completeness

[Model is not
completed]

Building up an enterprise
“to be” model

Creating scenarios

Choosing the best scenarios
based on “to be” model and BSC

[Model is completed]

Figure 2. DEM Workflow

5. DEM design

According to the methodology described above, the
information system (IS) DEM can be designed (figure
2).

System Dynamic Tool – is computer simulation
software, where the structure of existing business
processes of the company is built on; also different
scenarios are simulated with the usage of a system
dynamic tool.

OLAP (online analytical processing, analytical
processing in real time) – is the technology of
processing information, that also includes dynamic
processes of drawing up and publishing records and
documents. OLAP Technology serves, in particular, to
prepare business records. Thus, the use of OLAP is
necessary for the implementation of the software
product Dynamic Enterprise Management.

Data Management layer includes Data Warehouse,
integration buses and a set of protocols for the transfer
of data from/to it.

125

Figure 3. DEM design

In Data Warehouse all necessary information is
gathered from various sources. Before data get to Data
Warehouse, it should be properly processed.
Enterprise databases of corporate systems, on the basis
of which the Data Warehouse is built, will be called
“transactional”. Different departments may use
different corporate information systems with their own
transactional databases. Accordingly, before using
these disparate data, they should be examined.

Here comes the question: how necessary
information can be accumulated in Data Warehouse,
that is how it is possible to transfer the data from
different sources and different data formats. In order
to be able to perform that kind of integration, a special
integration bus is created, through which
"communication" of data warehouse with a variety
data sources of innovation is fulfilled.

As can be seen from Figure 2, at the bottom layer
of DEM architecture there are many sources of data:

HR-module - is automated system staff
management. Accounting System - a class of systems
that perform accounting operations.

CRM - Customer Relationship Management,
System of Management Customer Relationship

ERP - Enterprise Resource Planning, systems of
planning and company resource management.

6. DEM prototype

Currently, a prototype of DEM informational
system is being developed system. The language of
implementation is C #. As a platform for the prototype
implementation the following Microsoft products and
technologies were selected: Visual Studio. NET 2008,
using the. NET Framework 3.5, MS SQL Server 2000,
ASP. NET. Data integration is implemented using MS
BizTalk product.

Three components were implemented:
• DB connector – is a component that provides a

set of classes for connecting to the database DEM;
• Powersim connector – is a component that

implements a set of classes for working with the
simulation tool Powersim Studio;

• 1C connector – is a component to connect to the
database.

The prototype has a web-based user interface
(implemented via ASP.NET).

During the prototyping phase it became clear that
the development of scenario system planning should
start with some certain project. Due to the rich
knowledge in software engineering and business
connections of the project team it was decided to
develop DEM IS in application to strategic planning
in software project management.

7. Software Process Simulation

There are some critical problems of strategic
planning in the area of software development project
management and in the area of project portfolio
management: going out of time and money scope,
closure of software development projects [12]

According to the research reports software
companies are interested in the system of this kind.
Furthermore to qualify for CMMI level 5 focusing on
the process optimization is needed.

Simulation of software processes is the best
approach here [13].

The number of simulation models for the software
development processes exist [13, 14, 15], the review of
the majority of models is made it [13]. The latest
tendencies are described in [16].

Attempts to the simulation for the software
processes are described in [17]. However there is no
composite system for strategic planning in software
development.

8. Conclusion

In this work Dynamic Enterprise Management, an
informational system for strategic planning, and its
methodology were considered. DEM IS enables an
expert (analyst) to estimate different development
strategies, thus, to choose one, the most suitable
strategy, from many. In our view, the system meets the
modern, ever-changing business requirements. In
addition, analysis of the existing strategic planning
methodologies was carried out, and it showed that the
DEM is a competitive system.

Implementation of the proposed system is realistic,
as it is described in the architecture of IS Dynamic
Enterprise Management. Currently prototype of DEM
system is being developed within Software
Engineering Department of Higher School of
Economics. Some results have already been obtained
in this field – the very first version of the prototype
has been already developed.

126

9. References

[1] R. S. Kaplan, D. P. Norton, "The Balanced Scorecard:
Translating Strategy into Action", Harvard Business School
Press, New York, 1996.
[2] Basili V R, “Software modeling and measurement: The
goal/question/metric paradigm”, Technical Report, CS-TR-
2956, Department of Computer Science, University of
Maryland, College Park, MD 20742, September 1992.
[3] Basili, Victor; Gianluigi Caldiera, H. Dieter Rombach,
" The Goal Question Metric Approach " , 1994.
[4] L Buglione, A Abran, “Balanced scorecard and GQM:
what are the differences?”, Proceedings FESMA/AEMES
Conference, 2000.
[5] Averill Law, W David Kelton, Simulation Modeling and
Analysis. Third edition, McGraw-Hill.
[6] Jay Wright Forrester, Industrial Dynamics, Pegasus
Communications, 1961.
[7] Jay Wright Forrester, Principles of Systems. Pegasus
Communications, 1968.
[8] Matthias Ruth, Bruce Hannon, Jay W. Forrester,
Modeling Dynamic Economic Systems (Modeling Dynamic
Systems), Springer; May 13, 1997

[9] John D. Sterman, Business Dynamics: Systems Thinking
and Modeling for a Complex World, McGraw Hill Higher
Education, December 1, 2000
[10] Bernard McGarvey, Bruce Hannon, Dynamic Modeling
for Business Management: An Introduction (Modeling
Dynamic Systems); 1 edition, Springer, January 8, 2004
[11] Kim Warren, Strategic Management Dynamics, Wiley,
February 8, 2008
[12] Standish Group International Report, 2004
[13] Raymond J. Madachy, Software process dynamics,
Wiley-interscience a john wiley & sons, inc., publication
ieee press, 2008
[14] Abdel-Hamid T. and Madnick S., Software Project
Dynamics, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[15] Acuna S., Juristo N., Moreno A., and Mon A., A
Software Process Model Handbook for Incorporating
People’s Capabilities, 2005.
[16] Acuna S., Sanchez-Segura M., Series on Software
Engineering and Knowledge Engineering Vol. 18. New
Trends in Software Process Modeling, World Scientific
Publishing, 2006.
[17] Seunghun Park, Hyeonjeong Kim, Dongwon Kang,
Doo-Hwan Bae. Developing a Simulation Model Using a
SPEM-Based Process Model and Analytical Models, 2008.

127

http://en.wikipedia.org/wiki/1994
ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf

Simulating genes operation and interaction

Rekubratskiy V.A.
Centre "Bioengineering" RAS

vrecobra@gmail.com

Korotkova M.A.
Moscow Physical Engineering Institute

Abstract

Gene operation and interaction occur in every
organism. Gene network is commonly used to describe
gene interaction issues due to its complicity.
Simulation of gene networks operation is an essential
problem of bioinformatics. System providing tools for
creating, setting up and simulating gene networks is
described. Broad simulation abilities along with high
extensibility are system’s advantages to be noted.

1. Introduction

Gene operating and interaction determines
development of every organism on the Earth [1].
Though many genomes are well examined nowadays
[2], gene interactions issue still remains a subject of
intensive investigation. The main point is that
interactions can often be revealed only through indirect
indications, such as gene activity changes [3], [4].
Activity of some genes can have positive or negative
influence on other genes’ activity [3]. This influence
can be detected during experiments. Many articles with
assumption about certain gene relationships are
published every year [5]-[9]. Gene network is
represented by directed graph with vertices
corresponding to genes and arcs corresponding to
positive and negative interactions. It is commonly used
to describe gene interactions of an organism [10]. Gene
network is usually worked out by a biologist studying
interactions issue. Unfortunately, a network based on
some experimental data may contradict the data
received later or by another researcher (i.e. works [4]
and [7] to be compared). Several distinct gene
networks are usually possible to be drawn up basing on
incomprehensive data set also [11]. To find the most
accurate gene network is required a network
verification using some other experimental data.

Computer system providing simulation of gene
interaction and operation is needed for comparing and
testing gene networks. Such a system may give the

possibility for automatic verification of gene network
conformity with experimental data given.

2. Simulation system

2.1. Gene model

In real organisms, a gene can be active in some cells
and inactive in others. The degree of activity may also
vary. Each gene is responsible for producing its special
protein [1]. A gene is considered active in a cell when
some amount of corresponding protein is found in that
cell. Amount of gene’s protein can be measured in real
cells and thus can be used for verifying gene network
conformity. Thereby protein amount is an essential
characteristic for gene model. Protein production rate
depends on different factors and may vary from cell to
cell and from gene to gene. The amount of other genes’
proteins is one of the factors influencing the protein
producing rate and this gene parameter used for gene
interaction modelling. Gene networks are often
simulated using Petri networks [12], [13]. Only one
gene characteristic – amount of corresponding protein
– is taken into account within this approach. However,
a model taking some other gene parameters into
consideration could express more compound
dependencies of gene interactions.

The simulation system proposed takes both gene
interactions and states into account. Each gene in the
model is described by three parameters: product,
activity and block. The first one – product – describes
the amount of gene’s corresponding protein. It also
represents gene ability operate on other genes and thus
can be defined as gene outer state. The second
parameter – activity – represents gene ability to
generate its product and thus can be defined as gene
inner state. The speed of product generation may vary.
Activity function is introduced as another gene
characteristic to reflect generation speed variability.
Both product and activity are real positive numbers, in
contrast to the third Boolean parameter. This parameter

128

was introduced in the model to express the fact that
some genes actually may start or stop operating at any
stage of organism development process. When gene is
blocked (i.e. its block parameter is true) it cannot nor
generate any product.

In nature, product of every gene undergoes the
degradation process, i.e. its value gradually decreases if
gene activity falls to zero. This fact is also taken into
account in the simulation system proposed. The speed
of degradation expressed by degradation function is
another gene characteristic.

2.2. Gene interactions model

Each interaction in the simulation system is

described by a set of rules. These rules identify the
conditions of the interaction arising and how gene
parameters are modified through the act of interaction.
Rules defining necessary conditions of interaction are
expressed by inequalities and the ones defining
parameters change expressed by the equations.
Algebraic expressions including any combinations of
real numbers and gene parameters can be used in both
groups of rules. Commonly, gene product parameters
alone are used in conditions of interaction reflecting the
fact that product is a characteristic of gene interaction
ability.

2.3. Simulation process

Gene network operation is simulated as step-by-step

process. Check of active interactions is performed on
each step. Changes to gene parameters are not applied
until an interaction was executed. Instead, all changes
are accumulated to be applied at the end of the step.
Changes of gene product values depend on gene
product generation ability (i.e. activity), so those
changes are made at the end of each step also but
before applying parameter changes.

3. Implementation methods

Simulation system was implemented using
Microsoft Visual C++ as a Windows application. The
application enables a user to create a gene network by
inserting genes into system, drawing interactions
scheme and setting up some numeric parameters. After
network was created and its initial state was set up, a
user can monitor overall simulation process (on
network scheme and parameters table) and particular
gene activity changes (on graph of function).

3.1. Gene network implementation

Gene network is implemented as a two-level system.

The first (outer) level is used for intercommunication
with a user. It enables him to set up network topology
and gene parameters and then monitor gene states
during simulation process. The second (inner) level is
used to simulate network operation. First, all the
information set on the outer level is transferred to the
inner one. Simulation step is executed via the second
level and then results are translated back to the first
level, and so on.

3.2. Network editor

The system provides a graphic user interface for

setting up gene network. Network topology drawing
has a lot in common with working in many scalar or
vector graphics editors. Arcs corresponding to gene
interactions are created similar to lines drawing, genes
are repositioned by mouse pointer, etc.

Extensive class system was used to implement
network edition routines. All network objects are
derived from common base class containing
information about object’s inputs and outputs, its
position, id, etc. It defines an interface for operations
upon network objects as well. These operations include
saving, loading, setting up, visualizing and some
others. Many actions and checks could be executed
uniformly for vertices (genes) and arcs (interactions)
due to this design. It gives rise to two related class
hierarchies: one for network objects (genes,
interactions) and one for operations upon objects. In
terms of design patterns, a combination of “Composite”
and “Visitor” patterns is used providing very flexible
class architecture.

3.3. Extensibility

System simulating single gene network operation

was initially developed. After that is was extended to
perform simulation of multicellular organism
development. The extension was made easily due to the
system design providing for it. New network object
types can be easily introduced on the outer network
level, e.g. objects corresponding to some cell activity
processes or to environment influence. One new object
type was introduced during system expanding to
provide creation of processes for cell parameters
modifying. The inner network level provides uniform
parameter reference system. It enabled simple
introducing of new parameters, such as cell size and
position, equally with existing gene parameters. The

129

further system extension towards more comprehensive
model is still possible.

4. Novelty and results

Quite a few software systems for gene network
simulation have been developed so far [14], [15].
Unfortunately, these systems simulate operation of a
standalone network without its connection to cells life
activity. In fact, there may by observed genes
interactions of genes of the remote cells with different
gene states in each one. These situations could hardly
be described by a single gene network models.

There are only few software systems simulating
multicellular organism operation that can take gene
interactions into account [16]. The using of this model
requires some special knowledge in programming.

The system proposed is designed to be a standalone
application that does not require any other
mathematical or simulation software running. It grants
user a simple to use tool for drawing his own gene
networks. It also provides a set of relatively simple
algebraic rules for describing gene interaction details.
This small set of rules, however, is shown to enable
simulation of rather wide range of gene and cell
interaction processes. Some processes of genetic
control for Arabidopsis thaliana development, as well
as for HCV infecting and developing, were successfully
simulated using the designed system.

5. Conclusions

The simulation system and its software
implementation were designed. The simulation system
provides a comprehensive gene operation model and
simulation of intercellular gene interactions. The
software implementation enables a user to easily draw a
gene network and describe intercellular gene
interaction details by a set of relatively simple
algebraic rules. The whole system is shown to be an
extensible one and enable simulation of rather wide
range of gene and cell interaction processes.

The further development is intended to make system
interface simpler for a biologist providing an easier
description of gene interaction processes. A more
comprehensive model of organism operation is to be
designed further taking advantage of system
extensibility.

6. Support

The work is supported by Science & Technology
International Park "Technopark in Moskvorechje"
along the “UMNIK” program.

7. References

[1] A.S. Konichev, G.A. Sevastyanova. “Molecular biology”,
“Academia” publishing center, Moscow, 2003
[2] National Center for Biotechnology Information:
http://www.ncbi.nlm.nih.gov/
[3] N.A. Kolchanov, E.A. Ananko, F.A. Kolpakov et al.
“Gene networks”, Mol. Biol., Moscow, Russia, 2000, July-
August, 34(4), pp. 449-460
[4] J.L. Bowman, G.N. Drews, E.M. Meyerowitz.
“Expression of the Arabidopsis floral homeotic gene
AGAMOUS is restricted to specific cell types late in flower
development”, Plant Cell, American Society of Plant
Physiologists, United States, 1991, August (8), pp. 749-758
[5] T. Gedeon, E.D. Sontaq. “Oscillations in multi-stable
monotone systems with slowly varying feedback”, J Differ
Equ, Elsevier, Netherlands, 2007, August 15, 239(2), pp.
273-295
[6] G. Pogorelko, O. Fursova, E. Klimov. “IDentification and
Analysis of the Arabidopsis Thaliana Atfas4 Gene Whose
Overexpression Results in the Development of A Fasciated
Stem”, J Proteomics Bioinform, OMICS Publishing Group,
United States, 2008, October, 1(7), pp. 329-335
[7] S.V. Shestakov, A.A. Penin, M.D. Logacheva, T.A.
Ezhova. “New modified scheme of genetic control of flower
development”, Alive systems technology, Moscow, Russia,
2005, V. 2, №1, pp. 37-46.
[8] C.Capelli, F. Brisighelli, F. Scarnicci, A. Blanco-Verea,
M. Brion, V.L. Pascali. “Phylogenetic evidence for multiple
independent duplication events at the DYS19 locus”,
Forensic Sci Int Genet, Elsevier, Netherlands, 2007,
December, 1(3-4), pp. 287-290
[9] B. Zheng, X. Lu. “Using protein-semantic network
metrics to evaluate functional coherence of protein groups”,
AMIA Annu Symp Proc, American Medical Informatics
Association, United States, 2007, October, 11, pp. 1174
[10] N.Geard, J. Wiles. “A gene network model for
developing cell lineages”, Artif. Life, MIT Press, United
States, 2005, Summer, 11(3), pp. 249-267
[11] C. Gustafson-Brown, B. Savidge, MF Yanofsky.
“Regulation of the arabidopsis floral homeotic gene
APETALA1”, Cell, Cell Press, United States, 1994, January
14, 76 (1), pp. 131-143
[12] S. Grunwald, A. Speer, J. Ackermann, I. Koch. “Petri
net modelling of gene regulation of the Duchenne muscular
dystrophy”, Biosystems, Elsevier Science Ireland, Ireland,
2008, May, 92(2), pp. 189-205
[13] L.J. Steggles, R. Banks, O. Shaw, A. Wipat.
“Qualitatively modelling and analysing genetic regulatory
networks: a Petri net approach”, Bioinformatics, Oxford
University Press, England, 2007, February, 1, 23(3), pp. 336-
343

130

[14] “Ingeneue: gene network simulation software”
http://rusty.fhl.washington.edu/ingeneue/index.html
[15] “GeNESiS: gene network evolution simulation
software”
http://genomics.iab.keio.ac.jp/genesis.html

[16] “CellModeller Project”
http://www.archiroot.org.uk/doku.php/navigation/cellmodell
er

131

Abstract—Very actual task for the information system is
automatically user interface creating. Solution of this task
greatly decreases the information system development time.
There are various approaches for automatic creation of user
interfaces. In this article most popular approaches are surveyed
and their problems are described. Author suggests the hybrid
approach which allows minimizing the problems of existing
approaches.

Index Terms—user interfaces, code generation, information
systems, databases, objects inheritance

I. INTRODUCTION
he programming of some kinds of applications from
scratch is not reasonable. The continuous extension of the

libraries is widely used. The libraries are designed to solve
tasks that are isolated from general applications logic. That’s
why the approaches like solution of general tasks with
complex configuration and code generation is also popular.

The user interfaces (UI) creation is the one of the tasks
when programming from scratch is unreasonable. The rich UI
libraries solve only part of task. Some meta-information that
may be helpful to create UI already exists as the rule. It may
be database structure for example. On the one hand, UI very
frequently needs some project specific features. On other
hand, many UI parts are evidently reasonable for automatic
creation. The problem is to develop approach which allows to
automatically creating UI which can be extended by project
specific features.

The various approaches of the automatic creation UI for
information systems currently exist. Two approaches are the
most popular. The first approach uses the program code
generation which can be modified by programmer in a future.
The second approach uses runtime generation UI which is
based on the meta-information and the user settings probably.
Let’s consider these approaches in details.

II. EXISTING APPROACHES
The code generation based on the meta-information is

popular practice. This approach is automation of the process
which programmers are making manually in other case.
When programmer has the task to develop UI for some object
he should already has encountered with all parts of this task
in some degree. He will copy the parts of a code from his old

projects, correct identifiers and do some other correcting to
make it working together. Then first version will be done.
When we use the code generation most part of these actions
are executed automatically (Fig. 1). Automatic code
generation eliminates the nasty errors from lack of attention.
The problem of this approach is a lot of iterations that
development process has usually. These iterations may
contain meta-information correction. Used for the code
generating the meta-information may changes also. Then
there is question how to transfer these changes to already
generated and corrected by a programmer code. We can
generate the UI code again and manually correct it again
(Fig. 2). Otherwise we can manually correct UI code due to
meta-information changes (Fig. 3). In any case manually
correction is needed and this correction has a not minimal
volume.

Meta-information

Generated code

Customized code

Code generation

Manual code correction

Fig. 1. The scheme of the automatic UI code generation

Meta-information

Generated code

Customized code

Code generation

Manual code correction

New meta-information

New customized code

Changes in project
Design

Manual code
correction

Fig. 2. The scheme of the automatic UI code generation for meta-information
changing (the first alternative)

Information system user interfaces automatic
creation

Alexander Korotkov
Moscow Engineering Physics Institute

Moscow, Russia
email: aekorotkov@gmail.com

T

132

Meta-information

Generated code

Customized code

Code generation

Manual code correction

New meta-information

New customized code

Changes in project
Design

New generated code

Code generation

Manual code correction

Fig. 3. The scheme of the automatic UI code generation for meta-information
changing (the second alternative)

The second approach doesn’t use the manual code

correction and includes all information needed to configure
UI into meta-information. In this approach we have not
problem of transferring changes from previous approach
because manual generated code correction is not used there.

Databases administration tools use a simple
implementation of this approach. These tools provide a
viewing and editing interface for each table of a database. The
more complex example is the administration generator of
Symfony PHP Framework [1].

In this approach any specific UI customizations must be
covered by the meta-information and generator possibilities.
So if some new sort of UI customization is needed then meta-
information and generator must be extended to cover such
customization.

The most serious problem of this approach is that
reprogramming a UI generator is frequently needed. It may
produce the new generator functions to be appropriate to
specific project needs but doesn’t solve the general problems.
In this case the generator design may suffer.

Meta-information

UI

Runtime UI generation

Fig. 4. The scheme of the runtime UI generation.

III. PROPOSED APPROACH
Author proposes the hybrid approach when generated code

and manual corrections are logically separated. When the
meta-information is changed than the generated code will be
generated again but existing manual corrections do not
require any changes or these changes will be minimal. To
implement this approach the two tasks should be solved:
1) Code generator should be flexible enough to generate the

application which has a skeleton which doesn’t require
the changes during the customization. Because it would
be problematical to implement logically separation of
manual corrections which include the application
restructure.

2) The mechanism of separation of generated application
and manual changes should be found.

For the separation of the generated application and the
manual changes the inheritance mechanism is proposed. In
this approach for each automatically created UI component
the two classes are generated (Fig. 5). The first class is
automatically generated UI component. The second class
inherits the first class and it is empty initially. Programmer
can manually fulfill the second class for UI component
customization. When meta-information is changed than the
first class will be regenerated but second class do not require
any changes or these changes will be minimal and dealing
with the manually added features (Fig. 6). This approach is
very similar to popular approach in the Object Relation
Mapping (ORM) [2] software where base classes of persistent
objects are generated and derived class can be manually
customized. Let’s consider how this approach can be applied
to very usual UI components of information system such as
the grid and form.

Meta-information

Base class

Customized
derived class

Code generation

Manual code correction

Empty
derived class

Code generation

Fig. 5. The scheme of the hybrid approach of a UI generation

Meta-information

Base class

Customized
derived class

Code generation

Manual code correction

Empty
derived class

Code generation

New meta-informationChanges in project
Design

Code generation

New base class

New customized
derived class

Manual code
correction

Fig. 6. The scheme of the hybrid approach of a UI for meta-information
changing

IV. IMPLEMENTATION
To implement this approach the Web-interface which uses

the Javascrit-framework ExtJS [3] is generated. The
generated class for gird is derived class from the Ext.Grid.
This class contains configuration of columns, render methods
of columns, appearance configurations methods of columns
and UI objects for cell editing. The derived class can redefine
these configurations, methods and objects. Objects in base
class are defined by the configurations without the explicit
constructor call. It helps to avoid the excess of the objects
creation when they are redefined in the derived class. The

133

generated class for form inherits Ext.FormPanel. This class
contains UI objects using for editing of the form data. The
derived class can redefine these objects. Similar to the grid
base class the objects are defined by their configurations.
Derived classes can contain additional methods and
properties which implements extended inner logic.

V. CONCLUSION
The one of problems of automatic UI creation is the

developing approach which allows automatically creating UI
which may be extended by the project specific features.
Various approaches for automatic creation of user interfaces
(UI) for information systems currently exist. The one of these
approaches uses the program code generation. There is a
problem in this approach when meta-information is changed.
Then manually changes are required. These changes may
concern the one more UI component customization or the
manually transfer of the meta-information changes to
program code. Other approach is runtime UI generation. The
most serious problem of this approach is that interface is
strictly limited by laying therein customization possibilities.
Reprogramming some feature of such UI is difficult. Author
proposes the mixed approach when inheritance is used to
separate generated application and manual changes. The two
classes are generated for each UI component. The first class is
automatically generated UI component. The second class
inherits the first class and it is initially empty. Programmer
can manually customize the second class. When meta-
information is changed the base class is regenerated only and
the manual changes in derived class are minimal. This mixed
approach make possibility for the minimizing of the problems
of the surveyed approaches for the automatic UI generation.
This approach was proved to be functional.

REFERENCES
[1] Symfony Open-Source PHP Web Framework, http://www.symfony-

project.org/
[2] Propel ORM PHP framework, http://propel.phpdb.org/trac/
[3] Symfony Admin Generator, http://www.symfony-

project.org/book/1_2/14-Generators#Administration

134

	annotation.pdf
	syrcose2009-proceedings.pdf
	contents.pdf
	syrcose2009-proceedings-with-contents.pdf
	contents.pdf
	syrcose2009-proceedings.pdf
	title.pdf
	annotation.pdf
	foreword.pdf
	syrcose2009_submission_1.pdf
	syrcose2009_submission_10.pdf
	syrcose2009_submission_11.pdf
	syrcose2009_submission_13.pdf
	1. Introduction
	2. Graphical Notation Being Used
	3. Problem Statement
	4. The Implementation of Inheritance using Act as State Machine Library
	5. The Implementation of Inheritance Using State Machine on Steroids Library
	6. Side-by-Side Comparison of Acts as State Machine and State Machine on Steroids Libraries
	7. Conclusions
	8. References

	syrcose2009_submission_14.pdf
	1. Introduction
	2. Balance Scorecard
	3. System Dynamics
	4. Methodology
	5. DEM design
	6. DEM prototype
	7. Software Process Simulation
	8. Conclusion
	9. References

	syrcose2009_submission_15.pdf
	syrcose2009_submission_16.pdf
	syrcose2009_submission_17.pdf
	1. Introduction
	2. Simple API for XML
	3. SAX Handler as an Entity with Complex Behavior
	4. Declarative Language for SAX Handler
	5. Building Automaton for SAX Handler
	6. Code generation
	7. Conclusion
	8. References

	syrcose2009_submission_18.pdf
	syrcose2009_submission_19.pdf
	I. Introduction
	II. Project Internals
	A. Dynamic systems modeling
	B. Customizable source code generation
	C. Optional functionality

	III. Languages And Notations
	IV. Target Platforms And APIs
	V. Operating System, Tools And Libraries
	VI. Current Status And Future Prospect
	VII. Résumé

	syrcose2009_submission_2.pdf
	syrcose2009_submission_20.pdf
	I.INTRODUCTION
	II.Problem Analysis
	III.Proposed Solution And Current Status
	IV.Future Prospect

	syrcose2009_submission_22.pdf
	syrcose2009_submission_23.pdf
	syrcose2009_submission_24.pdf
	Introduction
	Design concepts
	Requirements
	Platform support

	Current state and learned lessons
	Metatarget-induced indirection
	Code-level extension mechanisms
	User expectations

	Existing solutions
	Eclipse CDT
	CMake
	SCons

	Conclusions and Future Work
	Acknowledgments
	References

	syrcose2009_submission_25.pdf
	syrcose2009_submission_26.pdf
	I.
	I. Preface
	II. A game as a general model for a site
	III. COMPONENT ANALYSIS
	IV. Behavior analysis
	V. EXPERIMENTAL RESULTS
	VI. Conclusions

	syrcose2009_submission_27.pdf
	syrcose2009_submission_28.pdf
	syrcose2009_submission_29.pdf
	syrcose2009_submission_3.pdf
	syrcose2009_submission_4.pdf
	syrcose2009_submission_7.pdf
	syrcose2009_submission_8.pdf
	Introduction
	Business processes description languages
	Translation of business processes descriptions into automata programs
	Conclusion
	References

	syrcose2009_submission_9.pdf

