

SYRCoSE 2010

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the 4th Spring/Summer Young Researchers’ Colloquium on
Software Engineering

Nizhny Novgorod, June 1-2, 2010

Nizhny Novgorod
2010

Proceedings of the 4th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2010), June 1-2, 2010 – Nizhny Novgorod, Russia:

The issue contains the papers presented at the 4th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2010) held in Nizhny Novgorod, Russia on 1st and 2nd of June,
2010. Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include software development methods and tools, functional testing
and formal verification, telecommunication software, high-performance computing, software
engineering education, and others.

Труды 4-ого Весеннего/летнего коллоквиума молодых исследователей в области
программной инженерии (SYRCoSE 2010), 1-2 июня 2010 г. – Нижний Новгород, Россия:

Сборник содержит статьи, представленные на 4-ом весеннем/летнем коллоквиуме молодых
исследователей в области программной инженерии, который проводился в Нижнем
Новгороде 1-2 июня 2010 г. Отбор статей производился на основе рецензирования
материалов программным комитетом. На коллоквиум допускались как полные статьи, так и
краткие сообщения, описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: методы и инструменты разработки
ПО, функциональное тестирование и формальная верификация, телекоммуникационное ПО,
высокопроизводительные вычисления, образование в области программной инженерии и
другие.

ISBN 978-5-91474-015-0

© Авторы, 2010

Contents

Foreword……………………………………………………………………………………………………6

Committees / Referees…………………….………………………………………………………………..7

Software Development Methods, Technologies and Tools

Informational System to Support Development and Usage of Linux Interface Standards
 D. Silakov…………………………………...……………………………………………...………9

Universal System for Creation and Installation Linux Packages

E. Chernov……………………………………………………………………….………..……...17

Single-Window Integrated Development Environment
 I. Ruchkin, V. Prus………………………………………………………………………..………20

Macromodule Technology

A. Sidnev, V. Gergel……………………………………………………………………..………..26

On Requirements Completeness Analysis Method
V. Gingina……………………………...…………………………………………………………29

An Approach to Data Validation based on Lifecycle-Bounded Metadata

V. Surpin………………………………………………………………………………………......33

Functional Testing of Software Systems

A GA-Based Approach for Test Generation for Automata-Based Programs

A. Zakonov, O. Stepanov, A. Shalyto……………………………………………………………..37

Test Data Generation for Covering Functionality of Database Applications
E. Kostychev, V. Omelchenko, S. Zelenov ………………………………...……………………..43

Testing AJAX functionality with UniTESK

Y. Gerlits………………………………………………………………………………………….50

Service-Oriented Approach to Integration Testing in Distributed Systems
V. Fedotov………………………………………………………………………………………...58

High-Performance Computing

GPU-Based Extended Cellular Model Implementation

A. Emelyanov, R. Dmitrienko……………………………………………………………………..60

ParaLab – Visual Way to Parallel Programming
A. Labutina, V. Gergel……………………………………………………………………………63

A DSL for Hardware-Accelerated Grid-Based Scientific Models

A. Gavrilov………………………………………………………………………………………..69

3 of 168

Event-Driven Simulation

Formalization and Enforcement of Requirements to Modular Discrete-Event Simulation Runtime

E. Chemeritskiy, K. Savenkov..……………….…………………………………………………..74

Telecommunication Software Development and Testing

Testing Automation of Projects in Telecommunication Domain
 A. Veselov, V. Kotlyarov………………………………………………………………………….81

Test Suite Development for Conformance Testing of Email Protocols
 N. Pakulin, A. Tugaenko………………………………………………………………………….87

Modeling and Analysis of WAP Protocol Family

M. Alekseeva, E. Dashkova, D. Chaly.....….......………………………………………………….92

Formal Methods for Verification and Test Generation

On the Formal Specification of Automata-based Programs via Specification Patterns

A. Klebanov…………………………………………………………………………………….…97

On Reasoning about Finite Sets in Software Model Checking

P. Shved………………………………………………………………………………………….100

On Context Switch Upper Bound for Checking Linearizability
V. Mutilin………………………………………………………………………………………..106

Observable Form of a Timed Finite State Machine

M. Gromov, O. Kondratjeva…………………………………………………………………….113

On EFSM-based Test Derivation Strategies
 N. Kushik, A. Nikitin……………………………………………………………………………..116

Hardware Design and Verification

Comparing GALS Architectures and Communicational Protocols

S. Bykov, S. Mosin……………………………………………………………………………….120

Strategy of Selecting Power Reduction Technique for Energy-Efficient Semiconductor Designs
P. Parnevich, S. Mosin…………………………………………………………………………..123

Contract Specification of Hardware Designs at Different Abstraction Levels: Application to Functional
Verification

M. Chupilko, A. Kamkin…………………………………………………………………………125

An Approach to Test Programs Generation for Microprocessors Based on Pipeline Hazards Templates
A. Kamkin, D. Vorobyev…………………………………………………………………………130

Analysis and Optimization in Different Fields

Database Index for Approximate String Matching

A. Korotkov……………………………………………………………………………………...136

Adaptation of Hierarchical Clustering by Areas for Automatic Construction of Electronic Catalogue
F. Borisyuk, V. Shvetsov…………………………………………………………………………141

4 of 168

The Method of Programs Compression Based on the Frequency Characteristics of Programs Behaviour
 A. Shalimov……………………………………………………………………………………...146

Metrized Small World Approach for Nearest Neighbor Search
 A. Logvinov, A. Ponomarenko, V. Krylov, Y. Malkov…………………………………………...151

Software Safety and Security

An Approach to on the Fly Activation and Deactivation of Virtualization-Based Security Systems

D. Yefremov, P. Iakovenko………………………………………………………………………157

Software Engineering Education

The Modern Educational Course on Agile Software Development

E. Sorokin, K. Kornyakov………………………………………………………………………..162

Programming as a Part of the Software Engineering Education
O. Maksimenkova, V. Podbelskiy………………………………………………………………..165

5 of 168

Foreword

We are glad to welcome you to the 4th Spring/Summer Young Researchers’ Colloquium on
Software Engineering (SYRCoSE). This year we have the pleasure of holding SYRCoSE in
Nizhny Novgorod, an important economic, transport and cultural center of the Russian
Federation. The colloquium is hosted by Lobachevsky State University of Nizhny Novgorod
(UNN) and State University – Higher School of Economics (HSE), famous Russian educational
and research centers. The event is organized by Institute for System Programming of RAS
(ISPRAS) and Saint-Petersburg State University (SPSU) jointly with UNN and HSE.

Program Committee has selected 33 papers that cover different topics of software engineering
and computer science. Each submitted paper has been reviewed independently by two or three
referees. Participants of SYRCoSE 2010 represent well-known universities, research institutes
and IT companies such as HSE, Institute for Information Transmission Problems of RAS,
ISPRAS, Lanit-Tercom, Inc., MeraLabs, Moscow State University, National Research Nuclear
University “MEPhI”, Saint-Petersburg State Polytechnic University, SPSU, Saint-Petersburg
State University of Information Technologies, Mechanics and Optics, Special Computing
Technologies LLC, Tomsk State University, UNN, Vladimir State University, and Yaroslavl
Demidov State University.

We would like to thank all the participants of SYRCoSE 2010 and their advisors for interesting
papers. We are also very grateful to the PC members and the external reviewers for their hard
work on reviewing the papers and selecting the program. Our thanks go to the invited speakers,
Tiziana Margaria (University of Potsdam) and Aleksey Savateyev (Microsoft). We would also
like to thank our sponsors, Russian Foundation for Basic Research (grant 10-07-06025-г) and
Microsoft Research (in particular, Rostislav Yavorskiy). Finally, our special thanks to
Prof. Eduard Babkin (HSE), Prof. Victor Gergel (UNN), and Prof. Oleg Kozyrev (HSE) for their
invaluable help in organizing the colloquium in Nizhny Novgorod.

See you next year at SYRCoSE 2011!
Sincerely yours,

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
 May 2010

6 of 168

Committees

Colloquium Chairs

 Alexander PETRENKO – Russia
Institute for System Programming, RAS

 Andrey TEREKHOV – Russia
Saint-Petersburg State University

Program Committee

 Habib ABDULRAB – France
National Institute of Applied Sciences, INSA-
Rouen

 Tiziana MARGARIA – Germany
University of Potsdam

 Sergey AVDOSHIN – Russia
Higher School of Economics

 Igor MASHECHKIN – Russia
Moscow State University

 Eduard BABKIN – Russia
Higher School of Economics

 Alexander MIKHAYLOV – Russia
National Research Nuclear University
"MEPHI"

 Victor GERGEL – Russia
Lobachevsky State University of Nizhny
Novgorod

 Valery NEPOMNIASCHY – Russia
Ershov Institute of Informatics Systems

 Efim GRINKRUG – Russia
Higher School of Economics

 Ruslan SMELYANSKY – Russia
Moscow State University

 Vladimir HAHANOV – Ukraine
Kharkov National University of
Radioelectronics

 Valeriy SOKOLOV – Russia
Yaroslavl Demidov State University

 Vsevolod KOTLYAROV – Russia
Saint-Petersburg State Polytechnic University

 Ivan PILETSKI – Belorussia
Belarusian State University of Informatics and
Radioelectronics

 Oleg KOZYREV – Russia
Higher School of Economics

 Vladimir VOEVODIN – Russia
Research Computing Center of Moscow State
University

 Alexander LETICHEVSKY – Ukraine
Glushkov Institute of Cybernetics, NAS

 Nina YEVTUSHENKO – Russia
Tomsk State University

Organizing Committee

 Eduard BABKIN – Russia
Higher School of Economics

 Alexander KAMKIN – Russia
Institute for System Programming, RAS

 Victor GERGEL – Russia
Lobachevsky State University of Nizhny
Novgorod

 Oleg KOZYREV – Russia
Higher School of Economics

7 of 168

Referees

Sergey AVDOSHIN Tiziana MARGARIA

Eduard BABKIN Alexander MIKHAYLOV

Vladimir BASHKIN Vadim MUTILIN

Dmitry CHALY Valery NEPOMNIASCHY

Eugeniy CHERNOV Eugene NOVIKOV

Mikhail CHUPILKO Alexander PETRENKO

Natalia GARANINA Andrey PONOMAREV

Victor GERGEL Alexey PROMSKY

Yevgeny GERLITS Yury SCHEKOCHIKHIN

Viktoria GINGINA Natalia SHABALDINA

Efim GRINKRUG Pavel SHVED

Maxim GROMOV Denis SILAKOV

Sergey GROSHEV Kirill SMIRNOV

Vladimir HAHANOV Sergey SMOLOV

Pavel IAKOVENKO Valery SOKOLOV

Alexander KAMKIN Artiom SOLOPOV

Eugeni KORNIKHIN Bernhard STEFFEN

Evgeniy KOSTYCHEV Alexander STRAKH

Vsevolod KOTLYAROV Viktor TATISCHEV

Kirill KOZLOV Andrey TEREKHOV

Oleg KOZYREV Andrey TRETYAKOV

Boris KRIVOSHEIN Andrey TSYVAREV

Victor KULIAMIN Anastasia TUGAENKO

Natalia KUSHIK Dmitry VOROBYEV

Egor KUZMIN Nina YEVTUSHENKO

Alexander LETICHEVSKY Maxim ZHIGULIN

8 of 168

Informational System to Support Development and
Usage of Linux Interface Standards

Denis Silakov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

Email: silakov@ispras.ru

Abstract—This paper presents an approach for developing
Linux interface standards aimed to improve portability of ap-
plications among different Linux distributions. The approach
is based on usage of database-driven informational system that
simplifies creation and maintenance of interface standards by
standardization committees and their usage by application and
distribution developers. A logical model of interfaces between
Linux applications and distributions is described which is used
to design schema of the informational system’s database.

Keywords-Software requirements and specifications, Software
standards, Data management.

I. INTRODUCTION

The Linux operating system becomes more and more pop-
ular. Nowadays it is used not only by enthusiasts, but by
many commercial companies, corporations and government
organizations. Nevertheless, the market share of Linux in some
areas (in particular, on desktops) is still relatively small. One
of the main reasons which prevents the growth of Linux
popularity in these market segments is lack of applications
for this operating system that would satisfy all the needs of
target audience.

This lack of applications arises, in particular, from a huge
variety of existing operating systems based on the Linux
kernel, GNU libraries and utilities and other common com-
ponents. Such systems are called Linux distributions; there
are several hundreds of distributions at the moment [1] and
the situation is constantly changing – as time goes by, new
distributions appear, while the others become obsolete and un-
supported, but the total number of distributions is permanently
increasing.

Most components that form a distribution are maintained
not by distribution vendors themselves, but by different third
party developers. This allows to save a lot of resources and
efforts, but leads to another kind of problems. The thing is
that many developers in the Open Source Software (OSS)
world follow the “Release early, release often” policy [2], and
it is not uncommon for software updates to appear several
times a month. Such often releases lead to situations when a
lot of different versions of the same component exist which,
in general, provide different functionality. Moreover, distri-
bution vendors often modify software taken from upstream,
sometimes slightly, but sometimes significantly – for example,
they can add some new unique functionality which will give

more advantages to their system with respect to the others.
As a result, functionality of the same component in different
distributions can vary significantly.

A large variety of distributions provides users with a wide
choice of Linux implementations, but such a variety makes it
difficult to develop portable software that would be able to
run in every Linux distribution without any additional actions
from the user side. Approaches used by software vendors to
increase the number of supported distributions depend on kind
of license under which their programs are delivered. From
licensing point of view, we should distinguish open software,
whose source code can be obtained by interested parties
for investigation and modification, and closed, or proprietary
software, whose license forbids code modifications.

Developers of open source programs usually leave the
task of software adoption for those distribution vendors who
want to include their programs. In this case it is distribution
engineers who test applications inside particular systems and
modify their source code, if necessary. Finally, users them-
selves can build program from sources (and rely on programs
like GNU Autotools that can take care of differences in build
environments [3]).

Developers of proprietary software cannot follow this way.
Instead, they have to provide binary executable files and
shared libraries for their applications that are ready to use
“as is”, without recompilation or other actions. But it can be
very expensive and time consuming to test some application
in every existing distribution. That’s why many proprietary
vendors declare that they only support a few selected systems –
usually those that have significant market share, such as SUSE
Enterprise Linux or Red Hat Enterprise Linux (for example,
IBM XL Fortran supports only these two distributions [4];
Intel Fortran Compiler supports seven systems [5], but this is
also not a large number). However, end users normally expect
to buy products “for Linux”, not “for SUSE” or “for Red Hat”.

A promising approach to simplify creation of portable
applications distributions is standardization – development of
requirements that should be satisfied by all standard com-
patible systems. In our case, interface standards are required
guaranteeing that every compliant operating system provides
certain interfaces (in particular, libraries and functions) that
can be used by applications.

Standards are useful not only for proprietary vendors, but

9 of 168

also for developers of open source programs. The thing is
that the more modifications are required to adopt a particular
application for some distribution, the more likely the modified
program will significantly differ from its origin and will be not
exactly that thing which the original developer wants it to be.
In addition, it’s likely that if several programs exist providing
the same functionality, then distribution vendors will choose
those that require less efforts for maintenance and adoption.
Following standards will give developers guarantees that their
product will suite perfectly for any standard compliant system
and will be unlikely subjected to significant modifications.

Modern Linux distributions are large and provide millions of
interfaces of different kinds. For standardization committees, it
is important to investigate which interfaces are mostly required
and useful; due to a huge number of existing interfaces, some
automation of this analysis is desired. But even with careful
selection of standardized interfaces, standards can, in turn,
become huge, so their size will cause problems for both
standardization committees (responsible for standard mainte-
nance and further development) and for developers, who will
have to investigate thousands of pages of specification text.
Thus, an approach is required to organize development process
of an interface standard which will simplify both standard
maintenance and development by appropriate committees and
standard usage by its target audience – primarily, application
and distribution developers.

The remainder of the paper is structured as follows: Section
2 observes the most valuable interface standards in the OSS
world and analyzes approaches and techniques used during
their development. Section 3 introduces an approach for inter-
face standard development process organization which is based
on using of database-driven informational system. Section 4
describes the application of the approach to the Linux Standard
Base development process. Finally, Section 5 summarizes the
main ideas.

II. STANDARDS IN THE OPEN SOURCE WORLD

Portability problem is not a new one for Open Software,
and standardization is declared to be one of the key principles
of the Open Systems that should solve this problem (at least
partially). However, even with such a principle, real life shows
that it’s not always easy to achieve full compatibility between
different products. Problems arise in two areas – standard
development and maintenance by standardization groups
and committees and standard usage by its target audience –
developers of applications and OS components.

Roots of the first problem lie in a huge number of existing
libraries and functions – a modern Linux distribution delivered
on a single DVD disk provides several hundreds of libraries
which, in turn, export hundreds of thousands of functions.
Not all of these functions can be considered as stable, safe,
backward compatible, etc. – that is, not all functions can be
characterized as a ”best practice” and recommended to be
used by everyone. One of the main tasks of standardization
committee is to select those interfaces that are proved to be
useful, and probably try to help to improve those interfaces

which are not mature yet. That’s why it is important to estimate
real needs of applications, capabilities of existing Linux im-
plementations and common practices used to solve particular
problems, in order to standardize the mostly requested and
important interfaces first. The more so, since besides such
interface importance analysis, standardization process involves
development and maintenance of specification text, tests and
other accompanying products and informational resources –
that is, standardization is actually an expensive and time-
consuming task, so it is not desirable to waste resources.

Another effect of a large number of existing libraries and
interfaces is that standards can become very large, too. This
leads to the second problem – large specifications are hard to
use for their target audience, since it’s not easy to investigate
a dozen volumes of specification, several hundreds of pages
each. In order to make developers life easier, some standards
are accompanied by auxiliary tools, informational resources
and other additional products. A common example of such a
product is a test suite that can be used to check if application
meets all standard requirements. A more sophisticated example
is a specialized development environment whose usage during
the application compilation and build processes guarantees
compliance of resulting program with the standard.

Such auxiliary components form a standard environment.
All parts of this environment should be kept in sync with
each other and with the specification text. For example, if it is
decided to remove some interface from the specification, then
the test suite for applications should be updated to forbid usage
of this interface, the application development tools should be
modified to avoid usage of this interface, and so on. Thus,
while complicated and feature rich environment of a standard
is useful for its target audience, it can significantly complicate
development and maintenance of standard and accompanying
tools.

One more issue of standardization we’d like to mention is
that standards are not always fully suitable for every particular
area. It’s not uncommon when several standards exist that
cover some area or when a small subset of a standard is
enough for some class of systems. In such cases, standard
profiles are developed – unions of existing standards or their
subsets aimed to create a specification covering a certain class
of systems. As for interface standardization, profiles are asked
for when developing highly tailored products – for example,
intended to be used only on high-loaded servers or inside
mobile devices. Developers of such applications only consider
operating systems that can work on their target platforms,
and it would be useful for them to have a standard that
describes only such particular class of systems. To be sure,
existence of specifications that already cover (at least partially)
target area can simplify development of a new document, and
profile development is usually cheaper then development of
a standard from scratch. However, it can introduce its own
problems – when selecting subsets of existing standards and
then joining these subsets into a single document, it is im-
portant to keep internal consistency of resulting specification.

10 of 168

In addition, it can be useful to reuse existing auxiliary tools,
and these tools should be also adopted for a new profile –
superfluous tests should be dropped, informational resources
from different specifications that form the profile should be
somehow combined and so on. Thus, profile development is
not as cheap as it can seem to be.

All the problems mentioned above are not new and they
were faced by different standardization workgroups. Let’s
consider different approaches used in order to solve them by
some famous interface standards that are in use in the Linux
world.

A. POSIX and SUS

The most famous and mature open standards for operating
system interface are POSIX and Single UNIX Specification
(SUS). Initially, these specifications were developed to achieve
portability of applications among different UNIX implemen-
tations on the source level. This approach supposes stan-
dardization of the system Application Programming Interface
(API), the core part of which are functions provided by
system libraries and declared in appropriate header files. It
is guaranteed that any application that meets requirements of
some API standard can be compiled from its sources in any
operating system compatible with that standard.

Roots of the Single UNIX Specification lie in the Common
API Specification, developed in the early 1990th by the COSE
alliance formed by all leading UNIX vendors of that time.
The main purpose of this alliance was to investigate existing
UNIX implementations and create a list of functions that were
present in all UNIX systems. The resulting list contained 1170
functions and due to this reason it is also known as Spec 1170.
In 1992-1993, during the SUS development, an additional
research of 50 leading UNIX applications was performed and
additional list of 130 functions was created that were suggested
for standardization [7].

Application and distribution analysis during SUS and
POSIX development was primarily performed manually and
involved deep source code investigation by analysts. In early
1990th, this approach was suitable and allowed to perform a
high quality and complete analysis.

A problem with initial versions of POSIX and SUS was
that these standards considered only some relatively low
level functions and calls, but this was not enough for many
applications even in that time – such popular areas as graphical
user interface or multimedia were completely out of standard-
ization scope. The need for more areas was understood by
standardization committees, and it was decided to develop
several SUS profiles – specifications that were based on
POSIX but extended it with interfaces specific to particular
areas. The SUS version 2 specification presented three profiles
– Base Specification (predecessor of POSIX 2001), UNIX98
Workstation (with GUI requirements based on the Common
Desktop Environment – CDE – and the Motif library) and
UNIX98 Server (specifying additional network services and
Java Runtime Environment).

Unlike the base specification, extended profiles were suit-
able for UNIX-based systems only – for example, there
were no free Motif and CDE implementations for Linux.
Moreover, there were no concurrent implementations of CDE
or Motif at all; concurrent implementations of some other
standardized items were allowed, but they had to follow other
existing specifications (like Java RE). Thus, during extended
UNIX profile development, standardization workgroups didn’t
have to analyze alternative implementations, they only had to
choose some top-level standardization directions – for exam-
ple, once it was decided that CDE would be a standard desktop
environment, there were no need to investigate different (and
partially incompatible) implementations of CDE, since there
was only one implementation of it in the wild.

On the other side, the POSIX itself was divided on sev-
eral subsets that also formed a set of profiles – such as
POSIX.1b real-time extensions. However, these profiles were
even smaller than POSIX and their creation haven’t require
investigation of some new standardization techniques.

B. LSB

An alternative approach to API standardization is to stan-
dardize Application Binary Interface (ABI), giving developers
an opportunity to use the same executable files and shared
libraries in all compliant systems, without a need for recom-
pilation. The core part of such ABI standards are shared
libraries that should be provided by operating system and
binary symbols exported by them (binary symbol is a binary
level entity corresponding to either a function or a global
variable exported by library). For application developers, this
ABI standardization is more preferable than the one for API,
since it doesn’t require any actions (neither from developers
nor from users) in order to port a program to any standard
compliant system. However, ABI standards contain much more
limitations for OS – in particular, it is clear that all target
systems should use the same format for binary executables
and shared libraries. That’s why ABI standards often cover
less systems than API ones.

Nowadays this approach is used by the Linux Standard Base
specification (LSB) which is intended to be applied for Linux
based systems only [12]. Roots of LSB lie in POSIX and
SUS, and standardization process is also similar in many ways.
In particular, LSB developers constantly perform analysis
existing distributions and applications in order to select the
mostly important and useful interfaces. Initially, the analysis
process was also performed manually; but up to now the size
of data that should be analyzed increased dramatically, and
manual analysis doesn’t work fine any more. In particular,
during LSB 3.0 development, only interfaces provided by
RHEL and SLES distributions were taken into account, while
there were several hundreds of different Linux distributions in
the world.

LSB has a rich environment, consisting of test suites,
development environment for application vendors, online in-
formational resources and other products. All these items are,
on the one hand, independent products; on the other hand, they

11 of 168

all represent the LSB in some way and should be kept in con-
sistency with it. The size of all these products makes it hard to
perform such synchronization manually; in order to automate
this task, a specification database was designed to store some
information about standardized elements accompanied with a
set of tools that were used to synchronize LSB environment
components with each other and with LSB itself.

After LSB 3.0 was released and development of the next
version was started, it became clear that the current infras-
tructure implies too many manual work and can’t satisfy the
all the needs of the LSB workgroup. In December, 2006, Ian
Murdock (CIO of Free Standards Group that was responsible
for LSB development at that moment) on the LSB Face-to-
Face meeting formulated the following problems of the LSB
Infrastructure [12]:

• absence of possibilities of Linux ecosystem analysis that
would allow to effectively select further development
directions;

• complexity of support of several LSB versions at once
caused by absence of information about standard evolu-
tion in the database;

• high complexity of adding new interfaces to LSB –
though the database solved the problem of synchroniza-
tion of specification text and environment components,
the task of populating database with data was not a trivial
task;

• lack of auxiliary tools that would help distribution and
application vendors to use LSB in the development pro-
cess.

Summarizing POSIX and LSB experience, we can conclude
that as the size of operating systems (measured in a number
of interfaces) grows, the amount of work to be performed by
standardization committees increases dramatically, and those
approaches for standard development that proved to be useful
a decade ago nowadays fail to satisfy all the needs of both
standardization committees and those developers who use
standards. New approaches are required that would help both
standardization workgroups and standard users to perform
their work effectively.

III. AN APPROACH FOR LINUX INTERFACE STANDARDS
DEVELOPMENT

In this paper, we present an approach for Linux Interface
Standards Development. The approach includes the following
stages:

1) Analysis of the Linux ecosystem:
• selection of popular and mostly important appli-

cations, analysis of their requirements for system
libraries and functions;

• collection of information about existing distributions
– in particular, about provided libraries and exported
functions.

The set of applications and distributions is constantly
evolving, so it is necessary to have data not only with

Fig. 1. Analysis of the Linux ecosystem during standard development

respect to some fixed time point, but collect information
about the Linux ecosystem evolution during last several
years. It is important to perform constant monitoring of
the ecosystem, and results of this monitoring at some
certain time points can be used to create next version of
a standard, as demonstrated at Fig.1.

2) Preparation of a new standard version. This stage in-
cludes selection of interfaces which are mostly needed
by applications, proved to be stable and provided by all
modern distributions. Then, on the basis of this set of a
consistent set of interfaces is constructed which will be
included in the specification.

3) Addition of semantic information (in particular, de-
scriptions of functionality that should be provided by
interfaces), development of tests, adopting the standard
certification system to support certification process for
the new version and other tasks that should finalize
release of a new standard version.

In order to support this method, we suggest to build an
informational system which could be used to automate (at least
partially) the mostly time-consuming tasks. The suggested
informational system is based on a logical model of interfaces
in the Linux ecosystem.

A. Logical Model of Application Interfaces with the Linux OS

In this paper, we concentrate on Application Binary Inter-
face (ABI) – that is, we consider interfaces between binary
executables and libraries of applications and shared libraries
of distributions. Thus, we consider applications as a set of
compiled files (executables and shared objects). In Linux,
the main format used for such files is ELF (“Executable
and Linking Format”). In our model, we’ll include some
items related to the ELF format; the general ELF description
is provided by the System V ABI Specification [6]; some
Linux specific extensions are described in the appropriate LSB
sections [8].

All properties of any item which is a part of system ABI
or API can be divided in two groups:

• structural properties, that can be checked statically –
for example, names of functions exported by library or
signature of any function from a given header file;

12 of 168

• semantic properties, whose analysis usually requires run-
time testing – for example, function behavior.

The model described in this paper includes structural inter-
face properties only, abstracting away from semantic aspects.

As elements represented in the model, we use interfaces
involved in the process of dynamic loading of application
files [10]. Compatibility between application and distribution
with respect to such interfaces guarantees that application can
be successfully launched in the distribution – that is, dynamic
loader will be able to resolve all external dependencies of
application, form the executable image in memory and pass
the control to application’s main entry.

The following interfaces are considered:
• libraries – a special kind of ELF files that can export

interfaces;
• binary symbols exported by libraries – these are binary

level entities corresponding to functions and global vari-
ables;

• structure and size of types used as function parameters
and return values;

• ELF file attributes – class (32bit or 64bit), target
architecture of a file and types of sections that exist in
file.

Concentrating on application launching process, the model
leaves out of account the following ways of interaction be-
tween Linux applications and distributions:

• dynamic loading of shared libraries and dynamic in-
vocation of symbols exported by them at runtime (for
example, using the libdl library capabilities);

• invocation of external commands and utilities at runtime
(for example, using the system or exec functions).

However, modern recommendations on developing of
portable applications forbid usage of such possibilities, unless
all files involved in the interaction are part of the application.
Indirect dependency on a system library or command cannot
be checked by means of the operating system itself (e.g., by
dynamic loader), so it is application developer who should
check that necessary files exist and provide all required inter-
faces. However, such checks add complexity to any program,
and improperly performed checks can lead to program crash
or unexpected behavior [9].

B. Informational System to Support Development and Usage
of Linux Interface Standards

In order to support the approach to interface standard
development described above, we use an informational system
providing the following possibilities:

• planning of further standard evolution;
• creation of new versions of standard and its profiles;
• ensuring consistency of standard environment compo-

nents;
• checking of how different Linux distributions and appli-

cations are compliant with the standard.
The informational system is aimed to automate the most

time consuming tasks that arise during the processes described
above.

The main components of the system are like the following:
• a database with information about both standardized

interfaces and interfaces used by existing applications and
provided by distributions. The database schema is based
on the logical model of interfaces described above;

• automated data collection tools used to gather informa-
tion to populate the database with data;

• automated generators that use the database to create
components of standard environment.

The database should store information about all interfaces
with their characteristics described in the specification which
are used by at least one component of the standard envi-
ronment. If any component during its work requires some
information about standardized interfaces which is described
in the specification, this information should be either directly
queried from the database when such a need occurs, or should
be embedded in the component code at compilation time
by appropriate automated generators. In particular, if some
component needs to know the list of included interfaces, this
list should be always taken from the database. This approach
guarantees that all components are kept synchronized with
each other and with specification text. To be sure, it is required
for the specification text itself to be synchronized with the
database; one of the ways to achieve it is to generate those
parts of the text that are represented in the database – that
is, the database should be the only one source of information
about standardized items.

Besides the information about standardized items, the
database should also contain all the data which is used by
several components of standard environment, even though this
data doesn’t concern the standard itself. This will allow to
keep different components synchronized with respect to their
common data.

Due to a large number of interfaces that exist in the Linux
world and should be subjected for analysis, data collection
tools should be as automated as possible. Collection of data
about interfaces included in our logical model can be al-
most fully automated, as demonstrated in authors’ work [15].
Moreover, collection of additional information (e.g., header
files) which is not used during Linux ecosystem analysis
but required for development of different LSB environment
components can be also automated significantly [14].

A data work flow diagram in out informational system is
shown at the Fig.2.

In order to store information about interfaces that exist
in the Linux ecosystem, we suggest to represent each kind
of interface as two separate entities in the database schema
– the first one will correspond to standardized interfaces
of this kind, the other will represent interfaces which are
present in distributions and used by applications. The reason
is that information about standardized objects and data about
ecosystem interfaces are used in different ways – the former
is picked up by environment generators, the latter is supposed
to be used during the ecosystem analysis, when planning
further directions of standard development. In general, these

13 of 168

Fig. 2. Data work flow in the informational system

two tasks can require knowledge about different characteristics
of the same interfaces. In particular, due to the big amount
of existing interfaces that should be subjected to analysis, it
can be reasonable to store only those ecosystem data that can
be collected automatically; however, standards can be more
descriptive and include more characteristics in addition to the
collected ones, so the automatically collected data can be
insufficient for environment generators.

In order to store information about several versions of
a standard (that is, to store standard history), the database
schema should be extended with attributes containing tem-
poral data. Different approaches exist for introducing such
extensions; in our work, we use the Temporal Relationship
Model (TRM) [11], which is based on the relational model
but adds new temporal attributes to every relation. With this
model, there is no need to use a specialized temporal DBMS;
the database can be served by any relational DBMS – the most
popular and widespread kind of DBMS at the moment.

The two obligatory attributes added by the temporal model
are the beginning and the end of entity life period – a time
interval during which the entity preserves its characteristics.
In our case, such interval boundaries are standard versions –
that is, a time interval for some standardized item indicates a
set of standard versions where this item was included with the
same characteristics. A special value NULL is used to indicate
unbounded intervals which correspond to items which exist in
the last standard version (that is, that have been never excluded
from the specification).

Temporal attributes are added only to those entities that cor-
respond to standardized items; these attributes are not required
for entities that represent interfaces existing in the Linux
ecosystem. More details about using temporal databases for
tracking standard evolution can be found in another author’s
work – [13].

IV. THE LSB INFRASTRUCTURE PROGRAM

One of the largest standards that specify interfaces of
the Linux OS is Linux Standard Base (LSB). The standard
is being developed by international consortium named The
Linux Foundation which is formed by leaders of the Linux
market. The primary content of the standard is formed by
lists of libraries that should be present in any compliant
Linux distribution, accompanied by lists of binary symbols
that should be exported by these libraries. The standard is
constantly evolving, and more and more interfaces are added
– the latest version, LSB 4.0, describes more than 38.000
functions from 57 libraries. It is noticeable that during the
four years passed from LSB 3.0 release, more than 30.000
functions were added.

Such a swift growth of the specification size exposed some
significant problems in its development process and surround-
ing infrastructure. Among the most important issues, the lack
of support for Linux ecosystem analysis was mentioned, as
well as difficulties with specification text usage by application
developers – even LSB 3.0 consisted of several thousands
of pages and contained references to several dozens of other
specifications [12].

In 2006, the joint Program of The Linux Foundation and
Institute for System Programming of RAS was started aimed
to improve the LSB Infrastructure. The main purpose of the
Program was to resolve existent issues that made difficulties
for standard maintenance; it was decided to create an informa-
tional system that would allow to both simplify further LSB
development and simplify its usage by target audience – Linux
application developers and distribution vendors.

By the beginning of the Program, the LSB infrastructure
already contained a central database with information about
standardized interfaces. That database was used to gener-
ate parts of the specification text (lists of libraries, binary
symbols, etc.), to create header files and stub libraries for
LSB Development Environment and to generate primitive tests
checking presence of certain objects (libraries, commands,
etc.) in distributions.

During the LSB Infrastructure Program, the following tasks
were performed:

• an extension of the LSB database was developed called
Community Database to store information about inter-
faces provided by existing Linux distributions and used
by Linux applications; automated tools were developed
to collect such data and populate the database with it.
Nowadays that database contains information about 250
Linux distributions and 1200 applications;

• during the LSB Navigator development, automated tools
were created aimed to support analysis of data about
existing Linux distributions and applications during the
LSB development process. The tools allow to discover
potential candidates for standardization and check formal
rules that should be met by candidates to be finally
included in the specification;

• a temporal extension of the LSB database was developed

14 of 168

Fig. 3. LSB Environment structure

to store information about all existing LSB versions.
All tools that use information from the database were
modified to be able to extract data corresponding to
any given specification version. Moreover, some products
created using the database now support several LSB
versions at once – in particular, the LSB Development
Environment can be used to build applications compliant
with any given LSB version.

Nowadays the work is in progress on improving profile
support in the LSB Infrastructure, caused by a need to develop
a profile for mobile devices.

The current structure of the LSB Environment is shown at
the Fig.3.

The tools developed during the Program allowed to re-
organize LSB development process – automation of many
time-consuming tasks allowed LSB workgroup members to
concentrate on their primary objective – selecting interfaces
that should be included in the specification and elaborating
descriptions of their behavior. Moreover, the decision making
process itself was also significantly improved – the new
infrastructure allowed to perform deeper analysis of the Linux
ecosystem and to better understand current needs and evolution
tendencies of applications and distributions. For example,
during the LSB 3.0 development only two distributions were
subjected to deep analysis (RHEL and SLES), and information
about application needs was limited to direct requests from
application developers (expressed in either LSB Bugzilla or
mail lists). With the new infrastructure, during the LSB
4.0 development the workgroup analyzed all versions of 12
distributions released during the last three years and more than
1.000 applications.

This, in turn, allowed to significantly increase the number
of standardized interfaces from 6.000 in LSB 3.0 to 38.000
in LSB 4.0. Nowadays we can say that the most significant
problem with standardization of new interfaces is development
of runtime tests; all other tasks (collecting data for the LSB
database, keeping components of the LSB Development Envi-
ronment synchronized, etc.) are highly automated and do not
require much engineering efforts.

V. CONCLUSION

This paper has suggested and approach of developing Linux
interface standards aimed to improve portability of applica-
tions among different Linux distributions. The approach is
based on usage of a database-driven informational system that
simplifies creation and maintenance of interface standards and
their environment by standardization committees and their us-
age by application and distribution developers. A logical model
of interfaces between Linux applications and distributions is
described which is used to design schema of the informational
system’s database.

Usage of a central database to create different components
of the standard environment allows to keep these components
synchronized with each other and with the specification text
automatically – every change in the database is automatically
reflected in all components by means of appropriate gen-
erators. Temporal extensions of the database allow to store
standard evolution history, which, in turn, allows to support
several standard versions by means of the same database and
accompanying tools.

Though in this paper we have considered ABI standards, the
approach suggested is suitable for developing API standards,
too. In order to support API specification, the model of inter-
faces between Linux applications and distributions should be
modified – binary-only elements (e.g., ELF attributes) should
be dropped, while entities that are present on source level
only (e.g., constants and macros) should be added. Actually,
the LSB database, described in this paper, already store some
source-level entities and tools exist to automate collection of
such information.

The LSB Infrastructure project has demonstrated the prac-
tical strength of the method of Linux interface standards
development suggested in this paper. The informational system
created during the project allowed to automate analysis of
the Linux ecosystem and significantly increased the speed
of decision making process. The automated data collection
tools and database-driven generators eliminated the technical
complexity of adding new interfaces to LSB. Finally, the new
LSB Infrastructure supports development of profiles based on
the LSB specification.

REFERENCES

[1] The LWN.net Linux Distribution List. http://lwn.net/Distributions/
[2] E. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly Media, Inc.; Revised &;
Expanded edition, 2001.

[3] G.V. Vaughan, B. Elliston, T. Tromey, I. Lance Taylor. GNU Autoconf,
Automake and Libtool. Sams Publishing; online edition, 2006. [Online]
Available: http://sources.redhat.com/autobook/

[4] IBM XL Fortran for Linux. [Online] Available: http://www-01.ibm.com/
software/awdtools/fortran/xlfortran/linux/

[5] Intel Fortran Compiler Professional Edition 11.0 for Linux – Installation
Guide and Release Notes. [Online] Available: http://cache-www.intel.
com/cd/00/00/40/60/406087 406087.pdf

[6] System V Application Binary Interface. 24 April, 2001. [Online] Avail-
able: http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html

[7] A. Josey. API Standards for Open Systems. The Open Group, 2001.
[Online] Available: http://www.opengroup.org/austin/papers/wp-apis.txt

15 of 168

[8] Linux Standard Base Core Specication 4.0. Executable And Linking
Format (ELF). [Online] Available: http://refspecs.linuxfoundation.org/
LSB 4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html

[9] Coding practices for compatibility. Hewlett-Packard Developer & So-
lution Partner Program. [Online] Available: http://sysdoc.doors.ch/HP/
compat.pdf

[10] M. Tim Jones. Anatomy of Linux dynamic libraries. IBM developer-
Works, 2008. [Online] Available: http://www.ibm.com/developerworks/
linux/library/l-dynamic-libraries/

[11] Abdullah Uz Tansel. “Temporal Relational Data Model.” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 9, N3, pp. 464-479,
May-June 1997.

[12] Ian Murdock. LSB Overview and Progress Report. LSB Face-
to-Face Meeting. December 2006. [Online] Available: http://www.
linuxfoundation.org/images/c/c2/Lsb-f2f-200612-overview.pdf

[13] D. Silakov. Tracking Specification Requirements Evolution: Database
Approach. Proceedings of SYRCoSE 2007, vol. 2, pp. 15-22. Moscow,
Russia.

[14] E. Novikov, D. Silakov. The Automated Analysis of Header Files for
Support of the Standardization Process. Proceedings of SYRCoSE 2009,
pp. 27-34. Moscow, Russia.

[15] D. Silakov. Linux Distributions and Applications Analysis During Linux
Standard Base Development. Proceedings of SYRCoSE 2008, vol. 1, pp.
11-18. St.Petersburg, Russia.

16 of 168

Universal System for Creation and Installation Linux Packages

Chernov Evgeny
Institute for System Programming of RAS

Moscow, Russia
e-mail: ches@ispras.ru

Abstract—This paper discuss about the problem with
distribution of software for Linux operation system. The
problem is that Linux systems are different: different package
formats, different names of packages for one program. It leads
to creation of several packages for every Linux system for only
one program you want to distribute. For resolving the problem
mathematical model was developed. Based on the model
database with information about dependences and packages of
some Linux systems and web service for searching equivalent
dependences are developed. Besides, some special tools that can
help developers and users to work with different distribution
and alien packages are developed.

Keywords - Software packages; Software portability;
Operating systems

Source
 code Binary file

Developer
Internet

Compile

ОS Linux

I. INTRODUCTION
There are several ways for distribution programs from

developer (where it’s presented as source code) to users
(who use it in compiled form). The first one is a distribution
in source code form (Fig. 1).

Figure 1. Distribution in source code form.

In this case user should compile and install program. But
not all users are able to do it. So this way is more convenient
for advanced users who know what compilation means and
can fix some problems than can appear during compilation.

The second way is a distribution through repositories of
Linux systems (Fig. 2).

In this case Linux developers compile the program by

yourself in their system and build a package – a special
format file that contains archived program and meta-data for
it (name, version, architecture, description, checksum and
dependency list). Such packages are placed into repositories
that are different for every Linux system. Users can install
these packages on their systems via special tools from
corresponding Linux system. However not all program

developers can use this way because Linux developers can’t
serve all programs.

The third way is a distribution by developers (Fig. 3).

In this case developer build program and create package

by himself. However meta-data of package depends on
distribution on which it’s targeted to install. Names of
dependencies are different on different Linux distributions.
So developers have to create several packages for every
Linux system. This makes it difficult to distribute programs
by developers and to find proper packages for users.

So in common developers have to distribute programs by
themselves. In this case they are called Independent
Software Vendor (ISV). The way is hard because of package
incompatibility of Linux system. Different package format
can be used in different Linux system and the name of
packages of one program can differ. And it leads to the
different dependency names.

This paper deals with the system which can determine
corresponding names of dependency on different Linux
systems automatically and about tools that using the system
and help developers to create packages for different
distributions and users to install alien packages (created for
other distributions). The system is developed as web service.
The tools can connect to the service and receive the names of
dependencies for particular Linux system.

II. WEB SERVICE AND ALGORYTHM OF DEPENDENCEC
SEARCHING

The web service for definition of equivalent dependences
on different Linux distributions contains two interfaces:

1) For determination of the status of dependence on the
particular Linux. It takes the name of dependency
and returns one of the following values:
• OK – the dependence exists on the distribution

(there is a package that provides such entity).
• NO – the dependence is not present on the

distribution (no package provides it).
• FILE – the dependence is presented in the

distribution as a file.
• MULTIPLE – the dependence is provided by

several packages on the distribution.

17 of 168

2) For determination of names of dependences on some
distribution. This interface takes list of dependences
on any distribution and the information about the
distribution (the name, the version, architecture) and
returns the list of equivalent dependences on other
distributions.

Based on this service the web interface has been
developed. It can help user to know the names of some
dependences on all supported distributions. Program
interface of web service can be used by some systems like
system for automatic package building (openSUSE Build
Service) and by tools for converting package format – alien.

The web service works on the basis of a database. The
main tables in this base are tables of distributions, packages,
files and elements of dependences. Besides, there are some
tables for links: the first defines, what files are provided by
each package, the next two define what elements of
dependences packages require and provide. Besides, there is
a table for storage of results - equivalent sets of dependency
names for different distributions. In case of repeated search
of equivalent dependences results takes from this table and
new search is not made.

The mathematical model lies in the basis of database
structure and algorithm of search of equivalent sets. It
operates with the following sets: set of distributions,
packages, files and elements of dependences. Links between
them (mapping from one set to another) and their properties
are defined. Besides, the task of search of equivalent set is
formally given.

Informally the task can be formulated by the following
ways:

Having set of dependency names from one distribution P
and information about the distribution D, determine the set
of equivalent dependences on other distributions which
satisfy to following conditions:

1) The Condition of existence of the decision: if any
distribution does not provide files, which P requires
(i.e. the set of files of all packages of this distribution
does not include set of files of packages, which
package P requires), then the decision for this
distribution doesn’t exist (i.e. there is no equivalent
set for this distribution). Otherwise it should satisfy
to following conditions:

2) The Condition of sufficiency of the decision: the
received set for any distribution should include all
packages which initial package P on this distribution
requires.

3) The Condition of necessity of the decision: the
received set should not contain superfluous
elements, i.e. at an exception of any element of it the
sufficiency condition should be violated.

The algorithm of the decision of this task is based on the
following assumptions:

1) If any application depends on a certain package on
the distribution then this application depends on the
files provided by the given package on this
distribution.

2) Names of files of the same program on different
distributions are identical (thus a path can vary).

Thus, having the information on packages and files
which the packages provide, it is possible to find what files
the initial package requires on one distribution. Then to find
these files on other distribution and to find what packages
provide them. Thus we have the list of dependences for other
distribution.

The described way of search allows finding the decision,
satisfying to a sufficiency condition, but thus it can not
satisfy to a necessity condition. Really, many "superfluous"
elements can appear in search result. For example, in case of
a file on some distribution is provided by several packages
all of them will be presented in the result set, however
presence only one of them is necessary. Therefore in the
course of search it is necessary to delete such "duplicating"
packages. Formally, it is possible to leave any of these
packages since in any case necessity and sufficiency
conditions will be satisfied. However for the best visual
representation of the result set some heuristics are used for
removing such duplicating packages: to remove the package
that provides smaller number of files or not to remove
package which name coincides with the name of one of
dependences on the initial distribution.

There is one more reason of growth of number of
dependences in the result set. The matter is that packages on
which depends initial one provides set of files which aren’t
program and libraries. It can include documentation files,
video, the pictures, etc. Such files on other distribution can
be provided by set of packages (for example, a file
“readme”), however in reality the initial package doesn’t
require it. So the packages found this way will be
superfluous in the result set. To avoid such case it’s
necessary to specify the first assumption:

If any application depends on a certain package on the
distribution then this application depends on some files
provided by the given package on this distribution.

Determination of this set of "some" files occurs on the
basis of classification of all files on the distribution. There
are 7 classes of files: programs, libraries, modules, links, the
empty files (gags), not existing in a package files (they can
be created after package installation) and others. Each class
has some more subclasses (for example, “the program on
Perl” or "module Python"). Text files, archives, video are
placed in "others" class and in a corresponding subclass (“a
text file”, "archive", "media").

For each class with a subclass some priority is attributed.
For example, "programs" have the highest priority – 1, “text
files” – the lowest – 7, “links to modules” – 4 priority. By
means of these priorities, in each package it is possible to
allocate the main files – files with the highest priority. Thus,
search of packages on other distributions can be made on the
basis of search not everything, but only main files of the
package. For example, if the initial package requires on a
package that provides 1 program, 5 pictures and 10 text files,
then search only one program will be made on other
distribution.

The result of work of the web service, in which the
described algorithm is implemented, is presented in table 1.
The first line contains names of distributions. Further there

18 of 168

are lists of equivalent dependences. The bold type in each
line specifies dependence for which search was made.
OpenSUSE

11.1 Fedora 11 Debian 5 Mandriva
2009

kdebase-runtime kdebase-runtime kdebase4-runtime

kdebase-bin-kde3 kdebase4-
runtime kdebase-runtime-

libs kdebase-runtime-
data

libkaudiodevicelis
t4

libqt4-x11 qt-x11 libqtgui4 qtguilib

perl perl(Test::More) perl-modules perl

xorg-x11-
libXext libXext libxext6 libxext

Table 1. Equivalent dependences search result
As it’s apparent from the table, for one dependence on

one distribution can exist a little ones on others. Besides,
names of dependences can essentially differ.

The described functionality of the web service can be
used by some special tools that simplify creation and
installing packages for different Linux distributions. There
are 4 different tools: for creating and installing universal
packages, for installing alien (created for other distribution)
packages and for converting packages from one distribution
to the package for other distribution.

III. TOOLS FOR MANAGEMENT OF UNIVERSAL PACKAGES
The universal package – is a package of a standard

format (rpm [1] or deb), storing in itself lists of dependences
for all distribution kits. Thus, in the course of installation for
any distribution it will be possible to check up, whether
dependences of the given package on concrete system are
resolved.

Author has developed a tool called ‘UPackageBuild‘.
The tool works on a basis of the web service and is used for
creation of universal packages. This tool takes a package of a
standard format (rpm or deb) and Linux distribution name on
which it has been created. The list of dependences is taken
from the package and is sent to the web service. The web
service returns the lists of equivalent dependences for other
distributions. The received information is placed in a file
“/etc/upackage/package_name.requires” which is added to
file-list of an initial package. Initial dependences at a
package are cleaned, and to the version the prefix
“Universal” is added.

The universal package received by this way is a usual
rpm - or deb - package which does not have dependences,
but have “/etc/upackage/package_name.requires” file that
contains the description of dependences for each
distributions. The given package has not own format. That
makes it possible to install it by standard utilities (rpm – for
rpm-packages and dpkg – for deb-packages). However in
this case there is no check of dependences and that can lead
to incorrect operation of the program or it can not work at
all.

For correct installation of universal packages it is
necessary to take advantage of the other special tool –

‘Upackage’. The given tool takes from the installing package
the file with dependences, finds in it the list of dependences
for the concrete distribution and checks, whether the given
dependences on the concrete distribution are resolved or not.
In success the package is installed, otherwise the list of
packages which are necessary for install before installation
of the given package is displayed.

In case of package installation by standard tools, it is
checked, if ‘Upackage’ is installed on the system, then
installation interrupts with the requirement to make
installation by the given tool. If such tool is not installed, the
message is displayed that the given package is intended for
installation by Upackage tool, where it is possible to
download it and the prevention that in case of package
installation by standard tools, the user is responsible that all
necessary dependences are installed on the system.

IV. CONCLUSION
The given paper describes the system for determination

of equivalent dependences of packages from different Linux
distribution and some special tools that using this system
help developers to create packages for different distributions
and help users to install alien packages on their system. The
offered decision is based on mathematical model where the
formal task is set. Then the database of dependences of
distributions is developed according to this model. Using the
database the web service provides interfaces for the analysis
and search of dependences on different Linux distributions.
On a basis of web service the author had developed tools for
creation and installation of universal packages which can be
installed on different Linux distributions.

V. REFERENCES

[1] Eric Foster-Johnson. RPM Guide. — Indianapolis, Indiana:
Wiley Publishing., Inc. 2003 — C. 3-6

19 of 168

`

Single-window integrated development environment

Ivan Ruchkin
Computer Systems Lab

Moscow State University, CS department
Moscow, Russia

ruchkin.ivan@gmail.com

Vladimir Prus
Computer Systems Lab

Moscow State University, CS department
Moscow, Russia

vladimir.prus@gmail.com

Abstract — This paper addresses the problem of IDE interface
complexity by introducing single-window graphical user
interface. This approach lies in removing additional child
windows from IDE, thus allowing a user to keep only text
editor window open. We describe an abstract model of IDE
GUI that is based on most popular modern integrated
environments and has generalized user interface parts. Then
this abstract model is reorganized into single windowed
interface model: access to common IDE functions is provided
from the code editing window while utility windows are
removed without loss of IDE functionality. After that the
implementation of single-window GUI on KDevelop 4 is
described. And finally tool views and usability of several well-
known IDEs are surveyed.

Keywords – integrated development environment (IDE);

graphical user interface (GUI); usability; widget; single-window

interface/design/approach; tool view (utility window); KDevelop;

Microsoft Visual Studio; Eclipse; Code::Blocks; NetBeans.

I. INTRODUCTION
There is a wide variety of tools that software engineers

use to write the code – from simple text editors, such as
Notepad or Kate (which offer only basic text highlighting) to
elaborate integrated development environments (IDEs) like
Eclipse or Microsoft Visual Studio. IDEs bring together
different tools improving convenience, and also providing
features not possible with individual tools. For example,
reliable code-completion is only possible when the editor,
the compiler, and the build system work closely together.

But despite those attractive features many developers
find IDE hard to use and stick with simple editors [1].
Reasons for that are different and large usability study [2] is
required to completely and accurately determine them.
However, anecdotic evidence shows that many users
complain about the IDE tool views – which are auxiliary
windows typically docked around the editor area, also called
utility windows [3][4]. One problem is that a dozen of
available tool views just confuse a new user. But a deeper
problem is that the tool views are actually required in a
number of common workflows. And if a given tool view is
repeatedly required, a user is faced with unpleasant choice –
either to keep the window always visible, taking space from
the source editor, or to constantly open and close it. One way
to address this usability issue with tool views is to remove
them altogether. Of course, we propose this only as research
experiment: remove all tool views, design alternative
mechanism to support common workflows and then perform
a usability study. These steps allow us to determine a set of
tool views that users cannot live without and have to be put

back. But we also hope that some utility windows can be
eliminated, resulting in an overall usability improvement.
One apparent example of removable tool view is build
results view which shows errors and warnings. It only makes
sense to process error messages from the first to the last one
(as later error can be induced by the earlier) and therefore
there’s no necessity of showing a list of errors – we can
immediately display the first error inside the text editor.

So we come to the idea of IDE with the single window
hosting a text editor. Researching such approach requires:

 designing conceptual single-window IDE interface,
 implementing it in certain IDE,
 usability testing [2] of implemented GUI and

comparing results to existing popular IDEs.
This paper is a work-in-progress report that covers only

first two steps. The exact plan of this paper:
 Create a model of IDE tool views by observing them

in the most popular development environments
[1][5]. This model includes a set of abstract tool
views with description of their structure and usage.

 Design a conceptual single-window IDE GUI by
removing the utility windows from IDE tool view
model.

 Implement the single-window interface in KDevelop
integrated development environment.

 Survey existing IDE and find out whether they can
be used without tool views.

It is difficult to move functionality of all tool views to
text editor window. Trying to do this can cause usability
problems [6]. To solve this issue we introduce new widgets
and mechanisms to display information inside and near text
editor. These widgets are described while designing a
conceptual single-window interface.

In the following section the IDE tool view model is
proposed.

II. MODEL OF IDE TOOL VIEWS
In this section we build a model of IDE tool views. This

model describes a set of abstract tool views and their
functions. Each abstract tool view is generalization of similar
real tool views from existing IDEs. We build such model to
be able to construct a generally useful set of interface
improvements, as opposed to fixing problems in a single
arbitrary selected IDE.

Development process greatly depends on the
programming language. To limit the scope of research we
only consider development in a compiled object-oriented
language such as C++, Java, or C#. According to [1] [7], the
most popular IDEs for these languages are Visual Studio,
NetBeans, Eclipse, KDevelop, and Code::Blocks.

20 of 168

`

First, we need to list the common parts of an IDE
interface to show the context in which tool views are used.
GUI of a contemporary IDE consists of:

 Main menu, typically with a vast set of commands. It
isn’t easy for a new developer to discover all of
operations in the main menu, that fact can cause
usability issues [8].

 Customizable toolbar with command buttons. It
facilitates accessing and learning IDE functions, but
requires a careful selection of command to expose b
default.

 Text editor window. Obviously that’s where
program code is being edited. This area contains
source code and is usually tabbed. Unfortunately, in
common IDEs developer is drawn away from the
text editor window because a lot of functions and
information are spread across other UI elements,
mostly utility windows.

 Tool views. These are additional utility child
windows inside IDE GUI that contain special
instruments: errors view, call graph, project view
and many others. Typically views can be docked on
any side of text editor window, resized and made
auto hiding – popping up when mouse cursor hovers
over their header and closing when it leaves. Tool
views occupy considerable amount of screen space
and compete for it with text editor.

 Status bar. It is a horizontal one text line-high widget
in the bottom of IDE GUI that traditionally contains
information on current operation progress and rarely
some static information about current state of
development.

 Context menus in text editor window. That’s a
powerful tool to provide various operations: a user
accesses it quicker than the main menu and learns
faster.

Due to work-in-progress paper size limit, we omit the full
study of several IDEs and their tool views. The result of this
study is a set of abstract tool views, collected from examined
IDEs. The key abstraction points were tool view structure
and functionality.

We should remark that some tool views are actually
documents, displayed outside editor. A good example of
document-window is “Output View” in Visual Studio. Such
views should be promoted to regular documents and shown
in one of text editor tabs. We take only Variables view as an
example of such document-like windows, though there are
more of them in existing IDEs.

Here we name only the most significant abstract tool
views, which compose the tool view model:

 Project view. It is a tree view of categorized project
documents. This window is used to navigate through
project and interact with documents.

 Files view. It is a tree view of files in file system.
This view allows a user to observe the files structure
and operate over them.

 Code objects view. It is a tree view of code objects:
classes, global functions, global variables and
macros. Exact appearance and naming can vary
depending on IDE, but all code objects views display
class hierarchy as well as class methods and
attributes.

 Build results view. Shows a list of build errors and
warnings if there were any. Allows a user to
navigate to any issue by clicking on it.

 Tasks view. Contains a list of tasks and lets a user
navigate from them to text; in most cases, task is a
comment from code, marked with a special word, for
example “TODO”, “FIXME”, or “HACK”.

 Breakpoint view. Shows a list of all breakpoints,
allows a user to switch them on/off, edit their
condition and navigate to certain breakpoint.

 Threads view. This window contains a list of
debugged application threads. Clicking on a thread
results in navigating to its current execution point.

 Call stack view. This view shows the stack of
subroutine calls for every program thread while
debugging an application. By clicking on any
function call a user can open the definition of it in
code editor.

 Variables view. This utility window shows a list of
variables and expressions monitored while
debugging and their current values.

So we have described a model of IDE tool views. This
model is sufficient to introduce the single-window design.

III. CONCEPTUAL SINGLE-WINDOW DESIGN
This section shows the process and reasoning of creating

a single-window IDE design based on tool view model from
the previous section.

A. Single-window design: idea

The idea of this paper is creating a usable graphical
interface design for IDE without tool views. Our goal is to
reduce the number of open tool views while working with
IDE and to carry over the tool views functionality into the
text editor.

It is very difficult to meet this goal with the only text
editor window. Thus we should introduce several new GUI
elements for our single-window design. Those elements
address tool view usability problems by (i) taking, when
inactive, much less screen space than a tool view (or no
space at all) and (ii) appearing when necessary, without
explicit user interaction. These visual elements are covered
in the next subsection.

21 of 168

`

B. Single-window design: additional widgets

We add widgets into single-window interface or
considerably enhance the functionality of existing widgets
and use them to achieve the goal from the previous
subsection. Each of following paragraphs is dedicated to an
additional widget.

Breadcrumbs navigation bar. It is a widget that
represents a path in a certain tree to a currently selected
object. The most common example is a file system
breadcrumbs bar that shows a path to current file or
directory. The bar is separated into blocks, each one
representing a node in the path. Each block can be decorated
with an icon or color and, on mouse click, displays a context
menu with the list of elements on the same level of
hierarchy. The context menu is used to change the currently
selected object or to operate over other objects. The benefit
of breadcrumbs lies in the principle of locality [6] [8]: a user
tends to work with objects closer to his current work context.
For our purposes, we propose that a single breadcrumbs bar
supports different modes – that is, different meanings of
what a current item mean and what hierarchy is displayed.
Mode of breadcrumbs can be conventional (navigation in file
system) or advanced (navigation in frame stack or classes).
We describe it in detains in following subsections.
Breadcrumbs navigation for file path is shown on the Picture
1.

Enhanced status bar. Although status bar is a standard
part of IDE GUI, it has to be considerably enhanced to meet
the needs of single-window design. The enhanced status bar
has two parts: static and dynamic. The former part is place
for small (not bigger than icon plus a couple of symbols)
customizable widgets that are to display information on
current IDE state (for instance, number of changed files in
VCS working copy). The static area should contain
information that user requires occasionally [8]. The dynamic
part shows messages about events in the IDE (for example,
project build finished). This part shows one message at a
time and can display a dropdown list of recent events so a
user can choose any of them. Both status bar areas support
customizable actions for left click on their parts (static
widgets and messages respectively). You can see the
enhanced status with several static widgets, dynamic area
and setup dialog on the picture 2.

Text editor inserts. We want to show information linked
with certain objects (variables, functions, etc.) in program
code. Along with traditional ways of presenting information
in text editor window (tooltips, context menus) we are going
insert widgets between lines. These inline widgets can
contain some information and control elements like buttons.
Inline widgets are preferable when we want to display
something independent on user’s action. Good example is
showing build errors in text (see picture 3): after build
system encounters an error it should be displayed

Picture 2. Enhanced status bar.

Picture 1. Breadcrumbs navigation bar.

Picture 3. Inline error message.

22 of 168

`

immediately, not after user hovers mouse over error line or
invokes context menu

We come to the discussion of creating single windowed
interface from the model created in section II. Now we
discuss each of abstract tool views listed in the previous
section. We determine their main use cases and show how
these tool views can be removed from user workflows.

C. Single-window design: project view

Project view is probably the most common type of utility
window. It contains a tree of project files. Exact tree items
can vary among IDEs, but the main use case is navigation
through existing documents. The project view can be
replaced with breadcrumbs bar. Breadcrumbs should display
the path to current document, each block is a directory, and
the final block is the edited document. In popup display for
each block there is a tree view for directory represented by
that block. In such way we allow user to navigate through
project structure.

D. Single-window design: files view

Files view is very similar to project view in terms of
structure and use cases. To replace files view we introduce a
new mode for breadcrumbs. In this mode breadcrumbs bar
shows a path from the root of file system to the currently
edited file. Similarly to previous subsection each block is a
directory, except the final one.

E. Single-window design: build results view

Build results window shows a list of errors and warnings.
Its main use cases are viewing errors and warnings and
showing corresponding source location in the editor. We
replace this view functionality by displaying build issues
between the lines of text and upgrading breadcrumbs bar.

Concerning errors, it’s well known that the first error
should be examined first, as other errors can be induced. So,
it’s reasonable to show the first error as inline widget, and
just highlight other errors (for example, with red
underlining). The inline widget should contain the text of
error message, as well as “Next” and “Previous” to cycle
through errors.

Warnings can’t be handled like errors: their importance
doesn’t depend on their order. But displaying all warnings
with inline widgets would takes a lot of place and can
confuse a user [9]. So, we just underline code lines with
warnings and display the warning text (either as inline
widget or as a tooltip) only when a user clicks on the line.
Also, there should be an action “Ignore this warning forever”
because if warning has been shown and wasn’t fixed then
developer most probably won’t ever touch it.

In that way the navigation is carried over to text editor.
But what about overview of errors and warnings? We want
to handle this use case as well. Thus we mark the blocks of
file system breadcrumbs (as well as objects in popup for
blocks) with red dots, reflecting that there is an error in
corresponding document or that there is a document with an
error in the directory.

A user also wants to have information about the number
of errors and warnings. We add “Errors number” static
widget to status bar. Context menu allows user to
enable/disable inline text widgets and breadcrumbs marks.
Also there should be a dynamic status bar message about

build end with the same functionality. So the build results
view has been replaced.

F. Single-window design: code objects view

Code objects view is used to view program structure and
go to declaration of a class or any other symbol (variable,
function). As shown in the previous subsection breadcrumbs
bar can provide navigation through tree structures. So we can
add another mode to breadcrumbs or extend the document
mode: each document in the tree contains all classes,
functions, global variables and macros declared in it. Thus
we can remove classes view by replacing it with
breadcrumbs navigation.

G. Single-window design: tasks view

Tasks view contains a list of tasks, which are taken from
text (from comments like “// TODO” in C/C++). We replace
this view similar to build results view. First, we want to carry
overview functionality, so we add marks to breadcrumbs
indicating that a document has a task inside. Second, we add
a several characters-wide inline element after each special
word (“FIXME”, “TODO”, etc.) with buttons for going to
next and previous task. And finally we add a static status bar
element that displays a number of tasks in project and allows
switching on/off breadcrumbs marks and inline widgets.

H. Single-window design: breakpoints view

Breakpoints view contains a list of breakpoints in the
project with their attributes: file, line and condition. This
utility window is used when a user wants to

 create a new breakpoint,
 view breakpoints and navigate to a random

breakpoint,
 edit properties of a certain breakpoint.
We want to cover all three use cases using single-window

interface. Creating new breakpoints can easily be transferred
to a thin vertical line on the right of text (many IDEs already
maintain such operation). Overview of breakpoints can be
provided by special marks in the breadcrumbs navigation
bar, while it displays path to current file, just like we did it
with errors in subsection III-D.

Let’s assume that properties editing mostly often occurs
after the breakpoint is hit. Then we handle this use case
through sending dynamic message to status bar and showing
inline widget with breakpoint editable properties. Navigation
and global editing of breakpoints are made available through
breadcrumbs like build errors (see the previous subsection).

I. Single-window design: thread view and call stack view

Call stack view shows called subroutines for each of
program threads. We can replace both these views by
organizing following tree structure: the top-level element is a
thread and its descendants are function calls in stack. With
that said, we introduce a new mode for viewing call stack.
Breadcrumbs bar automatically switches to that mode when
debugging is paused. User can handle changing modes
manually through the first block of breadcrumbs. That’s it
for call stack view and thread view.

J. Single-window design: variables view

This utility window shows a list of variables and
expressions that are watched during debugging process. As

23 of 168

`

stated before, this view is document-like and should be
placed in text editor tabs. A user wants contents of this view
during debugging, so we should split the text editor window
and display watched variables and expression in parallel with
debugged code.

K. Single-window design: resulting interface

In this part of the paper we described a single-window
interface design based on IDE tool views model. We have
determined only some of single-window interface functional
capabilities, used to carry tool views functionality to text
editor and additional widgets. Much more functions can be
added to that interface to improve usability. For example,
contents of context menus for breadcrumbs can be prioritized
upon user’s selections, but such enhancements are outside of
this paper’s topic.

Let’s proceed to the implementation details of single-
window interface.

IV. IMPLEMENTATION DETAILS
The single-window design has been implemented on the

base of KDevelop 4 IDE, part of KDE project [10]. The
source code of all components of KDevelop is open, which
facilitated implementation of desired modifications.
Implemented GUI parts can be seen on pictures 1 – 3 above.

A. KDevelop 4 GUI

KDevelop GUI consists of interface parts that have been
described in section II. The main window consists of
dockable tool views and tabbed text editor view. KDevelop
tool views include “File System” view, “Project” view,
“Errors” view, “Breakpoints” view. Status bar is almost
empty, containing only the progress bar for showing pending
operations progress, so this space can be used to implement
enhanced status bar. To plug text editor inside the main
window KDevelop uses KParts [11], thus allowing a user to
edit text with Kate editor [12]. So, single-window interface
can be implemented in KDevelop.

B. Implementation

To create single-window GUI in KDevelop the following
components have been implemented:

 breadcrumbs navigation bar,
 showing of errors and warnings between lines,
 extended status bar.
Breadcrumbs navigation bar is placed above the code

editing window and shows the path to currently edited
document. When user clicks any node of the bar, a context
menu with file system for that node appears. To speed up
access to frequently opened documents the list of currently
opened files appears above other files.

Errors and warnings are shown in following way: only
the first one appears after the line it refers to. The decision to
show only one line has been made because programmer
usually tries to fix the first errors as later ones can be caused
by the first one. Along with the error information two
navigation buttons are shown: “Next” and “Previous”. These
buttons can take user to neighboring errors.

Enhanced status bar meets the description from section
III: it has dynamic and static parts. The static part accepts
small widgets for changed files in working copy, number of

tasks and number of background parser errors. Presence and
order of these widgets can be customized by user. The
dynamic part shows messages from removed tool views: that
build is started and finished, messages from debugger,
background parsing results. Clicking on a message allows
user to open the tool view that sent the message.

Here follows a survey of the most popular IDEs.

V. EXISTING IDES
This section examines the sets of tool views and their

usability in several popular IDEs [1][5][7]. Along way we
note whether any of these IDEs can be used without tool
views.

A. Visual Studio

Microsoft Visual Studio [13] is one of the most popular
commercial IDEs for developing in the C++ and C#
programming languages. Visual Studio has several often
used tool views described below.

 “Solution Explorer” – a view displaying the tree of
projects and files in current solution. A user operates
with this view to create new files, open files (unless
they are present in text editor’s tabs), and observe
the structure of projects.

 “Class View” is a two-part window with a list of
classes in the first part and contents of classes
(attributes and methods) in the second part. This
window is useful for looking through class structure
and navigating to their declaration or their methods
implementation in code.

 “Output View” – a view containing the results of
code build with errors and warnings among them or
program execution results. This window is vital for
building process because a user views errors and
navigates to them with this window.

 “Code Definition Window” – a utility window,
browsing the definition for the currently selected
object or function. It is used to quickly look at and
probably edit the definition of class or function.

Tool views in Visual Studio behave like described in
section II and can be put in auto-hide mode, in which they
expand only mouse cursor moves to their header and
collapse to the screen border when cursor leaves them. That
decreases the time user spends with tool views, but user can’t
remove them permanently: too much information is
concentrated in them. For example, user can’t open a new
file without “Solution Explorer” and can’t navigate through
errors without the “Output” view. So there’s no way to use
Visual Studio without tool views.

B. Eclipse

Eclipse [14] is an open-source cross-platform IDE,
mainly used for C++ and Java development. Tool views
organization in Eclipse is similar to the one in Visual Studio
but Eclipse auto-hide mode is less usable than in Visual
Studio: it requires an extra click to open a hidden tool view.
Also, a user can only toggle auto-hide mode of a certain tool
view, not a whole dock area, like in Visual Studio.

Eclipse tool views resemble Visual Studio tool views.
“Navigator”, “Outline” and “Make targets” windows provide
the navigation service through project files, identifiers, and

24 of 168

`

make targets correspondingly. “Problems” and “Console”
views are similar to Visual Studio “Output” view: they allow
a user to look at errors and program output and go to errors
in code. Thus, tool views in Eclipse play an important role in
user’s workflow and cannot be removed without replacing
their functions with some other interface elements.

C. Code::Blocks

Code::Blocks [15] is an open source cross platform IDE,
which is designed for convenient usage with different C++
libraries: GTK+, Qt4, OpenGL, FLTK, wxWidgets,
Lightfeather. The user interface of Code::Blocks is less
complex (fewer tool views and less their customizability)
than one of Visual Studio and Eclipse, but that’s just because
of lower number of integrated features. Code::Blocks GUI
has several tool views necessary for normal work:

 “Projects” – a window for tree navigation through
opened projects. This is counterpart of Visual Studio
“Solution Explorer” and Eclipse “Navigator”
window.

 “Symbols” – a tree navigation window through
functions, classes and global variables. It is similar
to Visual Studio “Class View”.

 “Logs” is a tabbed set of several windows: “Search
results” (the list of found items), “Build log”
(plaintext output of build tool), “Build messages” (a
clickable list of errors and warnings), and some
others.

Code::Blocks has no auto-hide mode for tool views, and
this makes its interface even less suitable for reducing user’s
interaction with tool views.

D. NetBeans

NetBeans [16] is an open source cross platform IDE,
used massively for development on Java platform, but also
can be used for some other languages including C++.

Tool views in NetBeans are organized just like in Visual
Studio. The most used tool views are:

 “Projects” and “Files” windows – tree views for
navigating through projects and file system.

 “Classes” – a window for viewing classes and
functions, like “Class View” in Visual Studio and
“Symbols” in Code::Blocks.

 “Build” – a window with build results log, allowing
a user to move to any error or warning.

 “Navigator” window – a dynamic version of classes
window, shows at which place in class and function
tree a user’s cursor is situated. This window is useful
while browsing through highly nested code.

Tool views in NetBeans can be put in auto-hide mode,
called “Minimized” in the NetBeans interface.
Unfortunately, a user can change the mode of only one
window at a time. Tool views contain information and
operations, which are essential for development process (for
example, opening a new file through “Files” window), so
IDE can’t be used without constant interaction with utility
windows. So we can conclude that NetBeans IDE envisages
use of tool views in common developer workflows.

VI. CONCLUSION AND FUTURE WORK
This paper has proposed the single-window user interface

for IDE to solve the usability problem of tool views. The first
result is a model of IDE tool views. The second result of this
paper is the conceptual design of single-window IDE
interface. Key GUI elements of this interface are:

 breadcrumbs navigation bar,
 enhanced status bar,
 text editor window with inline message display

functionality.
The third result of this work is the partial implementation

of this single-window design in KDevelop IDE.
Future work involves usability testing [2][6] of single-

window interface to find whether usability problems are
solved or at least reduced compared to traditional IDE GUI.

REFERENCES
[1] Developpez LLC, “Les meilleurs environnements de

developpement” [HTML] (http://general.developpez.com/edi/)
[2] J. Nielsen, “Usability Engineering”, Academic Press, 1993, pp. 23 –

37, 165 – 227.
[3] M. Szymczyk, “Reducing XCode’s Window Clutter”, 2007, [HTML]

(http://meandmarkpublishing.blogspot.com/2007/06/reducing-xcodes-
window-clutter.html)

[4] Website article: M. Stephens, “10 Things NetBeans Must Do to
Survive”, 2003 [HTML]
(http://www.softwarereality.com/soapbox/netbeans.jsp)

[5] M. Caron, “Survey on Usability of Integrated Development
Environment” [HTML]
(http://docs.google.com/present/view?id=addqfjnjc3d6_108gj3w67c3
)

[6] Steve Krug, “Don’t Make Me Think A Common Sense Approach to
Web Usability”, Indianapolis: New Riders, 2000, pp. 10 – 20, 50 –
96, 138 – 174.

[7] Janel Garvin, “Software Development Platforms - 2009 Rankings”,
Evans Data Corporation, 2009, [HTML]
(http://www.evansdata.com/reports/viewRelease_download.php?repo
rtID=19)

[8] Morgan Kauffman, “GUI Bloopers 2.0 Common User Interface
Design Don’ts and Dos.”, Morgan Kauffman Publishers, 2007, pp. 7
– 51.

[9] Donald A. Norman, “The Design of Everyday Things”, Doubleday,
1989, pp. 187 – 219.

[10] KDE Community, KDevelop website [HTML]
(http://www.kdevelop.org/)

[11] Philippe Fremy, “KDE Technology: KParts Components” [HTML]
(http://phil.freehackers.org/kde/kpart-techno/kpart-techno.html)

[12] Kate webstite [HTML] (http://kate-editor.org/)
[13] Microsoft, MSDN, Microsoft Visual Studio [HTML]

(http://msdn.microsoft.com/ru-ru/vstudio/default.aspx)
[14] Ecliplse Foundation, Eclipse website [HTML]

(http://www.eclipse.org/)
[15] Code::Blocks website [HTML] (http://www.codeblocks.org/)
[16] NetBeans website [HTML] (http://netbeans.org/)

25 of 168

Program Demo
 Action 1
 Action 2
 …
End_of_program

Program Demo
 Unit 1
 Unit 2
 …
End_of_program

Program Demo
Unit 1
 Call the unit from library
 Unit 2
 …
End_of_program

Macromodule technology

Victor P. Gergel, Alexey Sidnev
Computational Mathematics and Cybernetics department,

N.I. Lobachevsky State University,
Nizhny Novgorod, Russia

e-mail: alexey.sidnev@itlab.unn.ru

Abstract— A development of the parallel, optimal and portable
software is a difficult problem. It consists of learning of
libraries, programming techniques (such as optimization and
paralleling), usage of the libraries and modification of written
code. At present there is a set of the optimized libraries for the
big number of tasks. But each library is unique, it demands
studying and is optimized for specific software and hardware
systems. It complicates a choice of the most suitable library (or
several libraries) for usage and implementation in the
developed software. In this paper, we propose approach for
solving the specified problems. The main idea of the approach
is the semantic description of programmed code.

Keywords-macromodule technology; semantic description of

code

I. INTRODUCTION
Recently software development has accepted mass

character, being hard professional work. Development of
parallel programs for high-efficiency computing systems is
much more difficult. The main complexity of it consists of
learning of libraries, programming techniques (such as
optimization and paralleling), and usage of the libraries and
modification of written code.

In general, the computer program represents sequence of
operations which computer has to execute (Fig. 1).

Figure 1. The common view of the program

In most cases, separate small operations can be merged in
the larger units. In that case the modular representation of
program looks like on Fig. 2.

Programs can consist of much number of units. It is
possible to select some standard units which describing
solutions of some typical tasks among them (an ordering of
the data, search of the minimum or maximum value, etc.).
These standard units can be developed, placed in libraries of

standard units and used. In this case programs look like on
Fig. 3.

Figure 2. Modular representation of the program

The similar technology – usage of libraries – is one of the
main in a software development. This approach has many
advantages. Such as quality implementation of the standard
units, essential decrease development coast. At present there
is a set of libraries solving tasks of linear algebra (library
LAPACK, ATLAS), many-dimensional multicriterion
optimization, fast Fourier transform (library FFTW, MKL),
etc. There are a number of problems at the library approach.
First of all, the programmer has to know a lot of existing
libraries. He must know the structure and the rules of usage
of the library, because each library is unique. It is difficult to
overcome such problems. It is hard to provide portability of
programs (work of programs in various hardware and
software conditions). In this case, upgrade of programs with
replacement of used library units is usually required.

In this paper we propose the technology of
macromodular software development which decreases
complexity of programming.

Figure 3. Modular representation of the program with usage of libraries

II. MACROMODULAR TECHNOLOGY

A. General Overview

The main idea of the macromodular approach is the
semantic description of programmed code. It is performs
description analysis and automatic assembly of optimal

26 of 168

#pragma mmt mmult(A=Matrix<CStyle, float>(n, n), B=Matrix<CStyle,
float >(n, n), C=Matrix<CStyle, float >(n, n))
{
for(i = 0; i < n; i++)
 for(l = 0; l < n; l++)
 for(j = 0; j < n; j++)
 C[i*n+j] += A[i*n+l] * B[l*n+j];
}

for(i = 0; i < n; i++)
 for(l = 0; l < n; l++)
 for(j = 0; j < n; j++)
 C[i*n+j] += A[i*n+l] * B[l*n+j];

application for target software and a hardware platform
(portable, parallel or for the specialized processor). Thus the
basis for assembly is debugged and optimized libraries. The
software developer does not choice the most suitable library
and does not write code to use that library. It is enough to
make the macrodescription of a program code and to specify
a target platform. Modification of the program under new
software and a hardware platform is simplified. It is enough
to rebuild the application.

First of all, programmer writes description of code. It
consists of action specification, data storage format and so
on. Description based on language syntax rules such as
preprocessor directives. Preprocessor is a program that
processes the code before it passes through the compiler. So
it can transform program before actual compilation. After
that the programmer selects target software and hardware
platform and perform assembly of optimal application.

B. Usage Example

As an example we will consider a problem of matrix
multiplication [1]. It is popular enough problem. It finds
application in problems of a computer graphics, physicists,
etc. Matrix multiplication is realized in many libraries
(LAPACK, ATLAS, MKL). The example will be considered
on the C language.

The implementations of square matrixes multiplication is
presented on the Fig. 4. Matrixes A and B are initial
matrixes. In matrix C the result of multiplication is stored.

Matrix multiplication is a simple enough task but it is
necessary to know:

 Matrixes size.
 Type of matrix elements. It can be simple type (for

example, integer type or float type) or complex type
(for example, complex number).

 Data storage format. It can be dense representation
(in the rows or columns) or sparse (Compressed
Row Storage, Compressed Column Storage, Sparse
Block Compressed Row Storage, etc) [2].

Figure 4. Classic matrix multiplication

Macromodular technology uses preprocessor directives
for tasks specification, such as matrix multiplication. We will
use special directives, named pragmas. Pragmas are the
preprocessor instructions, so they are processed before a
compilation stage. It often controls actions of the compiler
and linker. All unrecognized pragmas are ignored. For
example, OpenMP parallel programming model is based on
pragmas [3].

Directives of macromodular technology describe the
block of code and have the following format: “#pragma mmt
<action>(<parameters>)“. <Action> is an operation which

performs in the specified block, for example matrix
multiplication. <Parameters> are input and output arguments
of the computing function. Description of matrix
multiplication is presented of Fig. 5.

All matrixes in the example are square, have type of
elements “float” and have dense representation in memory
(so-called style C).

C. Target Platforms

We consider CUDA (toolkit version 2.3) [4] and MKL
(version 10.0.5.025) [5] libraries. MKL is a library of
optimized and threaded math routines for science,
engineering, and financial applications that require
maximum performance. CUDA is a library for GPU allows
developing the programs for nVidia video cards.

Available set of libraries is the basis for select of the
target platform. If target system is GPU oriented (has a
powerful graphics card) it is more preferable to use CUDA.
If target system is CPU oriented (has a powerful processor of
Intel) it is more preferable to use MKL.

The operating time of matrix multiplication (type “float”)
on various platforms is presented on Fig. 6. The first
platform has two quad cores Intel Xeon E5320 processors,
but very slow integrated video card. The second platform has
GPU GeForce 8800 GTS and dual core Intel Core 2 E6650
processor.

On the second platform, performance of matrix
multiplication on the GPU is more effectively, than on the
processor. First platform with two quad cores processors
have shown the best result. On the first platform, GPU does
not support general computation. So libraries have various
effectiveness on different platforms.

D. Current Research

Development of a prototype of the system supporting
macromodular technology is at present carried on. A
development of the extension for Visual Studio 2008 [6] is
now finished. It allows performing preprocessing of a
program and a choosing of a target platform.

Figure 5. Macromodule definition of matrix multiplication

27 of 168

Unit name: SortData
Purpose: Data ordering
Input data:
- Number of the ordering data
- Initial data
Results:
- Ordered data

Library 1

Library 2

Library n

Abstract
unit 1

Abstract
unit 2

Abstract
unit k

Interface ImplementationMain program

(user code)

Choice of target

platform

Figure 6. Compare CPU and GPU performance on different platform

III. SUMMARY
The main idea of the macromodular technology is the

semantic description of programmed code. It is performs
automatic assembly of optimal application for target
software and a hardware platform. Thus the basis for
assembly is debugged and optimized libraries. The software
developer does not choice the most suitable library and does
not write code to use that library.

The main ideas of macromodular technology of software
development are:

 Standardization of rules of standard unit’s usage (the
unit name, assignment, the input data and received
results). Standard implementation of units is not
fixed, so it is defines abstract units. Definition of the
abstract unit can be such as on Fig. 7 (on an example
of the data ordering). Standardization of abstract
units is regulated and it is reported to software
developers.

 The extension of standard modules by the available
units in libraries (for each unit of library the abstract
unit is indicated). Generally, for one abstract unit
there can be some implementations in various
libraries of standard units (Fig. 8).

 Modular development of programs with usage of
abstract units (thereby, the developer should know
only definition of abstract units, instead of set of
their various implementations).

 Automated choice of implementations of abstract
units used in programs. Automation process include
the analysis of libraries available in the environment
and a choice of the best implementation of abstract
units from available set, usage of concrete
implementations of abstract units and construction of
a final version of programs.

The main advantages of the offered technology are:
 Standardization of the standard units, selected in

development process of programs.
 Essential decreasing of practical usage complexity of

all set of various implementations of standard units.
 Considerable decreasing of software development

complexity – at accumulation of sufficient size of the

standardized descriptions of computer data
processing.

Appreciable improvement of programs portability
between various hardware-software platforms, the localized
implementations of programs can have high working speed
in the presence of the effective-developed programs.

Figure 7. Abstract unit definition of a data ordering

Figure 8. Common view of macromodule technology

REFERENCES
[1] Knuth, D.E. The Art of Computer Programming Volume 2:

Seminumerical Algorithms. Addison-Wesley Professional; 3 edition.
November 14, 1997. pp. 501.

[2] John R. Gilbert, Cleve Moler and Robert Schreiber. Sparse matrices
in MATLAB: Design and Implementation. SIAM Journal on Matrix
Analysis and Applications 13 (1), 1992, pp. 333–356.

[3] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J.
McDonald, Parallel Programming in OpenMP. Morgan Kaufmann,
2000.

[4] NVidia CUDA. Reference Manual. Version 2.3. July 2009.
[5] Intel® Math Kernel Library. Reference Manual. September 2007.
[6] Craig S., Marc Y., Brian J. Working with Microsoft® Visual Studio®

2005. Microsoft Press.

28 of 168

On requirements completeness analysis method

Viktoria Gingina
Institute for System Programming
at the Russian Academy of Science

Moscow, Russian Federation
e-mail: vgingina@ispras.ru

Abstract — Requirements figure prominently in
information system development. Both development
phase of the system and phase of its verification depends
on how qualitative requirements are. That is why it's
required to describe requirements as accurately and
correctly as it possible. One of the properties that define
quality of requirements collecting is completeness. The
paper shows that if one obtains sources and symptoms of
the requirements incompleteness (completeness
absence), classifies, generalizes and clarifies them then
one can check requirements for these symptoms while
collecting requirements or after that. This will
sufficiently decrease the incompleteness of the
requirements and thus improve their quality. The paper
contains some symptoms of incompleteness have already
been revealed and explains the reason of
their appearance. These symptoms have been revealed by
analyzing the documentation of some important
industrial projects.

Requirements, completeness, incompleteness, incompleteness
sources, incompleteness symptoms

I. INTRODUCTION
There is the following definition of the term

“requirement” in IEEE Standard Glossary of Software
Engineering Terminology (1990) [1]:
 (1) A condition or capability needed by a user to solve a
problem or achieve an objective.
 (2) A condition or capability that must be met or
possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed
documents.
 (3) A documented representation of a condition or
capability as in (1) or (2).

The process of developing any information system
begins with the phase of requirements collecting.
Requirements are used on numerous occasions while
developing the system. That is why there should be high
quality criteria for requirements.

Requirements are used when modeling the system.
They informs about what the system should do, what
resources it can rely on, what constraints it should conform
to and so on. Any changes and additions to the being
developed system architecture is a very hard laborious

process especially for the large divaricated one. It causes
excessive complication and probably transformation of the
architecture in a whole. Thus risks quantity is increasing and
developing time is rising. The problem is apparent
especially when interconnecting several systems: incorrect
requirements can cause their incompatibility.

Requirements are also used to verify if the developed
system corresponds to what it’s expected to be. Check-on
conformance with the requirements is used. If tests used for
the verification are not qualitative the testing process will
take longer than it was planned. To create good test testers
will have to clarify information with the help of analysts and
developers and besides the opinion of these experts could be
different in points that are incorrectly described in the
requirements. Thus the quantity of the failed tests will arise.
The results are: low-quality product, broken date of
performance, increased cost. And if there is lack of means
system development could be paused.
When using low-quality documentation risk rises.
Thus good well-stated, i.e. high-quality requirements are
needed. Such requirements should meet following criteria
[2]:

Adequacy – requirements meet customer wishes.
Unambiguity – different domain experts understand

requirements equally.
Consistency – requirements are exhaustively

formulated
Completeness – any situation has its own description

(usually general) in the requirements. This paper is devoted
to completeness achievement.

II. REQUIREMENTS COMPLETENESS

Requirement completeness criterion can be separated
into two constituent parts [2]. Complete requirements
should describe:
- firstly everything that customer wants to get of the system;

- secondly system behavior in any logically possible
situations.

The first aspect is a task for customer analyst. But in
the second aspect completeness analysis should be carried
out by the requirements completeness expert.
K. Wiegers said that completed requirements give many
priorities [3]:

29 of 168

- restriction of rework and redesign when developing,
- project risk decrease,
- system interoperability rise,
- more complete requirements gives fewer mistakes are
founded while testing (functional, integration, etc.)

The problem of requirements completeness is not
new and is usually considered in respect to rules of good
and accurate requirements collecting: ways to interview
customer and concerned persons, assessment of user-groups
needs, questions that analyst must answer when collecting
requirements of different type. But even if all these
recommendations are executed requirements often are not
complete. Why so?
K. Wiegers notes [3]: “Many software problems arise from
shortcomings in the ways that people gather, document,
agree on, and modify the product’s requirements. <…> the
problem areas might include informal information
gathering, implied functionality, erroneous or
uncommunicated assumptions, inadequately defined
requirements, and a casual change process”.

There are different reasons of incompleteness. One
of them is a human factor. Since requirements are
collecting by a human they just can’t be fully considered. A
commonplace example: there are no constraints for
calculation in a computing system. A person who collects
requirements (system analyst) believes that some situations
are an axiom understandable for everybody so there is no
need to describe it in detail – this is another often problem.
“System behavior is obvious, usual and do not need any
additional explanation” – that is why ambiguous and not
evident moments are often not described in requirements.
We can also single out moments of “premeditated
incompleteness”. This is a situation when customers didn’t
get an agreement or a situation when customer wants to give
carte blanche to developers or a situation when system
behavior is hard to foretell (impartial non-determinism). K.
Wiegers said in his book [4]: "Requirements are never
finished or complete. There is no way to know for certain
that you haven't overlooked some requirement, and there
will always be some requirements that the analyst won't feel
it is necessary to record".

In spite of this it is feasible to decrease requirement
incompleteness as far as it possible.

Obtaining above-mentioned incompleteness sources
gives some understanding of how to find it in requirements.
As a result of the research it’s planned to get some check-
list consists of check-questions that help to define
incompleteness. And it’s planned to get a set of patterns and
anti-patterns that describe situations able to be incomplete.
If there is “computes <…>” expression and there is no a
precision of computation in requirements this is an example
of anti-pattern in requirements description. Element of such
lists and sets is not an exact indicator of incompleteness but
it’s an indicator for a potential place of requirements where
description of system property or function is able to be
incomplete. Usage of such lists and sets will help to find

vulnerable moments in requirements and to define possible
but not described situations.

Thus there is a problem to define and to classify
possible sources of requirements incompleteness.

Attempts to reveal requirements incompleteness has
been already done by the other researches. So it was
suggested to describe system behavior in all possible
conditions and if there is requirements for situation “A” to
define what is happening in all “not A” cases [5]. Also it
was suggested to consider requirements in respect to actor
(what actor is responsible for what function), to describe all
alternative action flows and to justify any requirement [6].
Another method recommends checking if requirements are
for all system elements [7]. From the point of view of
incompleteness source obtain method such approaches are
quite one-sided. Method suggested in this paper includes
above-mentioned approaches but considers them as special
cases of incompleteness that are not enough. Obtaining
incompleteness sources allows to research the problem more
profoundly and to discover more symptoms of
incompleteness and thus to assess requirements
completeness more correctly.

III. REQUIREMENTS INCOMPLETENESS SOURCES

Technical documentation for a few industrial systems
has been analyzed. This allowed to obtain some symptoms
of requirements incompleteness. Considered systems are
developed within the framework of large project. This fact
vividly demonstrates that requirements incompleteness is
critical for implementation and is usual even for quite a
good documentation.

In our examples symptoms of incompleteness are
expressed as anti-patterns. These are situations that are
mostly frequent for the considered projects.

(1) There is a condition-element but not all flow-
branches are described.

If there is a description for successful work of some
function there should be a description for an erroneous
situation. If there is description for “then” condition there
should be a description for “else” (“otherwise”). Similarly if
there is function description for a set of parameter values
there should be a description for any other possible values.
E.g. if it’s settled that there is some action flow for positive
values of real-type parameter then it doesn’t mean that
nothing happen for zero and negative values of this
parameter. Probably author of the requirements has such a
behavior in his mind but in that case he should explain and
describe it clearly. Otherwise we have incompleteness in the
requirements.

So in the LSB specification [8] there was not a
description for g_date_clamp function [9] behavior in a case
when “date” parameter value was in range between
"min_date" and "max_date" parameters. In the same
specification there was g_main_context_iteration function
[10] description only for the situation when "may_block"

30 of 168

parameter was "TRUE". Situation with "FALSE" value has
been omitted.

Special cases of such incompleteness are function
requirements that have no description for 0 or NULL values
of function parameters. Also there should be clear
description for float parameters in the case of Nan and Inf
values.

For example in the documentation for a huge
industry system S critical defects have been found: a
behavior of system interface functions was not described for
the case when these functions got faulty incoming data (0 or
NULL) instead of file pointer. In SUS 3.0 [11] in the
description of ualarm() function [12] there was not
requirement for the function behavior when “useconds”
parameter is 0.

(2) Changing the data is described in one action
branch but there is no any description for the same data in
the other branch.

Probably it doesn’t change but the absence of the
clear description indicates incompleteness. Some parameter,
object pointer, picture on a web-form, content of a file,
everything function can affects on - that is what we consider
as data in this situation. Values of all these elements form
system state. Complete requirements should describe how
every function influences to these data elements in all action
flows (or there should be a clear instruction that nothing is
changed). Furthermore it’s required to note an indirect
influence of the sub-functions.

In the above-mentioned system S interface there is a
parameter ERROR_ID that gets an identifier of the error
took place when using the function. But earlier there were
not instructions for correct function processing. An
assumption that value was not changed founded to be
wrong. In reality the parameter got a “noerror” value.

(3) A new function, type, object, term is used but
never described.

For the first view such an omission can look absurd
but it quite often occurs. In well-formulated requirements
you can suddenly find a link to some function, parameter,
data element that is described or explained nowhere in the
documentation. For example in the LSB specification [13]
in the svcudp_create() function [14] description it was noted
that this function was called similarly to
svcudp_bufcreate(sock, SZ, SZ) function call. But
svcudp_bufcreate() function was never described in the
specification. The reason of this incompleteness can be the
uncoordinated documentation writing and changing. An
ordinary misprint can take place too. And there is a
possibility that the function just has been forgotten to
describe. Obviously such an error is peculiar to divaricated
systems because for a requirements writer it’s more difficult
to imagine complex system in a whole. If there are more
than one writer the problem will be interconnection between
them.

IV. SOURCES OF ANALYZED DOCUMENTATION

Data analyzed to find incompleteness symptoms is
documentation on three industrial systems.

Examples of the defects found in Linux
specifications requirements got from the official information
of Verification Center of the Operating System Linux [15].
The Center is based at the Institute for System Programming
of the Russian Academy of Sciences (ISP RAS) [16]. It
integrates a group of projects of developing open source
tests and automated verification techniques for Linux-
systems. The Center is supported by the Russian Federal
Agency [17] for Science and Innovations, by the
international consortium The Linux Foundation [18].

Linux Verification Center works on checking that
Linux implementations are conform to requirements and
specifications. There is information of testing results and
found inequalities on Center site. There are many problem
reports marked as “incompleteness” among them. As
LinuxTesting.org documentation is officially published on
their Internet page there is a possibility to show
incompleteness symptoms using some real examples of the
project.

Other two projects are commercial, closed and do not
publish such an information. Internal documents being used
for analysis are test-cases and defects reports registered in
bug-tracking system in one case and test report documents
in the other case.

V. CONCLUSION

This paper is devoted to a necessity of qualitative
description of the system requirements. The paper discloses
an importance of the requirements incompleteness and
shows its critical influence. Some incompleteness symptoms
are obtained and obvious examples of incompleteness
demonstration are provided for the huge industrial systems.
Obtaining incompleteness symptoms allows improving the
project documentation that will give an opportunity to avoid
problems when implementing and testing system. It’s
planned to continue documentation analysis for different
projects to find and classify other incompleteness sources
and to get check-lists, patterns and anti-patterns sets. Also
it’s planned to examine possibility of incompleteness
sources obtain by formalization of requirements collecting
process, by requirement modeling, by specification of
verification tests and by analyzing results of static and
dynamic implementation analysis.

REFERENCES
[1] http://standards.ieee.org/reading/ieee/std_public/description/se/610.12

-1990_desc.html
[2] V.Kuliamin, N.Pakulin, O.Petrenko, A.Sortov, A.Khoroshilov,

Requirements formalization on practice, Preprint 13, ISP RAS,
Moscow, 2006 (in Russian)

[3] K.Wiegers, Software Requirements: Practical Techniques for
Gathering and Managing Requirements Throughout the Product
Development Cycle, 2nd edition, Microsoft Press, Redmond, Wash.,
2003

31 of 168

[4] K. Wiegers, More About Software Requirements: Thorny Issues and
Practical Advice, Microsoft Press, Redmond, Wash., 2006

[5] R. S. Carson, Requirements Completeness: A Deterministic
Approach, http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.8.735

[6] A. Sarkar, Requirement Management in Testing, Infosys
Technologies Limited, Bangalore, unpublished

[7] S. Robertson, J. Robertson, “Mastering the Requirements Process
Second Edition”, Addison Wesley Professional, 2006

[8] Linux Standard Base Desktop Specification 3.1, Chapter 12.
Libraries, 12.2 Interfaces for libglib-2.

[9] http://www.gtk.org/api/2.6/glib/glib-Date-and-Time-
Functions.html#g-date-clamp

[10] http://www.gtk.org/api/2.6/glib/glib-The-Main-Event-Loop.html#g-
main-context-iteration

[11] The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004
Edition (SUS 3.0), System Interfaces

[12] http://www.opengroup.org/onlinepubs/000095399
[13] Linux Standard Base Core Specification 3.1, Chapter 13. Base

Libraries, 13.5. Interface Definitions for libc
[14] http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-

Core-generic/baselib-svcudp-create-3.html
[15] http://linuxtesting.ru
[16] http://www.ispras.ru
[17] http://www.fasi.gov.ru
[18] http://www.linuxfoundation.org

32 of 168

An approach to data validation based on
lifecycle-bounded metadata

Vadim Surpin

The Institute for information transmission problems of the
Russian Academy of Sciences (Kharkevich Institute),

Moscow, Russia

vadim@iitp.ru

Abstract – Data validation is known to be
the task performed in almost every business
application and occurs through almost all levels of
modern multi-tier application. Being a
crosscutting concern validation requires some
extra effort to make sure that it works right and
consistent in all tiers thus increasing time to test
the application and possible number of
application bugs. The article describes an
approach to describe complex lifecycle-bounded
validation in a declarative manner making it
reusable through the application.

Data validation is one of the most common
tasks in business application. Validation is a process
of checking that data conforms to constraints applied
to it and producing a list of validation messages that
clearly describe failed checks. Problem of data
validation attracts more attention since the time when
Model-View-Controller (MVC) [1] become a
standard for building modern application architecture.
Such layered code separation allows to build more
secure and scalable software but leads to undesirable
code duplication between layers. The validation code
is that one that being duplicated. It is being used in all
application layers from model to presentation
making a problem to coordinate validation rules on
different levels.

Last few years there are several attempts to
make data validation some more formal description
and establish a standard that describes data validation
approaches. There are several standards one of which
is JSR303 [2] if we look in the area of Java
technology [3]. The standard has a working
implementation, the one that was a prototype for the
standard. It is open-source project Hibernate
Validator [4] from the Red Hat company. High page
rank of the project official website in Google shows
interest of software developers to the data validation
problem. Here are some data validation approaches

referenced in the JSR303 standard and implemented
in Hibernate Validator project.

The standard based on idea of applying
constraints to object’s fields and offers to look at that
constraints as metadata bound to thу fields. The most
common constraints such as “not empty”, “not large
than N symbols”, etc. are supplied as out-of-the-box
implementation. Software developer may add some
more complex field constraints that conforms to the
standard. Every constraint may be associated with
one or more groups that allows to validate object
against several validation sets.

The approach described is suitable to
accomplish simple validation tasks when validation
constraint set isn’t vary very much. Such as in the
case of validating domain model objects before
they’re being send to persistence layer and database.
This peculiarity is due to tight integration between
Hibernate Validator that was the prototype for the
standard and Hibernate [5] object-relation mapping
solution. Being good at that field the standard doesn’t
address validation issues that exist in more complex
workflow-based scenarios where typical tasks are:

• Constraints on fields that depend on each
other

• Constraints on associated objects or object
graph

• Constraints that depend on the lifecycle
stage of the business object

• Constraints that depend on context
parameters

To deal with first and second problems it is
enough to allow object level validation and give a
developer possibility to implement validation logic as
a program code. This will give also an opportunity to
validate complex dependencies between object fields
and deep relationship between associated objects.

33 of 168

The lifecycle dependent validation is a common
case in application where two or more users work on
the same data. In such a case data travel from one
user to another in accordance with application
workflow, the data contained in the same business
objects grows along it’s way in workflow so it’s
consistency depends on the phase of the lifecycle.
This is the most common case for every quite
complex business application. To address this issue
clear principles of business object lifecycle
management should be described and implemented in
an application architecture.

The MVC architecture states that at least three
general classes of objects exist:

• Data access objects or domain-model objects
(Model)

• Business logic objects (Controller)

• User interfaces objects (View)

From the perspective of high level system
architecture interaction between these classes may be
presented as on the UML[6] diagram Fig. 1

The diagram shows that all data changes only
when it passes throw the methods of controller object
that implements business operations of the system.
This means that all object lifecycle-management
occurs when data goes across the border between
View and Controller layers where the View layer
initiates object state change based on the user request
and controller performs the requested business
operation. That’s why passing the boundaries
between View and Controller layers is a good place
to perform object validation. It solves at least three

problems from the validation field:

1. Assure that controller receives correct data
that won’t corrupt data storage integrity if
malicious data will be send by the user.

2. View layer is able to show validation
messages informing the user about mistakes
in just entered data in context of the
requested operation thus giving a developer
to supply more specific and clear validation
message compared to ones that can be
produced without this operation-context
dependency.

3. Forces consistency between data check on
View and controller layers by using the
Don’t Repeat Yourself (DRY) [7] principle
eliminating code duplication.

The approach suits well to the modern
application architecture where system modules have
to be terminated by well defined interfaces and the
module implementation is a “black box” for the
cooperating party. An amount of modern
programming languages have a notation of interface
in their syntax, e.g. Java language interface syntax
may look as follows:

@Remote public interface
BusinessOperationsRemote {

 void doSomething(T param);

}

The example of a simple business
component interface that uses Enterprise JavaBeans 3
(EJB3)[8] technology is shown. Here are it’s

Fig. 1 Interaction between MVC objects

34 of 168

meaningful parts:

1. @Remote – so called “annotation”, an
implementation of metadata facility from
Java technology. The annotation means that
the annotated interface belongs to a business
object which lifecycle is managed by an EJB
container and the interface methods are
accessible remotely by network calls.

2. void doSomething(T param) – business
method signature that states the method
returns no result and accepts a parameter of
type T.

When the component implementation is
accessible only to the container which manages that
component, it’s interface is visible to both component
implementation and client from the view layer which
calls business its methods. Keeping that in mind it
becomes clear that the interfaces are a proper place to
put method parameters validation metadata. The
metadata take a form of @Validator annotation on
the doSomething() method as follows:

@Validator(implementation=DoSomethingVa
lidator.class)

void doSomething(T param);

Referenced by the “implementation”
attribute class DoSomethingValidator implements the
doSomething() method parameters validation logic:

public class DoSomethingValidator
implements InputValidator {

 @Override

 public List<ValidationMessage>
validate(Object… params) {

 …

}

}

This class bytecode should be available both
on controller and view layers and can be shipped with
business interface description in the same deployment
unit. Having access to the BusinessOperationsRemote
business interface view layer can simply invoke
parameter validation just before the method call:

List<ValidationMessage> messages =
validator.validate(BusinessOperationsRe
mote.class, “doSomething”, param);

if(messages == null ||
messages.isEmpty()) {

 businessOperationsRemote.doSomet
hing(param);

} else {

 //Show validation messages to
the user

}

The solution described easy integrates with a
JSR303 standard-compliant validation using it’s
feature to set up validation groups for each object
property. These groups may be just fully qualified
names of BusinessOperationsRemote interface
methods. Such choice of group naming has an
advantage of hiding internal object lifecycle from the
interfaces client describing transitions between
lifecycle phases only in terms of business operation
invocations. This gives view layer object only the
required knowledge about object lifecycle and
removes the need to specify validation groups at view
layer. Spreading such information between layers
causes numerous errors due to module
miscoordintaion during system development process.
Miscoordintaion is impossible when using interface
level metadata because it can be detected on the
compilation stage by compiler error messages.

So the approach described solves the
problem of complex object validation in the process
of object lifecycle transition process in the way clear
to the developer. It coordinates check being
performed at differed layers of a multi-tier
application and refactoring-friendly since it describes
all it’s metadata using language syntax available to
the compiler. These simplifies software development
that involves data validation facilities (a great part of
modern software) and decreases number of hardly
testable logical errors in the application design that
occur when validation code at different layers gets
miscoordinated.

REFERENCES

1. Design Patterns: Model-View-Controller,
Java Blueprints,
http://java.sun.com/blueprints/patterns/MVC
.html

2. Java Specification Request, JSR303,
http://jcp.org/en/jsr/detail?id=303

3. Java Technology, http://java.sun.com
4. Hibernate Validator Project,

https://www.hibernate.org/412.html

35 of 168

5. Hibernate ORM,
https://www.hibernate.org/344.html

6. M. Fowler “UML Distilled: A brief guide to
the standard object modeling language”,
Addison-Wesley Professional, 2003.

7. William Crawford, Jonathan Kaplan “J2EE
Design Patterns”, O'Reilly Media, 2003

8. Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/

36 of 168

A GA-based approach for test generation for automata-based programs

Andrey Zakonov, Oleg Stepanov (research supervisor), Anatoly Shalyto (research supervisor)
Fac. of Information Technologies and Programming

St. Petersburg State University of Information Technologies, Mechanics and Optics
Saint-Petersburg, Russia

e-mail: andrew.zakonov@gmail.com, oleg.stepanov@gmail.com, shalyto@mail.ifmo.ru

Abstract—Automata-based approach is often used for
developing complex systems. Model Checking is commonly
used to check conformance of the system against its
specification. However, verification techniques don’t allow
checking the system in whole, as system consists of not only the
model, but also control objects, which are not suitable for
model checking. In this paper we propose an approach for
testing of automata-based programs. We use EFSM and
contracts to extend model with specification requirements and
we demonstrate how genetic algorithms could be used to
automate generation of tests to find faults in the system in
whole.

Keywords- Automata; EFSM; Testing; Genetic algorithms

I. INTRODUCTION
Automata-based program consists of a finite state

machine or any other (often more complicated) formal
automata and number control objects, which the model
interacts with [1]. The most commonly used technique for
verifying automata-based programs is Model Checking [2]
because it can be used with very high degree of automation.
However Model Checking suits only for verification of the
automata, but not the system in whole. Controlled objects
behavior and interaction of the automata and their controlled
objects are not checked in this approach. Therefore there
could be undetected errors left in the automata-based system,
even if the automata itself was successfully verified against
its specification.

In this paper we propose to use testing to check the
automata-based system in whole. Software testing is
normally a labor intensive and very expensive task. It
accounts for about half of a typical software project life
cycle [3]. This means that straightforward approach to
testing, such as manual testing, is not the best option.
Recently there has been much interest in automated test data
generation [4]. Even though testing cannot guarantee the
correctness of a program, large number of tests does
contribute significantly to the identification and reduction of
faults, improving the likelihood that the software
implementation will succeed. Therefore this paper includes
description of an approach for testing automata-based
programs and a way to automate this process using genetic
algorithms.

We propose to use testing to check implementation
conformance against its specification. Specification given in

natural language is suitable only for manual testing. In order
to automate testing process, specification must be presented
in some formal way. In our approach we include as much
specification as it’s possible in the automaton, so it would
contain the instruments of its own verification. Finite state
machines (FSMs) are commonly used for the purpose of
automata description. However, a FSM can only model
simple reaction of the system to its input events; variables
and guard conditions on transitions are needed in order to
model a system with complex behavior and data
dependencies. Using extended finite state machines
(EFSMs), which support variables and guard conditions, is a
reasonable choice to describe some of the specification
requirements in the automata. As it was proposed in [5] we
use contracts [6] to include even more specification
requirements in the automata. Having specification
requirements included in the program makes it possible to
automate checking of these requirements while test is
executed. Moreover requirements can be used to aim test
generation at detecting situations, when they are not fulfilled.

There is one more reason to use EFSMs. Most programs
are designed to interact with some environment: program
receives events and input data; automata react to these events
and produce some output data. In automata-based programs
one uses controlled objects for this purpose: they receive
events and provide input data, which can be used in automata
in guard conditions on transitions or as other control object
functions’ arguments. In EFSMs such data are represented as
variables. Variable in EFSM could be internal, defined inside
the EFSM itself, or external – received from the control
object. During testing values of external variables can be
provided by the test script.

Considering the proposed description of model and its
specification, we defined a test for automata program as a
sequence of events and a set of external variables, which lead
to specific sequence of transitions (transition path) of the
automata. As opposed to the traditional approach, where test
is a program code, we propose to describe automata test as a
transition path, which is much closer to specification level
and helps to shorten the gap between the specification and
the implementation. Transition path which is interesting for
test creation can be easily obtained from natural language
specification, but to create test code we need to find
sequence of events and set of variables, that would lead to
the given path execution. Obtaining sequence of events for
the path is straightforward. However set of external variables

37 of 168

is not so easy to guess: one need to find set of values, which
would satisfy all transition guards on the given transition
path. We propose to apply genetic algorithms to find suitable
values for external variables.

Overall, this paper addresses number of problems:
• propose an approach for testing automata-based

programs;
• automate test creation by providing a tool, which

finds suitable sequence of events and set of external
variables for a given transition path and generates
test code;

• automate validation of specification requirements,
included in the automata, while executing tests;

• attempt to generate tests that lead to violation of
specification requirements and so reveal faults in
implementation.

The rest of the paper is organized as follows. Section II
gives details on proposed approach for testing automata-
based programs. Section III describes genetic algorithm
applied to find external variables’ values. Section IV tells
about proof-of-concept tool being developed and preliminary
results; Section V concludes.

II. TESTING FOR AUTOMATA-BASED PROGRAMS
The following approach for developing automata-based

programs and creating test suites is proposed in this paper:
1) During development include signifigant part of

natural language specification in the automata, using EFSM
variables, transition guards and contracts.

Controlled objects also have specification and
requirements for their inputs/outputs and interaction with the
automata. All this specification requirements must be
fulfilled during tests execution. Benefit of having controlled
object specification included in the automata is that actual
implementation of this controlled object becomes less
significant for testing. Given the requirements for the
object’s output, we can check, that automaton reacts well for
any data that fulfils given requirements. And vice versa it’s
acceptable if program fails for the data, which don’t fulfill
the object’s specification.

In our approach we use JML specification language [9] to
enrich automata with specification requirements. JML is a
design by contract approach and contracts in JML include
preconditions, postconditions, and invariants. In our case,
such contracts can be defined for automata states and
transitions.

2) From natural language specification select
interesting scenarious for testing and present them as a
sequence of transitions in the automata.

We consider sequence of automata transitions (transition
path in the automata) to be a convenient way to describe a
test scenario, as this representation of test could be easily
derived from a natural language description of a test
scenario.

There is number of researches available [7], [8] that
addresses the problem of finding transition paths in EFSM to
achieve selected coverage criteria (e.g. state or transition
coverage in the EFSM). Such techniques can be successfully

used together with manual test paths selection and, combined
with the approach presented in this paper, could help to
automate producing of valuable test suites.

3) Find sequence of events and values of external
variables, which would make automata program to execute
the disired transition path.

Automaton reacts to the events and perform transitions
depending on the values of external variables used in
transition guards. Representation of a test as a sequence of
events and values of external variables is convinient to
programmatically generate test code, but it has very little
sense for a developer who works with specification defined
in natural language. In our approach developer can describe
test scenario in natural language first and then write it down
in automata terms as a sequence of transitions, which is
straightforward.

We propose an algorithm to automate search for the
corresponding sequence of events and set external variables
to execute given transition path. There are number of
requirements that these variables must meet. First of all the
guard conditions on the specified transitions should be
carried out. In the second place, all the control object
requirements should be fulfilled, because in production use
these external variables would be obtained from control
objects with given specifications. Optimization algorithms
have proven to be efficient for such class of problems [4].
We apply genetic algorithms to solve this search problem.
Details on genetic algorithm are described in Section III.

4) Execute generated tests and check filfullment of
specification requirements for this tests exectuion.

Test code, which can execute the desired sequence of
transitions is useful to perform a runtime check of all the
contracts included in the automata. Support of contracts is
enough to include most of the specification requirements in
the automata and to check them during the tests execution.
Specifications written in JML, which we use as contracts in
our approach, are annotations for Java code and there are
number of tools [10] that are designed to check JML
contracts in the runtime or for static check.

Tests that fulfill all the specification requirements doesn’t
reveal any errors in the program, but still are useful for
regression and stress tests. However it is much more
important to generate tests, which fail any of the
specification requirements for the correct set of external
variables and therefore reveal inconsistency between
implementation and given specification.

5) Try to find set of external variables which filfulls all
guards and control object requirements and fails
specification requirements of the program.

To obtain such values we also use genetic algorithm with
more sophisticated fitness function, which takes into account
not only transition guards and control object requirements,
but also all the specification contracts defined for the given
path in the automata.

38 of 168

III. AUTOMATIZATION OF TEST DATA GENERATION

A. Optimization problem
Set of external variables can be represented as a vector of

values <x1, x2, …, xn>, where xi is an external variable, and n
is number of external variables required for this transition
path. Fitness function takes this vector as an argument and
returns fitness value for an external variables set. The smaller
fitness value is the better the proposed vector suits the given
transition path. From this point of view task can be
considered as a minimization problem, where we look for the
set of variables with the minimum fitness value.

B. Candidate encoding
Candidate is a vector of values, as defined above. We use

one-point crossover operator, which operates by choosing a
random position in the vector, and then new candidate is
composed of first candidate’s sub-vector before that position
and second candidate’s sub-vector after that position.

Mutation operator replaces random position of the vector
to a new random value.

C. Fitness function
Fitness function aims to provide metric for candidates,

which tells how good is this candidate for a specified task. In
our case task is to execute given sequence of transitions in
the automaton. There is no unambiguous answer for the
question of what fitness function to choose.

Approaches for testing of structured programs propose to
use such criteria as branch distance [11] for fitness
calculation. A branch distance is a measure of how close a
particular candidate is to executing the target branch that is
missed e.g., |A-B| is the branch distance for the predicate (A
> B). The lower |A-B| is the closer is A to B and the closer
the candidate is to filfulling the condition. For the filfulled
condition branch distance equals zero. There are
researches [11], [12] that show effectiveness of described
approach for structured programs testing.

In [7] branch distance based approach is used to find
input test data that can cause a feasible path in an EFSM
model to be traversed. In our research we extend this
approach to apply it to automa-based systems. As it was
described above, we must take into account not a standalone
EFSM, but an automa-based program enriched with system’s
and control objects’ specification. Moreover we aim to find
set of variables not only to execute selected path, but to
filfull control objects’ requirements and ideally to reveal
inadequacy of implementation and specification.

To obtain variable values to execute given path there are
two types of conditions that should be taken into the account:

• guard conditions on the transitions of the automaton;
• specification requirements of conrolled objects that

provide external variables.
These conditions are obligatory to be filfulled. Candidate

that fail any of these conditions are not appropriate for test
generation, as specification doesn’t require system to support
such inputs. So in this case fitness function should estimate
how close this particular candidate was to filfulling failed
conditions.

To give an accurate estimation we examine each state
and transition between states on the given path separately.
Every transition has the event, which enables it and may
have a guard condition and an action section. In the current
implementation external variables are introduced in
transitions’ action sections.

Control objects’ specification can be included in
transition contracts: preconditions and postconditions.
Precoditions verify, that automaton is in correct state to use
controlled object; postconditions verify, that external
variable value retrieved from the controlled object meets
specification requirements.

From this point of view execution of each transition in
the path is divided into three small steps:

• receive event, find transition and check guards;
• check preconditions and execute the transition;
• check transition postconditions.
Each of these steps contains coditions that can be failed.

Therefore for each of these steps we calculate branch
distance. Fitness value for a single transition is calculated as
sum of steps’ branch distances.

It’s important to realize that transitions are executed
sequentially. This means that to achieve second transition
candidate must successfully complete first one. Therefore
transitions in the beginning of the path are somehow more
important then transitions in the end. This fact should be
taken into the account in the fitness function calculcation.
In [7], [12] transition approach level metric is introduced to
handle this situation.

For more accurate fitness value we consider step
approach level. In such approach each step is assigned a
weight value, which depends on the step’s position in the
path. Last step weight is the smallest, first step weight is the
greatest. Overall fitness of the candidate for the given path is
calculated as sum of steps’ fitness multiplied by their
weights.

D. Specification requirements in fitness function
Fitness function described above is aimed to find set of

variables that would make possible given path execution.
More desirable is to find a candidate, which reveals an
inconsistesy between implementation and specification. For
this purpose we need take into consideration specification
requirements of the system represented as contracts that must
be filfulled during the execution. We aim to fail any of these
conditions, while guards and controlled objects’
requirements are filfulled.

Such task requires iterated approach, as we need to select
specific transition, which conditions we want to fail. For
example, if we want any of the conditions on the second
transition to be failed, we need all the conditions of the first
transition to be filfulled, because there may be a dependency
between these conditions. For different transitions selected as
target fitness function is computed differently. Generally, if
kth transition is a target to fail some condition, then all
conditions of the transitions with indexes less then k must be
fulfilled.

In attempt to fail some conditions we use branch distance
turned inside out. If condition is failed then value is zero.

39 of 168

The closer the candidate is to failing the condition the lower
the value. This reversed branch distance value is included in
path fitness value calculation, similar to common step
fitness, described above.

We aim to reveal faults at any transition so we iterate
through the given path. At the first step we consider
transition path of one transition, the first one. We perform
fixed number of attempts to reveal a fault. If any found, test
is generated. After fixed number of attempts we move to the
next step: consider path of two transitions. We go on like this
till we reach the whole given path length.

Finally, after all the iterations are done, for all revealed
faults test code is generated, which can be executed
separately and used for debugging and bug fixing.

IV. CASE STUDY
In this paper we present a case study that we used in our

research. A proof-of-concept tool is being developed during
the research. Version of the tool used for the case study
contained number of limitations: only integer variable types
are supported and current version is capable of providing set
of variables to execute given path, but not to reveal faults.

We made up an example of specification for ATM
machine and developed an automa-based system for this
specification to illustrate our approach.

Sample specification of an ATM machine:
• system must perform withdrawal operations from the

specified account on user requests;
• initial amount of money on the account is being

retrieved from the bank at the start up. Amount must
be a positive number, less or equal to 1000000;

• each time user inputs amount of money on the
keyboard a transaction must be initiated. Amount
must be greater then 1000 and less then 5000. If
wrong input is done user must be notified about an
error and operation of the system must be stopped;

• transaction must be successfully completed if after
transaction there would be a positive amount of
money left on the account. Otherwise transaction
must be rollbacked and user must be notified about
an error and operation of the system must be
stopped;

• while no error occurs user can make withdrawals
unlimited number of times.

For the described ATM system it is convenient to
introduce number of states: initialization, user input,
withdrawal operation, error in entered amount, error during
the withdrawal. FSM for this system is presented on Fig. 1:

Figure 1. FSM for the ATM system.

Such model contains only basic requirements of the
specification. To test such system one would need to
examine specification in natural language and write tests
manually.

We propose to use EFSM and to include as much
specification as possible to the model. Such EFSM is
presented on Fig. 2:

Figure 2. EFSM model of the ATM machine

Model looks more complicated this time, but on the other
hand now it contains all the specification requirements, that
were described in natural language. Major advantage of such
representation is that now requirements are suitable to use in
test generation process and for automatic checks during test
executions.

Current automata-program interacts with two different
control objects:

• control object responsible for bank account
management. It provides amount of money on
account and performs withdrawal operation;

• control object providing inputs from the user. It can
be keyboard or any other device, which is not
important for our purpose. Important is that this
object provides an amount of money to withdraw.

Control objects’ inputs are presented in model as external
variables. Transition which retrieves a value from the
controlled object contains following code on its label:
<object name>.get(<variable name>).

40 of 168

List of external variables with specification requirements
for presented on Fig. 2 ATM model:

• ext_account – initial amount of money on bank
account. This value is retrieved only once on the first
transition. Specification requires:
0 <= ext_account < 1000000;

• ext_amount – amount of money to withdraw.
This variable can be retrieved unlimited number of
times during the execution. Specification requires:
1000 <= ext_amount < 5000.

Use of external variable with the defined requirements
gives us ability not to depend on control object’s specific
implementation. Controlled objects that would be used in
production are not needed for the test generation and for
testing of the automata-based program. This can be critical if
controlled objects are expensive or complex equipment,
which are not available till the deployment of the system.
Also it’s important if actual controlled object implies manual
input (like any keyboard does), because automatic values
generation is preferable.

We considered number of different test scenarios to
apply our approach. First, scenarios are defined in natural
language, for example:

• user withdraws 10 times and on 11th attempt
transaction fails, as not enough money on the
account;

• user withdraws 5 times and on 6th attempt
transaction fails, as not enough money on the
account;

• user successfully withdraws 11 times;
• user withdraws 7 times and on 8th attempt incorrect

amount of money is inputted.
Detailed description on how to use proposed approach

for the first example follows. Test scenario should be
described in terms of transactions. Scenario in terms of
transition labels for the automaton given on Fig. 2:

t1,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t6.
Sequence of transitions is given to the proof-of-concept

tool as an input. Values of external variables to execute this
path is produced automatically:

ext_acount = 28688;
ext_account1 = 3198;
ext_account2 = 4612;
ext_account3 = 2280;
ext_account4 = 2310;
ext_account5 = 4311;
ext_account6 = 1786;
ext_account7 = 3867;
ext_account8 = 1217;
ext_account9 = 2739;
ext_account10 = 519;
ext_account11 = 6376;
For this set of variables test code can be generated, which

provides correct sequence of events and external variables

values to the automata-program, so it executes actions,
described in test scenario.

V. CONCLUSION
Simultaneously with Model Checking testing is useful to

check conformance of implementation and specification
while developing automata-based systems. For effective
testing it is important to automate test generation process, as
manual test creation is labor intensive and expensive task. In
this paper we proposed an approach for testing of automata-
based systems and a proof-of-concept tool demonstrating
benefits of described approach. Design contracts and EFSM
are used to create models containing specification
requirements. Genetic algorithm is used to automate the test
generation process.

We plan to provide an IDE plug-in for JetBrains MPS
(Meta Programming System) [13], which has the
StateMachine extension to develop automata-based
programs. Seamless integration of test creation into
development process would allow detecting possible
implementation faults and design flaws at all development
stages.

ACKNOWLEDGMENT
The research is conducted in scope of the Federal target

program "Scientific and pedagogical personnel of innovative
Russia for 2009 - 2013 years".

REFERENCES

[1] A. A. Shalyto, “Logic Control and “Reactive” Systems:
Algorithmization and Programming,” Automation and Remote
Control, vol. 62, no. 1, pp. 1–29, 2001.

[2] E. M. Clarke, Jr. O. Grumberg and D. A. Peled, “Model Checking”,
MIT Press, 1999

[3] G. Myers, The Art of Software Testing, 2 ed: John Wiley & Son. Inc,
2004.

[4] McMinn, P., “Search-based software test data generation: a survey:
Research Articles,” Software Testing, Verification & Reliability,
2004. 14(2): p. 105-156.

[5] O. Stepanov, "Methods of implementation of automata-based object-
oriented programs," PhD Thesis (in Russian), SPbSU ITMO, 2009

[6] B. Meyer, “Applying design by contract,” Computer, 25(10), pp. 40–
51, Oct. 1992.

[7] Kalaji, A.S., R.M. Hierons, and S. Swift. “Generating Feasible
Transition Paths for Testing from an Extended Finite State Machine
(EFSM),” in Software Testing, Verification, and Validation (ICST),
2009 2nd International IEEE Conference on. 2009. Denver, Colorado
- USA: IEEE.

[8] Lai, R., “A survey of communication protocol testing. Journal of
Systems and Software”, 2002. 62(1): p. 21-46.

[9] G. T. Leavens, A. L. Baker, C. Ruby, “Preliminary design of JML: A
behavioral interface specification language for Java,” Iowa State
Univ., Dept. of Comput. Sci., Tech. Rep. 98-06u, Apr. 2003.

[10] D.R.Cokand, J.R.Kiniry, “ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2,” Nijmegen Inst.
for Computing and Inform. Sci., Tech. Rep. NIII-R0413, May 2004.

[11] Tracey, N., J. Clark, K. Mander, and J. McDermid. “An automated
framework for structural test-data generation,” in Automated
Software Engineering, 1998. Proceedings. 13th IEEE International
Conference on. 1998.

41 of 168

[12] Wegener, J., A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, 2001. 43(14): p. 841-854.

[13] MPS User's Guide.
http://www.jetbrains.net/confluence/display/MPS/MPS+User%27s+G
uide.

42 of 168

Test data generation for covering functionality of database applications

Evgeny Kostychev, Vitaly Omelchenko, Sergey Zelenov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

e-mail: {kostychev, vitaly, zelenov}@ispras.com

Abstract—Applications for processing great volumes of data is
a very widely used kind of software. In enterprise integration
there are tasks of data integration. When solving these tasks,
special tools supporting development and execution of
applications implementing extract, transformation and load
pattern are often used. From the point of view of functional
testing, such applications have a specific peculiarity related to
a huge number of combinations of input data. Existing
approaches and tools solving the problem of test data
generation for database application build large arrays of input
data based on database scheme or on SQL queries of
application under tests. To ensure covering functionality of an
application under test using these approaches and tools, a
brute force of all available combinations is needed. In the
paper, we prpose a method allowing less excessive data
generation for covering functionality of database applications.
It allows achieving functionality coverage with acceptable
amount of test data close to optimal one (one test per one
functionality branch) in acceptable generation time.

Test data generation; database applications; functional

testing; data integration; ETL-applications testing

I. INTRODUCTION
Nowadays, availability of more and more increasing

volumes of information storages and computing resources
for their processing is constantly growing. This yields
prevalence of applications working with huge amount of data
in various areas. For instance, in the early nineties of the last
century, the British national corpus has been created. This is
a specially marked and processed big set of printable and
audio texts containing 100 million words for more than
twenty years' interval [1]. Since then, such national corpora
of many languages have appeared and continue to appear and
develop. The corpora not only make many traditional
problems of linguistics more trivial, but also allow to state
and to solve previously impracticable problems primarily
related to processing of great volumes of data [2]. Also
problems concerned with processing of great volumes of
data rise in such areas as statistics, sociology, geophysics,
some sections of physics, molecular genetics, problems with
climate, meteorology.

Storage and processing great volumes of data is crucial
for modern business too. Enterprise systems contain huge
volumes of interconnected data concerning consumers and
customers, suppliers, partners, equipment and personnel,
financial streams, various business transactions. Huge

volumes of data are usually stored in structured form in one
or several databases under control of one or several DBMS.
Often, supporting various business needs require an
integration of several subsystems of an enterprise system or
even connecting to some parts of external systems. In many
such cases, a problem of access to and operating with data
stored in different databases in various formats rises.
Therefore, data integration applications that perform
replication, updating and synchronization of great volumes
of data form a widespread kind of integration applications.

Tasks of such applications can be simple themselves but
not always easy for implementing (for example, selection of
data concerning some person or legal entity). The tasks can
also be enough difficult both in conditions of
selection/aggregation of input data and in calculation of final
result (for example, invoicing clients according to volume of
actual service consumption, tariff plans, and provided
discounts). Since this kind of tasks frequently occurs when
solving the integration problems, there are specialized
platforms providing universal (with respect to platforms for
data storage) environment for development and running
integration applications that effectively solve problems of
extraction, transformation and loading of big data [3].
Further we refer to such applications as ETL-applications
(Extract, Transform and Loading).

After development or updating of any application, one
should check correctness of its behavior with respect to the
functional requirements implementing the business needs.
The business logic of ETL-applications can be detailed as
follows:

- extraction source data that meet corresponding
conditions defined in requirements;

- changing values of source data with respect to
conditions defined in requirements;

- transformation of input data (changing values
and/or representation format) according to
requirements;

- loading into target some data that should be loaded
according to requirements;

- changing in the target some data that meet
corresponding conditions defined in requirements.

Mainly, one checks correctness of implemented behavior
by means of functional testing. That is running the system
under test (SUT) on specially prepared input data and
comparing output data with expected ones. In the paper, we
consider the problem of generating input data for functional

43 of 168

30

A

20

10

B
0 10 20 30

Figure 1. Optimazation of iterating by semantics.

testing of ETL-applications. Note that ETL-applications
contain all the same steps as any database applications (data
extraction, transformation and loading). Therefore, proposed
method is applicable not only to ETL-applications but to
many other database applications too.

One can estimate quality of functional testing by
achieved coverage of functional requirements. Ideally, all
functional branches of the algorithm implementing required
functionality should be covered. To perform that, one should
provide such test data that force SUT to do the following:

- retrieving data from the source and filtering them on
all possible combinations of conditions specified in
the requirements;

- covering during data transformation all possible
functional branches of the algorithm implementing
the required transformation;

- possibility to check the absence of unnecessary
changes of source and target data;

- processing special data (empty columns, lines of
limited length, etc.).

As a rule, a test is defined by some parameters.
Obviously, all possible combinations of parameters contain
combinations needed for covering the functionality of the
application under test. But in real situations, when generating
all possible combinations, the number of parameters to be
combined causes combinatorial explosion. In this case,
besides of unacceptable generation time and total amount of
test, resulting test set contains many different test data values
not distinguishable for SUT functionality. A problem of
analyzing test results rises: the same errors may be revealed
on thousands of different values of test data, and thus, time-
consuming analysis is required.

Ideally, for covering functional requirements, test data
should provide exactly one possible combination of Boolean
expression for each functionality branch. The paper describes
a method of generating test data with volume close to the
optimal set.

The rest of this paper is organized as follows. Section II
contains some preliminaries. Section III reviews related
work. Section IV describes proposed method. Section V
illustrates the proposed method by example. Section VI
discusses benefits of the proposed methods. Section VII
concludes the paper.

II. PRELIMINARIES
In general, to ensure full coverage of all functional

branches, one should use brute force combination of field
values depending on which branching should occur when
retrieving, when running an application under test. But it
leads to the combinatorial explosion causing unacceptable
cost on generation time and total volume of test data.

Often, in terms of functionality coverage, values of
several fields are related by some semantics, which means
that value of one field depends on values of some other
fields. As a rule, iterating only the combinations of values
meeting this semantics greatly reduces the total number of
variants. Let us consider the following example. Let fields A
and B take integer values in the range [1 .. 30] and

value of the field B depends on value of the field A as
follows (see Figure 1):

- if 1 ≤ A ≤ 10, then B = 1;
- if 11 ≤ A ≤ 20, then 11 ≤ B ≤ 20;
- if 21 ≤ A ≤ 30, then B = A.
When producing not all the possible combinations of

values of the fields, but only ones meeting the above
conditions, the amount of derived combinations is about 8
times reduced (from 900 to 120).

Besides, the functionality of an application under test can
have several independent aspects. In this case, it is possible
to reduce the number of combinations using so-called
diagonal combinator iterating a set of tuples S such that for
any i (1 ≤ i ≤ n) and for any s from Si there exists a tuple
(s1,…,sn) from S with s = si, where Si is a set of values
iterated by i-th subiterator. This method ensures producing a
set of test data containing every value of each field. The
main advantage of this combination method is that the
volume of result test data is significantly less than in the case
of using Cartesian product, since the capacity of produced set
equals the maximum of capacities of value sets of combining
fields instead of product of them.

III. TOOLS REVIEW
Most data generation tools for DB (DTM Data Generator

[4], Turbo Data [5], DBMonster [6]) support filling the
database tables by a large number of syntactically correct
data and provide the following set of features:

- random data generation with ability to specify intervals
of numeric types, length of string type, and data format;

- data generation from the list of values with ability to
specify the percentage of each list row in generated
data set;

- generation by selecting data from specified tables;
- generation by selecting data from files;
- generation of auto incremental data with specified

initial value and step;
- data generation from existing libraries;
- random data generation by a mask;
- data generation for dependent tables;
- data generation based on external processes of

generation specified by user procedures.

44 of 168

Some tools (AGENDA [7], HTDGen [8]) support the
generation of data not only on the basis of constraints
defined by schema or user, but also based on SQL queries of
database application under test. It allows generating such
data that SQL queries of an implementation under test return
some meaningful results. However, when generating data is
based on an implementation, there is no guarantee of
covering all functional branches because the implementation
may contain wrong branches or does not implement the
required ones. Also this approach does not allow covering all
required functional branches of transformation and filtering.

In order to achieve full coverage of all functional
branches using any of mentioned above tools a tester has to
use brute force combination of field values, depending on
which an application under test extracts, transforms and
filters data.

The Pinery test generating tool developed at ISP RAS
[9, 10] is intended to generate structurally complex test data.
Generating data having some syntactic structure is managed
by specifying constraints on desired data fragments in the
terms of the structure. In particular, Pinery supports so-called
conditional constraints that should be used if generation of
some part of data depends on values of some other parts of
the generated data.

In Pinery, there are many various ways to specify
constraints on values of fields. Some of them are:

- enumerating a list of desired values;
- defining a function depending on values of other

fields;
- specifying a set data to be belong, for example:

- a segment of integers;
- a set of values of another field (e.g., in the case of

assignment of values for a foreign key).
Another important kind of constraints is specification of

way to combine values of fields. In particular, it is possible
to build a hierarchy of different combinators containing
Cartesian products, diagonal combinators and custom
combinators based on dependences between values of
different fields.

These features allow a tester to customize generation
more exactly and, as a result, to receive test data with
volume close to optimal one.

IV. METHOD DESCRIPTION
The method of directed generation of test data is based

on UniTESK [11, 12] approach to model-based testing and
consists of the following phases.

The first phase is requirements elicitation: analytics study
normative documents for the system under test, identify
input data requirements and categorize them. The result of
the phase is a requirements catalogue that contains precisely
formulated input data requirements, classified into several
groups with established links between them. The catalogue is
used on the following phases.

The second phase is formalization of requirements.
Elicited input data requirements get specified using
appropriate formal notation. Such specification is called
formal model.

Figure 1. Phases of model-based testing.

The third phase is formulation coverage criteria: the input
data domain divides into finite number of subsets (possibly
intersecting each other), such that for each subset S, behavior
of the SUT on any data from S is uniform. The starting point
for such a division is a set of conditions from the
requirements catalogue. Besides, the specific semantics of
these conditions may force a tester to formulate some
additional hypotheses on behavior of the SUT that induce a
subdivision of the input data domain into smaller subsets.

The fourth phase is automated tests generation from the
formal data model with respect to the coverage criteria. In
our approach, automated generation is carried out using the
Pinery generator tool. Input data for Pinery are:

- formal description of the test data model, and
- generator configuration aimed at achieving the

coverage criteria.
Tests running, reports analysis, defects identification and

corrections is beyond the scope of this article. These issues
are not discussed here.

V. EXAMPLE
Let us illustrate the proposed method by the following

example of test data generation for testing simplified bank
credit system.

 The normative document is the following informal
description of the bank credit system.

 The client of certain type registers in the system and
receives an identifier.

 The client gets a sum of money as a loan that should
be repaid in few months.

 The client should monthly repay the sum calculated
as current debt divided by quantity of months before
the loan termination.

 If actually repaid sum is less than the calculated sum
of monthly payment, then the client can be penalized.
If actually repaid sum is greater than the calculated
sum of monthly payment, then the client can get a
bonus. Sizes of penalties and bonuses depend on both
client type and credit type.

 The client can declare to get monthly e-mail
notifications about the state of the loan, repayments
and penalties or bonuses.

 At the end of each month, the application does the
following:

A. it reduces the debt by the sum of the client
repayment and calculate the penalty or the bonus
with respect to the following rules.

Documentation
analysis

Normative
documents

Catalogue of
requirements

Formalization of
requirements

CRITERIA

- …
- …
- …
- …

 Model of
the SUT

Formulation
coverage
criteria

Coverage
criteria

Generation
of test data

Test
set

45 of 168

I. If the sum of client repayment is less than
monthly payment, then:

1. clients of the type "VIP" should not be
penalized;

2. clients of the type "USUAL" should be
penalized with the sum equal to 3% of the
overdue payment.

II. If the sum of client repayment is not less than
the monthly payment and not more then the
current debt, then:

1. clients of the type "VIP" with the loan of the
type "B" and clients of the type "USUAL"
with the loan of the type "A" should get
bonuses equal to 2% of the repaid sum;

2. clients of the type "VIP" with the loan of the
type "A" should get bonuses equal to 5% of
the repaid sum;

3. clients of the type "USUAL" with the loan of
the type "B" should get bonuses equal to 1%
of the repaid sum.

III. If the sum of client repayment is more than the
current debt, then the bank personnel should be
notified about refund.

B. If the client has declared monthly e-mail
notification, then the e-mail should be sent.

At the first phase, we analyze the normative documents
and build a requirements catalogue. In this example, the
requirements catalogue consists of the items of the bank
credit system behavior rules (both A with sub-items and B).
They can be represented in the form of the diagram (see
Figure 3).

Figure 2. Diagram of bank credit system requirements.

TABLE I. BEHAVIORIAL PARAMERTERS OF BANK CREDIT SYSTEM

Short
Name Full Column Name Type Description

MP MONTH_PAYMENT NUMBER Sum to be pay
monthly

D DEBT NUMBER Total debt sum

P REPAYMENT NUMBER Actually repaid
sum

CL CLIENT_TYPE CHAR

Client type:
"V" – VIP client
"U" – USUAL

client

CR CREDIT_TYPE CHAR
Credit type:

"A" – type "A"
"B" – type "B"

E EMAIL STRING E-mail address

At the second phase, we build the formal model of the

requirements.
The behavior of the application under test depends on the

parameters presented in TABLE I.
The constraint of data consistency is MP <= D.
The requirements can be formalized as follows:
A.I P < MP && CL = "V" => penalty 0;

P < MP && CL = "U" => penalty 3%;
A.II.1 MP <= P <= D

&& (CL = "V" && CR = "B"

 || CL = "U" && CR = "A"

)

=> bonus 2%;
A.II.2 MP <= P <= D

&& CL = "V"

&& CR = "A"

=> bonus 5%;
A.II.3 MP <= P <= D

&& CL = "U"

&& CR = "B"

=> bonus 1%;
A.III P > D => refund.
B. E ≠ "" => notification.

At the third phase, we formulate coverage criteria.
Besides the requirement conditions, we introduce the

following additional hypotheses about behavior of the
application under test:

1. If MP <= P <= D, then behavior of the application
can differ in the following cases:
 MP = P = D;
 MP = P < D;
 MP < P < D;
 MP < P = D.

2. If conditions of the requirement A.I hold, then
behavior of the application can differ in the following
cases:

 CL = "V" && CR = "B";
 CL = "U" && CR = "A".

Here we proceed with establishing rules for division the
input data domain into subsets with uniform behavior of the

Monthly<=Repay<= Debt

VIP USUAL

Repay<Monthly

USUAL VIP

Repay>Debt

Loan
‘A’

Loan
‘B’

Loan
‘A’

Loan
‘B’

A

Penalty
0

Penalty
3%

Bonus
2%

Bonus
5%

Bonus
1%

Refund

B

e-mail is
specified

Notification

46 of 168

application. First, we formulate such rules separately for
each parameter, and then we state how to combine these
rules for the whole input data domain.

Let us establish division rules for parameters MP, D, P,
CL, and CR, that relate to requirements from the A group.

The hypothesis 1 yields the following division of input
data for parameters MP and D into two subsets:

 MP = D;
 MP < D.

Conditions from the requirements of the A group yield
the following division rules for parameter P.

 If condition MP = D holds, then domain for
parameter P divides into three subsets:

 P < MP;
 MP = P = D;
 P > D.

 If condition MP < D holds, then domain for
parameter P divides into five subsets (taking into
account the hypothesis 1):

 P < MP;
 MP = P < D;
 MP < P < D;
 MP < P = D;
 P > D.

Conditions from the requirements of the A group yield
the following division rules of input data for parameters CL
and CR.

 If condition P < MP holds, then conditions from the
requirements of the A.I group yield division into two
subsets corresponding to all possible values of the
parameter CL.

 If condition MP <= P <= D holds, then conditions
from the requirements of the A.II group and the
hypothesis 2 yield division into four subsets
corresponding to all possible combinations of values
of parameters CL and CR.

 If condition P > D holds, then the condition from
the requirement A.III yields no division (or, formally
speaking, division into one set).

Next, let us establish division rules for the parameter E
that relate to the requirement A.II. The condition from the
requirement A.II yields division into two subsets: with empty
and non-empty value of E.

Next, let us state how to combine these rules for the
whole input data domain.

Division of input data domain related to parameters of A
group (MP, D, P, CL, and CR) is induced by Cartesian
product (taking into account all dependencies) of divisions
for each of the parameters.

Since behavior of the application under test has two
independent aspects A and B, then division of the whole
input data domain is induced by the diagonal combination of
the divisions corresponding to A and B.

At the fourth phase, we generate tests automatically using
the Pinery generator tool.

First, we should provide Pinery with formal description
of DB scheme (for example, using the DDL-subset of SQL).
Next, we should configure Pinery by constraints on data to
be generated. These constraints are described in terms of the
DB scheme elements.

In our example, there is one table CREDITS with the
following fields: MONTH_PAYMENT, DEBT,
PAYMENT, CLIENT_TYPE, CREDIT_TYPE, EMAIL.
Further we refer these fields by their short names.

In this example, there are two kinds of constraints:
 Constraint on values of one field;
 Constraint on combination method for several fields.

First, we describe constraints of the first kind.
In order to cover subsets with MP = D and MP < D, we

may put, for example, MP = 6, D = 6 and D = 30. In
order to cover subsets with empty and non-empty E, we may
put, for example, E = "" and E = "…@…" (some address).

In order to configure Pinery with these values, we should
describe the following constraints that enumerate lists of
values for each field1

MP = { 6 };

D = { 6, 30 };

E = { "", "…@…" };

These are examples of so-called unconditional
constraints that specify values valid in all cases.

However, sometimes we must not use unconditional
constraints. For example, values of the field P depends on
values of fields MP and D. Thus, we should use two
conditional constraints: for the cases MP = D and MP < D.

In order to make condition P < MP hold, we may put
P = MP – 1. In order to make condition P > D hold, we
may put P = D + 1. If condition MP <D holds, then in
order to make condition MP < P <D hold, we may put
P = (MP + D)/2. As a result, we have the following
constraints for the field P:

P[MP<D] =

 {MP-1, MP, (MP+D)/2, D, D+1};

P[MP=D] = {MP - 1, D, D + 1};
Values of fields CL and CR depends on values of fields

P, MP and D:
CL[P<MP] = { "V", "U" };

CR[P<MP] = { "A" };

CL[MP<=P && P<=D] = { "V", "U" };

CR[MP<=P && P<=D] = { "A", "B" };

CL[P>D] = { "V" };

CR[P>D] = { "A" };
Here we proceed with description of a combinator of

fields values for generation of CREDITS table tuples.
In all cases, we may combine values of fields CL and CR

using Cartesian product:
Product(CL, CR)

Similarly, we may combine values of fields MP and D:
Product(MP, D)

1 In Pinery, constraints are described in XML form. In order to

increase readability, here we describe constraints in a semi-formal pseudo-
code.

47 of 168

Since values of fields CL and CR depend on values of
fields P, MP, and D, and values of field P depend on values of
fields MP and D, then we should use special "dependent"
combinator that describes combinations of the fields that
relate to requirements from the A, B and C groups:

Depend(Product(MP, D)

 => P

 => Product(CL, CR)

)
As we mention above, we should use diagonal

combinator to combine fields that relate to requirements
from groups A and B. So, we have the following combinator
for generation of CREDITS table tuples:

combinator(CREDITS) =

 Diagonal(Depend(Product(MP, D)

 => P

 => Product(CL, CR)

)

 , E

);

Resulting test data is presented in TABLE II.

TABLE II. GENERATED TEST DATA

D MP P CL CR E

6 6 5 V A

6 6 5 U A @

6 6 6 V A

6 6 6 V B @

6 6 6 U A

6 6 6 U B @

6 6 7 V A

30 6 5 V A @

30 6 5 U A

30 6 6 V A @

30 6 6 V B

30 6 6 U A @

30 6 6 U B

30 6 18 V A @

30 6 18 V B

30 6 18 U A @

30 6 18 U B

30 6 30 V A @

30 6 30 V B

30 6 30 U A @

30 6 30 U B

30 6 31 V A @

VI. DISCUSSION
Using of a dependent combinator allow us to have a

uniform configuration of the generator instead of two (for
cases MP = D and MP <D).

Using of a dependent and diagonal combinators allow us
to reduce quantity of generated test data by more than 65%
in comparison with the general Cartesian product: We have
22 tuples while Cartesian product gives 64 tuples (3*2*2*2
= 24 for case MP = D, plus 5*2*2*2 = 40 for case
MP < D). Nevertheless, our test set has the same quality as
the Cartesian product test set (with respect to the formulated
coverage criteria).

There are two aspects that make relative reduction of
tests quantity to increase.

First, the more possible values of fields are, the more
economy we have. For instance, if we have in our example
one addition client type and one addition credit type , then
economy in our approach is 70% (3*3*3*2 + 5*3*3*2
= 144 for Cartesian product against (3 + 1*3*3 + 1)
+ (3 + 3*3*3 + 1) = 44 in our approach).

Second, the more independent aspects of behavior of the
application under test, the more economy we have. Suppose
in our example, that actual payment has a type with two
possible values ("O" – payment under the clearing settlement
and "E" – payment by cash), and the application under test
uses this type in some additional aspect of behavior (for
example, calculating some statistics). Then the quantity of
tuples in our approach does not increase (since we use
diagonal combinator), while the quantity of tuples for
Cartesian product doubles.

VII. CONCLUSION
In the paper, we propose the method of automated

generation of test data for functional testing of applications
that process huge volumes of data. The method is aimed to
cover functional branches of an application under test. The
main benefit of the method is that on the one hand it allow a
tester to achieve coverage of functionality of an application
under test, but on the other hand generated test data are more
optimal then in existing tools:

 generation process is less time-consuming, and
 test report analysis is less labor-consuming and less

time-consuming.
Generation of the data by means of Cartesian

combination of all fields provides full coverage, but resulting
test data are practically always superfluous. Redundancy
extremely grows under increasing number of combined
fields and cardinality of sets of their values, on which the
behavior of the application under test depends.

The proposed approach is based on requirements analysis
and formalization. Usage both Cartesian product
combinators, and dependent and diagonal combinators
allows a tester to reduce a test set without loss of test data
quality and to obtain test data with volume close to the
optimum.

The approach is supported by the Pinery generator of
structurally complex data.

48 of 168

REFERENCES
[1] http://www.natcorp.ox.ac.uk/corpus/index.xml
[2] N. Oostdijk and P. Haan, Corpus-Based Research into Language. In

honour of Jan Aarts, Amsterdam/Atlanta, GA, 1994, VII.
[3] M. L. Songini, QuickStudy: Extract, Transform and Load (ETL),

2004, Computerworld,
http://www.computerworld.com/s/article/89534/QuickStudy_ETL

[4] DTM Data Generator. http://www.sqledit.com/dg/
[5] Turbo Data. http://www.turbodata.ca/
[6] DBMonster. http://dbmonster.kernelpanic.pl/
[7] D. Chays, Y. Deng, P.G. Frankl, E.J. Weyuker, An AGENDA for

testing relational database applications, Software testing, verification
and reliability, 2004, VOL 14; PART 1, pages 17–44.

[8] C. Binnig, D. Kossmann, E. Lo, Testing database applications, 2006,
Proceedings of the 25th ACM SIGMOD international conference on
management of data / Principles of database systems, Chicago.

[9] A.V.Demakov, S.V.Zelenov, S.A.Zelenova. Pinery generator of
structurally complex data: implementation of new capabilities of
UniTESK // Proceedings of ISP RAS, Moscow, 2008, vol.14, part 1,
119–136.

[10] A.V.Demakov, S.V.Zelenov, S.A.Zelenova. Using abstract models
for the generation of test data with a complex structure. Programming
and Computer Software, 2008, vol.34, N 6, 341–350.

[11] I.B.Bourdonov, A.S.Kossatchev, V.V.Kuliamin, A.K.Petrenko.
UniTesK Test Suite Architecture. Proc. FME'2002 conference,
LNCS, 2391. Copenhagen, Denmark, 2002, 77—88.

[12] UniTESK Technology Web-site. http://www.unitesk.com/

49 of 168

Testing AJAX functionality with UniTESK

Yevgeny Gerlits

Lomonosov Moscow State University

Moscow, Russian Federation

Email: gerlits@ispras.ru

Abstract1—AJAX (Asynchronous JavaScript and XML) is a

very promising technology for building interactive web

applications. At the same time, AJAX significantly complicates

the development of the client side of web applications. The

paper demonstrates the possibility of utilizing the UniTESK

test development technology for testing the client side

functionality of AJAX web applications. Using UniTESK, test

systems are developed for 8 AJAX web applications. Then the

fault revealing capability of the test systems is evaluated in

experiments.

Keywords-AJAX; model based testing; UniTESK,

asynchronous interface

I. INTRODUCTION

A classic web application is built around the notion of
web pages and generally consists of a set of static web pages
or server side programs that generate web pages. Such a web
application is sufficiently inferior in interactivity to a web
application developed with AJAX. The main reason is that
the user communicates with the classic web application
synchronously, that is he supplies input to the browser, e.g.
clicks on a submit button or a link, and then waits until the
browser refreshes the page. As opposed to this, web
applications developed with AJAX can retrieve data from the
server asynchronously in the background without interfering
with the display and behavior of the existing page.

At the same time, improving interactivity with AJAX
sufficiently increases the complexity of the client side
development. Using the JavaScript programming language,
an AJAX application developer should implement an
intermediate level between the browser and web-server
which is responsible for handling user actions, managing
browser-server dialog, and changing the interface according
to web server responses. This task is hard enough to make a
couple of faults.

In this paper, we consider the problem of testing the
client side functionality of AJAX web applications. We show
that qualitative tests can be elaborated using UniTESK [1, 2],
an industrial model based test development technology
designed in Institute for System Programming of Russian
Academy of Sciences.

UniTESK was initially applicable to only systems with
synchronous interfaces. After a period of time, an approach
[3, 4, 5, and 6] was designed and implemented that extends
this technology to asynchronous interfaces. Since then

This work was supported by the RFBR (grant 09-01-00576-a)

UniTESK has given a good account of oneself in testing
several classes of complex applications with asynchronous
interfaces such as internet protocols, components of a
distributed operating system, and functions of the standard
binary interface of Linux. Actually, these successful
applications of UniTESK suggested that we apply this
technology to AJAX web applications.

UniTESK offers a test suite architecture consisting of a
set of components that are used as building blocks to
organize test systems. In the paper, we present a technique
for developing these components so that the test system they
form aims at revealing faults in the client side of the AJAX
web application under test. We do not consider the problem
of testing the server side of AJAX applications in this paper.

After presenting the approach to testing systems with
asynchronous interfaces proposed by UniTESK and our
technique of its use, we conduct several experiments in
which we practically apply them. The obtained results show
the applicability of UniTESK and the technique for testing
the client side functionality of AJAX web applications. At
the end of the paper, we present a comparison between our
approach and the existing approaches to highlight the key
advantages of UniTESK and our technique. We also discuss
the main limitations and drawbacks of our approach.

The paper is structured as follows. Section II is devoted
to the AJAX technology. We consider the architecture, the
behavioral model, and the main features of a typical AJAX
application. Section III outlines the UniTESK approach to
testing systems with asynchronous interfaces. In section IV,
we present our technique for testing the client side of AJAX
web applications with UniTESK. We empirically evaluate
the applicability of UniTESK and the technique in section V.
Section VI compares our approach with the existing
techniques. We conclude with a summary of our key
contributions, and suggestions for future work in section VII.

II. AJAX

AJAX is an approach to web interaction that combines a
set of well known technologies to achieve high interactivity
of web applications. In this section, we consider the
architecture, the behavior and the main features of a typical
AJAX application.

Let us discuss AJAX applications comparing them with
web applications that we call “classic”. The architectures of
both the classic and AJAX applications are shown in Fig. 1.

A classic web application consists of a set of web pages.
Some web pages may be described in static HTML

50 of 168

(Hypertext Markup Language) files; the others may be
generated by the server side programs. A web page is
displayed to the user, containing lists of links and form
elements that allow the user to drill down to further web
pages.

Figure 1. The architectures of classic and AJAX web applications

The main functionality of a classic web application is

implemented at the server side. Some animation and
additional functionality can be provided using client side
programming languages and technologies, but it doesn’t
change the main behavioral model of the application. This
model works as follows: the user supplies input to the
browser, e.g. types a URL (Uniform Resource Locator),
clicks on a hyperlink, or submits a form; the browser sends
the HTTP (Hypertext Transfer Protocol) request for the URL
to the web server; the web server responses with a new web
page; the browser renders the page and waits for the user’s
next input.

The key features of classic web applications are as
follows:

1. The user interacts with the web application
synchronously, i.e. he requests for the next web page
only after the response to the previous request has
been handled by the browser and the appropriate
web page has been displayed.

2. HTTP requests are issued for entire web pages and
the entire page gets refreshed as a result of this
action.

3. HTTP requests are issued by the browser, and HTTP
responses are handled by the browser.

4. HTTP requests occur as a direct consequence of user
actions.

As contrasted with a classic web application, the user
communicates with an AJAX application asynchronously.
The behavioral model proposed by AJAX works as follows:

1. The user performs an action on the web interface,
e.g. clicks on a hyperlink, or a button.

2. An appropriate user interface event is fired.
3. The handler of this event, a JavaScript function, is

called. It builds an asynchronous HTTP request, sets
a callback function that will handle the response, and
issues the request to the web server.

4. The web server replies with the data.

5. The callback function is called, it reads the data and
changes the client side state that includes the DOM
(Document Object Model) state, cookies, and global
JavaScript variables.

According to this model, the user is able to go on
working with the AJAX web application right after the user
interface event handler has been executed, i.e. the user does
not has to wait until the client-server dialog has been
completed as it is happens in case of a classic web
application. Because of the small size of the transferred data,
the browser responds very quickly and the user does not feel
any delay.

The key features of AJAX web applications are as
follows:

1. The user interacts with the AJAX application
asynchronously, i.e. he goes on working with the
application while asynchronous HTTP requests are
issued and responses are handled in the background.

2. The web server does not response with the entire
web page, it responses with data that the client side
JavaScript uses to dynamically refresh a small part
of the currently displayed page.

3. HTTP requests are formed, issued and handled by
JavaScript functions.

4. User actions can trigger the execution of JavaScript
functions that may change the client side state and
perform communication between the client and
server, but JavaScript functionality is also able to
work independently from user actions. It is usually
achieved with special JavaScript functions that use
timers to call other JavaScript functions.

5. The JavaScript programming language doesn’t
support multithreading. The browser uses one thread
to handle user actions and execute JavaScript
functions, including user interface event handlers
and callback functions.

6. Concurrent HTTP requests are possible in some
AJAX web applications, i.e. the next HTTP request
may be issued before the response to the previous
one has been handled.

In the paper, we consider AJAX applications, the client-
server dialog of which complies with the behavioral model
presented in this section. It doesn’t matter which mechanism
an AJAX application uses to perform asynchronous client-
server communication. Let us note that the use of the
XMLHttpRequest [7] object implies a sequence of HTTP
responses to a single HTTP request. We take this fact into
account.

We also suppose that an AJAX application itself is able
to perform client-server communication independently from
user actions.

III. TESTING ASYNCHRONOUS INTERFACES WITH

UNITESK

UniTESK is a model based test automation technology. It
can be used for testing systems with synchronous and
asynchronous interfaces. A synchronous interface implies
that the subsequent action on the interface may be performed
only after the interface has already responded to the previous

AJAX Classic

Client side (browser) Client side (browser)

Server side Server side

 HTTP response
 (HTML, CSS…)

User interface
event

User interface

Web server

Back end

User interface

AJAX engine

Web server

Back end

HTTP
request

 Asynchronous
 HTTP request

HTTP response
(XML, JSON…)

 DOM change

51 of 168

action. The interface of a software system is considered to be
asynchronous if this system can simultaneously interact with
several other systems or interactions may be initiated by the
system itself. The approaches and test suite architectures for
testing systems with synchronous and asynchronous
interfaces differ. We will discuss UniTESK implying only
the asynchronous case in the remainder of the paper.

Figure 2. The UniTESK test suite architecture for testing systems with

asynchronous interfaces

Each test system developed with UniTESK consists of a

set of components. UniTESK defines the number of the
components, their responsibilities and relationships. Fig. 2
contains the test suite architecture proposed by UniTESK for
testing systems with asynchronous interfaces. Some of the
components are already implemented and are used as is
independently from the type of the application under test.
Their representations have the gray background in the figure
2. The other components should be implemented by the
tester and their implementations vary depending from the
application under test. UniTESK provides formal
descriptions to describe these components, extensions of
some of the industrial programming languages to develop
them, and software instruments to translate formalisms into
the code in the target industrial programming language. The
following formal descriptions are provided: specifications,
mediators, and scenarios.

The test system developed with UniTESK supposes that
the interface of the application under test consists of atomic
operations of two types: stimuli and reactions. The test
system supplies input to the application by means of
applying stimuli to it. The application outputs through
reactions that the test system evaluates. Reactions can be of
two types: immediate or deferred. Immediate reaction is a
reaction that is visible from outside immediately after
affecting target system. When testing an application with an
asynchronous interface, reactions to some stimuli may not be
observed immediately because of the internal processes in
the application. Deferred reaction is a reaction that is visible
from outside later some time after a set of affecting target
system.

 Stimuli and reactions are the notions of UniTESK. The
tester has to represent the real application interface through
stimuli and reactions, and provide UniTESK with this
interface. The following question could be set. Is it always
possible to represent an arbitrary asynchronous interface

through atomic stimuli and reactions? We haven’t heard of a
formal proof of it, but we also haven’t heard of a contrary
instance refuting it.

A formal interface of the application under test consisting
of stimuli and reactions is fixed in specifications.
Requirements to the application behavior are also fixed in
specifications in the form of pre-conditions and post-
conditions of stimuli and reactions, and invariants of data
types. Specification also contains data structures that model
the state of the application under test, i.e. describe the model
state. The model state reflects the state of the application
under test during testing. The requirements in specifications
are imposed on the model state changes. The pre-condition
for the stimulus describes constraints on the state, in which
the test system is able to apply the stimulus. Violation of the
precondition for the stimulus represents that the test is made
incorrectly. The immediate reaction does not have its
precondition. The post-condition for the stimulus and post-
condition for the immediate reaction are the same things. The
post-condition for the stimulus defines the requirements to
the result of its application, i.e. to the state change and
possibly the return value of the application operation the
stimulus refers to, e.g. when applying the stimulus leads to
the call of a public application operation that returns a value.
The pre-condition for the deferred reaction describes if
appearance of the reaction in the given state is possible.
When precondition for the deferred reaction is violated,
incompliance between the behavior of the application and its
specification is registered. The post-condition for the
deferred reaction checks compliance of the result obtained
when the reaction emerges, to the expected one.

UniTESK defines the structure of specifications. The
main goal of this structure is to provide the test completeness
metric.

Specifications are translated into the test suite
architecture components that take part in the verification of
stimuli and reactions: model state, action oracles and state
mediators.

To be able to verify requirements to stimuli and
reactions, the test system should somehow link specifications
to the application under test. Action Mediator component is
generated from the formal description called mediator. It
performs actions on the application under test, i.e. really
applies stimuli. It also registers immediate reactions. The
other component, implemented in the target programming
language, registers the appearance of the deferred reactions.
It is called catcher. The component that keeps information
about the order of stimuli and reactions is called interaction
register. The exact order of stimuli and reactions can not
always be observed when testing a system with an
asynchronous interface; therefore the UniTESK approach to
testing systems with asynchronous interfaces was designed
to be able to take advantage of the observable partial order of
stimuli and reactions. So, interaction register usually keeps
information about the detected partial order of stimuli and
reactions.

The component of the UniTESK test suite architecture,
which is called test scenario, is generated from the formal
description of the same name and is used to combine

Model state

Hyper oracle State mediator

Test

scenario

Interaction register

Action mediator Application under test

Catcher

Oracle

52 of 168

operations that test logically related aspects of the
application functionality. These operations are called
scenario functions. Each scenario function applies a set of
logically related stimuli to the application under test,
supplying values for their parameters. To apply a single
stimulus, the scenario function passes its call to test oracle,
test oracle passes the stimulus to action mediator, and action
mediator finally applies the stimulus.

Stimuli are applied and reactions appear during the
execution of the scenario function. The completion of the
scenario function indicates that all the stimuli have already
been applied and all the reactions have been cached. After
the scenario function has been executed, hyper oracle begins
evaluating the observable behavior of the application under
test. Information about the detected order of stimuli and
reactions is utilized during the evaluation process as follows.
The test system goes over all the possible orders of stimuli
and reactions that conform to the partial order detected. For
each particular order, each stimulus, and reaction test oracle
checks the pre-condition, state mediator synchronizes the
model state with the state of the application under test, and
again test oracle checks the post-condition. If this procedure
discovers at least one order, for which all the constraints on
stimuli and reactions are met, the test system claims that the
behavior of the application under test is acceptable.

To completely automate the execution of UniTESK tests
and automatically generate sequences of test inputs, the
developer has to define test scenario automata. A special
component of the UniTESK test suite architecture goes over
all the states of test scenario automata and calls each scenario
function in each accessible state. To define test scenario
automata, a function should be implemented that returns the
state of test scenario automata after each scenario function
call. In theory, the state of test scenario automata is
constructed on the base of the model state. In practice, it may
be an arbitrary function. This function allows the test system
to construct test scenario automata incrementally during
testing.

UniTESK imposes the following restriction on the
behavior of the application under test: after applying a set of
stimuli to the application, it demonstrates a set of reactions
during a finite period of time and goes to a state in which no
reactions appear spontaneously. Such states are called
stationary. Stationary states allow the test system to perform
the evaluation process and call the next scenario function at
the state in which the previous scenario function finished.

In this section, we have only outlined the main
characteristics of the approach we use for testing the client
side of AJAX web applications. The details can be found in
[3, 4, 5, and 6].

IV. TESTING AJAX APPLICATIONS WITH UNITESK

In this section, we present a technique for developing the
UniTESK test suite architecture components so that the test
system they form aims at revealing faults in the client side
functionality of AJAX web applications.

A. The technique

In practice, functional testing of web applications aims at
discovering faults of two types: general faults such as dead
links and incorrect markup, and business logic faults
concerning the behavior of the web application under test.
Business logic faults are discovered when the web
application under test incorrectly reacts to a logically related
set of stimuli. The technique we propose in this section aims
at discovering faults concerning the behavior of the client
side functionality of AJAX applications.

At the first step, the requirements to the behavior of the
client side of the AJAX application under test are extracted.
When testing a web application, it is natural that there aren’t
any well-structured documents describing functional
requirements. The probability of getting the requirements to
the client side of the AJAX application is even lesser. We do
not propose a method for the extraction of the requirements
in the paper, because elaboration of such a method requires
additional investigations and a separate paper is better to be
written on the matter. We only assume here that the result of
the requirements extraction procedure is a set of well-
structured documents describing the requirements to the
client side of the AJAX application under test.

At the second step, the extracted requirements are to be
formally fixed in specifications in the form of pre-conditions
and post-conditions of stimuli and reactions, and invariants
of data types. To be able to formalize the requirements using
the software contracts proposed by UniTESK, the tester must
represent possible interactions of the client side functionality
with its environment as a set of stimuli and reactions.

We believe that an adequate model is shown in Fig. 3.
This model conforms to the behavioral model of a typical
AJAX web application presented in section II, but it only
concerns the client side of the application. An individual
action on the application interface represents a stimulus if
this action leads to the modification of the client side state or
if an asynchronous HTTP request is issued. A user interface
event occurs as a result of such an action. The handler of this
event is called. It may change the client side state or issue an
asynchronous HTTP request. The result of its execution is
modeled as a reaction. The new proxy server component of
the test system intercepts the request issued by the user
interface event handler. It in turn issues the HTTP response.
It is modeled as a stimulus. The callback function is called
that handles this response. The client side state can be
modified as a result of its execution or something else can
happen. It is modeled as a reaction.

The client side functionality of the AJAX web
application under test may change the client side state or
issue an asynchronous HTTP request independently. Such
an activity is modeled as a rection.

Having this model, the requirements to the stimuli and
reactions can be formalised. Stimuli are specified trivially.
A reaction results to the client side state change and
possibly an asynchronous HTTP request. So, the
postcondition for the reaction should asses the client side
state change and the HTTP request in case the request is
issued as a result of the reaction.

53 of 168

Figure 3. Interactions of the client side of an AJAX web application

with its environment

In order that the test system may really verify the

behavior of the AJAX application, action mediator, catcher
and proxy server test suite architecture components are
implemented at the third step.

Action mediator contains functions that
programmatically perform actions on the application
interface.

Catcher must detect the reactions, and extract and save
the client side state changes after them. The single threaded
nature of JavaScript helps a lot for the extraction of the
client side state changes. If the extraction of the client side
state change is accomplished by a JavaScript function, it is
guarantied that there aren’t another activity that modifies the
client side state at the same time.

Proxy server is not a part of the UniTESK test suite
architecture. It is a new component specifically desigent to
support testing of AJAX applications. Proxy server has two
responsibilities:

• intercept asynchronous HTTP requests;

• apply stimuli that model the responses of the target
web server.

The use of proxy server allows modeling the real
situation of multiple users working with a single web server.
The server side state can be changed by the users. Proxy
server is able to respond taking the possibility of the server
side state changes into account.

The client side state changes and the intercepted HTTP
requests are used by the state mediator to synchronize the
state of the requirements model with the state of the AJAX
application under test during the verification procedure.

At the fourth step, specifications are used to determine
the test coverage criteria. The higher is the criteria, the more
complecate are test scenarios.

At the fifth step, test scenatios are developed so that the
choosen test coverage criteria could be achieved during
testing.

Testers often do not take faults concerning multiple
asynchronous HTTP requests into account, because of their
low probability. A typical example of such a fault can be
the following: the second asynchronous HTTP request is
issued before the response to the previous one has come;

due to network delay, the response to the second request
comes before the response to the first one; the callback
function that handles the second response removes a DOM
element; the response to the first request comes; its callback
function crashes trying to access the deleted DOM element.
It is obvious, that the proposed technique for modeling
stimuli and reactions alows developing scenatio functions
aiming at testing multiple asynchronous HTTP requests.

B. Application domain

The approach to testing systems with asynchronous
interfaces proposed by UniTESK has two main application
conditions:

1. A formal interface consisting of atomic stimuli and
reactions may be provided for the real interface of
the application under test. This formal interface
should adequately model the real application
interface.

2. After responding to a set of stimuli, the application
under test must go to a stationary state in which no
reactions can appear spontaneously.

The technique we have just presented explains how to
get a formal interface complying with the first condition.

As concerns to the second condition, we have mentioned
in section II of the paper that AJAX web applications may
have client side functionality that changes the client side
state and communicates with the server independently from
user actions and at an unpredictable time. Formally, there are
no stationary states in such applications. If such functionality
is out of the scope of testing, it usually may be ignored or
deactivated by hand. If the test system must take such
functionality into account, it has to model stationary states.
For instance, the test system may artificially execute a piece
of JavaScript during the evaluation process in order that the
application under test does not change the client side state or
issue an HTTP request.

At the moment, we can not imagine a client side
functionality of an AJAX web application that can not be
modeled and tested using UniTESK and our technique.

V. EMPIRICAL EVALUATION

In order to evaluate the applicability of the UniTESK test
development technology and the technique of its use
presented in the paper for testing functionality of the client
side of AJAX web applications, we perform a set of
experiments.

We collect 8 AJAX design patterns. Each pattern
describes how the objects, components, and levels
constituting the AJAX web application should interact in
order that the application could respond to user actions in a
certain way or a certain interactivity effect could be
achieved. The patterns primarily describe client sides of
AJAX web applications. Implementing them allows us to get
AJAX applications that both implemented differently and
behave differently.

We implement each pattern in an AJAX web application.
So, we have 8 AJAX applications. After that, using the
UniTESK technology and our technique, we create a test
system for each AJAX web application developed. In order

Web server

User interface

AJAX engine

Catcher

Browser 1

Proxy server

User interface

AJAX engine

Browser N

Stimulus

Stimulus Reaction

Reaction

Action mediator

54 of 168

to assess the fault-revealing capability of the test systems we
intentionally introduce faults into the source code of the
AJAX web applications, perform testing and count the
percent of the faults revealed. This section presents the
results of our experiments.

A. AJAX design patterns

Here we briefly introduce 8 AJAX design patterns and
their implementations for which we develop test systems.
Detailed description of the patterns can be found in [8, 9, and
10].

Pattern: Explicit Submission. Problem: How can
information be submitted to the server? Solution: Instead of
automatically submitting upon each browser event, require
the user to explicitly request it, e.g. submit upon a button
click. AJAX application: A simple authorization form.

Pattern: Periodic Refresh. Problem: How can the
application keep users informed of changes occurring on the
server? Solution: The application periodically issues
asynchronous requests to gain new information, e.g. one
request every five seconds. AJAX application: An
application alerts the user as a new comment has been added.

Pattern: Submission Throttling. Problem: How can
information be submitted to the server? Solution: Instead of
submitting upon each JavaScript event, retain data in a
browser-based buffer and automatically upload it at fixed
intervals. AJAX application: An application that submits a
single field periodically as changes are made.

Pattern: Predictive Fetch. Problem: How can you make
the AJAX application respond quickly to user activity?
Solution: Have the application anticipate likely user actions
and call the server in preparation. AJAX application: An
application that preloads the next page of the article.

Pattern: Browser-side Cache. Problem: How can you
make the AJAX application respond quickly to user activity?
Solution: Retain server results in a browser-side cache.
Whenever the application performs an asynchronous request,
it first checks the cache. If the query is held as a key in the
cache, the corresponding value is used as the result, and there
is no need to access the server. AJAX application: A simple
calculator that performs calculations on the server and retains
the results in a client-side cache.

Pattern: Guesstimate. Problem: How can you cut down
on calls to the server? Solution: Instead of requesting
information from the server, use a historical data and make a
reasonable guess on the client. AJAX application: An
approximate calculation of the number of registered users.

Pattern: Pseudo-threading. Problem: AJAX web
applications are single-threaded. Some of them require
complex processing on the client. If the thread of execution
is busy performing such processing, users won't be able to
perform input. Solution: Instead of solving the entire
problem at once and returning, a processing function is
called once in a while, incrementally processes a bit more of
the problem, before yielding. AJAX application: Sorting of a
big table on the client.

Pattern: Multi-stage Download. Problem: How can you
optimize downloading performance? Solution: Break content
download into multiple stages, so that faster and more

important content will arrive first. AJAX application: An
application that downloads additional links after the main
content of the article has been downloaded.

B. Experiments

To implement test systems for the AJAX applications
introduced in the previous subsection, we exploit both the
Java and JavaScript programming languages. The JavaTESK
[11] toolkit is used to implement the UniTESK test suite
architecture components and run the test suites developed.
The Selenium Remote Control [12] testing tool is used to
drive the browser, programmatically perform actions on the
web interface, and access the resulting DOM states. We
exploit Mozilla Firefox as a browser in our experiments. Our
technique of the use of UniTESK introduces the proxy server
component in the test suite architecture. We implement this
component using the Java programming language. It is
universal, i.e. implemented once it is included in all the test
systems.

We perform five experiments for each AJAX web
application and corresponding test system. Thus forty
experiments are conducted in the total. Each experiment
consists in introducing a single fault into the source code of
the application, running the corresponding test system on the
application, and analyzing the test results. Table 1
summarizes the results of the experiments performed.

TABLE I. THE RESULTS OF THE EXPERIMENTS

AXAX application for Introduced Revealed %

Explicit Submission 5 5 100%

Periodic Refresh 5 4 80%

Submission Throttling 5 4 80%

Predictive Fetch 5 5 100%

Browser-side cache 5 5 100%

Guesstimate 5 3 60%

Pseudo-threading 5 4 80%

Multi-stage download 5 4 80%

TOTAL 40 34 85%

Here are some examples of the faults introduced:

building incorrect HTTP requests in JavaScript functions,
removing user interface event handlers, wrong modifications
of the DOM, removing an XMLHttpRequest object from the
pool of XMLHttpRequest objects, setting timers with wrong
time intervals, removing identifiers of HTML elements and
etc. All the faults appear at the client side of the AJAX
applications.

The test systems reveal 85% (in the mean) of all the
errors introduced. We believe it is a good result that confirms
the applicability of UniTESK and the technique of its use for
testing functionality of AJAX web applications. It is worth
noting that the percentage of the faults revealed depends on
the quality of the test systems developed.

VI. COMPARISON WITH THE EXISTING APPROACHES

We didn’t manage to discover another approach
specifically designed for testing the client side of AJAX
applications. In this section, we present an overview of the
existing AJAX functional testing approaches. The
approaches test an AJAX application as a whole; therefore

55 of 168

they are able to reveal faults in both the client side and server
side of AJAX applications. We compare them with the
approach we propose in the paper, i.e. the UniTESK
technology complemented with the technique of its use.

A. Approaches proposed by the scientific community

We succeed in discovering three approaches specifically
designed for functional testing of AJAX web applications:

• Invariant Based Testing [13];

• State Based Testing [14] ;

• Search Based Testing [15].
All the approaches use a FSM (Finite State Machine)

model of the AJAX web application under test to produce
tests; therefore we label them as FSM based test generation
approaches.

The Invariant Based Testing approach is rather directed
to revealing faults in dynamical DOM states such as dead
links, incorrect markup, and the absence of widgets, DOM
elements, and error messages; than organizing complex test
situations in which the test system applies a set of logically
related stimuli to the application and verifies the reactions to
these stimuli. Accomplishing the latter is the primary
purpose of the approach we propose in the paper, i.e. the
UniTESK technology complemented with the technique of
its use. So, the Invariant Based Testing approach and our
approach aim at revealing faults of different types; therefore
there is no point in their further comparison.

The State Based Testing approach divides test creation
into two stages. At the first stage, the FSM model of the
AJAX application under test is constructed on the base of a
set of preliminarily recorded real execution traces of the
application. The states of the FSM are abstracted from the
real DOM states. The transitions are the JavaScript method
invocations triggered by user events or server responses and
modifying the DOM. At the second stage, tests are
generated on the base of the traversal of the FSM extracted at
the first stage. The test generation is accomplished so that the
generated tests are able to automatically reveal faults leading
to the modification of a correct sequence of states in the
FSM model of the application.

Because the FSM model is constructed on the base of the
real behavior of the application, the approach is expected to
show its best in regression testing. The authors strengthen the
approach by providing the ability to express general
requirements to the behavior of the application in the form of
pre-conditions and post-conditions. This feature of the
approach makes it possible to apply it for functional testing.
An advantage of the software contracts proposed by
UniTESK is that they additionally provide test coverage
criteria. The State Based Testing approach deals with
concurrent asynchronous HTTP requests, but it only warns
whether there may be a problem. As opposed to this, our
approach reveals faults concerning multiple asynchronous
HTTP requests. The authors of State Based Testing claim
that their approach is a good complement to the classic
functional testing.

The Search Based Testing approach is based on the State
Based Testing approach. The authors propose a technique
that enhances the fault revealing capability of the tests

generated. The main features of the approach remain the
same.

A common advantage of the State Based Testing and
Search Based Testing approaches over our approach is that
they are better automated. The approaches are designed for
testing only AJAX applications, the authors of the
approaches tried to automate them as much as possible. In
contrast to the approaches, the UniTESK technology doesn’t
take the AJAX specific features into account, because it was
developed to be applicable for general purpose software.
That is why developing some of the UniTESK test suite
architecture components is a fairly labor-intensive task. For
instance, special functions should be implemented in order
that action mediator could programmatically perform actions
on web interface elements. Each particular AJAX application
requires its own functions because there aren’t two AJAX
applications that have the same interface. Other functions
should be implemented in order that catcher could get DOM
states after the reactions.

B. Approaches used in industrial practice

We examined existing test automation tools that support
functional testing of web applications. The tools that are
positioned as AJAX test automation tools implement the
Capture and Playback [16] approach. According to the
approach the tester records the user actions; saves them in a
script; enhances the recorded script with verification points,
where some property or data is verified against an existing
baseline; plays back the script and observes the results. The
Capture and Playback approach is very useful for regression
testing. It is also widely used for functional testing of classic
web applications.

In order to support testing of AJAX applications, Capture
and Playback testing tools implement either a method for
automatically detecting responses to asynchronous HTTP
requests or a method for detecting DOM state changes. Such
a method allows a Capture and Playback testing tool to
determine whether the application has already responded to
the user action during the playback stage. The Capture and
Playback approach supporting AJAX is implemented in IBM
Rational Functional Tester [17], SWEA [18], and many other
test automation tools. The Capture and Playback approach
doesn’t aim at creating complex test sequences like the
approach we propose in this paper. Using it leads to the
generation of a big amount of test scripts. A script usually
verifies a sequence of possible user actions. Week
modularity is a common disadvantage of such scripts. As
opposed to this, the test suite architecture is one of the most
competitive advantages of UniTESK.

The most flexible of the existing AJAX functional testing
techniques is to use a combination of a unit testing
framework and a software library which makes it possible to
programmatically perform actions on the application
interface and then access the resulting DOM state. An
example of such a technique is the JUnit [19] unit testing
framework complemented with the Selenium Remote
Control testing tool. By analogy with the Capture and
Playback testing tools, AJAX support is limited to designing
and implementing either a method for detecting responses to

56 of 168

asynchronous requests or a method for detecting DOM state
changes. Let us note that this technique is flexible because it
provides minimal support for test automation. In fact tests
are handmade, but can be executed automatically.

VII. CONCLUSION

In this paper, we demonstrate the applicability of the
UniTESK test development technology for testing the client
side functionality of AJAX web applications. We outline the
approach to testing systems with asynchronous interfaces
proposed by UniTESK, present the technique for modeling
and testing AJAX applications with UniTESK, practically
evaluate UniTESK and our technique, and compare our
approach with the existing approaches.

Though UniTESK can be used to develop test systems
for AJAX web applications, UniTESK is not an AJAX-
specific testing technique. Developing tests for AJAX with
UniTESK is a very labor-intensive task. The future work
may consist in enhancing the automation level of the
approach we propose in the paper.

In this paper, we ourselves develop AJAX applications.
Then we apply UniTESK to them. In our future work, we
should apply UniTESK to a couple of applications really
working in Internet.

Our approach can only be used for testing the client side
functionality of AJAX web applications. On the one hand,
the approach is directed to the client side faults that are
typical and specific for AJAX web applications. On the other
hand, we do not test the server side at all. Future
investigations may consist in designing an AJAX testing
technique that will take both the client side and the server
side faults into account.

REFERENCES

[1] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko,
“UniTesK test suite architecture,” Proc. FME 2002, LNCS 2391,
Springer-Verlag, 2002, pp. 77-88.

[2] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko,
“UniTesK: Model Based Testing in Industrial Practice,” Proc. the 1st
European Conference on Model-Driven Software Engineering
(ECMDSE), Nuremberg, Germany, Dec. 11-12, 2003, pp. 55-63.

[3] V. Kuliamin, A. Petrenko, N. Pakoulin, I. Bourdonov, and A.
Kossatchev, “Integration of Functional and Timed Testing of Real-
time and Concurrent Systems,”. Proc. of PSI 2003, LNCS 2890,
Springer-Verlag, 2003, pp. 450–461.

[4] A. Khoroshilov., “Specification and Testing Systems with
Asynchronous Interfaces,” Preprint of the Inst. for System
Programming, Russ. Acad. Sci., Moscow, 2006.

[5] V. Kuliamin , A. Petrenko, and N. Pakoulin, “Practical Approach to
Specification and Conformance Testing of Distributed Network
Applications,” Proc. ISAS'2005, Berlin, Germany , April 25-26,
2005, pp. 60-73.

[6] N. Pakulin and A. Khoroshilov, “Development of formal models and
conformance testing for systems with asynchronous interfaces and
telecommunications protocols,” Programming and Computer
Software, vol. 33, number 6, Nov. 2007, pp. 316-335, doi:
10.1134/S0361768807060035.

[7] XMLHttpRequest object specification:
http://www.w3.org/TR/XMLHttpRequest/

[8] M. Mahemoff, Ajax design patterns. Sebastopol, CA: O’Reilly
Media, Inc, 2006

[9] Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett, Proffessional Ajax
2nd edition. Indianapolis, Indiana: Wiley Publishing, Inc., 2007

[10] Wiki on AJAX containing a comprehensive collection of AJAX
design patterns:

http://ajaxpatterns.org/

[11] JavaTESK toolkit for testing Java applications with UniTESK:

http://www.unitesk.com/

[12] Selenium Remote Control web application functional testing tool:
http://seleniumhq.org/projects/remote-control/

[13] Ali Mesbah and Arie van Deursen, “Invariant-based automatic testing
of Ajax user interfaces,” Proc. the 31st International Conference on
Software Engineering (ICSE'09), IEEE Computer Society, 2009, pp.
210-220.

[14] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of Ajax
web applications,” Proc. 1st IEEE Int. Conference on Sw. Testing
Verification and Validation (ICST’08), IEEE Computer Society,
2008, pp. 121-130.

[15] A. Marchetto, P. Tonella, “Search-based testing of Ajax web
applications,” Proc. the 2009 1st International Symposium on Search
Based Software Engineering, May 13-15, 2009, pp. 3 – 12.

[16] G. Meszaros, “Agile regression testing using record and playback,”
Proc. the conference on Object Oriented Programming Systems
Languages and Applications, 2003, pp. 353-360.

[17] Rational Functional Tester web application functional testing tool:

http://www-01.ibm.com/software/awdtools/tester/functional/

[18] SWEA web application functional testing tool:

http://webiussoft.com/

[19] JUnit unit testing framework:

http://www.junit.org/

57 of 168

Service-oriented approach to integration testing in distributed
systems

V.N.Fedotov

Software Engineering Department
Institute for System Programming

vnfedotov@acm.org

Abstract
Development of the service-oriented technologies

has turned the market of integration platforms, be-
coming new challenge for IT experts worldwide. Key
principles of SOA paradigm do not allow to apply the
solutions tested on the client-server architecture. On
the other hand, SOA offers its own set of tools to cope
with majority of problems. In this paper it is shown
how to effectively troubleshoot the distributed system
by means of service-oriented approach.

1 Introduction
With development of communication technologies,

business process automation becomes increasingly ur-
gent task both for business, and for the state. Seen
not so long ago just as a tool to reduce costs, now BPA
is a key to survival in a changed world where internet
and mobile services rule.

Majority of companies already has ERPs, CRMs,
HRMs and many other applications managing their
daily business. But do these applications automate
company business processes? They are certainly pro-
viding some automation but it has nothing to do with
business process, as they cannot interact with each
other. So, BPA is only possible when there is a way to
’glue’ applications together. In literature such way of-
ten called ’enterprise application integration’ (EAI[1]).

There isn’t a ’right’ solution for application integra-
tion. As different integration concepts were developed,
they didn’t replace each other, instead they’re compet-
ing until now. You still can find message-oriented mid-
dleware from early 90-s, integration brokers, and even
CORBA, which is almost dead, because it didn’t sur-
vive the competition with the newest trend - service-
oriented architecture (SOA[2]).

While using many ideas from CORBA, SOA has
taken completely different technological approach by
using XML and J2EE to simplify development of inte-
gration components dramatically. In SOA these com-

ponents are called ’services’, as they mostly resem-
ble web-services, but are arranged in a way defined
by SOA guiding principles. These principles actually
form SOA paradigm, as they distinct service-oriented
architecture from bunch of web-services, just like OOP
principles distinct object-oriented code from just some
C++ code.

2 Enterprise as a Black Box

When thinking about how to make two applications
interact with each other, you probably will come out
with something like client-server approach, which is
typical for Internet and various network applications.

Unfortunately, client-server architecture doesn’t
work in EAI as there is a tens of applications intercon-
nected with each other in different ways by different
protocols. In that case client-server approach requires
each application to contain an adapter for every other
application, causing serious flexibility and scalability
issues.

These issues are the reason of using middleware so-
lutions. Middleware platform are in the middle, ob-
viously, of every interaction, mediating and routing
messages between applications. For testing it means
that instead of one interaction, you need to test two
interactions, which isn’t too bad. But SOA make mat-
ters worse, as it compose middleware platform from
dozens of interconnected services. Now you need to
test twenty or thirty interactions. As SOA solution
becoming mature, its becoming more complex, with
composition services and orchestrations, so testing ef-
forts are only increasing.

Common solution to lower the efforts putted in in-
tegration testing is simple - don’t do integration test-
ing. Without advanced testing approach, this is the
only way to cope with tight release schedule typical
for SOA projects.

58 of 168

3 Test stubs as a solution
Of course there are better solutions. How to test

integration in a distributed system - isn’t a most recent
question. It is also having a simple answer: instrument
SUT in a such way so that interactions between its
components became transparent. But there is actually
quite a broad choice of technical approaches.

Logging is a most simple approach. Analysis of
transactions journal provide all the necessary infor-
mation about way that components interact. However
logs can be pretty hard to reach, too big to read and
it’s impossible to analyze them automatically.

Testing tools traditionally offer a different solution
- test stubs. Stubs form a virtual environment, sur-
rounding each component and giving a possibility to
inspect all external links of a component under test.
However, stubs are way too invasive, as they are lit-
erally muffling external links, thus it is impossible to
test entire business process. Also, test stubs are inac-
cessible from the test scripts, so all assertions must be
contained within the test stubs themselves, thus test
logic became sprayed over test environment. Because
of that it is nearly impossible to support regression
test sets in a virtual environment.

Various academical papers[3][4] propose instru-
menting SUT by way of instrumenting its components
to provide more information about interactions with
other components and make that information accessi-
ble from test scripts. Unfortunately, such instrumen-
tation requires a complete revamp of release process
adopted by enterprise, thus making that approach in-
appropriate for most companies.

4 Alternative
As an alternative to the solutions described above

we propose a new way to test application integration
in a distributed system. Our solution offer similar
approach, but entirely different technical implemen-
tation. In short it can be summarized as ’connect
everything to ESB[5]’.

We propose to use ESB as a universal proxy for
every interaction in a SUT, thus providing us with ca-
pability to monitor and control these interactions. Us-
ing of ESB also grants access for testing tools through
JMX and event queues, which provide us a way to
automate analysis of interactions inside the SUT and
even modify messages on the fly to reach broader test
coverage.

These are the key advantages of proposed solution:

• ESB provides transparency for all interactions be-
tween SUT components;

• test assertions are located in one place;

• tests can be easily automated;

• the minimum quantity of tests covers a maximum
quantity of SUT components;

• thanks to a uniform configuration provided by
ESB, the test environment becomes more flexible
and controlled;

• testing process is focused on business process, so
there is a minimum risks of occurrence of late
integration defects.

5 Conclusion
In this paper we’ve shown a way to use service-

oriented technologies for creation of flexible test en-
vironment, which allows to simplify integration test-
ing of distributed systems by adding necessary trans-
parency to interactions between components of SUT.

On the basis of the proposed approach it is planned
to create the completed methodology of testing dis-
tributed systems based on service-oriented architec-
ture, having presented original techniques of construc-
tion of test scenarios and carrying out a performance
testing.

References
[1] Gregor Hohpe, Bobby Woolf. Enterprise Integra-

tion Patterns.

[2] OASIS Reference Model for Service Oriented Ar-
chitecture 1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-
rm.pdf

[3] Cesare Bartolini, Antonia Bertolino, Sebastian El-
baum, Eda Marchetti. Whitening SOA testing.

[4] Youngkon Lee. Double layered SOA test architec-
ture based on BPA - simulation event.

[5] David Chappell. Enterprise Service Bus.

59 of 168

GPU-BASED EXTENDED CELLULAR MODEL IMPLEMENTATION

A. A. Emelyanov, R. M. Dmitrienko
Special Computing Technologies LLC

N.Novgorod, Russian Federation
office@hopcomp.net

A Cellular Automaton (Cellular Model) is a convenient and
efficient way to solve a broad class of problems that belong to
different areas of science, including (but not limited to)
physics, math, chemistry, biology. A lot of natural phenomena
and common tasks that are described via differential equations
are easily modeled this way. But in spite of obvious advantages,
CA-based algorithm implementations for common CPUs are
highly parallel and hence extremely resource-intensive. Thus,
the idea of SIMD GPU-based CA implementation looks
feasible. In this paper, we will discuss the problems we faced
while developing GPU-based cellular model implementation,
and the ways we solved them.

CA – Cellular Automaton

SIMD – Single Instruction Multiple Data

GPU – Graphics Processing Unit

I. INTRODUCTION

A Cellular Model (a Cellular Automaton) is a set of cells
and their corresponding states. These cells form a grid; a
certain set of rules determines each cell's new state
depending on the nearby cells' current states at any given
moment of time. The most common are the automata whose
cells' new states are determined only by their own current
state and those of corresponding adjacent cells. Cubic grids
are the most popular, but the irregular grids are possible as
well. Different kinds of cellular automata are studied:
synchronous and asynchronous, deterministic and
probabilistic, with regular and irregular cell disposition. An
Extended Cellular Model is a generic mathematical model of
a Cellular Automaton that encapsulates all of the
aforementioned kinds of Cellular Automata.

One of the most important properties of an Automaton is
the “Locality of the rules”. It means that the cell's new state
is only determined by the adjacent cells and probably by
itself. This fact allows us to suppose that it is possible to
implement a Cellular Automaton using a SIMD processing
unit, such as a GPU. First we'll discuss the limitations of the
SIMD architecture (as implemented by a GPU) that are
related to the problem of efficient Cellular Automata
implementation.

II. PROBLEM DEFINITION AND ANALYSIS

When it comes to implementation of highly parallel
GPU-based algorithms, the most important limitation that
arises is caused by the memory access collisions. A memory
access collision is a situation when more than one of the
active threads attempt to access memory either for reading,
or for writing. At the hardware level, this problem is usually
partially solved by the means of memory organization: either
a collision-free memory paragraph access method, or a
collision-free separated memory bank access, where each
bank is spread across the whole address space. Thus, the
problem of efficient algorithm implementation is solved by
choosing an optimal layout of input and output data in the
memory and an optimal sequence of memory access attempts
by the threads.

From the software implementation point of view, a
Cellular Automaton is a closely coupled net of finite state
machines (the cells), where the connections represent the
input and output data of these FSMs. From the programming
point of view, the only difference between a Synchronous
and an Asynchronous Cellular Automata is the global cell
states' buffer that is required by a Synchronous CA.
Considering the fact that the GPU threads access memory at
different moments of time, it is possible to implement both
Synchronous and Asynchronous Cellular Automata equally
efficiently (when all of the other conditions are the same). A
Movable Cellular Automaton may be reduced to an ordinary
Cellular Automaton by adding the cell's coordinate to the
cell's state variables list, while establishing connections
between each and every cell. Thus, instead of recalculating
cell adjacency before new cell states' calculation, it is safe to
assume that every other cell is a neighbor of the current cell,
and hence it becomes possible to use these “neighbor”'s
coordinates for state recalculation. This kind of algorithm
transformation does not increase the processing load, as the
quantity of operations remains the same, only their order is
changed. Implementing determined and probabilistic
Cellular Automata is even simpler. Probabilistic state
recalculation algorithms are slightly more complex, but since
the random numbers (which are essential in this case) are
calculated independently for each cell, and it is possible to
use GPU registers to store such small amounts of data,
memory access collisions are avoided. Furthermore, it is
possible to precalculate the random numbers' sequence and

60 of 168

store it optimally in the memory before launching the
computing algorithm.

So, the only problem of the GPU-based Cellular Model
implementation that remains is the irregularity of the grid.
Let's suppose that the cells' connections are predetermined
and bear no regular structure. This is highly likely to cause
collisions when threads will attempt to access memory areas
that store the parameters of the cells, since the order of
access attempts is not known beforehand (it depends only on
the Cellular Automaton's cells' interconnections). It is also
important to note that this problem is irrelevant for movable
Cellular Automata, as the cells' interconnection structure is
unknown beforehand at the beginning of every calculation
step (and thus must be recalculated); so, it is possible to
connect each and every cell, while maintaining the same
efficiency. However, this is not the case for Automata with
irregular grids: there can be much less actual connections
than the squared number of cells, so that the SIMD
architecture-based implementation's efficiency will drop
significantly.

Based on the aforementioned suggestions, the problem
that we need to solve is actually a problem of designing of an
efficient implementation of a Cellular Automaton with
irregular connections' structure. Implementing a Cellular
Automaton with regular connections' structure is just a
special case of this problem.

III. THE PROPOSED SOLUTION

Each cell contains its state variables and a list of
neighboring cells. In-memory data layout is done this way:

ia - cell i
iU - a set of neighbors of cell i
iB - a set of cells, for which the cell I is a neighbor

a j∈Bi⇔ai∈U j

()M A - cardinality of the set A

Step 1. The cells are ordered by the number of cells that a
cell is adjacent to, beginning from the greatest number.

M B i≥M Bi1
Step 2. Cells' state variables are laid out this way: the

first variables of cells' states are stored beginning from a
memory paragraph's boundary, then the second variables are
stored beginning from the next paragraph's boundary, and so
on.

i
jp - state variable j for then cell i

()jS p - size of the state variable j

PH - size of a memory paragraph

N - quantity of cells
In-memory layout of parameters:

1 2 3 4
1 1 1 1 1 1

1 2 3 4
2 2 2 2 2 2

1 2 3 4

...

...

...

...

N

N

N
K K K K K K

p p p p p SPACE

p p p p p SPACE

p p p p p SPACE
where K is the number of state variables.
SPACE – memory boundary alignment space
Size of

()()()()j jSPACE = PH S p N modPH modPH− ∗

where a mod b is a reminder of a/b.
It does not matter whether all of the state variables fit

into the same memory paragraph or not. Nevertheless, it is
important to keep the number of used paragraphs low while
avoiding memory access collisions.

Step 3. The list of cell's neighbors is a sequence of cells'
numbers (according to the one we've got at the Step 1); the
fields that correspond to the non-neighboring cells are filled
with 0 (-1 may be used if 0 is taken by the first cell).

A separate thread is launched per each cell. A single
thread may correspond to a number of cells in case the total
amount of cells exceeds the thread count limit. Each thread
reads its corresponding cell's neighbors' states and
recalculates the cell's state variables accordingly. If the
neighboring cell is marked as 0 (i.e. there's no such
neighbor), the thread enters waiting state until a valid cell is
found.

Memory access collision avoidance and processing
efficiency are achieved by the fact that the waiting threads
attempt no memory access, and the number of such threads
may grow significantly while the neighbor list is being
processed. It is worth mentioning that SIMD threads are
always synchronous and hence are put into waiting state only
when they miss a conditional branch of the code which is
entered by some other threads (they remain in the waiting
state until others exit the branch). Thus, this algorithm may
become especially efficient when applied to Cellular Models
with irregular cells' disposition (where the efficiency
depends significantly on the structure of connections). A
major performance gain is also possible for Asymmetric
Cellular Automata, where the density of cellular
interconnections is distributed unevenly and has certain
distinct peaks and troughs.

IV. CONCLUSION

We have described our approach to the GPU-based
Cellular Models implementation. This approach is frequently
employed for our development which is done in conjunction
with subject matter experts from different areas of science,
such as physics, chemistry, meteorology and so on. We have
implemented it using NVidia GPUs (as a part of the
CUBLIC(TM) project), and the estimated performance gain
(as compared to the transformation of the source Automaton
into an Automaton where each and every cell is connected to
every other cell) ranges from 2 to 5 times.

61 of 168

REFERENCES

[1] Kalgin Konstantin Victorovich KalginKV@gmail.com
Supercomputer Software Department (SSD, ssd.sscc.ru), “Cellular
Aitomata on GPU” http://ssdonline.sscc.ru/kalgin/cuda/ca.gpu.pdf

[2] Psakhie, S.G.; Horie, Y.; Korostelev, S.Yu.; Smolin, A.Yu.; Dmitriev,
A.I.; Shilko, E.V.; Alekseev, S.V. (1995). «Method of movable
cellular automata as a tool for simulation within the framework of
mesomechanics». Russian Physics Journal 38 (11)

[3] Psakhie, S.G.; Horie, Y.; Ostermeyer, G.P.; Korostelev, S.Yu.;
Smolin, A.Yu.; Shilko, E.V.; Dmitriev, A.I.; Blatnik, S.; Spegel, M.;
Zavsek, S. (December 2001). «Movable cellular automata method for
simulating materials with mesostructure». Theoretical and Applied
Fracture Mechanics 37 (1-3)

62 of 168

mailto:KalginKV@gmail.com

ParaLab – Visual Way to Parallel Programming
The software system for investigating the parallel algorithms

Anna Labutina, Victor Gergel
Nizhny Novgorod State University

Nizhny Novgorod, Russia
e-mail: anna.labutina@cs.vmk.unn.ru

In this paper we introduce a software system which allows to
carry out and visualize computational experiments for
studying and researching the parallel algorithms of solving
complicated computational problems in imitation mode on one
single sequential computer. User can “assemble” a parallel

computational system of cluster type that consists of
multiprocessor and multicore nodes connected with the
network, set up the problem to be solved, carry out the parallel
solving algorithm, collect and analyze the results of
computational experiments. To estimate the execution time of
parallel method on current hardware system we use the
sophisticated models. For every implemented parallel method
we proved the theoretical estimations of the execution time by
comparing the real time of the execution on the NNSU high
performance cluster with the time, that can be calculated using
the model.

High performance computing, parallel computing, parallel

computations modeling, cluster, multiprocessor architecture,

multicore architecture.

I. INTRODUCTION
The development of the computer architecture and

network technologies, together with investigations of new
time-consuming scientific and applied problems that demand
massive computations showed high necessity of parallel
computations, made high performance computing the
cornerstone of programming and computational technology.

But despite of science needs and the actuality of parallel
computations, so far they are not as widely used as it was
predicted. One of the possible reasons is the necessity of
developing new parallel algorithms to solve the new
computationally intensive problems. It is well-known that
the speedup of solving the task on parallel computational
system can only be achieved when the algorithm is divided
into set of independent processes that can be run
simultaneously. The other reason is that the debugging of
parallel code is a high complexity problem, which makes it
necessary to fully understand the behavior of the system of
computational processes run in parallel. That is why
competence in modern high perforamnce computational
system design trends, in new tools developed to achieve
parallelism, the ability to create models, methods for solving
the problems in parallel are the major qualities for specialists
in applied mathematics, computer science and information
technologies.

One more reason why “real” parallel programs are so
hard to understand is that there is no simple tool to visualize
their behavior. It is getting even worse now when unified
interfaces are used to organize an access to multiprocessor
computational systems. Such interfaces allow user to put the
task into the queue remotely, and then after a while get the
result of program execution stored in the file.

An access to real parallel computational system is not
necessary for learning the basic principles of parallel
algorithm‟s execution. Textbooks will help to gain the
sufficient level of theoretical knowledge. ParaLab system
introduced in this paper will help to get the practical
expertise.

II. WORKING WITH PARALAB
While working with ParaLab user has an access to a wide

range of tools to set the computational experiment
parameters. She can model the computational system, chose
the problem, carry out the parallel algorithm, collect and
analyze the results of computational experiments.

A. Modeling the Parallel Computational System

ParaLab allows to simulate the parallel computational
experiments execution on multiprocessor (SMP) and
multicore architectures. The computational system appears to
consist of the computational nodes (computers). Each node
has one or more processors, and each processor has one or
more cores. The ParaLab system architecture doesn‟t limit
the maximum amount of cores in processor and processors in
one node, but for the sake of visualization we limit the
number of cores to be equal to 1, 2 or 4 and number of
processors to be 1 or 2.

In order to simulate the computer system, it is necessary
to determine the network topology, the number of
computational nodes, the number of processors and cores on
one node, the performance of each core, and the
characteristics of the communication network (latency,
bandwidth and data communication method). It should be
noted that the computer system is assumed to be
homogeneous in the ParaLab system, i.e. all the
computational nodes have the equal amount of processors,
every processor consists of the same number of cores, cores
possess equal performance, and all the communication lines
have the same characteristics.

The data communication network topology is defined by
the structure of communication lines among the computer

63 of 168

system nodes. The system ParaLab supports the following
network topologies: farm, ring, star, mesh, hypercube, full
graph (clique).

Figure 1. Dialog windows to set up the computational system parameters

The system ParaLab allows user to set the desirable
number of nodes for the selected topology. The choice of the
system configuration is performed in accordance with the
type of the topology used. Thus, for instance, the number of
processors in a two-dimensional grid must be a perfect
square (the sizes of the grid both vertically and horizontally
are the same), while the number of the processors in a
hypercube must be a power of 2.

The performance of the core in the ParaLab system is
measured by the number of floating point operations per
second (flops). It should be noted that to estimate the
execution time of the experiment, it is assumed that all the
computer instructions correspond to the same floating point
operation.

The time of data transmission among the processors
determines the communication overhead of the parallel
algorithm execution in a multiprocessor system. The main
set of parameters, which makes possible to estimate the data
communication time, contains the following values:

 latency (α). It is the time, which characterizes the
duration of preparing a message for transmission, as
well as the duration of the searching for the route in
the network, etc.;

 network bandwidth (β). It is defined as the maximum
amount of data, which can be transmitted in a certain
unit of time through a data communication channel.
This characteristic is measured, for instance, in
Mbits per second.

Among the data communication methods, implemented
in ParaLab, there are the following two well-known
communication methods (see, for instance, Kumar, et al.
(1994)). The first method is aimed at passing messages as
indivisible information blocks (store-and-forward routing or
SFR). The second communication method is based on
representing the transmitted messages as a set of information
blocks of smaller sizes (packets). As a result, the data
transmission may be reduced to passing packets. In case of
this communication method (cut-through routing or CTR)
the transit processor may perform transmitting the data along
the chosen route directly after the reception of the next
packet without waiting for the termination of receiving all
the message data.

B. Selecting the Problem and the Parallel Method

The following widely used parallel algorithms applied to
solving complicated computational problems in various
scientific and technical applications are implemented in the
system ParaLab: the algorithms for data sorting, the
algorithms for matrix operations, the algorithms for solving
the systems of linear equations, graph processing, the
algorithms for solving differential equations in partial
derivatives and the algorithms for global multiextremal
optimization.

As a rule, for every task there are several solving parallel
methods implemented. For the matrix-vector multiplication
task we implemented algorithms based on block, row-wise
and column-wise matrix decomposition. For the matrix
multiplication problem there are parallel Fox‟s and Cannon‟s
algorithms and the algorithm based on striped matrix
decomposition. For the problem of solving the system of
linear equations we present the parallel variants of Gauss
method and conjugate gradient method. For the sorting
problem we implemented parallel variants of bubble sort,
Shell sort and quick sort. For the graph processing task there
are parallel algorithm for building minimal spanning tree,
Dijkstra‟s and Floyd‟s algorithms for shortest paths problem.
For the problem of solving the differential equation in partial
derivatives we have parallel Gauss-Seidel algorithm. Parallel
index method is implemented for the problem of
multiextremal optimization.

Figure 2. Dialog window to set the parameters for the problem of solving

differential equation in partial derivatives

The main problem parameter in the system ParaLab is the
initial data amount. For the problem of sorting this is the size
of the array. For the matrix operations and the problem of
solving a system of linear equations this is the order of the
matrices. For the problem of processing graphs this is the
number of graph vertices.

User can set additional parameters for some types of
problems. For example there is a possibility to chose the
boundary conditions for the problem of solving the
differential equation in partial derivatives, to chose the type
of function for the problem of multiextremal optimization, to

64 of 168

create a graph with the help of built-in graph editor for the
graph processing problem.

C. Carrying out the computational experiment

ParaLab provides various forms of graphical
demonstration of parallel computation results in order to
observe the process of carrying out a computational
experiment of solving complicated time consuming
computational problems. Before the parallel algorithm
execution user can set the visualization parameters for
demonstration speed, the mode of communication operation
visualization, the required level of details to be shown.

Figure 3. The window of the computational experiment while solving the

problem of matrix-vector multiplication

The system ParaLab provides different schemes of
carrying out experiments to give convenient possibilities for
studying and using parallel algorithms of solving
complicated computational problems. Problems may be
solved in the sequential execution mode, in the time sharing
mode with the possibility to simultaneously observe the
algorithm iterations in all the computational experiment
windows. Carrying out experiment series that require long-
continued computations, may take place in the automatic
mode with the possibility of saving the results of solving
problems in the experiment log. Experiments may be also
carried out in the step-by-step mode.

Figure 4. The experiment log window

D. Accumulating and Analyzing the Experiment Results

To accumulate the results of the executed experiments,
ParaLab provides a special memory, which is hereinafter
referred to as the experiment log. The results are stored in the
experiment log by the system automatically. Accumulated
results can be used for observing and analyzing. The stored
data can be also taken to restore the previous state of the
experiment – that allows to rerun the experiment. Also it
allows to continue computations from the suspended state.

Saving the current experiment in a file, all the
accumulated results will be also saved.

For the experiments saved in the experiment log, we
build the graph that shows how the execution time and the
speedup depend on problem and computational system
parameters. These graphs are built in accordance with the
theoretical models we use to estimate the execution time of
the parallel algorithm.

III. MODELING PARALLEL COMPUTATIONS

A. Model for the local computations

While creating a model to estimate the time of local
computations we assume that this time is the sum of the
calculation time and the memory access time:

 T1 = Tcalc + Tmem (1)

Here the calculation time is the result of multiplication of
the executed operations number N by the time of one
operation execution τ. The memory access time is the result
of division of the maximum amount of data M by the
memory bandwidth βRAM. To make the estimation more
precise we should consider that the data comes from memory
not in byte-by-byte mode but in full cache lines, the length of
one cache line is equal to L bytes. The worst case is when
every data element should be downloaded from the memory
and it falls in the separate cache line. Thus, the model for the
local computations execution time can be the following:

 T1 = N ∙ τ+ L ∙M/βRAM (2)

We should also consider the RAM latency αRAM that can
significantly influence the time of computations:

 T1 = N ∙ τ+M ∙ αRAM + L/βRAM (3)

This model doesn‟t reflect the modern processor
architecture, where the processor has small but fast local
memory, which is called cache memory. In order to get the
fast access to the necessary data this data is downloaded
from RAM to cache before the computations with the use of
different prediction algorithms. This download can be
performed simultaneously with computations and doesn‟t
affect the time of computation execution. The situation when
the necessary data is not in the cache and the processor
should wait for them to be downloaded from RAM is called
cache miss. To make the model of computational time more
precise we need to know the number of cache misses

65 of 168

appeared during computations. With this new information
we can correct the time that the processor spends on waiting
for the data to be downloaded from the RAM:

 𝑇1 = 𝑁 ∙ 𝜏 + γ ∙ 𝑀 ∙ 𝛼𝑅𝐴𝑀 + 𝐿/𝛽𝑅𝐴𝑀

where γ is the cache miss ratio (number of cache misses
divided by the number of cache access operations), which
can be theoretically estimated.

Thus, to estimate the time of local computations
execution we need to know:

 αRAM – RAM latency,
 βRAM – RAM bandwidth,
 γ – cache miss ratio,
 τ – the time of one operation execution.
To make a decision about the model accuracy the

computational experiments were carried out on the computer
with the Intel core 2 quad Q6600 processor. The architecture
of this processor includes first-level caches with the
bandwidth of 153 Gb/sec and latency of 1,22 nsec. The
RAM of the target system has a bandwidth of 12,4 Gb/sec
and latency of 8,31-80 nsec. The algorithm of matrix-vector
multiplication was executed. The code for this algorithm is:
for (i=0; i<Size; i++) {

 pResult[i] = 0;

 for (j=0; j<Size; j++)

 pResult[i] +=

 pMatrix[i*Size+j]*pVector[j];

}

To calculate the time of one operation execution τ we
measured the time spent on performing the algorithm for
small object size, when matrix and vectors can fit in cache
L1. We divide this time by the number of performed
operations and get the time of one operation execution τ =
3,78 nsec.

TABLE I. COMPARISON OF THE EXPERIMENTAL AND THEORETICAL
EXECUTION TIME OF THE MATRIX-VECTOR MULTIPLICATION ALGORITHM

Matrix Size Experimental
Time

Theoretical
Time

Relative Error

100 0,0001 0,0001 0,0062
1000 0,0076 0,0076 0,0011
2000 0,0303 0,0304 0,0021
3000 0,0688 0,0685 0,0043
4000 0,1222 0,1217 0,0036
5000 0,1909 0,1903 0,0035
6000 0,2748 0,2740 0,0029
7000 0,3741 0,3729 0,0033
8000 0,4894 0,4872 0,0044
9000 0,6186 0,6164 0,0036

10000 0,7637 0,7611 0,0034

In current version of ParaLab the simplier model for

estimating the time of local computation is realized. This
model only uses the number of operations and the time of
one operation execution τ. We plan to implement the
described approach to local computations time estimation in
the next version of ParaLab.

B. Model for data passing operations execution

The time necessary for transmitting data between the
processors defines the communication overhead of the
duration of parallel algorithm execution in a multiprocessor
computer system. The basic set of parameters, which can
help to evaluate the data transmission time, consists of the
following values:

 initializing time (α) characterizes the duration of
preparing the message for transmission, the search of
the route in the network etc.;

 control data transmission time (tc) between two
neighboring processors (i.e. the processors,
connected by a physical data transmission channel);
to control data we may refer the message header, the
error detection data block etc.;

 transmission time of one data byte along a data
transmission channel (1/β); the duration of this
transmission is defined by the communication
channel bandwidth.

Let‟s consider store-and- forward routing (SFR). In case
of this approach the processor, which contains a message for
transmission, gets all the amount of data ready for
transmission, defines the processor, which should receive the
data, and initializes the operation of data transmission. The
processor, to which the message has been sent, first receives
all the transmitted data and only then begins to send the
received message further along the route. The time of data
transmission tcomm for the method of transmitting the message
of m bytes along the route of length l is defined by the
expression:

 tcomm = α+ tc +
m

β
 ∙ l (5)

If the messages are long enough, the control data
transmission time may be neglected, and the expression for
data transmission time may be written in a simplified way:

 tcomm = α +
m

β
l (6)

Let‟s consider cut-through routing (CTR), when the
receiving processor may send the data further along the route
immediately after receiving the current packet without
waiting for the termination of the whole message data
transmission. The data transmission time in case of packet
communication method will be defined by the following
expression:

 tcomm = α+
m

β
+ tc ∙ l (7)

If we compare the obtained expressions, it is possible to
notice that in the majority of cases the packet communication
leads to faster data transmission. Besides, this approach
decreases the need for memory for storing the transmitted
data. Different communication channels may be used for
packet communication simultaneously. On the other hand,
the implementation of the packet communication requires the

66 of 168

development of more complex hardware and software. It
may also increase the overhead expenses (initialization time
and control data transmission time). Deadlocks may also
occur in case of packet communication.

C. The data passing operations in multiprocessor and

multicore architectures

As it was previously mentioned, in ParaLab the
computational system consists of computational nodes, the
network links between them are determined by the topology
(farm, ring, etc.). Every node has one or more processors,
every processor consists of one or more cores. We assume
that the internal links between cores in frame of one
computer (busses) form the full graph topology.

To make the time estimation model easier we assume that
the computations and data passing operations cannot overlap,
which means that the computations stop when the cores are
performing the data transmission, and vice versa.

Every collective data passing operation between cores
can be divided into 3 stages:

1) Data transmission between cores in frames of one
computational node and sending the data into the external
network (via network adapters),

2) Data transmission between different computational
nodes through the local network (in ParaLab if all the data
was sent to the network from one core then it is visualized
like one envelope, if the data was sent by different cores it is
shown like passing the pile of envelopes),

3) Receiving the data from the network adapter by the
different cores in frames of one computational node.

To estimate the time spent on data passing operation we
need to know:

 the size of one data unit in bytes,
 the number of units being transmitted for every pair

of cores that perform the data passing operation on
the current iteration of the algorithm.

To calculate the final time of the communication
operation we only take into account the time of the second
stage (passing the data through local network). The time
spent on transmitting the data through the bus is 3 to 4
degrees less than that.

D. An Example of Computational Experiment Time

Estimation

Let‟s consider the complexity of the parallel algorithm
for matrix-vector multiplication based on rowwise matrix
decomposition. Every core performs the multiplication of the
matrix stripe by the vector, each stripe has n/p rows, where n
is the size of the matrix and p is number of cores. One scalar
product of the matrix row and a vector involves n
multiplications and (n-1) additions. Let‟s assume that the
multiplication and addition have the same duration τ.
Besides, let us assume that the computer system is
homogeneous, i.e. all the processors of the system have the
same performance. With regard to the introduced
assumptions, the computation time of the parallel algorithm
is:

 Tp calc = n p ∙ 2n − 1 ∙ τ (8)

The „all gather‟ operation is used to put the result vector
on all the processes of the parallel program. This operation
can be performed in 𝑙𝑜𝑔2𝑝 iterations. At the first iteration
the interacting pairs of processors exchange messages of size
𝑤 𝑛 𝑝 bytes (w is the size of one element of the vector in
bytes). At the second iteration the size becomes doubled and
is equal to 2𝑤 𝑛 𝑝 etc. As a result, the all gather operation
execution time when the Hockney [2] model is used can be
represented as:

Tp comm = α+

2i−1w
n

p

β
 =

 log 2p
i=1

= α log2p + w n/p 2 log 2p − 1 /β

 (9)

where α is the latency of data communication network, β is
the network bandwidth. Thus, the total time of parallel
algorithm execution is

 Tp =
n

p
 2n − 1 τ+ αlog2p +

w n/p (p−1)

β
 (10)

(to simplify the expression (9) it was assumed that the values
n/p and 𝑙𝑜𝑔2𝑝 are whole numbers).

Let us analyze the results of the computational
experiments carried out in order to estimate the efficiency of
the discussed parallel algorithm of matrix-vector
multiplication. Besides, the obtained results will be used for
the comparison of the theoretical estimations and
experimental values of the computation time. Thus, the
accuracy of the obtained analytical relations will be checked.

The experiments were carried out on the computational
cluster on the basis of the processors Intel XEON 4 EM64T,
3000 Mhz and the network Gigabit Ethernet under OS
Microsoft Windows Server 2003 Standard x64 Edition.

The comparison of the experiment execution time 𝑇𝑝
∗and

the theoretical time 𝑇𝑝 calculated in accordance with the
expression (10), is shown in Table 2.

TABLE II. THE COMPARISON OF THE EXPERIMENTAL AND
THEORETICAL EXECUTION TIME FOR PARALLEL ALGORITHM OF MATRIX-
VECTOR MULTIPLICATION BASED ON ROWWISE MATRIX DECOMPOSITION

Matrix
Size

2 processors 4 processors 8 processors
𝐓𝐩 𝐓𝐩

∗ 𝐓𝐩 𝐓𝐩
∗ 𝐓𝐩 𝐓𝐩

∗
1000 0,0069 0,0021 0,0108 0,0017 0,0152 0,0175

2000 0,0132 0,0084 0,014 0,0047 0,0169 0,0032

3000 0,0235 0,0185 0,0193 0,0097 0,0196 0,0059

4000 0,0379 0,0381 0,0265 0,0188 0,0233 0,0244

5000 0,0565 0,0574 0,0359 0,0314 0,028 0,015

Now let us describe the way the parameters of the

theoretical dependencies (values τ, w, α, β) were evaluated.
To estimate the duration τ of the basic scalar computational
operation, we solved the problem of matrix-vector
multiplication using the sequential algorithm. The
computation time obtained by this method was divided into
the total number of the operations performed. As a result of

67 of 168

the experiments the value of τ was equal to 1.93 nsec. The
experiments carried out in order to determine the data
communication network parameters demonstrated the value
of latency α and bandwidth β correspondingly 47 msec and
53.29 Mbyte/sec. All the computations were performed over
the numerical values of the double type, i.e. the value w is
equal to 8 bytes.

IV. CONCLUSION
The Parallel Laboratory software system (ParaLab)

provides the possibility of carrying out computational
experiments for studying and investigating the parallel
algorithms of solving complicated computational problems.
The system may be used for organizing a set of laboratory
works on various courses in the area of parallel
programming. This laboratory works will allow the learners
to do the following:

 to model multiprocessor systems with various data
communication network topologies,

 to obtain the visual presentations of the
computational processes and data communication
operations which take place in case of parallel
solving various problems,

 to construct the efficiency estimations of the parallel
methods to be studied.

In general, ParaLab is the integrated environment for
studying and investigating the parallel algorithms of solving
complicated computational problems. A wide set of available
means to visualize the process of carrying out an experiment
and to analyze the obtained results allows to study the
parallel method efficiency on various computer systems, to
make conclusions concerning the scalability of the
algorithms and to determine the possible parallel
computation speedup.

The processes of study and research realized by ParaLab
are aimed at mastering the fundamentals of parallel
computation theory. They allow the leaners to form the basic
concepts of the models and methods of parallel computations
through observation, comparison and analysis of various
visual graphic forms demonstrated in the course of the
experiment execution.

ParaLab is mainly used for training purposes. It may be
used by University professors and students for
teaching/studying and investigating parallel algorithms of
solving complicated computational problems using the set of
the laboratory works, applied to various courses in the area
of parallel programming. ParaLab may be also used to
conduct research into estimating the efficiency of parallel
computations.

For those who only start to study the problem of parallel
computations, ParaLab is very useful, as it allows them to
master the parallel programming methods. Experienced users
may use the system in order to estimate the efficiency of new
parallel algorithms, which are being developed.

REFERENCES

[1] Foster, I. Designing and Building Parallel Programs: Concepts and
Tools for Software Engineering. Reading, MA: Addison-Wesley
(1995).

[2] Hockney, R. W., Jesshope, C.R. Parallel Computers 2. Architecture,
Programming and Algorithms. – Adam Hilger, Bristol and
Philadelphia (1988).

[3] Kumar V., Grama A., Gupta A., Karypis G. Introduction to Parallel
Computing. – The Benjamin/Cummings Publishing Company, Inc.,
(1994).

[4] Quinn, M. J. Parallel Programming in C with MPI and OpenMP. –
New York, NY: McGraw-Hill (2004).

[5] Rajkumar Buyya. High Performance Cluster Computing. Volume 1:
Architectures and Systems. Volume 2: Programming and
Applications. Prentice Hall PTR, Prentice-Hall Inc. (1999).

[6] Xu, Z., Hwang, K. Scalable Parallel Computing Technology,
Architecture, Programming. – Boston: McGraw-Hill (1998).

[7] Voevodin V.V., Voevodin Vl.V. Parallel Computations. Saint-
Petersburg, BHV (2002).

[8] Gergel V.P. Theory and Practice of parallel computations. BINOM
(2007).

[9] Korneev V.V. Parallel Computational Systems. – Moscow,
Knowledge (1999).

[10] Tanenbaum E. Computer Architecture. – Saint-Petersburg, Piter
(2002).

68 of 168

A DSL for Hardware-accelerated
Grid-based Scientific Models

Alexander N. Gavrilov

R&D Department
Lanit-Tercom, Inc.

Saint-Petersburg, Russia
E-mail: Alexander.Gavrilov@lanit-tercom.com

Abstract—This paper presents an ongoing effort to develop
a domain specific language that would simplify exploit-
ing hardware acceleration in grid-based scientific models.
The project is being implemented in Common Lisp, which
has the best built-in metaprogramming capabilities among
industrial-level compiled programming languages. The DSL
is applied to a hydrodynamic model of the atmosphere.

Keywords-GPU computing; SSE; lisp; metaprogramming;
DSL; simulation

I. INTRODUCTION

Grid-based physics simulations are among the most
easily parallelizable programming tasks, belonging to the
category of so called embarrassingly parallel applications.
They also are very close to the kind of calculations that
modern GPU chips are designed to perform, and therefore
should benefit greatly from using them.

Unfortunately, currently available free tools for pro-
gramming NVidia GPUs are basically limited to the offi-
cial C compiler [1] and accompanying libraries distributed
by NVidia Corporation. Moreover, before PGI released a
GPU-capable version of their commercial Fortran com-
piler [2] near the end of 2009, that was the only available
tool at all.

The C-based tools are designed to provide very close
control of the GPU, and thus require the programmer to
manually manage GPU memory allocation, data align-
ment, textures and other low-level features of the platform.
This makes GPU programming quite difficult to approach
for people who are not professional system programmers.

Moreover, with existing tools it is still impossible to use
the same code for both CPU and GPU, and fully exploiting
the high performance computing features of modern CPUs
in complex cases requires manual use of even more low-
level SSE intrinsic functions. Which cases are to be
considered complex depends on the capabilities of the
compiler, but these usually include any loops that contain
conditionals – even though the actual SSE instruction set
is flexible enough to be able to express them1.

All these issues were encountered during an attempt to
speed up execution of an atmospheric model described in
[3], which resulted in the creation of the DSL.

1This however requires dropping the lazy evaluation property of
conditionals, i.e. works by evaluating both branches and then choosing
which result to use.

II. RELATED WORK

In addition to the official C toolkit, there exist a number
of GPU programming libraries for other programming
languages like Java[4] or Python[5]. However, they mostly
only wrap the run-time library that is used to manage GPU
memory, load code to the GPU and execute it. The actual
GPU code still has to be written in C.

These wrappers already remove a large part of the
burden and make GPU programming a lot more accessible,
as user reports indicate. However, as noted above, due
to the lack of native meta-programming support in the
mentioned programming languages it is impossible to
achieve seamless integration. The Python version goes
further than the Java wrapper and allows C code to be
expressed as a data structure tree instead of strings, but that
is the limit of what can be done. This also means that these
languages are not a very good choice for implementing a
new DSL.

There are also some existing differential equation solver
libraries, e.g. the OpenCurrent[6] C++ library created by a
member of NVidia Research, but they are quite irrelevant
to the task of implementing a specific unique calculation.

III. METHODOLOGY

A. Initial problem

The project started as an attempt to optimize a hydro-
dynamic model [3] of the atmosphere. The initial program
was written in Fortran; Waterloo Maple was used to derive
the mathematical expressions and generate most of the
code.

As follows from their name, grid-based simulations
are based on a representation of the state of the world
produced by sampling the relevant physical quantities at
regular space intervals. These samples are then grouped
into 2D or 3D arrays depending on the model, and recal-
culated iteratively using a set of mathematical formulae as
in-model time progresses.

Since most of the time the value of a cell being cal-
culated depends only on array cells within a fixed nearby
area, these calculations can be easily parallelized along
array axes. Some models however improve computational
stability by employing additional smoothing schemes that
are serial along one of the axes; this is the case for
the model in question. These schemes are an obstacle

69 of 168

to achieving the best performance and may result in a
bottleneck on highly parallel architectures like the GPU.

Another major source of complications seen in this
model is the use of a skewed grid, i.e. a scheme where
physical coordinate grids used to sample different quan-
tities are displaced in relation to each other by a certain
fraction of the grid step (normally 1/2). This can be used to
noticeably improve the precision of the model, but results
in a certain technical difficulty:

The most straightforward and natural way for a human
to handle a skewed grid scheme is to actually allocate
a common grid with twice as many indexes, and use
a sparse sub-grid for every specific quantity; any other
way is very error-prone. However this naive approach
wastes half of the memory bandwidth and prevents the
use of some optimizations with strict memory positioning
requirements, e.g. Intel SSE instructions.

The skewed grid issue is most naturally solved via
automated transformation, i.e. meta-programming.

B. Implementation language

ANSI Common Lisp[7] is a dynamically typed multi-
paradigm compilable programming language that is de-
fined by an ANSI standard [8] finalized in 1994, and has
multiple independent implementations. It allows writing
code in functional, imperative or object-oriented style.

Like all languages of the lisp family, Common Lisp
provides excellent meta-programming support via macros,
which, unlike the identically called feature of the C
preprocessor, are actually full-featured Lisp functions that
are configured to be automatically called by the compiler,
and operate on syntax trees. Macros can do anything
that ordinary functions can do, including operations like
creating temporary files and calling external programs.

The existence of macros transforms arbitrary meta-
programming from something that usually requires modi-
fying the compiler via patching or plug-ins, or implement-
ing external preprocessors that operate on raw program
text, into a relatively mundane task that is done to some
extent by every proficient lisp programmer.

On the other end of the abstraction spectrum, almost
every Common Lisp implementation provides facilities
that can be used to access raw memory from lisp code
and directly call external C libraries. One notable imple-
mentation in this regard is Embeddable Common Lisp([9],
[10]), which compiles all lisp code by transforming it into
C and calling the system’s C compiler. This allows it to
provide support for using C directly from lisp code, much
like C compilers and inline assembler.

A couple of widely accepted utility libraries (e.g. [11])
can be used to call C functions from lisp code in an
implementation-independent way. When the developers of
the C library take care to maintain binary compatibility
(as is the case with NVidia drivers), this makes the
development and build process a lot more convenient by
removing the need for any kind of wrappers written in C.

C. Target platform

At the hardware level modern GPU systems produced
by NVidia are multi-core SIMD processors capable of ex-
ecuting divergent code[12], with native support for multi-
threading and a hardware scheduler. Processor cores also
include special units for texture fetching and interpolation,
limited caches for textures & constants, and on-chip shared
memory buffers for inter-thread communication. Ordinary
memory was not cached until the recently announced
Fermi architecture2.

This hardware is exploited through a programming
model that involves launching a large grid of threads, every
one of which executes the same function to process one
small chunk of input data. The threads are not required
to follow the same execution path, but unless the pattern
of branch divergence is matched to the underlying SIMD
hardware it results in heavily reduced performance.

More specifically, the thread grid is partitioned into
identical blocks of up to 1024 threads. Threads within one
block can communicate via shared memory and a barrier
primitive; different blocks are independent and may be
scheduled by hardware in any order.

When a block starts execution, it is assigned to a proces-
sor core and gets a slice of its shared memory buffer and
register pool3. These memory and register requirements
determine how many blocks can run on one core at once.
The threads of all running blocks are executed by the
core’s pre-emptive scheduler in static groups of 32 threads,
which are officially called warps.

If all threads of a warp execute the same instruction, it
is executed simultaneously in SIMD fashion; divergence
forces the scheduler to serialize processing by temporarily
disabling SIMD units for threads that don’t need the
instruction that it is going to execute.

In a similar fashion, if all threads of a warp access
adjacent addresses in global memory, the scheduler can
coalesce these operations into one large memory transac-
tion, thus reducing the overhead caused by the lack of
a traditional memory cache. Memory access transaction
coalescing is heavily affected by data alignment.

GPU code cannot allocate or free memory, call func-
tions by pointer or use recursive functions. GPU memory
cannot be directly accessed from host code, but modern
video cards allow mapping specially allocated regions of
host memory into GPU address space.

D. Current state of the DSL syntax

This work on rewriting the original program has led to
the creation of the following DSL:

1) Infix formula syntax: Common Lisp normally uses
identical prefix syntax for function invocation and arith-
metic operations. This is necessary for achieving the ex-
isting degree of meta-programming support, and tolerable

2Since Fermi-based cards are new technology that was not available
for purchase at the moment of writing, this paper does not take that
architecture into account.

3Each core has 16KB of shared memory, and, depending on the GPU
version, 8192 or 16384 32-bit registers

70 of 168

in ordinary code, but not at all convenient for expressing
huge mathematical expressions that are often used in the
problem domain.

Fortunately, this can be fixed using the extensibility of
the lisp reader (i.e. low-level code parser). A straight-
forward add-on with a simple expression parser allows
writing infix expressions delimited by curly brackets:
{ NEW_DT[i ,MW+1] := (TMP_ANU[MW−1]∗TMP_EPS[MW+1]

+TMP_ANU[MW+ 1])
/ (1.0−TMP_EPS[MW+1]∗TMP_EPS[MW−1]) }

The parser recognizes arithmetic operators, array refer-
ences, function calls and assignments. The syntax reflects
the one used by Maple and many other computer algebra
systems.

2) Virtual arrays: As a way to solve the skewed
grid issue outlined above, the system is based on virtual
arrays that have separate logical and physical dimension
structure.

Dimensions may be arbitrarily reordered, and any par-
ticular dimension can be configured to either contain
regular gaps, or distribute consecutive logical indexes
along a hidden fixed dimension. Either of these special
modes achieves contiguous arrangement in memory for
logical indexes that are separated by a specific fixed stride.

(def−m u l t i v a l u e DR ((i 1 N1) : by 2) (k 1 MW : by 2)))
(def−m u l t i v a l u e PL ((i 1 N1) (k 1 {MW+1} : bands 2)))

Virtual arrays are accessed via an iref macro, which is
similar to the standard aref function, but applies appropri-
ate static transformations to its index arguments. The infix
expression parser can be configured to generate either of
those as a representation of its array reference syntax.

3) Virtual array index loops: A useful macro allows
iterating over logical dimensions of a virtual array in a
way that reflects the underlying physical structure.
(do−i n d e x e s OUT_U (i k)

(f o r m a t v e l (f o r m a t t e r "~12 ,3E ~12 ,3E ~14 ,5E ~14 ,5E~%")
(i r e f xcoord i) (i r e f z co o rd k)
(i r e f OUT_U i k) (i r e f OUT_V i k)))

The actual loop variables in the macro expansion cor-
respond to physical dimension indexes, while the public
logical indexes are expanded to expressions based on
them. When said logical index variables are used as
arguments to the iref macro within the loop body, the
expressions are automatically simplified, and the resulting
code appears as if it was written directly for the physical
structure.

The order of index names in the loop header (which
must match the names used in the virtual array definition)
determines the loop nesting order. The iteration ranges are
derived from the array definition. Extended syntax can be
used to specify iteration direction and stepping, or reduce
its range.

4) The compute statement: Finally, main code trans-
lation features of the library are encapsulated in the
compute statement, which allows one to define a complete
computation, composed of a target array, index range
limits, iteration directions, and a mathematical expression
to compute.

(compute PL ((i : s k i p (1 1) : s t e p (∗ 2))
(k : s t e p (∗ 2)))

{ t 3∗ t 1 0 / 2 . + 2 .∗ t 1∗_grp (t 2 / t 3)∗ t 1 2 }
: p a r a l l e l i
: w i th { t 1 := PL [i +1 , k] ;

. . . })

Every such statement is converted to a separate GPU
invocation. Additional clauses can be used to specify
which index to focus parallelization efforts on, define
inter-value dependencies, or pass additional optimization
hints to the GPU compiler.

If the code translator fails to handle some parts of the
expression, the statement is expanded into ordinary lisp
loops. This ensures graceful integration of the functional-
ity in the language, and, very importantly, allowed the
optimized code generator to be implemented gradually
after the program was fully converted from Fortran to
Lisp.

E. Code optimizations

In order to ensure good performance of the generated
code, the compute statement applies a number of opti-
mization techniques. They can be classified into general
expression restructuring and hardware-specific modifica-
tions.

1) Expression restructuring: The following generic
simplifications are applied to the computation:
• Nested trees of associative-commutative operators

are flattened and reordered to reveal the internal
structure. This can be inhibited where needed4 using a
special _grp(...) syntax, which works like unbreakable
parentheses.

• Very basic arithmetic expression simplification is
performed.

• Branch-on-sign5 expressions are simplified using
hints about value signs supplied by the developer.

• Common sub-expression elimination with loop-
invariant value extraction is performed. CSE exploits
associativity of arithmetic operations.

2) Efficient GPU memory usage: The GPU has several
ways to store and access data with varying characteristics.
In order to achieve good performance it is necessary to
use the best method for the task. For instance:
• The code generator supports using texture fetches to

access arrays:
Before Fermi, textures were the only way to achieve
cached access to memory. In C using them requires
rewriting all statements that access the data, but the
generation-based approach reduces the complexity to
a simple hint clause with a list of arrays that should
be cached.

• Values that are the same for all threads of a block are
stored in shared memory:

4Since floating-point calculations are not associative, automated re-
ordering sometimes leads to severe precision degradation and situations
like 0/0.

5The program that was used as a base for the experiment uses many
expressions like (ifsign x 0.0 0.5 1.0). The branch value argument often
contains constants and other sub-expressions that don’t affect the sign.

71 of 168

Due to rather simple data access patterns combined
with complex computations being common in the
problem domain, shared memory is generally under-
used and thus cheaper than registers. Using it when
appropriate increases the number of blocks that can
run in parallel.

3) Serial inner loop representation: Due to memory
coalescing requirements, the innermost loop must always
be mapped to an in-block thread grid. If it has a serial
data dependency, this results in a performance problem.

First of all, this means that the whole of the inner loop
range must be handled within one block in order to allow
data exchange through shared memory. This reduces the
number of independent blocks.

The second issue is that the data-dependent part must
still be executed serially using inter-thread synchronization
barriers. The only way to improve performance here is
to move as much code as possible out of this part. This
especially applies to global memory access expressions.

In order to handle this case, the code generator includes
special dependency analysis and code extraction function-
ality.

4) Operation reordering: Reducing the number of reg-
isters needed by every thread is instrumental in increasing
the degree of parallelism and hiding memory latency.
Unfortunately, optimal expression DAG reordering under
register pressure is proven to be a NP-complete problem
([13], [14]), so no compiler can be expected to produce
the best possible code in all cases.

The code generator applies a simple ordering heuristic
that seems to help the official NVidia compiler produce
better register mappings.

IV. RESULTS

The above DSL was used to produce both SSE-ified
CPU code (integrated via ECL’s inline C feature), and
GPU kernels. The CPU code, including the original pro-
gram, was tested on an Intel Core 2 Quad 2.66GHz CPU6,
while the GPU version was executed using an NVidia
GeForce GTX 275 graphics card.

The SSE version showed a 14x speedup against the
original Fortran+Open-MP version. This can be explained
in the following way:
• Expected 4x speedup due to the use of single-

precision floating-point SIMD instructions.
• 40% speedup was observed after ifsign expression

simplification was implemented.
• 2.5x speedup probably can be explained by better

cache usage behavior, removal of function calls from
inner loops, etc.

The GPU version was observed to be about 5 times
faster than SSE code run on 3 of 4 cores. This number
slowly grows as the array dimensions are increased; this
is expected due to effects like diminishing utility of the
CPU’s caches.

6Only 3 cores were used for measurement to reduce the impact of
other processes running on the same computer.

The raw peak FLOPS characteristics of the GPU allow
one to expect a 26x maximum speedup. However, these
numbers are computed under assumption that the MADD/-
MUL double-issue feature is active; when it is not (and no
code consists only of those two instructions), the expected
speedup decreases to somewhere around 8-10x.

GPU code profiling and some calculations show that
serialized inner loops are a noticeable local bottleneck in
the current version.

V. FUTURE WORK

These results show that the approach works for this
particular model. The next major goal is to make the
system more easily usable for implementation of similar
programs, while also improving its performance. This
requires fixing some shortcomings in the current imple-
mentation of the library.

A. New code generation back-end

The low-level C code generation back-end has been
implemented in a hurry, and is too inflexible. This has
become an obstacle in exploring better representations of
serialized inner loops and other features.

This is being addressed by means of implementing a
new, more generic, and separately usable GPU interface
library for Lisp. The end result should be more or less
similar to the existing bindings for Java and Python, but
allow writing GPU code using normal Common Lisp
syntax and a subset of the standard library with appropriate
restrictions and extensions. Of course, the set of supported
data types and operations will (at least initially) reflect the
needs of this project.

The core part of the new library already works, but
many specific features like textures are missing.

B. New DSL syntax

The syntax outlined above is both too general for
the problem domain, and too specific in some technical
matters like inter-iteration dependencies.

This prevents easily implementing features like non-
SMP parallelism (e.g. multiple GPUs or clusters), and
makes the code difficult to write for people who are not
acquainted with the implementation of the library.

For example, it doesn’t make much sense to declare
different physical index orderings for different arrays. The
array dimensions correspond to physical spatial dimen-
sions, and it is more natural to select a global arrangement
for them. Neither is it necessary to allow transposing
indexes like this:

(compute foo (i j) { b a r [j , i] })

Explicitly disallowing this would enable adding more
code generation features.

One additional possibility is integrating with the
Maxima[15] computer algebra system, which is also im-
plemented in Common Lisp. Things like ifsign simplifi-
cation more properly belong in the context of a CAS.

72 of 168

REFERENCES

[1] “CUDA Downloads,” NVIDIA Corporation, 2010.
[Online]. Available: http://developer.nvidia.com/object/
cuda_download.html

[2] “PGI CUDA Fortran Compiler,” The Portland Group, 2009.
[Online]. Available: http://www.pgroup.com/resources/
cudafortran.htm

[3] S. Kshevetskii and N. Gavrilov, “Vertical propagation,
breaking and effects of nonlinear gravity waves in the
atmosphere,” Journal of atmospheric and solar-terrestrial
physics, vol. 67, no. 11, pp. 1014–1030, 2005.

[4] “Java bindings for CUDA.” [Online]. Available: http:
//www.jcuda.org/

[5] A. Klockner, “PyCUDA,” Brown University. [Online].
Available: http://mathema.tician.de/software/pycuda

[6] J. Cohen, “OpenCurrent,” NVidia Research. [Online].
Available: http://code.google.com/p/opencurrent/

[7] K. Pitman, Common Lisp HyperSpec, LispWorks,
1996. [Online]. Available: http://www.lispworks.com/
documentation/common-lisp.html

[8] American National Standards Institute and Information
Technology Industry Council, American National Stan-
dard for information technology: programming language —
Common LISP: ANSI X3.226-1994. pub-ANSI:adr: pub-
ANSI, 1996.

[9] G. Attardi, “The embeddable common Lisp,” in Papers
of the fourth international conference on LISP users and
vendors. ACM, 1994, p. 41.

[10] J. J. Garcia-Ripoll, “Embeddable Common Lisp.” [Online].
Available: http://ecls.sourceforge.net/

[11] J. Bielman and L. Oliveira, CFFI User Manual, 2005-
2009. [Online]. Available: http://common-lisp.net/project/
cffi/manual/index.html

[12] CUDA Programming Guide 2.3, NVIDIA Corporation,
2009. [Online]. Available: http://developer.download.
nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_
CUDA_Programming_Guide_2.3.pdf

[13] J. Bruno and R. Sethi, “Code generation for a one-register
machine,” Journal of the ACM (JACM), vol. 23, no. 3, p.
510, 1976.

[14] C. Kessler, “Scheduling expression DAGs for minimal
register need,” Computer Languages, vol. 24, no. 1, pp.
33–53, 1998.

[15] Maxima 5.20.1 Manual, 2009. [Online]. Available: http:
//maxima.sourceforge.net/docs/manual/en/maxima.html

73 of 168

This paper presents an extendable architecture for a discrete-

event simulation runtime (DESR). The architecture is based on a
set of logic blocks. Each block encapsulates a part of the DESR
functionality and provides an interface to that functionality for
other blocks. Differences in requirements that are imposed by
different simulation problems are encapsulated in distinct logic
blocks. Interface of each block is formally specified and there is a
possibility of its automated check. Instances of the logic blocks
are combined to get DESR for a particular simulation problem.
Therefore, there is no need either in performance trade-offs or in
a custom development of the DESR.

General Terms: Discrete-Event Simulation, Simulation
Runtime, Reuse, Modular Design

I. INTRODUCTION
HIS paper is devoted to the development of the
architecture for a DESR consisting of a set of logical

blocks. The particular set of blocks, their interfaces and
functionality give ability to build the runtime taking into
account the requirements of a custom simulation task.

The Computer Systems Laboratory1 (CSL) conducts
multiple diverse research projects related to the simulation of
distributed systems. The terms of such problems include the
modeling of on-board systems (aviation, naval, automotive)
computer networks and instruction set of processors. All these
problems are focused on modeling the functionality of a
computer system (data processing) and its performance as well
as used apparatus – discrete-event simulation.

In CSL, such problems have been solving since 1982 and
with increasing number of projects and directions it was
decided to create a unified DESR [1]. It is based on a single
approach to the computer systems simulation and uses a
specialized language to describe simulation models.

However it became clear that this approach is not entirely
suitable for the development of high-tech research projects.
New challenges bring with them the need for simulation in a
variety of detail levels. New requirements for scalability,

Manuscript received March 22, 2010.
E. V. Chemeritskiy is with the Faculty of Computational Mathematics and

Cybernetics, Moscow State University, Moscow, (e-mail: tyz@lvk.cs.msu.su).
K. O. Savenkov is with the Faculty of Computational Mathematics and

Cybernetics, Moscow State University, Moscow ,(Phone: +7(495)939-46-71;
fax: +7(495)939-25-96; e-mail: savenkov@cs.msu.su).

1The Computer Systems Laboratory of the Faculty of Computational

Mathematics and Cybernetics of Moscow State University

performance and response time appear. General purpose
solution is a compromise between expressive power and
efficiency. Another problem is that it requires a tremendous
effort to upgrade and maintain it in the grease condition in the
future development.

As a result incompatible changes have been made in the
unified DESR for each major project and currently there are
several well-used variants of the same product.

This paper proposes the other way - to develop the
architecture of the DESR as a collection of logical blocks.
Each of these blocks encapsulates the functionality of the
DESR and provides an interface to other units to use this
functionality. A set of blocks has been designed so that the
differences in the requirements for the DESR made by
different tasks were encapsulated in separate blocks, retaining
the overall structure of the DESR. The option to compose a
DESR from needed copies of the different blocks gives ability
to create a DESR configured to solve a custom simulation task
with no need to compromise in terms of system performance
and without wasting the developers’ effort to create and

support a new DESR.
This paper is based on a comparative analysis of different

editions of the runtime DYANA used in several projects: 1)
functional simulation of on-board marine systems [3], 2)
hardware-in-the-loop simulation of on-board aircraft systems
[4], 3) simulation of performance of neuroprocessor
instruction set [5] and 4) on-board automotive information
system simulation. Several DESR of well-known simulation
systems have been also reviewed: AutoMod, SLX, Extend,
SIMAN V, ProModel, GPSS/H.

Typically, the runtime consists of a set of modules [6],[7].
However, decomposition of a runtime into blocks based on the
reduction of overhead costs for retargeting to a certain task
hasn’t been addressed yet. This problem has two important
features:

1. The blocks must encapsulate functionality which is likely
to change when adapting the runtime for a new simulation
task;

2. Modification mechanisms for the runtime structure and
the particular implementation of the runtime blocks should be
researched;

3. The requirements for block implementations and
monitoring mechanisms to ensure its compliance should be
specified. The requirements may concern the block interface
(has methods with a specific signature, is written in the same
language, is connected as an object file, etc.), and its behavior.

Formalization and enforcement of requirements
to modular discrete-event simulation runtime

E. V. Chemeritskiy, K. O. Savenkov

T

74 of 168

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su

The research results into a set of blocks encapsulating the
differences of the examined DESR. On the basis of the
proposed blocks a mathematical model of the DESR has been
constructed. The paper describes in detail the functionality of
each of the proposed block and the formal specifications of the
interfaces of these blocks. Some mechanisms for its automated
check have been proposed according to the analysis of
designed specifications.

II. COMPONENTS OF THE RUNTIME
A generalized DESR scheme is proposed on the basis of a

comparative analysis of different variants of DYANA runtime
[2]-[5] and several well-known simulation systems: AutoMod,
SLX, Extend, SIMAN V, ProModel, GPSS/H [8],[9].

The terms of this paper are borrowed from [10] with some
generalization. The basic concepts of generalized DESR are
event (a signal notifies DESR on the changing of model state),
logical object (LO) (entity that is able to schedule events) and
resource (provide LO with some services). Resources are
presented by model time, cells of a memory (variables),
clipboard information, semaphores, and so on. LO may delay
event arrival until some condition depending on a state of the
model resources set is satisfied. This condition is called a
delay condition. As a result of the event arrival DESR can
produce a number of actions called the event handling.

All event transactions take place in the handling blocks.
Each block is a container for events generated by LO. Any
handling block can be provided with an individual scheduler
to properly rank the elements of the block. Runtime
environment may contain several types of handling blocks:

1. Current event block (CEB) contains ready to be handled
events.

2. Future event block (FEB) stores events with a delay
condition depending only on the model time.

3. Delayed event block (DEB) contains events with complex
delay condition depending on set of resources. There are two
general approaches to condition check: polled waiting and
related waiting. Respectively, there are two types of DEB
according to these approaches: related event block (REB) and
polled event block (PEB).

The work of DESR blocks is coordinated by the dispatcher
throughout the model execution. The result message sequence
is written to output trace.

More information about logical blocks composing the
runtime environment and their functionality within the DESR
is available in [11].

III. STATIC SEMANTICS

A. Static structure of the runtime

Runtime environment connects a set of resources and
logical objects of the model with the dispatcher .

 (1)
It is important to note that the resources and the logical objects

are binded to the only dispatcher throughout the model
execution.

B. Resource

The set of all resources is denoted by . For each resource
 a set of variables (memory cells) and event

container are attached. The variables from the set can take
values from the set .

There are two types of resources: direct access resources
 and indirect access resources . Direct access

resource keeps track of the values of related variables using
the map . In this case the resource stores only a
“local copy” of the original model data. Over a set of indirect

access resources a map to the set of
dispatchers is defined. This mapping allows one to distinguish
between attached and free model resources.

 (2)
 (3)

 (4)

C. Message and trace

The output trace is presented by the message sequence.
The message alphabet is denoted by .

 (5)

D. Event

Suppose there exists a set of all possible events . Each
event has a trace message and the type of event . There are
several event types in accordance with type of handling blocks
intended to store this event .

There are a number of maps defined over event set . The
logical object arisen the particular event could be found by the
mapping . Suppose that there is a set of event
attributes of all kinds . Then the mapping defines
an attribute set for each particular event.

Suppose there is a set of predicate symbols defined
over a set of resources and depending on the values of
attached variables . So the delay condition of event
could be presented as a formula of propositional logic
(quantifier-free first-order logic) over the set of
predicates .

The map changing the states set of resources and the
states set of logical objects associated with the event
is referenced as the modification . There
are only several ways to change model state:

1. To attach a new logical object to the dispatcher ,
2. To attach a new resource to the dispatcher ,
3. To change resource variables value ,
4. To change logical object activity limit value .

 (6)

 (7)
Event type imposes restrictions on the delay condition. The

delay condition of events of type "CEB" is always true. Events
of type "FEB" essentially depends only on the model time and

75 of 168

types "PEB" and "REB" by contrast are independent of model
time.

The notation denotes a set of significant variables of
 and denotes a resource containing the model

time. Then, the following expressions are correct 2:

 (8)
 (9)

 (10)
The delay condition of each "FEB" event is true at a single

point on the axis of time.

 (11)
Introduce a special operator to determine its

value.

 (12)
There is also a dependency between the type of event and

its attribute set. The events of one type have the same attribute
set. Attribute set of the event with a type different from "CEB"
includes all of its attributes.

 (13)
 (14)

E. Logical object

The logical object uses the event generator to
schedule events. For each generator its current state

 and the step function are defined.
Newly scheduled events are stored in a local event queue

 3 with size limited by the capacity . In
addition to capacity the behavior of the logical object is
controlled by the activity level and the activity limit

.
Over the set of logical objects the mapping

to the dispatcher set is defined. This mapping allows one to
distinguish between attached and free logical objects.

 (15)
 (16)

 (17)
Generator constructs an event sequence using

the recurrence relation . Generator
schedules events in order of nondecreasing model time.

 (18)
The generator has ability to synchronize its own time

(presented explicitly or implicitly, through the scheduled
events) with the model time. In this case the step function
returns an empty symbol as the event . If

2 Here and henceforth the operator "." will be used to denote the tuple

element.
3 We assume that the event queue has several predefined operations:

1. – returns number of events in the queue,
2. – adds event to the back of the queue,

 – takes event from the head of queue.

the generator has planned all the events then step function
returns an empty symbol as the state .

F. Handling block

Handling block consists of one or several event containers
and a scheduler . The scheduler ranks
elements of attached containers and choose a certain event
range.

There are several types of handling blocks : “CEB",

"FEB", "PEB" and "REB”. Each block type has its own

distinctive features.
Blocks typed as "CEB", "FEB" and "REB" have a more

complex structure than a block of type "PEB". Two containers
are attached to these blocks. Block "FEB" also contains a
model clock (defining the event horizon) and the simulation
threshold . "REB" block has a resource container
intended to store resources changed on the current iteration of
event handle loop.

 (19)
 (20)

 (21)
 (22)

The event scheduler gives as the result an ordered set of
events with the delay condition met. The results of the
scheduler of "CEB" and "FEB" blocks includes all such events
whereas the schedulers of the remaining block types allowed
not giving all such events.

 (23)

 (24)
 (25)

The delay condition of event moved to "FEB" block
essentially depends on the model time, and is satisfied at only
point on the time axis. Scheduler of this block gives a set of
events with a minimum time:

 (26)
In addition time of each scheduled event does not exceed

the simulation threshold :

 (27)

G. Dispatcher

Output trace , handling blocks set and direct access
resource container are attached to the dispatcher .

 (28)
Handling block set includes a single block of “FEB”, and

can also include no more than one block of every other type.
Thus the assertion

 (29)

76 of 168

IV. OPERATIONAL SEMANTICS
In this chapter the concept of runtime environment and rules

of its changing are introduced. Algorithms for the initialization
of the runtime and model running are described.

A. Resource state

For each resource the state is determined as a
tuple consisting of variable value 4 and a set of events
from attached container 5.

 (30)

B. Logical object state

The state of the logical object is
defined as a pair of corresponding event generator and the
event set of events contained in the attached to the logical
object container .

 (31)

C. Handling block state

State of handling block set (29) is defined as a collection
of the contents of containers attached to them.

 (32)
 (33)

 (34)
 (35)

D. Dispatcher state

Dispatcher state is defined as a collection of the contents
of trace , attached handling blocks state and the content of
attached resource container.

 (36)

E. Runtime environment state

Runtime environment condition is characterized by the
state of resources and logical object of the model
and the state of the dispatcher .

 (37)

F. The rules of the runtime state changing

Rules (38)-(40) are intended to add a direct or indirect
access resource or logical object to the dispatcher.

Rule (41) describes the changes in the state of the runtime
after the value of resource variables changed.

Rule (42) defines the run of the model.

 (38)

 (39)

 (40)

4 To indicate the values of the object the operator will be used.
5 Under the value of the container the set of elements contained therein is

infered.

 (41)

 (42)

G. Searching events to transit into the handling blocks

;
The algorithm checks the readiness of the logical object to

schedule events and moves events created by them into the
handling blocks attached to the dispatcher. If the number of
such events in the handling blocks has reached the limit, some
of them are buffered into the local queue.

#Used while event handling – decrement activity level

;
IF ()
 #There are no more events produced by
 IF ()
 #Local event queue is empty
 WHILE () DO
 #Event generator can schedule events and local

queue is not full
 #Invoke event generator
 ;
 IF ()
 #Generator cannot schedule events yet
 BREAK;
 FI
 IF ()
 #Activity level is less than activity limit
 #Add event to handling block
 ;
 #Increment activity level
 ;
 ELSE
 #Handling block contain a limit event number
 #Add event to local event queue
 ;
 FI
 OD
 ELSE
 #Local event queue is not empty
 #Add a number of events less or equal to activity limit
 ;
 WHILE () DO
 #Transmit event from local queue to handling

blocks
 ;
 ;
 OD
 FI
FI

H. Addition of event to the handling blocks

;
The event is placed in a handling block in accordance with

its type.

77 of 168

#Load an event to handling block of the same type
IF ()
 ;
ELSEIF ()
 ;
ELSEIF ()
 ;
#Event type is “FEB” – other choices are sort out
ELSEIF ()
 #Event time is equal to current model time
 ;
ELSEIF ()
 #Event time is greater than simulation threshold
 ;
ELSE
 ;
FI

I. Event handle cycle

;
Algorithm iteratively retrieves ready events from handling

blocks, sorts them and calls for event handling. Model time
does not change during this process.

WHILE (TRUE) DO
 #Search for direct access resources with changed variable

value

 IF ()
 #Add resource to container of changed resource
 ;
 #Refresh value
 ;
 FI
 #Compose the contents of REB major event container
 #Add events with satisfied delay conditions

 #Add the rest to resource containers

 ;
 #Leave in auxiliary REB container only events with

satisfied delay condition
 ;
 #Add events depending on changed resources into the

REB major event container

 ;
 #Add events independent on resource state into CEB

auxiliary container
 ;
 #Compose the contents of CEB major event container
 ;
 ;
 IF (|)
 #No event was chosen

 BREAK:
 FI
 #Handle chosen events

 ;
OD

;

J. Event handling

;
Handled event is excluded from the handling block. Then

the model state changed in appropriate to this event way and
the information recorded in the trace. The dispatcher also
searches for the events created by the same logical object to
transfer into attached handling blocks.

IF ()
 #Event does not depend on resource state
 ;
ELSEIF ()
 ;
ELSEIF ()
 #Event delay condition was always satisfied
 ;
ELSE
 #Event was added into resource container

 ;
FI
#Change model state according to event

;
Add message to the output trace ;

;

K. Model time advancing

;
Selected by the scheduler of “FEB” block, events are

transferred from the major container to the additional one.
During this model time is changed to the arrival time of any of
the selected events (each of these events has the same arrival
time).

#Move event scheduled to current model time to auxiliary

container FEB
;

;
Set a new model time

;

V. REQUIREMENTS TO THE RUNTIME BLOCKS
Mathematical model allows identifying interfaces of blocks

that make up the runtime. Thus a sufficient condition for the
possibility of substituting a new runtime is the compliance of
its interfaces with the requirements.

There are several classes of requirements:
1. PRED – specifies pre-condition,

78 of 168

2. POST – specifies post-condition,
3. RET – determines the method return value,
4. EQ – specifies equivalence to the described algorithm.
Requirements for the interfaces of the blocks depend on its

type, and the configuration of the runtime as a whole. All
specifications are listed in table 1.

VI. OBSERVATIONS ON THE IMPLEMENTATION
Configurable runtime environment is developed as a

compile time library written in C++. The flexibility of the
runtime components is achieved through the use of template
classes. Thus each of these blocks is represented as a single
class. The new runtime environment with the necessary
properties can be created on the basis of the class layout.

The signature of class interfaces are variable and depend on
the configuration of the runtime. Nevertheless, they can be
checked at compile time. As appropriate tool the library Boost
Concept Check Library (BCCL) can be used [12]. This library
allows formal describing of the requirements for abstract data
types (concepts) used in templates and verify their compliance
with these requirements.

The most difficult requirements to verify are the ones to
interface of the handling blocks. Depending on the
configuration of the runtime their functionality can have
significant differences. But the number of fundamentally
different configurations of the handling block is low. Thus
partially specifying a template of dispatcher class and using
BCCL can impose restrictions on the interfaces of the
handling blocks for any possible configuration.

Semantic requirements for class interfaces can be checked
with unit testing. Tests for the blocks can be incorporated
directly into the library being developed so that using the
predefined flag tests new plug-in logical block [13]. Then
successfully tested blocks can be incorporated into the library
itself.

VII. CONCLUSION
Implementation of the developing library results into ability

to quickly build high-performance runtime environment with
the necessary properties. This only requires new instances of
some blocks. Thus a sufficient condition for the correctness of
the constructed DESR is the interface compliance to
formulated specifications which can be verified automated.

Tested blocks can in turn be included into the library. With

the increasing number of block instances the share of reusable
code will increase whereas the cost of developing new runtime
will be reduced to the layout of the ready-made blocks.

REFERENCES
[1] V. G. Moloney, R. L. Smelyansky, "An integrated approach to

modeling distributed computing systems", Programming N.1, 1988 pp.
57-67 (In Russian)

[2] A. Bakhmurov, A. Kapitonova, R. Smeliansky, "DYANA: An
Environment for Embedded System Design and Analysis", 5-th
International Conference TACAS'99, Amsterdam, The Netherlands,
March 22-28, 1999. Springer (LNCS Vol.1579), pp.390-404

[3] V. V. Balashov, A. G. Bahmurov, D. Yu. Volkanov, R. L. Smelyanskiy,
M. V. Chistolinov, N. V. Yushchenko, G. T. Mamontov, P. Yuhta
"Experience of the program DYANA implementation for simulation
and integration of on-board computing systems", Abstracts of reports
XXVI conference in memory of an outstanding designer gyroscopic
devices N. N. Ostryakov - St. Petersburg: Central Research Institute
Elektropribor, 2008. pp. 60-61 (In Russian).

[4] V. V. Balashov, A. G. Bakhmurov, M. V. Chistolinov, R. L.
Smeliansky, D. Yu. Volkanov, N. V. Youshchenko, “A Hardware-in-
the-Loop Simulation Environment for Real-Time Systems Development
and Architecture Evaluation”, In Proc. of the Third International
Conference on Dependability of Computer Systems DepCoS-
RELCOMEX 2008, Szklarska Poreba, Poland, June 26-28 2008.

[5] A. G. Bahmurov, E. G. Egisapetov, O. V. Novikov, V. V. Prus, K. O.
Savenkov, R. L. Smelyansky, "Tool support for software development
process for a special processor-based CPU L1879VM1 ", Methods and
means of processing information. Proceedings of the Second All-
Russian Scientific Conference. - M.: Publishing Department, Faculty of
Computational Mathematics and Cybernetics. Moscow State
University, 2005, pp.450-456

[6] C. D. Pegden, “Introduction to Simio”, Proceedings of the 40th

Conference on Winter Simulation (Miami, Florida, December 07 - 10,
2008), pp. 229-235.

[7] R. C. Crain, J. O. Henriksen, “Simulation using GPSS/H”, In

Proceedings of the 31st Conference on Winter Simulation: Simulation--
-A Bridge To the Future - Volume 1 (Phoenix, Arizona, United States,
December 05 - 08, 1999), pp. 182-187.

[8] T. J. Schriber, D. T. Brunner, "Inside discrete-event simulation
software: how it works and why it matters", Proceedings of the Winter
Simulation Conference, 2005, pp. 11 pp.+

[9] T. J. Schriber, D. T. Brunner, "Inside discrete-event simulation
software: how it works and why it matters", Proceedings of the Winter
Simulation Conference, 1996, pp. 11 pp.+

[10] P.J. Sanchez, "Fundamentals of simulation modeling", Proceedings of
the Winter Simulation Conference, 2007, 9-12 Dec. 2007 Page(s):54 –
62

[11] K. O. Savenkov, E. V. Chemeritskiy, “Discrete-event simulation
runtime: from genericity to extendability and reuse”, Simulation-2010,
submitted for publication.

[12] Boost library [Online]. Available: http://www.boost.org.
[13] A. H. Bagge, V. David, M. Haveraaen. “The axioms strike back: testing

with concepts and axioms in C++”, In Proceedings of the Eighth
international Conference on Generative Programming and Component
Engineering (Denver, Colorado, USA, October 04 - 05, 2009).

79 of 168

http://www.boost.org/

Table 1. Requirements to components of the runtime.
B

lo
ck

Method Block
type Configuration

Requirement

Type Specification

R
es

ou
rc

e

RET
 RET

POST

Related waiting

PRED has been invoked.
POST has been invoked.

 POST

POST

 POST
 RET

Tr
ac

e

 POST The message has been added to the trace.

Ev
en

t

RET
 RET

 RET
 POST

 RET

 RET

 Related waiting POST
 POST

Lo
gi

ca
l

ob
je

ct

 POST
 EQ To algorithm
 Event buffer POST

 POST

H
an

dl
in

g
bl

oc
k

 POST
 POST

 RET .
 POST

 POST
 POST

 POST

 POST

Related waiting POST

 POST Resource container has been reset.
 POST Ready to handle events have been reset.
 POST Unhandled events have been reset.

D
is

pa
tc

he
r

 EQ To rule (1)
 Related waiting EQ To rule (2)

 POST has been invoked.

Related waiting POST has been invoked.

 EQ To rule (3)
 EQ To algorithm

 EQ To algorithm
 EQ To algorithm

 EQ To rule (5)

80 of 168

Testing automation of projects in telecommunication
domain

Alexey Veselov, Vsevolod Kotlyarov

Saint-Petersburg State Polytechnic University, Saint-Petersburg, Russia
a.veselov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.ru

Abstract – This paper presents an integrated approach to

testing automation of telecommunication projects along with
proposals to automation of conformance testing. The underlying
idea is to benefit from combining formal verification and testing
automation techniques in order to improve product quality.

I. INTRODUCTION

Testing is known to be an essential step in any modern
industrial software development process. The importance of
software testing and its impact on software quality can’t be
underestimated. To date, spending up to 40% of efforts on
testing is not uncommon for a software company. Therefore,
testing automation and testing efficiency – the issues
addressed in this paper - are very important.

This paper describes a part of technology which combines
formal verification, testing and code generation techniques in
order to improve software quality, reduce efforts and costs.
This technology covers the whole software development
process which starts from the initial requirements and goes
through formalization, verification, simulation, code
generation and testing to a software product. The technology’s
part, which is described below, relates to the techniques which
on the one hand can be used for automation of functional tests
generation, and on the other hand can be applied for
conformance testing.

The underlying idea of the proposal is to benefit from
presence of verification step in the technology. Verification is
a powerful technique which can significantly improve
software quality and formally prove absence of mistakes in
algorithm. But it also has another important advantage: a
model is created on the verification step, and each path in the
model’s behavior tree can be considered as a potential test
case. The number of such paths in industrial-scale projects is
enormous, so a special filtering technique is required to obtain
suitable (optimal) test suite. This approach is applicable not
only to automation of functional tests generation, but also for
automation of conformance testing (in case if a model of the
corresponding standard is provided). An example of such
standard is CDMA2000 [1]. CDMA2000 is a family of 3G
mobile technology standards which use CDMA (Code
Division Multiple Access) channel access to send data, voice,
and signaling data between mobile phones and cell sites.
Importance of compliance of any CDMA2000 device and cell
site with this standard is obvious. In practice, compliance is
checked by rather significant amount of conformance tests
which are prepared manually. Proposed approach to
conformance testing allows avoiding manual tests
development by means of reusing artifacts of verification step.

This paper outlines the main principles of automated test
suite generation on the base of formalized specifications in the
language of basic protocols using the verification tool VRS [2,
3] and tests generation tool TAT [4].

II. TECHNOLOGY OVERVIEW

Despite the paper is focused on testing automation part of
the technology, overview of the whole technology chain is
required for proper understanding of application domain of the
proposing ideas.

The technology is intended for automation of manual efforts
in software development process as much as possible (by
applying code generation techniques) and increasing products'
quality (because of combining formal verification and testing).

According to the technology chain, illustrated in Fig. 2,
software development starts from understanding and
formalizing of the requirements. On the formalization step,
engineers create a model of the system in terms of basic
protocols. Basic protocol is a formal description of some
action which shall be performed if the system goes into a
certain state (pre-condition is satisfied), and a new state of the
system after performing this action (post-condition). In other
words, basic protocol is a “small piece” of system’s behavior.
Basic protocols are represented in the following notation:

)()(:)(XXX X βα µ →∀
where X is protocol parameters’ list,α is a pre-condition, β
is post-condition and µ is action; α , µ and β may depend
on X. This is a Hoare’s triplet [5].

The formalism of basic protocols is based on the theory of
agents and environments with the insertion function [6]. It was
proposed by A. Letichevsky et al. for creating system behavior
models suitable for automated verification [7, 8]. Basic
protocol is just a small MSC chart. Fig. 1 illustrates a basic
protocol example.

Two basic protocols can be concatenated when post-
condition of the first one is equal to pre-condition of the
second one. All possible concatenations of basic protocols
construct the model’s behavior tree. Each path in this tree is a
possible scenario of system’s behavior.

Formalization is mostly manual work, but it can also be
automated or simplified in some sense. For example, the user
can perform formalization in terms of use cases (Use Case
Maps (UCM [9]) or Message Sequence Charts (MSC [10])) or
an UML [11] model. Special tools are used for basic protocols
generation from UCM, MSC and UML.

The second step of the technology chain is verification. The
system’s model, represented in terms of basic protocols, is

81 of 168

verified against some properties using model checker of the
VRS tool.

A set of basic protocols can be interpreted as a set of states
and transitions, i.e. as a state machine. Having a state machine
which describes system’s behavior, it is possible to generate
system’s logic code in a target language. But there is no tool
which can generate executable code from basic protocols, so
intermediate representation is required. Specification
Description Language (SDL [12]) was chosen to be the
language of this intermediate representation. SDL is rather
simple and well-known language for describing state
machines. Presence of intermediate language makes it much
more convenient for the engineers to debug models.

So, the third step is conversion from basic protocols
representation to SDL representation. This conversion is
performed by special tools.

As soon as SDL code is obtained, it is possible to generate
code in target language. Generation of target code is the fourth
step. A user has opportunity to choose any SDL to target code
translator, but in our practice we use Sdl2cpp because it is
seamlessly integrated into the technology chain. Sdl2cpp tool
is efficient and reliable translator from SDL to C++. Sdl2cpp
can generate configuration file for TAT (Test Automation
Toolset) with test environment description. So, in case of
using Sdl2cpp together with TAT, test environment
configuring becomes transparent for a user (no manual efforts
required).

Fig. 1. Basic protocol

As soon as model’s executable code is obtained and test

environment is configured, it is possible to run tests and
perform real-time simulation. It is also rather convenient to do
step-by-step simulation in IBM Rational SDL Suite [13] with
tracking of system’s behavior in graphical mode.

The fifth step is creation of test coverage criterion. Model in
terms of basic protocols is a behavior tree with enormous
number (more precisely – infinite number) of potential
scenarios. It is impossible to cover this entire tree with tests,
so a filtering criterion is required. The user is free to choose
any criterion, but usage of requirements coverage criterion
makes it is possible to generate relatively small test suite
which covers functional requirements. This criterion requires
creation of “chains” for each requirement. “Chain” is a

sequence of key impacts on the system under test (SUT) and
systems’ responses which cover a particular requirement
(requirement may be covered by more than one “chain”).

Creation of chains is a process of requirements
interpretation, so it is mostly manual work, especially if
requirements are presented in natural language. Chains
creation is significantly simplified if customer provides
requirements in formal notation, for example in terms of UCM
or MSC.

Fig. 2. Overall technology scheme

The sixth step is test scenarios generation. VRS tool uses

chains for guided search in model’s behavior tree and
generates a trace if it can find a path with chain’s key events.
As a result, a set of scenarios which cover functional
requirements is generated. These scenarios are represented in
terms of MSC charts. For the requirements which for some
reasons can’t be expressed in terms of chains (for example,

Testing of a
model

Test suite in
C++

Tolerance
range

MSC
scenarios

SDL
model

Product code
generation

Product in
C++

Testing of a
product

Product generation

Production basic
protocols model

Trace generation

Test suite
generation

Lowering

Legend:

TAT

VRS

Sdl2cpp

Manual

Basic
protocols

model

Requirements

Formalization

SDL
model

MSC
scenarios

Tolerance
range

Model in
C++

Test suite in
C++

Test suite
generation

Model generation

Model code
generation

Verification

82 of 168

non-functional requirements), test cases shall be created
manually.

TAT tools are used for generation of executable test
environment code from MSC charts. So, the next (seventh)
step is generation of a test suite in a target language using
TAT tools. This step also includes substitution of symbolic
parameters of MSC scenarios with actual values taken from
tolerance range.

The eight's step is running generated test suite against the
model.

The technology chain consisting of the mentioned eight
steps works fine when scale of a project is rather small. But
when the project starts to grow, verification becomes a bottle
neck because of the state explosion problem. Verification of
industrial-scale projects requires abstracting from some
details, therefore basic protocols model must be detailed after
verification and before production code generation. It is
usually required to maintain two models within the scope of
one project: high-level model which is used for verification,
modeling and simulation, and production model which is used
for product code generation. Each model requires its own test
suite.

So, the ninth step is detailing. This step is also known as
lowering because the model is filled with low-level details.
Usually it implies adding signals’ parameters, replacing
functional stubs (when a complex behavior is encapsulated in
one signal; e.g.: usage of “InitSession” signal instead of
describing real sequence of messages for session initialization)
with actual sequence of signals and adding omitted signals.
Lowering is another one manual part of the technology.

As soon as the model is filled with low-level details, it can
be used for product code generation. To generate product
code, the user has to repeat steps 3 and 4 for the detailed
model. To generate a test suite for the product, the user has to
repeat steps 6 and 7 (step 5 is not required because chains for
the high-level model are applicable to the detailed model).

III. TESTING AUTOMATION

The whole technology chain consists of several steps. Steps
5, 6, 7 and 8 relate to tests preparation, generation and
execution activities.

Tests preparation starts from requirements interpretation and
formulating coverage criteria in terms of “chains” – sequences
of key events. These chains are used as oracle for guided
search in model’s behavior tree. It is natural that from infinite
number of possible system’s behaviors, test engineers want to
choose reasonable quantity of scenarios which cover SUT
requirements. This result can be achieved in case of using
chains: VRS tool will automatically generate corresponding
traces (test cases). In the worst case, the number of test cases
will be equal to the number of chains, but in practice some
traces cover more than one requirement, so quantity of tests is
usually less than quantity of chains. Special tool is responsible
for selecting minimal test suite from generated traces. This
tool also marks the points (in MSC traces), where coverage of
each particular requirement starts and ends, along with the
places of key events.

As soon as a set of scenarios is selected according to the
coverage criteria, it is required to replace scenarios’

parameters with concrete values (if they contain symbolic
parameters).

VRS tool can work in two modes. The first one is regular
model checking where all the parameters have concrete
values. The second mode is called “symbolic”; in this mode
tolerance range for each parameter is evaluated after applying
each basic protocol, so generated MSC charts (scenarios)
contain symbolic parameters, and VRS provides their values’
constraints (tolerance ranges). So, in case of using “symbolic”
mode, there is one additional step: replacement of MSCs’
symbolic parameters with concrete values taken from
tolerance range.

One MSC with symbolic parameters is actually a set of
equivalent behaviors (the same sequence of events for any
parameters’ values from tolerance range). So, taking into
account parameters’ constraints and dependencies between
parameters, the user can obtain a set of test scenarios with
same sequence of events, but different parameters’ values.

A set of concrete values for each trace we will call a profile.
The user is free to choose any profile, but usually the
following profiles are chosen:

• “left edge” profile - all independent parameters
have minimum possible values (from the tolerance
range);

• “right edge” profile - all independent parameters
have maximum possible values (from the tolerance
range);

• “middle” profile – all independent parameters have
arbitrary values (from the tolerance range);

• “error” profile – at least one parameter has value
out of tolerance range. Test case with any “error”
profile shall always fail.

Scenarios with concrete parameters can be used for test suite
generation.

Fig. 3. Test suite generation

Test Automation Toolset (TAT) is used for generation test

suites in target language on the base of scenarios represented
in terms of MSC charts and configuration XML files with
environment description.

Test suite generation consists of several major steps:
• Analysis of XML configuration files and

generation of environment-specific code in target
language;

Source data

Parameters’
profiles

MSC
(symbolic

parameters)

Environment
configuration

MSC
(concrete

parameters)

ATS
generator

Abstract Test
Suite

Code generation template

script

script

Target code in C++

Env.
description

code

MSC-
dependent

code

83 of 168

• Generation of Abstract Test Suite (ATS) –
representation of a test suite as a set of states and
transitions between them (state machine) in TCL.
ATS is generated on the base of MSC charts;

• Generation of a test suite in target language on the
base of ATS.

These steps are illustrated in Fig. 3
TAT has very flexible mechanism of code generation

templates. Using templates, TAT can be configured for
generation of test suite code in any language. Currently, the
most powerful template is for C++, but several other
languages are also supported, including Java SE, Java ME and
TTCN-3 (only C++ code generation is considered in the scope
of this paper).

Generated test suite interacts with a system under test via IP
sockets (both TCP and UDP are supported) or via Unix
domain sockets (both stream and datagram are supported). A
user can specify which sockets to use in TAT configuration
files along with the following settings:

• Initialization code which will be executed before
the beginning of each test case. Sometimes some
initialization of a system under test is required
before running a test case. The code which is
responsible for moving SUT to its initial state shall
be placed in corresponding section of TAT XML
configuration file (initialization section).

• Finalization code which will be executed after a
test case is finished regardless of the verdict
(pass/fail). It is a good practice to free resources
when they are not in use any more, this can be
done in corresponding section of TAT XML
configuration file (finalization section).

• Timeouts of waiting for incoming signals. The user
can specify how much time to wait for signal(s) in
milliseconds. If test environment does not receive
the signal(s) which it expects (according to the
MSC scenario) within this time interval,
corresponding test will be marked as failed. It is
possible to specify default timeout for all incoming
signals and, if necessary, redefine this parameter
for any particular incoming signal.

• Signals’ distinguisher code (if not provided by
Sdl2cpp). This code is responsible for
distinguishing incoming messages. In case of using
TAT together with Sdl2cpp, this code is generated
automatically. If TAT is used as stand-alone tool,
the user has to provide this code manually.

• Signals’ sending/receiving code (if not provided by
Sdl2cpp). The user may provide own code for
serialization and deserialization of messages and
their parameters. In case of using TAT together
with Sdl2cpp, this code is generated automatically.
If TAT is used as stand-alone tool, the user has to
provide this code manually.

• Instances and interfaces definition (if not provided
by Sdl2cpp). All the instances (used in MSCs)
must be described in TAT XML configuration file
along with their interfaces (port numbers for IP
sockets or file names for Unix domain sockets).

Instances may be of two types: “env” (abstraction
of test environment) and “model” (abstraction of
system under test). In case of using TAT together
with Sdl2cpp, this description is generated
automatically. If TAT is used as stand-alone tool,
the user has to provide it manually.

• Message delimiter (if not provided by Sdl2cpp).
• User-defined log format. TAT has two built-in

formats of logs: logs in terms of MSC charts and
plain text logs. But, if required, the user can define
own log format.

TAT has seamless integration with Sdl2cpp: Sdl2cpp can
not only generate target code from SDL, but also completely
configure TAT for testing the generated code. But even in case
of using TAT together with Sdl2cpp, manual adjusting of test
environment remains possible because TAT configuration can
be split into two parts (stored in separate files): generated by
Sdl2cpp and manually provided. Manually provided part has
higher priority, so default environment settings (generated by
Sdl2cpp) can be redefined by the user (if required).

Fig. 4. Fragment of MSC log file with an error indication

As soon as a test suite in target language is generated by

TAT, it can be used for testing SUT. The results of testing can
be observed in log files (an example of a log file fragment in
MSC format is represented in Fig. 4).

Fig. 5. Test report

TAT tool called Offline Test Results Analyzer (OTRA) is

responsible for “offline” test results analysis. It compares
source MSC charts (the charts which were used for test suite

84 of 168

generation) with logs in MSC format and generates a test
report in HTML format. Fig.5 illustrates a test report example.

Each line in a test report is a link to another HTML page
with comparison details and failure description (if
corresponding test failed).

Described approach of automated test suites generation on
the base of formal specifications can considerably reduce
efforts and time of test cases preparation. Of course, this
approach is not applicable to covering any requirement
because sometimes requirements can not be expressed in
terms of MSC charts or a sequence of key events. So, test
engineer must understand the scope of its applicability and
create tests for the not covered requirements manually. But, in
practice (especially in telecommunication domain), majority
of the requirements (especially functional requirements) can
be automatically covered by tests in case of applying this
technology.

Automation of functional tests generation is a powerful
feature of the described testing automation approach, but it
can also be applied for checking that interaction between SUT
and environment takes place in compliance with some
standard. It is well-known that in telecommunication domain
compliance with a standard is at least not less important than
checking functional requirements.

The underlying idea of the proposals about automation of
conformance testing is similar to the idea of automation of
functional testing, but has some peculiarities.

IV. AUTOMATION OF CONFORMANCE TESTING

Conformance testing is concerned with the assessment of
the extent to which an implementation of system conforms to
a specification. [14]

The process of interoperability testing and conformance
testing is usually time consuming and expensive. However it
is essential because the cost of releasing a product (especially
in telecommunication domain) that does not operate correctly
is very much higher.

Fig. 6. Conformance oracle

And the problem here can be formulated as follows: if I

have a SUT which interacts with test environment or with
other system(s), how can I check whether this interaction takes
place in accordance with some standard or not?

It is not easy, but very important question.

Another important question is: “Are there any
inconsistencies in the standard’s specification?”

Fig. 7. Conformance checking approach

The proposing approach, illustrated in Fig. 7, tries to answer

both of them. The first its step, verification, can answer the
second question. Verification of a standard is not an easy task.
Formalization of the standard’s specification is the most
effort-consuming part of this step, and it can take much time.
Unfortunately, formalization is a process which in common
case can hardly ever been automated (because it is a process of
requirements understanding and interpretation). However,
verification can not only formally prove absence of errors, but
also help us answer the first question.

In case of using notation of basic protocols, formalized
model is represented as a set of states and transitions between
them, i.e. as a state machine.

Standard’s
specification

Basic
protocols

model
Verification Formalization

Oracle code
generation

Sniffing messages and
taking a decision about

compliance to the standard

Testing

Serialization /
deserialization

code

SUT

Serialization /
deserialization code

Oracle with sniffer in C++

Serialization /
deserialization

code

Test environment

Legend:

TAT

VRS

Sdl2cpp

Manual

Tolerance
range

MSC
scenarios

SDL
model

Product code
generation

Product generation

Production basic
protocols model

Trace generation

Test suite
generation

Conformance oracle

State machine,
generated by TAT on

base standard's
model in terms of
basic protocols

Deserialization code,
generated by

Sdl2cpp

Agent for behavior
observation

(sniffer)

Test
environment

SUT

Te
st

in
g

85 of 168

This state machine can be used as an oracle if place it
between SUT and test environment or between SUT and other
system(s) (which conform the standard).

So, the second step is generation of target code of this state
machine and using it together with an agent for behavior
observation (for example, a network sniffer for
telecommunication domain). TAT code generation engine is
going to be used for generation of the state machine code.

Normally, when Sdl2cpp generates SUT’s target code from
SDL, it also generates serialization and deserialization
functions for each message which can be sent to the
environment or received from the environment. These
functions are both used on the SUT side and on the test
environment side for encoding and decoding messages. So, it
is not required for the user to define messages’ structure (and
corresponding serialization/deserialization functions) twice. In
other words, Sdl2cpp can automatically configure TAT and
share encoding/decoding code with it. This makes message
exchange transparent for the user who works on the “signals”
level of abstraction and is not concerned about what is actually
sent via sockets. However, observation of socket-level
messages remains possible. The same idea is also applicable to
the oracle which, of course, requires a means of mapping
sockets-level messages to high-level signals.

So, conformance oracle will consist of the following parts
(as shown in Fig. 6):

• State machine generated by TAT on base of
standard's model in terms of basic protocols;

• Deserialization code generated by Sdl2cpp;
• Agent for behavior observation.

The third step is testing. On the testing phase SUT and test
environment communicate as usual (through signals exchange
via network). And the only difference is presence of the
conformance oracle which intercepts all the signals using
network sniffer, decodes them using deserialization functions
(provided by Sdl2cpp) and takes a decision about compliance
with the standard.

Decision about compliance with the standard is taken in
accordance with the following algorithm:

1. The oracle intercepts a message and tries to decode
it. If the message can’t be decoded, it does not
conform to the standard.

2. If the message is successfully decoded, the oracle
checks existence of any transition from its current
state where condition of the transition is receiving
this signal. If there is no such transition, the system
does not conform to the standard.

3. Then the oracle checks signal’s parameters. If
parameters’ values are within admissible range, the
oracle performs transition to the next state and
waits for the next signal; otherwise, the system
does not conform to the standard.

The more test are executed with the conformance oracle, the
more the user is confident that SUT conforms to the standard.

V. CONCLUSION

The developed approach of testing automation was
successfully applied in several large-scale projects in
telecommunication domain.

The maximum benefit (cost and time savings; increase of
quality) from this approach can be achieved in case of using it
as a seamless part of the overall technology, represented in
section 2. But usage of TAT as a stand-alone test suite target
code generator from formal specifications remains possible, so
described testing automation proposals are also applicable to
other software development processes.

Conformance testing automation proposals seem to be very
promising because in spite of high complexity of standards
formalization, automation of conformance testing together
with standards verification can significantly increase product
quality.

REFERENCES

[1] CDMA Development Group - http://www.cdg.org/
[2] Drobintsev P.D. Integrirovannaia tehnologia obespechenia kachestva
programmnih produktov s pomoshiu verifikacii i testirovania. Kand. dis.,
SPbGPU. 2006. 238 p.
[3] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Volkov V., Baranov
S., Weigert T. Basic protocols, message sequence charts, and the verification
of requirements specifications, Computer Networks: The International Journal
of Computer and Telecommunications Networking, v.49 n.5, p.661-675, 5
December 2005.
[4] TAT User's Manual © 2001-2005 MOTOROLA.
[5] Hoare C.A.R. Communicating sequential processes, Prentice Hall,
London, 1985.
[6] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Vyshemirskii V.V.,
Letichevsky Jr. A.A. Insertion Programming // Cybernetics and Systems
Analysis, Volume 39, Issue 1 (January 2003), p.16-26.
[7] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Letichevsky Jr A.A.,
Baranov S.N., Kotlyarov V.P., Weigert T. System Specification with Basic
Protocols // Cybernetics and Systems Analysis, Volume 41, Issue 4 (July
2005), p.479-493.
[8] Baranov S., Jervis C., Kotlyarov V., Letichevsky A., and Weigert T.
Leveraging UML to deliver correct telecom applications in UML for Real:
Design of Embedded Real-Time Systems by L.Lavagno, G. Martin, and B.
Selic (editors), pp. 323–342, Kluwer Academic Publishers, 2003.
[9] Recommendation ITU-T Z.151. User requirements notation (URN),
11/2008.
[10] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.
[11] OMG Unified Modeling Language - http://www.omg.org/spec/UML/2.2/
[12] ITU-T Recommendation Z.100, CCITT Specification and Description
Language (SDL), 03/93.
[13] IBM Rational SDL Suite - http://www-
01.ibm.com/software/awdtools/sdlsuite/
[14] ETSI Conformance Test Specification -
http://portal.etsi.org/mbs/testing/conformance/conformance.htm

86 of 168

Test suite development for conformance testing of email protocols

Nikolay Pakulin
ISP RAS

npak@ispras.ru

Anastasia Tugaenko
ISP RAS

tugaenko@ispras.ru

Abstract—The method for testing electronic mail protocols
in the Internet to conform to the standards based on
formal specifications is presented. The method is based on
automated testing technology UniTESK in which functional
requirements are formalized as pre- and postconditions and
test sequence is generated on-the-fly from finite state machine
(test state machine) traversal. The method is illustrated by
the test suite development for SMTP and POP3 protocols
using JavaTESK – a specification extension of Java language.

Keywords-formal specifications; model based testing; pro-
tocols testing; conformance testing.

I. INTRODUCTION

Emails are fundamental to modern communications
between people. Hundreds of millions of emails float every
day around the Internet. Reliability and correctness of the
emailing infrastructure is vital to the modern information
society. In this article we concern two aspects of these
questions – reliability of (1) mail transfer in the Internet
and (2) delivery of the email to recipient, typically a
human being.

Most of emails in the Internet are transferred by means
of SMTP – Simple Mail Transfer Protocol [1]. It is
a text-based protocol with two parties: a client and a
server. Client issues commands and server executes them,
returning status code and other details if needed. SMTP
has its own overlay network over Internet comprised by
numerous mail servers and relay agents used to forward
emails between various domains. A feature of SMTP is
that each physical server could operate as both SMTP
client and SMTP server: being a server it accepts an
incoming email and becomes a client to forward it to a
next hop.

SMTP is used to send messages, but when an SMTP
implementation identifies that this is the final destination
of an email it stops forwarding the mail and places it in
an internal (implementation-specific) storage. To retrieve
emails from the storage end-users utilize other protocols:
POP3 (Post-Office Protocol, version 3 [2]) or IMAP4
(Internet Mail Access Protocol version 4 [3]). Both pro-
tocols are text-based with distinct roles of a client and a
server. Clients access storage issuing protocol commands
and servers provide required information in their replies.
Typical POP3 and IMAP4 implementations support only
one role at a time.

On its way from the originator to the recipient an email
is processed by a number of intermediate servers. A typical
case is that those servers come from different vendors thus
having different implementations of the email protocols.

The total reliability of emailing infrastructure substantially
depends on the reliability of each server in the way and
the compatibility between implementations.

Nowadays protocol conformance testing is the basic
method of attesting implementations compatibility. That
rationale for this statement bases on the suggestion of
good protocol quality: if two implementations confirm to
a protocol specification then they are compatible, they can
correctly communicate with each other.

Despite of more than twenty-year history of
mail protocol service and existence of dozens of
SMTP/POP3/IMAP4 implementations there are no open
and implementation-agnostic conformance test suites for
those protocols. We believe that there are several reasons
of this.

First, the simplicity of mail protocols is seeming. Let’s
explore the mail protocols features in the context of
testing:

1) Mail protocols are underspecified: a large part of
functionality is left to implementation developers;
specifications prescribe several variants of possible
system behavior;

2) mail protocols are nondeterministic, the standard al-
lows various system behavior alternatives including
refusal in mail message delivering or connection
tear;

3) mail protocols requirements differ in the level of
obligations (MUST, SHOULD, MAY);

4) protocol architecture is extensible, protocols imple-
mentation may use different extensions for supple-
mental functionality or even overlapping functional-
ity.

Listed features demonstrate complexity of the task of
conformance test for email protocols.

Second, developers has to focus testing on another big
issue of mail server development: processing of a large
number of settings necessary for practical use – parameters
of routing, authentication, security, mail messages deposi-
tory etc. We studied test suites developed by several open
source implementations. The test suites turned out to be
tightly coupled with the implementations under test (IUT)
and non-portable to servers from other vendors, they use
testing implementations features setting parameters, ac-
cess to internal state, execution in the same process as the
implementation. Tests designed for one implementation
could not be applied to other implementations. Moreover,
as shown by the analysis, these tests are inappropriate for

87 of 168

conformance testing, they are oriented to checking im-
plementation for numerous settings correctness that don’t
directly connected with SMTP and POP3 standards. The
problem is that such approach to testing doesn’t guarantee
servers’ compatibility to the standard. The situation is
even worse – our conformance tests detected a serious
functional defect in James server – cycling at certain
conditions – that was overlooked by the James functional
tests.

Also it is necessary to note that there is a special tool de-
veloped in Apache Project – Mail Protocol Tester (MPT) –
for verifying correctness of server replies. The input
data for this tool is a script that specified server stimuli
and expected server replies. The program uses regular
expressions for comparison of IUTs replies and expected
replies from defined scripts. If reply mismatches program
stops and throws the mistake message. Apache James MPT
does not support branching, cycles and parameters usage
in tests.

Exact relationship between tests and standard’s require-
ments allows hard confidence estimating in terms of
external user of mail service. As the example with server
James shows, the thoroughly testing of internal functions
of implementation doesn’t guarantee the functional quality
of implementation in real environment.

Proceeding from the above arguments, we believe that
the problem of conformance testing to the standards of
mail protocols has significant practical importance. The
ultimate goal of our research is to develop an opensource
general-purpose conformance test suite for SMTP, POP3
and IMAP4. In this paper we present a model-based
approach to conformance testing of email protocols. The
presented approach focuses solely on conformance and
does not consider other aspects of email infrastructure
validation, such as interoperability testing, performance
testing, reliability testing etc.

The paper is structured as follows: section II gives
an overview of the existing approaches to protocol con-
formance testing and discusses why model-based testing
is used in our approach. Section III provides a quick
introduction to UniTESK technology that lays in the basis
of our approach and Section IV introduces the proposed
test development process. In section V we present the test
suite for SMTP and POP3 developed so far and Section VI
discusses pros and cons of the proposed approach. Section
VII summarizes results achieved by now and highlights
directions of future research.

II. MAIL PROTOCOL TESTING

In the contemporary industry conformance testing of
protocol implementations is mostly based on manual de-
velopment of test suites consisting of independent test
programs written in specialized or general-purpose pro-
gramming language. Such programs are referred to as test
cases; they implement stimulus test sequence generation,
passing generated test inputs to the IUT, reading and
analysis of observed outputs [4].

Let’s consider requirements for test suite. Test suite for
conformance testing must possess the following proper-
ties:

1) Requirements traceability. Tests must correlate with
standard requirements. It must be clear for each
requirement which test it is covered by.

2) Variety of settings for implementations features
(MUST, SHOULD, MAY and others). There must be
an option to define the set of requirements supported
by an IUT and avoid requirements that IUT does not
implement.

3) Completeness of test suite in terms of requirements
coverage. Resulting test suite must cover at least all
obligation requirements.

Test cases approach doesn’t provide evident traceability
of requirements. Requirements completeness in terms of
coverage in such approach is also complicated. We re-
jected TTCN3 [5] and JUnit [6] because they don’t provide
formal connection between tests and requirements.

Besides that large number of tests presented as separate
programs results in code redundancy or complex and
complicated connections. It is necessary to use methods
permitting decomposition of test suites and providing
requirements traceability.

Required possibilities are given by tools based on for-
mal method approach. Utilizing of formal specifications
allows to:

1) define formal connections between requirements and
tests; automatically backtrace quality of testing in
terms of specification coverage;

2) using model repeatedly for checking correctness of
implementations behavior;

3) generate test stimuli in terms of model and automat-
ically filter redundant stimuli.

Also when choosing a method for generating test se-
quences it is necessary to take into account features of
mail protocols. Particularly because of protocol behavior
is nondeterministic and underspecified, one should choose
approaches providing test sequences generation with a
glance of IUT replies. As well when testing mail protocols
it is complicated to make prediction for result or define
equivalence of traces. Automatic verdict generation from
specifications postconditions may solve the problem of
verifying correctness of IUT behavior.

There are many instruments and approaches for testing.
NModel [7] represents model system in C# language and
provides basic facilities for on-the-fly testing and coverage
maximization. But for on-the-fly testing test developer
must write separate program describing complex traversal
strategy. The current stable version of SpecExplorer [8]
doesn’t support on-the-fly testing.

Toolkits UniTESK [9] and Conformiq Qtronic [10]
support formal specifications notation, automated on-the-
fly test stimuli generator (code-level, there is no need
to write separate program) and automated test results
analysis. For this project the UniTESK was selected.

In the UniTESK technology formal specifications which
formalize requirements as pre- and post- conditions are

88 of 168

used for generation of test sequences. Also for test se-
quences generation must be given a certain finite state
machine (test state machine). The test process in UniTESK
is automatic traversal of test state machine in which IUT
behavior is automatically verified by test oracles; test ora-
cles are generated from formal specification. The utilizing
of formal specifications allows automating verification of
behavior correctness and estimation of hard confidence;
presenting test as state machine makes possible to au-
tomatically generate long and various sequences of test
events.

Authors used presented method for developing test
suites for protocols SMTP and POP3. From tools imple-
menting the UniTESK approach JavaTESK [11] was cho-
sen. JavaTESK uses the programming language Java with
a number of extensions for record formal specifications
and specify tests.

III. UNITESK TECHNOLOGY OVERVIEW

The standard format for Internet protocol standardized
documentation is defined by documents RFC (Request for
Comment). Requirements in these documents are stated
in English and correspond informal text that describes
desirable system behavior. In the UniTESK technology
(Fig. 1) specialized specification languages – extensions
of Java and C – are used for record requirements. In this
work was used Java extension JavaTESK.

Fig.1. UniTESK Test Architecture

Recording the informal requirements of standardized
documentation in formal language represents the proto-
col model. In UniTESK approach the formal model is
constructed in terms of finite state machine. Transitions
between states may be given in explicit or in implicit
way. In case of explicit definition of transition the model
contains algorithm for calculating next state and protocol
reaction. Presentation of implicit transition is a predicate
which defines restrictions on acceptable states and protocol
reactions.

Specification in JavaTESK usually consists of one
or few specification classes which describe states and
transitions of modeling protocol. Protocol transitions are
presented as special methods (specification methods). In
addition there is a possibility to define restrictions on
acceptable set of states by means of type invariants (type
restrictions) and state variable invariants.

Definition of implicit transitions realized as pre- and
postconditions. In preconditions there are restrictions on
acceptable stimulus parameters values and on states from
which stimuli may be given. The IUT may react on stimuli
by changing state, giving a reaction or both. Postconditions
define acceptability of demonstrated behavior.

For modeling IUT behavior one uses the set of data
structures which referred to as abstract states. For verdict
pronouncement about the correctness of IUT behavior
UniTESK uses data from model abstract state.

In UniTESK both stimuli for the IUT and its reactions
are described in terms of model; model is defined by the
formal specifications. Correlation between the model and
the IUT is established by an intermediary – mediator –
which translates stimulus parameters from model form to
protocol messages, IUT reactions to model representation
and if necessarily transports changes from the IUT state
to the abstract state.

Test scenario defines stimulus sequence applied to IUT.
The metamodel of finite state machine is used as the
theoretical basis for constructing scenarios. In JavaTESK
test state machine is defined in scenario class which
contains the procedure for calculating current state and
iterator of test stimuli. The JavaTESK tool contains test
engine for constructing test stimuli sequences from test
state machine description.

IV. THE PROPOSED METHOD FOR MAIL PROTOCOLS
CONFORMANCE TESTING

Mail protocols may be in several states. When receiving
certain stimulus they generate and send reactions and jump
to another state or leave in current. With a glance of
this fact on the basis of instrument UniTESK the method
for testing mail protocols was developed. The developed
method contains the following main steps:

1) Analysis of knowledge domain. Developing of ex-
amples and elementary tests. This step doesn’t give
any visible results but it is important for detailed
protocol understanding and helps in implementation
of next steps.

2) Creation of requirements catalogue. Requirements
catalogue is a database or a table with description
of requirements. Catalogue’s record contains not
only requirements description but also requirement
identifier, type (syntax or functional), severity, link
to the place in the RFC and maybe other attributes.

3) Designing of lite protocol model. Creation of ex-
perimental tests – test state machines with only
one state. Lite protocol model includes informa-
tion about commands and about possible reactions
to these commands. Experimental test consists of

89 of 168

specification, mediator and scenario classes. Speci-
fication class on this step includes only signatures
of methods; all verifications are making in scenario
class. Such test referred to as linear test; applying
stimuli and reading reactions are process in certain
order defined in scenario class.

4) Designing of conceptual protocol model. Extracting
states of basic protocol. Creation of test state ma-
chines with dedicated states. Expanding experimen-
tal test – addition the block which makes transitions
between states. Conceptual model defines behavior
of observing system as operations on some set of
abstract components and composing objects. These
components are used only for behavior modeling
and may not conform to the model extraction. Addi-
tion of block for making system transitions between
states turns test from linear to automatic test. In
this test construction of stimulus sequence is made
from test state machine traversal; applying stimuli
and reading reactions are made only from acceptable
states.

5) Requirements formalization. Relocation of verifi-
cation of IUT responses into specification class.
Checking completeness and consistency of require-
ments is made while formalizing requirements. The
result of this step is the formal protocol specification
written on one of the special program languages. In
our case the Java extension JavaTESK was used.

6) Enhancement of scenario and specification for cov-
ering all requirements. In this step scenario classes
contain only stimuli. The order of stimuli is formed
from state machine traversal and depends on apply-
ing stimuli in certain states conditions. Usually one
scenario class is responsible for the certain require-
ments section. For covering all formal requirements
few scenario classes may be needed.

7) Execution of test suites and analyzing the results.
Analysis may show that not all requirements are
covered by generated test suite. If not all require-
ments are covered then step 6 must be repeated until
covering all requirements from catalogue.

V. METHOD APPLICATION FOR PROTOCOLS SMTP
AND POP3 TESTING

The first step in writing tests for SMTP and POP3
implementations was analysis of knowledge domain, send-
ing emails directly from server console. Then the re-
quirements from RFCs were marked and categorized for
types: commands and replies, routing, notifications, server
settings, mail headers, mail body, etc. On this basis the
lite protocol models were designed; test state machines
consisted of only one state from which sent commands (for
SMTP: EHLO, HELO, MAIL FROM, RCPT TO, DATA
and others, for POP3: USER, PASS, LIST, STAT, RETR,
DELE, TOP and others), received replies (for SMTP:
three digit numeric code – reply code, for POP3: ”+OK”
or ”-ERR” replies) and left at the same state. On this
step implementations of test suites generation had a for-

mal interface, specification classes was consisted of only
methods’ signatures; all IUTs behavior correctness verifi-
cations were made in scenario classes. Scenario classes
consisted of methods applying (by means of mediator
classes) stimuli to the IUTs, reading servers responses and
returning verdicts about correctness of severs behavior.
Mediator classes transformed the IUT stimuli format to
model systems format and vice versa.

Then the basic protocol states were marked. On this step
the new blocks responsible for making model system’s
transitions between states were added to the scenario
classes. Specification classes were not changed.

In the next step blocks responsible for verification of
IUT behavior correctness and blocks that make transi-
tions between systems states were relocated from scenario
classes to specification ones. Scenario classes solely ap-
plied stimuli to the IUT. From now certain commands
could be passed only from acceptable states of state
machines. The possibility of such verification is achieved
by recording acceptable states in preconditions of speci-
fications. Iterator every time checks the current state and
whether the applying of the next command is allowed in
current state. Also it gives the opportunity to check the
fact that servers don’t send commands from forbidden for
such commands states.

VI. DISCUSSION

While testing systems it always necessarily to know
when testing may be considered as completed, what re-
quirements have already been tested and what require-
ments are to be tested. Test cases testing cannot answer
this question because correlation between tests and re-
quirements is given informally in form of traceability
matrix.

The utilizing of formal specifications allows formulation
the exact unambiguous hard confidence criteria – testing
may be completed when all elements of appropriate formal
specifications are covered. UniTESK uses procedure of
counting covered requirements and allows to define some
selecting criterion for scenarios – if applying of certain
scenario doesn’t increase test coverage then system misses
it and moves to the next scenario.

One of important advantages of this method is sepa-
rating the class in which makes the pronouncement of
verdict. The oracle which is generated from specification
postconditions is responsible for verdict pronouncement.
Due to this one hasn’t to invent special functions for
checking the correctness of IUT behavior.

To the lows of the method based on formal specifi-
cations one may attribute the absence of the quick test
suites updating ability. When testing in terms of test
cases new test results immediately from a simple test
program. When testing in terms of formal specifications
for developing new test it is necessary to thoroughly study
requirements, formalize and classify them. Only after
these preparations one may set out to write specification,
mediator and scenario classes. Through this the period for
new test development is increasing. But after specification,

90 of 168

mediator and scenario classes have written one got not a
single test but a set of tests responsible for corresponding
requirements class.

VII. RESULTS AND FURTHER RESEARCH

For protocol SMTP were marked 51 basic requirements,
43 of them are related to server commands and replies
(11 of them are mandatory and 4 are optional), 8 related
to routing (all are mandatory). For protocol POP3 were
marked 58 requirements for all functionality, 5 of them
are mandatory and 6 are optional. All marked requirements
are covered. Developed test suites were applied for testing
open source mail protocols implementations – Apache
James, hMailServer, Postfix and Dovecot. In the course
of testing the following disagreements between protocol
implementations and standards [1, 2] were detected:

• absence of required commands supporting;
• protocol rules violation (passing commands from

forbidden for such commands states);
• wrong reply codes to the protocol commands;
• cycling while redirecting mail.

The feature of mail protocols is that mail protocols
are extensible. Certain extensions supplement existing
functionality, i.e. add new requirements which are not in a
contrast with requirements from main standard. But there
are also such extensions which radically alter the protocol
structure thereby discarding some requirements from the
basic standard. For checking such extensions one should
modify test suites in such a way that requirements that are
amended by extensions have not been verified. Otherwise
there will be no opportunity to reach 100% coverage of all
obligatory requirements. In connection with many proto-
cols be extensible there is a need for tools providing ability
for generating test suites for testing different extensible
protocols’ implementations both supporting extensions
and supporting only basic standard functionality.

VIII. CONCLUSION

The paper presents a new approach to mail protocol
testing. The approach belongs to model-based testing do-
main, it uses contract specifications to formalize protocol
specification and on-the-fly test sequence generation. The
implementation of the approach is based on UniTESK
technology. Distinctive features of this method are au-
tomated test sequences generation on basis of formal
specifications, test coverage calculating which allows con-
structing stimuli in optimal way and also the presence
of separate component – oracle – responsible for verdict
about IUT behavior correctness returning.

Developed method was applied for testing of long used
mail protocols implementations. In one of the tested im-
plementations was found a critical defect – under specific
circumstances while redirecting message the server is
resending the mail to itself and the message never reaches
the recipient.

REFERENCES

[1] IETF RFC 5321. J. Klensin. Simple Mail Transfer Protocol.
2008.

[2] IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol
– Version 3. 1996.

[3] IETF RFC 3501. M. Crispin. Internet Message Access
Protocol – version 4rev1. 2003.

[4] ISO/IEC 9646. Information technology – Open Systems
Interconnection – Conformance testing methodology and
framework – Part 1: General concepts. Geneva: ISO, 1994.

[5] ETSI ES 201 873-1 V3.1.1. Methods for Testing and Specifi-
cation (MTS); The Testing and Test Control Notation version
3; Part 1: TTCN-3 Core Language. Sophia-Antipolis, France:
ETSI, 2009.

[6] Unit testing framework [URL] http://www.junit.org/.

[7] Jonathan Jacky, Margus Veanes, Colin Campbell, Wolfram
Schulte. Model-based Software Testing and Analysis with
C#. Cambridge University Press, 2008.

[8] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wol-
fram Schulte, Nikolai Tillmann, Lev Nachmanson. Model-
Based Testing of Object-Oriented Reactive Systems with
Spec Explorer Microsoft Research, Redmond, 2007.

[9] A. Barantsev, I. Burdonov, A. Demakov, S. Zelenov, A.
Kossatchev, V. Kuliamin, V. Omeltchenko, N. Pakoulin, A.
Petrenko. UniTesK Approach to Test Development: achieve-
ments and Prospects. Proceedings of ISP RAS, No. 5, 2004.

[10] End-to-End Testing Automation in TTCN-3 environment
using Conformiq Qtronic and Elvior MessageMagic. 2009

[11] JavaTESK: getting started (in Russian). Moscow, 2008.

91 of 168

Modeling and Analysis of
WAP protocol Familyl

Marina Alekseeva, Ekaterina Dashkova,

Dmitry Chaly

P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia
marya_87@mail.ru, dea.yar@mail.ru,

chaly@uniyar.ac.ru

Abstract

The importance of data networks and multimedia
cannot be overestimated in contemporary world,
at the dawn of Information Era. Information
collection, processing and distribution systems are
the key points for applying the scienti�c knowledge.
Speci�cation and veri�cation of communication
protocols and boosting their performance became the
topics of the day. Due to the development of mobile
systems the wireless networks are in good demand.
Thanks to technological advances in wireless data

transfer the hardware and software developers o�er
a wide range of new services like mobile internet.
Innovations must be useful, convenient, �exible, fast
and secure enough with the least possible amount of
errors during operation.
One of the ways to provide mobile internet

is a WAP stack of protocols. WAP abbreviation
translates into Wireless Application Protocol or
Wireless Access Protocol. The second reading is more
precise in re�ecting the meaning of WAP technology,
purpose of which is to grant access to information
stored directly in the Internet.
We propose a modi�cation for Wireless

Transaction Protocol (WTP is the transport
layer of WAP) which improves the original �ow
control algorithm. The work includes new ideas
of developing and improving WAP as one of the
important technologies.We use NS2 (Network
Simulator) which provides an opportunity to specify
such network protocols and simulate their behaviors.
Index terms: Wireless Application Protocol,

Network Simulator, �ow control protocol

I INTRODUCTION

In the beginning of the 21st century computer
networks became the most important way of
communication. Wireless networks spread worldwide
and became one of the contemporary technologies.
There are several protocols which provide access
to the wireless internet. One of the most popular
of them at the beginning of the 21st century was
Wireless Access Protocol (WAP) [6]. The most exact
de�nition of WAP technology: to provide access to
the information from the internet for the mobile
devices which have some speci�c characteristics:

• amount of memory devices;
• small size of the phone's screen, as well as the

limitations of his keyboard;
• low processor speed;
• low bandwidth of the communication channel;
• possible long timeouts.
WAP was developed to overcome these problems

and that is its major di�erence from HTTP and
TCP/IP. Note that the user does not resort to the
assistance of additional devices, such as modem.
WAP is a protocol that describes the way in which
information from the Internet displays on the small
screen of mobile phone.
WAP is a stack of protocols which consists of

several layers. According the OSI (Open Systems
Interconnection) model [8] WAP contains six layers
(Application layer, Session layer, Transaction layer,
Secure layer, Wireless Datagram Protocol and
Bearers). Each layer is intended to perform a well-
de�ned function. We are focusing on the transport
layer. In our paper we are focusing on the transport
layer, modifying �ow control algorithm using ideas,
which are the fundamental principles of ARTCP
algorithm [1].This protocol o�ers a new method of
�ow control based on rate control of the transfer of
segments in the network.
Protocol ARTCP (Adaptive Rate Transmission

Control Protocol) borrows some of the mechanisms
of the TCP protocol which is the main transport
protocol of the internet. Protocol ARTCP di�ers from
TCP standard. Segments are sent to the network
not in the form of the burst, but separated by time
intervals. Sending rate depends on receiving rate as
both parameters are included into the ratio which is
changing the principle of system's work. Algorithm

1

92 of 168

has a mechanism of adaptating according to the
evolving conditions of a network.
We will check properties of our algorithm with the

help of a network simulator. There are two modeling
approaches: analytical approach and simulation
approach. At the moment with the help of NS2, which
provides an opportunity to specify such network
protocols and simulate their behaviors, our model
of the modi�ed protocol WTP is in its �nal step of
development.

II MAIN PART

A. System modeling. NS2.

Simulation is widely-used in system modeling
for applications ranging from engineering research,
business analysis, manufacturing planning, and
biological science experimentation [5].
In the development of such kind of model we

can use a static models as well as dynamic ones.
And under the static model we understand the
models which can be used to analyze the network
conditions in the particular curtain moments of time,
for example, analytical methods of calculations from
the queuing theory. Under the dynamic model we
understand � discrete stochastic models, for example,
processes of generation of requests or processes
of their services. A great amount of programming
features for imitating modeling exists nowadays:
libraries of functions for the standard compilers as
well as speci�c programming languages [7].
There are some examples which show that di�erent

performance indicators can be took o� from the
model with the help of colored Petri Nets. CPN/Tools
� is an instrument that gives an opportunity of
visualized corrections, performance and analysis of
colored Petri Nets (CPN - Colored Petri Nets). In
CPN/Tools non classical variant of colored Petri Nets
are used: time is added in the structure as well as
embedded programming language is used CPN ML
(it is based on Standard ML). That is why Network
Simulator is the most perspective specialized packet
for di�erent performance characteristic analysis
of various of protocols. NS2 allows to build
communication protocol models of almost all kinds of
complexity. There exist some protocol models which

were built by the protocols developers with the help
of NS2. This fact can tells much about the high
quality of the models developed with this instrument
[2].
Network Simulator (version 2), widely known as

NS2, is an event driven simulation tool which is
very useful in studying the dynamic nature of
communication networks. NS2 provides users with
a way of specifying such network protocols and
simulating their behaviors.
NS2 allows to create di�erent types of tra�c from

the simplest ones which obeys the Poisson law to
self-similar. Undoubted advantage of this simulator
for the wireless network situation is its ability to
de�ne the nodes movements with the help of Scenario
Generator mechanism. It is important to underline
embedded opportunity of animation of di�erent
scenario results. Full as well as mere version of NS2
contains an instrument for animation of results of
the model performance � nam (Network Animator).
It is implement on Tcl/Tk. Only full version of NS2
contains a tool Xgraph. It helps graphically display
the modeling results. This fact is very important as
its signi�cantly simplify e�orts for results visualizing
(there is no need to install speci�c software especially
for providing visibility of model performance).
NS2 suggest two steps of work. The �rst step is

constructing a model with the help of programming
on C++, and �nally the use of the Object-oriented
Tool Command Language (OTcl) for analysis of the
model and simulating the network conditions. It
allows us to include our C++ programming code to
the NS2 environment (�g.1) [3].
We decided that NS2 is the most convenient tool

for modeling the network behavior.
B. WTP.

The Wireless Transaction Protocol is responsible
for reliable message delivery. Maximum Transfer Unit
(MTU) is a maximum size of a packet in networks.
WTP fragment and reassembly the messages that
exceed the size of the network MTU (Maximum
Transfer Unit). There are three classes of operation
for this protocol. We are focusing only on class-2
operation for Wireless Transaction Protocol. Flow
control in cases of fragmented messages, is performed
by sending fragments in groups. Every group of

2

93 of 168

Ðèñ. 1: Basic architecture of NS2

packets requires only one acknowledgement. The last
packet of each group contains a special �ag. This
�ag indicates the end of the group and receiver
knows when to send an acknowledgment. The size of
each group depends on the link characteristics and
the device memory. It is necessary to avoid extra
packet retransmission and data loss. Receiver sends a
negative acknowledgement (NAK) if the end-of-group
packet is received whilst intermediate packets are
missing. This operation is repeated until the entire
group is received and a positive acknowledgment is
sent. If timeout expiries before any acknowledgement
is received (ACK/NAK), then only the last packet
of the group is retransmitted, and sender knows
what packets have been lost. Wireless Transaction
Protocol tries to minimize the number of unnecessary
retransmissions [4].

C. Proposed model.

Extended Segmentation and Re-assembly of
WTP protocol use either a sliding window based
transmission or the traditional stop and wait
mechanism [6]. The fundamental ideas of sliding
window and stop and wait protocols are classical.
They are used in various of transport protocols, but
we presumes that this algorithms can be improved or
more e�ective analogue can be developed. ARTCP
�ow control algorithm is based on the sliding window
algorithm as well as on its own mechanism. The
major advantage of ARTCP algorithm is that fact
that it doesn't interpret the packet loss just as

network over�ow, this fact helps to avoid undesirable
decrease of e�ciency of network performance.
In our model we have three parameters, which we

will change depending on network performance. Let
ts is the time interval between consecutive packets of
the group which are sent from the sender SENDER
to the receiver RECEIVER. And tr is the interval
between consecutive packets of the group which are
received by the RECEIVER.

tr = tr−1 ∗ alfa+ (1− alfa) ∗ t′,

where

alfa =
1

(Amp − 1)
,

t′ = (now − trl), now - current time, trl - the time
when the previous packet of the group was received.
Let Amp - as the number of packets in the group. In
our model there are two types of acknowledgments
(ACK is a positive acknowledgment, NAK is a
negative acknowledgment) (�g.2). When receiver
sends an acknowledgment it transfers tr with the help
of it. Sender calculates the ratio ts

tr
. Depending on

the result of this ratio sender has several situations
for analysis and further actions. The �rst one ts

tr
= 1

re�ects the perfect network conditions. The second
one is 0.85 < ts

tr
< 1. All parameters can be changed

by increasing Amp, decreasing ts and timeout:

Amp = 2 ∗Amp;

(exponentially increase Amp);

ts =
ts
2
;

(exponentially decrease ts);

timeout =
timeout

2

(exponentially decrease timeout);

We conclude that if 0.70 < ts
tr

< 0.85 there
is no enough data for our algorithm to make a
decision how to modify parameters (conditions of a
network correspond to the established parameters).
The fourth one is ts

tr
< 0.70 , so the network

is congested, all parameters can be changed by
decreasing Amp, increasing ts and timeout:

3

94 of 168

Ðèñ. 2: Scheme of work

Amp =
Amp

2

(exponentially decrease Amp);

ts = 2 ∗ ts

(exponentially increase ts);

timeout = 2 ∗ timeout

(exponentially increase timeout);

III CONCLUSION

With the growth and development of
communication systems the economic bene�t
from increased e�ciency of communication protocols
(such as WAP) can be very substantial. WAP
requires serious improvement. We have developed

a new method of �ow control, which is based on
the management of transmission speed, the number
of outgoing information and the waiting time for a
response from the recipient.
We concluded that the control algorithms of data

streams using the insu�cient number of network
features. So they faced with the same error:
overloading the network, and the subsequent loss
or corruption of data. We propose the idea of the
analysis of additional characteristics of the network
and its subsequent improvement, depending on the
incoming data.
We analyzed the transport layer (Wireless

Transaction Protocol - WTP) of WAP protocol and
concluded that the mechanism of �ow control can be
�exible and adapt to the conditions of the wireless
environment. Wireless channels are characterized by
high levels of errors and narrow bandwidth, therefore
the network congestion occurs frequently (duration
of waiting for a response from the server increases
or data is lost). We have studied the weaknesses of
the �ow control mechanism of several protocols. We
have made changes in the structure of the transmitted
packets, entered additional information in the packet
header, in a number of key functions of the protocol,
which are responsible for sending, receiving packets
and settings of timeouts. In the future, we can create
a protocol based on veri�ed and analyzed model.

ACKNOWLEDGMENTS

The article was prepared within the scope
of Finnish - Russian University Cooperation in
Telecommunications Program. The authors would
also like to thank the dean of Yaroslavl Demidov
State University Computer Science Department P.G.
Parfenov for interest and support of this project and
the head of scienti�c-educational center "Center of
Innovation Programming"Professor V.A. Sokolov for
helpful advices.

REFERENCES

[1] I. V. Alekseev, V. A. Sokolov, D.U. Chaly
�Modeling and analysis of Transport protocols for
computer networks�, Yaroslavl State University,
2004. (in Russian)

4

95 of 168

[2] V. A. Sokolov, D.U. Chaly, �Methods
for investigating the behavior of transport
protocols in congested network Distributed Inform.-
computational resources, and math. modeling,
MKVM-2004, p.129.
[3] T. Issariyakul, E. Hossain, �Introduction to

Network Simulator NS2�, DOI: 10.1007/978-0-387-
71760-9 1, Springer Science + Business Media, LLC
2009, p.20-23.
[4] C. Ladas, R. M. Edwards AMIEE, G. Manson

�WAP performance on an end-to-end scheme�,
The Centre for Mobile Communications Research
(C4MCR), The University of She�eld.
[5] http://www.isi.edu/nsnam/ns/
[6] http://www.openmobilealliance.org/Technical/

wapindex.aspx - WAP speci�cation.
[7] Y. Koucheryavy �NS-2 as a universal means

of simulation networks�, Tampere University
of Technology, Telecommunications Laboratory,
Tampere, Finland.
[8] A.S. Tanenbaum �Computer networks�, - St.

Petersburg, Peter, 2003. - 992 p.
[9] Aust Stefan, Nikolaus A. Fikouras, G�org

Carmelita �Enabling Mobile WAP Gateways
using Mobile IP�, Department of Communication
Networks (ComNets), Center for Information and
Communication Technology (IKOM) University of
Bremen, Germany.
[10] Moon Il-Young �Performance Analysis of

WAP Packet Transmission Time and Optimal Packet
Size in Wireless Network�, School of Internet
Media Engineering, Korea University of Technology
and Education, Republic of Korea. Springer-Verlag,
Berlin Heidelberg, 2006.
[11] http://nile.wpi.edu/NS/

5

96 of 168

On the Formal Specification of Automata-
based Programs via Specification Patterns

Andrey A. Klebanov

Abstract—Model checking is a well developed verification technique still it is not widely adopted. One of the reasons is that
defining formal specification is an error-prone and time-consuming task. This paper gives an overview of the ongoing research
which focuses on expressing verifiable requirements in controlled natural language in the framework of automata-based
programming.

Index Terms—Model checking, Specification, Temporal logic, Language parsing and understanding.

—————————— � ——————————

1 INTRODUCTION

UTOMATA-BASED programming [1] – is a software
development paradigm based on the extended fi-
nite-state machine model. In this approach pro-

grams are represented as a system of automated con-
trolled entities which behavior is described by the system
of interacting state machines.

Model checking [2] could be successfully applied to
automata-based programs [3], [4]. The idea of model
checking is to verify the consistency between finite-state
model (Kripke structure) and formal specification ex-
pressed as a set of temporal logic formulae. In verification
the main advantage of automata-based approach over
traditional ones is a high extent of automaticity as in
automata-based programs behavior model is defined a
priori. Several methods [5], [6], [7] have been developed
to automatically transform both a control system into a
verifiable model and a counter-example produced by a
verification tool back into automata model. Still for all the
approaches a significant obstacle exists – considerable
mathematical background is required for expressing
specification as a temporal logic formula.

Design by Contract approach [8] could partly solve
this problem [9] as contracts are much simpler formalism.
However they are second to temporal logics in expressive
power – they can do no better than specifying invariance,
precondition or postcondition properties.

This paper presents an approach which battles tempo-
ral logics’ complexity. The requirements are expressed in
a controlled natural language defined by a formal gram-
mar introduced further. The grammar is based on a set of
specification patterns [10], [11] – a generalized description
(both formal and in natural language) of a commonly oc-
curring requirement on a permissible state sequences in a

finite-state model of a system. Thus for each requirement
equivalent verifiable formal mapping could be defined.

In [3] specification patterns are mentioned in the
framework of automata-based programming: “… it is
important to consider temporal properties patterns (struc-
tures) which are most suitable and appropriate for auto-
mata-based programs verification. Existence of such pat-
terns would allow focusing on classes of temporal proper-
ties of automata models which definitely would facilitate
flow chart development for automata-based programs
verification.” Still only one requirement (which is an in-
stance of existing pattern) is outlined and no further de-
velopment is provided.

The rest of the paper is organized as follows. Section 2
covers some background material on the nature of speci-
fication patterns and how they can be adapted for auto-
mata-based programming. Section 3 discusses specifica-
tion patterns applicability analysis results. Formal gram-
mar to derive verifiable requirements is introduced in
Section 4. Finally, Section 5 makes a conclusion.

2 SPECIFICATION PATTERNS
Specification patterns system has been introduced in [10],
[11]. They are based on a specifications analysis for the
programs developed in a traditional (i.e. non automata-
based) way.

Patterns could be classified according to the hierarchy
based on their semantics. Eight patterns which belong to
one of the groups (“Occurrence” and “Order”) are out-
lined. Patterns which belong to the group “Occurrence”
specify occurrence or absence of the states in which a
given state formula holds. “Order” group contains pat-
terns which describe order of the states during system
execution.

Pattern is described by its name (or set of names), in-
tent, mappings to some formalisms (LTL, CTL and etc.),
example of use and relationships with other patterns.

Each requirement has a scope – an extent of the system
execution over which it should hold. Five kinds of scopes
are defined:

• Global – entire execution path.

————————————————

The research is conducted in scope of the Federal target program "Sci-
entific and pedagogical personnel of innovative Russia for 2009 – 2013
years".
• A. A. Klebanov is with the Computer Technologies Department, Saint-

Petersburg State University of Information Technologies, Mechanics and
Optics (SPbSU IFMO), Saint-Petersburg, Russia.
E-mail: klebanov.andrey@gmail.com.

• The research is supervised by O. G. Stepanov, PhD, who is with the Com-
puter Technologies Department, SPbSU IFMO, Saint-Petersburg, Russia.

A

97 of 168

• Before - execution path up to a given state.
• After – execution path after a given state.
• Between – execution between two given states.
• After-until – the same as “Between”, but the right

end of the interval where property holds is optional.
For the state-oriented formalism intervals are left-

closed and right-open.
As an example, “Universality” pattern is presented in

Table 1. Original “Example and known uses” section’s
contents is substituted with an automata-oriented exam-
ple, this is a key idea behind patterns adaption for auto-
mata-based paradigm.

3 SPECIFICATION PATTERNS APPLICABILITY
ANALYSIS

Creating a new pattern system for the formal specification
of automata-based programs wouldn’t make much sense
without preliminary applicability analysis of the specifi-
cation patterns described before. To carry it out it’s neces-
sary to analyze how requirements for automata-based
programs (developed in SPbSU IFMO, Yaroslavl State
University, Concern AVRORA and available at [12])

could be expressed via specification patterns. An example
of intermediate results organization is presented in Table
2. Columns “Requirement” and “Original formal map-
ping” represent original requirements from the source
(column “Source”) expressed in natural language and one
of the formalisms correspondingly. Pattern which instan-
tiation with a real requirement leads to a formal equiva-
lent is provided in column “Pattern, Scope”. Equivalence
proof is provided where required.

Altogether 77 requirements for 13 programs from 15
sources have been analyzed. 87% of the requirements
could be expressed via five patterns. Remaining 13%
couldn’t be expressed due to the limitations of the pattern
system or issues of the concrete automata-based model of
the system. The percentage between used patterns is pre-
sented on the Fig. 1 and between used scopes – on the Fig.
2.

4 CONTROLLED NATURAL LANGUAGE GRAMMAR
Several approaches to extract verifiable requirements
form the natural language specifications have been de-
veloped. Among the most popular [13] are natural lan-
guage processing and formal grammars-based deriva-
tions.

In this paper grammar-oriented approach is used. The
grammar is based on the specification patterns. Also wide
spread variants of some patterns (i.e. “Response” and
chain patterns) are added explicitly. So the requirement
could be expressed both in natural language and in any
formalism supported by the pattern system. An extract of
the grammar is presented in Table 3; placeholders for real
requirements are in monospace font.

To exemplify this, requirement from [4] is considered:
“Coffee machine control system never gets to the state
where it doesn’t respond to either system timer events, or
buttons “OK” or “Cancel”. In the automata-based model
of the coffee machine control system requirement
“Doesn’t respond to either system timer events, or but-
tons “OK” or “Cancel” corresponds to the predicate act
= end. The adverb “never” implies to use “Absence” pat-

TABLE 1
“UNIVERSALITY” PATTERN

Intent The pattern is used to describe a por-
tion of a system's execution which con-
tains only states that have a desired
property. Also known as “Henceforth”
and “Always”.

Scope Mapping

Globally □(P)

Before R ◊R → (P U R)

After Q □(Q → □(P))

Between Q and
R

□((Q & !R &
◊R) → (P U
R))

LTL

After Q until R □(Q & !R → (P
W R))

Scope Mapping

Globally AG(P)

Before R A[(P |
AG(!R)) W R]

After Q AG(Q → AG(P))

Between Q and
R

AG(Q & !R →
A[(P |
AG(!R)) W R])

M
a

p
p

in
g

CTL

After Q until R AG(Q & !R →
A[P W R])

Example and
known uses

The pattern could be used to specify
either entire model or some group of
states properties. For example when
it’s desired to express requirement like:
“If an automaton is in state s, then P
holds.”

Relationships
with other
patterns

The pattern is closely related to the
“Absence” and “Existence” patterns.
Universality of a state can be viewed as
absence of its negation.

TABLE 2
INTERMEDIATE ANALYSIS EXAMPLE

Requirement Original
formal
mapping

Pattern,
Scope

Source

If either heater
of one of the
valves failure
has happened,
then coffee
machine
(automaton
A0) will man-
datory change
its state to the
state 5.

AG((y31
= 4 |
y32 = 4
| y2 =
4) & y0
= 2 →
A(y0 =
2 U y0
= 5)))

Response
(constrained),
Globally

AG(P →
A(S)),
P: (y31 =
4 | y32 =
4 | y2 =
4) & y0 =
2,
S: y0 = 2
U y0 = 5

[4]

98 of 168

tern with a “Global” scope. The derivation follows:

<requirement> → <scope> <pattern> → For all the
states holds <pattern> → For all the states holds <ab-
sence> → For all the states holds that never P.

Instantiating P with a real requirement leads to a de-
sired requirement in natural language: “For all the states
holds that never act = end.” Formal expressions in
CTL and LTL used for verification purposes are AG(!
act = end) and □(!act = end) correspondingly.

5 CONCLUSION
Requirements expression as temporal logic formulae is
error-prone and time-consuming task. An approach
which facilitates this process has been introduced in this
paper.

There are a few open issues left to work on in future.
First of all it’s tool support. It has been shown in [9] how
JetBrains Meta Programming System [14] could be used
both to develop and verify automata-based programs.
Currently formal specifications are integrated with code
but only as temporal logic formulae. The major improve-
ment would be to replace them with the natural language
specifications as described above. Besides similar to [13],
[15], [16] some wizard to guide a user during property
construction could be implemented. Finally, further use
cases of the pattern system could be investigated.

REFERENCES
[1] N.I. Polikarpova, A.A. Shalyto, Automata-based programming,

Piter, 2009. (in Russian)

[2] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT

Press, 2000.

[3] K.A. Vasileva, E.V. Kuzmin, “LTL Verification of Automaton

Programs,” Modeling and Analysis of Information Systems,

vol. 14, no. 1, pp. 3–14, 2007. (in Russian)

[4] E.V. Kuzmin, V.A. Sokolov, “Modeling, Specification, and Veri-

fication of Automaton Programs,” Programming and Computer

Software, vol. 34, no. 1, pp. 38–60, 2008. (in Russian)

[5] V.S. Gurov, B.R. Yaminov, “Automata-based Programs Verification

without Translation into Verification Tool’s Input Language,” Proc.

Conf. Scientific Software in Education and Research. 2008. (in

Russian)

[6] M.A. Lukin, A.A. Shalyto, “Automation of Visual Automata-based

Programs Verification,” Proc. 15th Int’l. Conf. Advanced Intellec-

tual Technologies and Innovation in Education and Science.

2008. (in Russian)

[7] E. Kurbatsky, “Verification of Automata-Based Programs,” Proc.

Sec. Spring Young Researchers Colloquium Software Engineer-

ing. 2008.

[8] B. Meyer, Object-Oriented Software Construction, 2nd Edition,

Prentice Hall PTR, 2000.

[9] A. Borisenko, P. Fedotov, O. Stepanov, A. Shalyto, “Reliable

Software with Complex Behavior Development,” Proc. 5th Central

and Eastern European Software Engineering Conf. in Russia.

2009.

[10] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, “Property Specification

Patterns for Finite-state Verification,” Proc. 2nd Workshop Formal

Methods in Software Practice. 1998.

[11] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, “Patterns in Property

Specifications for Finite-state Verification,” Proc. 21st Int’l. Conf.

Software Engineering. 1999.

[12] Programming Technologies Department, Saint Petersburg State Uni-

versity of Information Technologies, Mechanics and Optics,

http://is.ifmo.ru/
[13] S. Konrad, B.H.C. Cheng, “Facilitating the Construction of Specifi-

cation Pattern-based Properties,” Proc. IEEE Int’l. Requirements

Engineering Conf. 2005.

[14] JetBrains Meta Programming System,

http://www.jetbrains.com/mps/index.html
[15] R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, “PROPEL:

An Approach Supporting Property Elucidation,” Proc. 24th Int’l.

Conf. Software Engineering. 2002.

[16] O. Mondragon, A.Q. Gates, S. Roach, “Prospec: Support for Elici-

tation and Formal Specification of Software Properties,” Proc. Run-

time Verification Workshop. 2004.

Fig. 1. The percentage between used patterns.

Fig. 2. The percentage between used scopes.

TABLE 3
CONTROLLED LANGUAGE GRAMMAR EXTRACT

<requirement> ::= <scope> <pattern>

<scope> ::= «For all the states holds that»
| «Before the state where Q, holds
that»
| «After the state where Q, holds
that»
| «Between the states where Q and
R, holds that»
| «After the state where Q, before
the state where R, holds that»

<pattern> ::= <absence> | <universality>
| <existence> | <constrained exis-
tence> | <precedence>
| <response> | <constrained re-
sponse> | <chain precedence> …

<absence> ::= «never P.»

… …

<response> ::= «always if P, then eventually S.»

… …

78%

13%
6%3%

Globally

After Q

Between Q and R

After Q until R

17%

29%

6%

26%

22% Absence
Universality
Existence
Precedence
Response

99 of 168

On Reasoning About Finite Sets in Software Model Checking

Pavel Shved
Institute for System Programming, RAS

email: shved@ispras.ru

Abstract

A number of static checking techniques is based on con-
structing and refining an abstract reachability tree (ART) and
reasoning about Linear Arithmetics. For example, in BLAST,
each program statement is represented as a series of assign-
ments of a linear functions to variables, and the procedure
of predicate discovery relies on Craig interpolation of linear
arithmetics and equality with uninterpreted function symbols.

In this paper we propose an approach to extend the domain
of mathematical operations a checker described can reason
about with the certain operations with finite sets: adding and
removing elements, testing whether set contains a particular
element, or is empty. It being implemented, the ART doesn’t
split at each operation. The tradeoff of it is more complex
formulas for a solver to handle and incapability of using
set-related operations in loops.

We implemented the algorithm, proceeding from the resric-
tion of making no modification in LA+EUF interpolation
algorithm. We also provide results of the performance evalu-
ation of the algorithm proposed and of the other known way
to reason about finite sets.

Index Terms

Software verification and validation

1. Introduction

The approach to static verification through utilizing CE-
GAR [6] with reasoning about linear arithmetics has been
proven succesful by such tools as SLAM [2] and BLAST [5].
The advantage of such approach to analysis is its precision
(interprocedural analysis, lower false positive rate) compared
to the other static analysis techniques. However, the tradeoff
to precision has always been the speed and scalability of the
process.

The tools described above work by constructing the lo-
cations reachable from the entry point by all syntactically
plausible program paths. The locations reached are tagged
with a set of linear constraints, which are discovered by an
interpolation procedure (in BLAST it’s Craig interpolation).
These constraints limit the possible state of program variables
just roughly, but precise enough to prove unreachability of
specially marked “error locations”.

The analysis stops when the program proves reachability
of the error location or marks it with an empty region

(i. e. with an unsatisfiable conjunction of constraints), having
examined all possible paths. To avoid exploring an infinite
amount of paths (for example, if there’s a loop), the checker
doesn’t explore the locations that are tagged with a contraints
implied by the constraints of some other location. The reason
is that such exploration would produce a superset of paths
and states as the children of the other node would.

All that being said, the analysis algorithm still has to
produce different paths if the program branches execution,
with an if statement, for example. Even if the control-
flows are then combined together the ART will remain split,
and each branch will be tracked separately until one of the
branches is proven infeasible. This doubles the time required
to verify the program.

It is a natural disadvantage of the approach, but such
branching is an inherent property of the program being
verified. However, the code verified consists not only of
the program code itself, which comes as an input. Another
part of code represents the instrumented safety property
being verfied, and is a native language implementation of
the abstract concepts behind the logic being verified. When
an integrated verification system is built, the developers
should pay attention that such verification code doesn’t add
extraneous complexity to the code of the original program.

Some safety properties can be defined in terms of fi-
nite sets. For example, a heap model may be represent-
ed as a set of currently available memory locations. Each
malloc() operation adds a unique pointer to that set, and
each free(p) call deletes a pointer p from that set. At
each free(p) invocation a check is performed, whether
the pointer being freed belongs to that set, and if it doesn’t,
the control flows to error location. Also at the end of the
program a check that that set is empty is performed—i. e.
that there’s no memory leak.

A classical approach to this problem, universal quantifi-
cation trick, attributed to [7], is that the set is represented
as a single varible. This variable represents one of possi-
ble elements currently in the set. This is achieved by the
following means. Each opertaion of adding element to set
is implemented as an if statement, one branch of which
overwrites the characteristical variable, the other keeping it
intact. However, each branch doubles the amount of ART
nodes consecutively build, thus expanding it exponentially.
Ditto for deletion form the set.

One of the approaches to reducing the numbers of nodes
checked is Large-Block Encoding [4]. While this approach is
generic and will be of help in the case under consideration,

100 of 168

it suffers from a yet unsolved disadvantage. At the current
state of art, it is not known how to produce a useful trace
from the entry point to the error location.

The solution we propose is to define set operations that
will be treated differently by the checking engine. We present
a way to build a path formula that utilizes existing LA+EUF
interpolation procedure to devise constraints caused by per-
forming operations on sets. We also describe the model of
regions, by which the ART nodes will be tagged.

2. Reasoning about finite sets

To make model checker support reasoning about finite sets,
we need to modify certain parts of the algorithm. Second, we
need to describe what will be the description of the regions.
Third, we should modify predicate discovery algorithm, so
that it yields information about finite sets. But at first, we
define the concepts the approach works with.

2.1. Concept of a finite set

In this model, each set is recursively defined as either
• Empty set that contains no elements, or
• Union of an element (or, more precise, of a set that

contains one element), which is an arbitrary expression,
and of another set; or

• Subtraction of an element from a set.
Each set is a finite chain of these operations. That means

that at the beginning of each program, all sets are considered
empty1. This is necessary for all sets to be finite, since an
unspecified set (even if it’s finite) may have an arbitrarly big
lenght.

The relevant operations, as shown in the table 1, operate
with sets as with first-class values. These operations are
called set construction operators, and they shall not branch
execution.

Along with some operators to construct sets, a number of
set testing operations (shown in table 2) are introduced:
• Check if set contains a particular element, the ele-

ment being specified as an expression;
• Check if set is empty.
These operations don’t branch execution; only examining

the result of these checks is what branches execution. How-
ever, the common usage pattern is that one of the alternatives
of such a check leads to an error state immediately, thus the
amount of ART nodes explored doesn’t expand exponentially
to the number of checks. The problem of the classical
quantification trick is in branching that happend at the points
of set construction operators.

2.1.1. Definitions used in the article. To shorten the de-
scriptions, we present notations for some concepts used.

Set constitution and a set itself are different concepts.
Constitution is how the set is constructed, according to set

1. contrary to integer variables that are considered unspecified
untill they’re assigned a value

Table 1. Set construction

S = SetEmpty(); place an empty set to S
S = SetAdd(P,expr); place P ∪ {expr} to S
S = SetDel(P,expr); place P \ {expr} to S

Table 2. Set examining

rslt=SetInTest(S,expr); check if expr ∈ S
rslt=SetNotEmptyTest(S); check if S is empty

construction operators described in 2.1. A set that has a
constitution C is denoted as [C]. The set constitution may
be denoted like this:

C = ∅+{x1+z1}−{2∗y1+5}+{x2}+{x3}−{y2} (1)

A number of sets can have a given constitution, depending
on other external constraints. For example, given that x > 5,
any set that contains exactly one number that is greater than
ten, has a constitution of C = ∅+ {x+ 5}.

A set constitution may be presented in a normalized form,
with consequent add and subtraction operations grouped
together. If we unroll the constitution, up to a specific depth,
and group together the consequent additions and subtractions,
the constitution S may be presented in the following form:

S = Sn + αn − βn + ...+ α1 − β1 (2)

where αi and βj are sets, and

∀i > 1→ (αi 6= ∅) ∧ (βi 6= ∅) (3)

The normalized form is used to present different set
constitutions in a universal way.

As usual, foo.bar means bar “field” in the foo object.
The notation is inherited from object-oriented programming
and, we suppose, is easier for programmers to follow.

Also the following definitions will be used: given a func-
tion f , D(f) is the domain of f , and E(f) is the codomain
of f . We will use the notation mostly for maps; thus a
codomain of a map is implied to be the smallest set possible.

2.2. Predicate discovery algorithm for finite sets

In order to discover predicates specific to the finite sets,
we need to build a path formula that describes a concrete
state of the program variables in the error location. When we
try to add the logic related to finite sets to this formula, it
should retain the following properties. First, it should remain
precise, i.e. only program states that happen during real
execution of the program should satisfy the formula. Second,
it should be written in static single assignment form (or,
“SSA form”).

Since the formula built without finite sets concept satisfies
these properties, we can utilize it for building the formula
with sets concept. The idea is that set construction operators
do not have direct effect to path formula. However, these
operators are followed to calculate the exact constitution

101 of 168

of each set encountered in the trace. The expressions that
represent elements of sets are stored in SSA form. When set
testing operator is encountered in the trace, the consitution
of the set queried is already known; the constraints for the
values of set elements are precise, and are described by the
rest of the formula.

If the Craig interpolation procedure succeedes the pred-
icates discovered form constraints for program variables.
Under certain conditions, discussed in section 2.2.3, these
constraints contain enough information to prove that the
error path is infeasible. Note that the constraints should not
include any symbols of the variables that represent sets. Only
“usual” variables (that contain integers) are the domain of
these contraints.

2.2.1. Formula for inclusion check. Each check separates
the execution into two branches. Path formula is always built
among one branch (i.e. the path from root to current node is
exactly known). So, to implement inclusion check, for each
of these two branches a separate predicate is needed:

1) SAT if the element belongs to the set, UNSAT other-
wise

2) UNSAT if the element belongs to the set, SAT other-
wise

Let’s build the predicate that satisfies the requirements
outlined under the first point. It can be built recursively.
Given a constitution of a set, C, and the element (expression)
x we want to check for inclusion into [C], the predicate is:
• Empty set: C = ∅, then x ∈ [C]⇔ false;
• Union: [C] = [C1] ∪ {y} then x ∈ [C] ⇔ (x = y) ∨

(x ∈ [C1]);
• Subtraction: [C] = [C1] \ {y} then x ∈ [C] ⇔

(x 6= y) ∧ (x ∈ [C1]);
Since error trace is always finite, the recursive unrolling

always terminates, and the formula is always built. Since
the path formula is in terms of LA+EUF, Craig interpolant
always exists [9], and only (SSA-terms of) variables that
appear in source code are used in them.

The predicate built that way satisfies the requirement under
the first point. Its negation also satisfies the second point.
So, we’ve built proper predicates for both branches for set
inclusion check.

2.2.2. Path formula for set emptiness. As described in sec-
tion 2.2.1, we need to present algorithm for two predicates:

1) SAT if the set is empty, UNSAT otherwise
2) UNSAT if the set is empty, SAT otherwise
We can notice that a set is empty iff each element that

was added to it was removed from it afterwards.
Given the set [S] such that, in a normalized form (see

section 2.1.1),

S = Sn + αn − βn...α1 − β1 (4)

let’s define S− function as follows:

S− (S, n) =
[

i=1..n

βi (5)

Figure 1. Demonstration of limitation of predicate-
discovery algorithm — source code

x = 1; y = 2;
S = SetAdd(SetEmpty(), x);
x = 3; y = 1;
S = SetDel(S, y);
if (SetNotEmptyTest(S)) error();

Then the predicate

(β1 6= ∅) ∧

0@ ^
i=1..depth(S)

^
a∈αi

_
b∈S−(S,i)

(a = b)

1A (6)

is true if and only if a set with constitution S is empty,
which is the predicate that satisfies the conditions under the
first point.

We should note that the predicate (6) is finite, since all
the sets αi are finite and the result of S− function is a finite
set.

Though finite, (6) is nevertheless large, and it also con-
tains disjunctions. This allows us to suggest that check for
emptiness will be more complex and less scalable than check
for inclusion. We will see if it’s correct in section 4.

We could use negation of (6) as a second predicate, but due
to its complexity we should search for another way. We note
the following. Given a set with constitution S, the second
predicate is equivalent to

x ∈ [S] (7)

where x is a variable that doesn’t appear anywhere in the
trace. Indeed, if set is empty then for every x (7) is false,
which means that it’s unsatisfiable. If set is not empty, then
there exists at least one element that belongs to it, and this
makes (7) satisfiable.

The negation of (7) doesn’t yield the first predicate, since
the set [S] is finite, hence there always exists an element that
doesn’t belong to it; this makes the negation of (7) satisfiable
even if set being checked is not empty.

2.2.3. Correctness of predicate discovery. The predicate
discovery procedure described above sometimes yields pred-
icates that are false for each program location. Let’s consider
a sample program shown on figure 1.

If we convert this program to SSA form (and expand
set checking predicate), we will get the program shown at
figure 2. Interpolation procedure that may yield the predicate
x0 == y1, it proves that error() is inreachable.

However, when we convert it back from SSA form, the
predicate would look like x = y. If we check figure 1 again,
we note that in no program location this predicate was
true! That means that this predicate discovery procedure
based on LA+EUF interpolation can’t yield a predicate good
enough if the value added to (or removed from) the set was
later changed.

102 of 168

Figure 2. Demonstration of limitation of predicate-
discovery algorithm — SSA form

x0 = 1;
y0 = 2;
S0 = SetAdd(SetEmpty(), x0);
x1 = 3;
y1 = 1;
S1 = SetDel(S0, y1);
if (x0 <> y1) error();

Figure 3. Instrumented program for which predicate
discovery is correct

x = 1; y = 2;
Add1 = x;
S = SetAdd(SetEmpty(), Add1);
x = 3; y = 1;
Rm1 = y;
S = SetDel(S, Rm1);
if (SetNotEmptyTest(S)) error();

We can mitigate this obstacle by instrumenting before
each set construction function call an assignment to a special
variable that doesn’t change later (see figure 3). It is possible
unless a set construction operator is in a loop.

So, we later assume that no set construction operation
should be in a loop. We beleive that it’s an inherent limita-
tion of our approach. However, even with this restriction the
approach amy be useful if it performs well in experiments.

2.3. Regions for finite sets

Some variables encountered during the ART construction
are considered to contain sets. The basis, based on which
they’re considered as such, is the application of relevant
operations to them, and storing the result of those into them.
The list of supported operations is in table 1. If a result is
stored into a variable, or a variable is a set operand of any
of those operations, the constitution of such a set is tracked
in this ART node and its subsequent children.

The regions are constructed from the very beginning
of the processing; this behaviour resembles lattice-shape-
analysis [3]. During that initial step a set constitution (in the
shape depicted at section 2.1) is tracked. When a value of an
expression is added to or removed from a set, the expression
is converted by assigning new names to its underlying
variables. The converted expression then becomes a part
of this set constitution. The rationale is similar to what
was discussed in seciton 2.2.3: a value may change after it
was added to a set, and set checking should take the old
value into account. Instead of checking this requirement, we
design region processing in such a way that it tries to work
for programs that don’t satisfy this condition, but does not
guarantee results in this case.

Sometimes constitution tracking alone may be of help. For
example, if it’s known that a value was recently added to
a particular set, the test whether it’s empty should return
negative response (note the first minterm in (6)). However,
in other cases it’s insufficient, and the relationship between
expressions that represent set elements should be taken into
account.

This is where the predicates discovered by the modified
trace analysis procedure come into play. Each time a variable
is added into a set, all predicates at the current region (we
assuime Cartesian abstraction [1]) are also added to the set
region, the variables in these predicates being converted in
the same way as set elements have been. When determining
the post-region of a set testing operation, both these accumu-
lated predicates and set constitutions are taken into account.
If they are sufficient to prove the program state infeasible
the post operation adds to the cartesian predicate region the
predicate that keeps the information about the variable the
result is stored in.

Formally speaking, each region reg = post(reg′, e)
consists of the following components:

• reg.binding : variable → variable (such that
E(reg.binding) ∩ D(reg.binding) = ∅) is the
current mapping between actual variables, in terms of
which the CFA blocks are expressed, and those used
within sets. This binding is used to convert elements
and predicates at current point. It is updated at each
location, when e is a basic block of assignments.

• reg.sets : variable → constitution is a mapping
from program variables to set constitutions (described
in section 2.1). Elements of the sets are expressions over
the E(reg.binding) set of variables. This mapping is
updated at each construction operation (see fig. 1); the
mapping between how constitution is updated and what
operation is along the edge is obviously inferred from
the description in seciton 2.1;

• reg.predicatei is the predicate over the
E(reg.binding) set of variables. In a post-region
of reg′ after an edge e, a predicate belongs to this set
if and only if:

– it belongs to reg′.predicate set; or
– it is equal to one of the predicates in cartesian

region in post(region′, e), the variables being up-
dated according to reg.binding.

When at the location a set testing operator is encountered,
the region machinery should decide whether the post-region
is feasible. To notify the model checker that an infeasible
location is encountered, the predicate over the variable the
result is stored into is added to the Cartesian abstraction
region.

In a current region reg such a predicate should be
added when testing operation in e should fail on each
set constitution that belongs to reg′ region. Having
rewritten the element expression involved in set testing
operation with use of reg′.binding, and having applied
the relevant formula of those in section 2.2, we get a
formula F[S](E(reg.binding)). That is the exact formula

103 of 168

Figure 4. Header file with set-related functions

typedef int Set;
Set SetEmpty();
Set SetAdd(Set, ...);
Set SetDel(Set, ...);
int SetInTest(Set, ...);
int SetNotEmptyTest(Set);

that would have appeared in this location if we started error
trace analysis now.

However, such analysis, if it had already been completed
for a path this location belongs to, had yielded several
interpolants. We know that the error trace—even before it’s
converted to SSA—already has some variables not changing
their values (these are the instrumented variables introduced
in section 2.2.3), so these values will be reasoned about
in interpolants. These interpolants provide the necessary
predicates to prove set-related path infeasible if it really is
(since the formulas are equivalent). It means that the formula
(with unbound variables E(reg.binding))

F[S] ∧
^

p∈reg.predicates

p (8)

is UNSAT if the path to current location is on a subpath of
an infeasible error path checked for an error before. However,
if Cartesian abstraction succeeds in propagating set-related
predicated to other paths, this formula may work too. That
is one of the main benefits of lazy analysis [8].

2.3.1. Region coverage. Region machinery should address
another problem: region coverage. For finite sets it is possi-
ble, but unnecessary to devise the relevant formula.

Since finite sets can not be operated with in cycles, there
will never be a situation when one region would cover
another one due to reasons devised when analyzing set-
related operations. So the usual coverage checking procedure
would suffice.

3. How it is embedded into BLAST

A special header with C funciton headers is created (see
figure 4). It utilizes variadic arguments, since it’s not known,
what the types of the expressions added to sets will be.

When BLAST interprets the source code of a program
that uses these functions, it replaces each function call with
a separate edge in the CFA. Set functions are undefined, but
a separate edge will be created anyway.

Set construction functions will be inserted as is. Set testing
funcitons are intended to use in bodies of if operators.
However, they will anyways be represented with a separate
edge, the program being transformed to something like this:

tmp = SetInTest(S, expression);
if (tmp != 0) { ... } else {...}

Figure 5. Memory operations implemented in terms of
finite sets

int counter = 1;
/* Set of allocated regions */
Set memory;
ptr malloc()
{ counter += 1;

memory = SetAdd(memory, counter);
return counter; }

void free(void* p)
{ if (!SetInTest(memory,p)) error();

memory = SetDel(memory,p); }
void check_leaks()
{ if (SetNotEmptyTest(memory)) error(); }

Figure 6. Memory operations implemented with path
splitting

int maybe(); //returns an arbitrary bool
int counter = 1;
/* One of the pointers in set */
void* M = 0;
/* One of the pointers deleted from set */
void* F = 0;
ptr malloc()
{ counter += 1;

if (maybe()) M = counter;
return counter; }

void free(void* p)
{ if (M == p) M = 0;

if (F == p) error();
if (maybe()) F = p; }

void check_leaks()
{ if (M != 0) error(); }

To avoid branching at the point of function call assign-
ment, the predicates for such a check devised in section 2.2
pred are utilized in the following formula:

(tmp = 1 ∧ pred1) ∨ (tmp = 0 ∧ pred2) (9)

where pred1 and pred2 are the predicates devised in each
of secitons 2.2.2 and 2.2.1: one is satisfiable when condition
being checked is true, and the other is satisfiable when it’s
false.

This doesn’t affect correctness of any claims made above,
although requires some extra prover work as formulas pro-
duced this way contain more disjunctions.

4. Performance evaluation

We evaluated our algorithms for simple programs. Each
test program consists of consequent allocations of several

104 of 168

Table 3. Evaluation results (seconds elapsed; “X” means CSIsat failure)

of regions allocated 1 2 3 4 5 6 7 8 9 10 15
“Trick” with checking leaks 1 5 52 540 1553 > 2000 > 2000 > 2000 > 2000 > 2000 > 2000
Sets with checking leaks 1 4 10 X 80 X X X X X X
“Trick” without checking leaks 1 4 41 443 1289 > 2000 > 2000 > 2000 > 2000 > 2000 > 2000
Sets without checking leaks 1 3 6 17 36 70 200 333 X X X

memory regions and consequent deallocations of them, fol-
lowed by an optional check for unfreed memory. We also
introduced double-free errors and memory leaks to verify
correctness of our approach. All such tests didn’t demonstrate
any errors in the algorithms used.

The checking for memory operation safety was similar
to that presented in the introduction. For finite set it’s
presented on figure 5, and for universal quantification trick—
on figure 62.

The complexity of the test programs range from one to
fifteen allocated regions. We also thought that it would be
fruitful to check how algorithms behave in absense of leak
checking, because formula to check emptines. (6), is more
complex than other set-related formulas. The results are in
table 3.

We found out that after amount of allocations exceeds a
certain limit, algorithms start failing due to the failures of the
underlying Craig interpolant generator, CSIsat. We believe
that the reason is that formulas fed to it appear to be more
complex than it is capable to handle. We also see that leak
checking (i. e. emptiness checks) is way more complex than
reasoning if an element belongs to a set.

5. Conclusion

In this paper we showed that certain common properties
checked by static analysis frameworks can be represented
in terms of finite sets. Sections 2.1 and 2.2 contain sound
algorithms to discover predicates and refine abstraction with
utilization of set-related functions in C code.

The algorithms proposed have a serious limitation: each
variable in expressions being added to/removed from sets
may not be used later in the code. Further research could
discard this requirement if it extended the logic used beyond
LA+EUF, by adding some set-related concepts into interpo-
lation procedure. In this article we failed to demonstrate that
it is unnecessary.

The concepts described here were prototyped as a patch for
BLAST of version 2.5, the prototype being of low quality and
was just to check if the concepts presented here are correct
and viable.

Several simple artificial programs were generated for the
experiments. The tests held compare the approach proposed
with already known solutions. It’s clear that our novel al-
gorithm performs better than the known one. However, the
complexity of formulas generated limits the scalability of the
approach.

2. note that in the original paper [7] the elaborated algorithm was
not presented. The algorithm on figure 6 was devised by us, but we
beleive that Bandera tool has something similar.

Thus, the approach proposed in the paper doesn’t perform
well in the experiments with the currently used interpolating
tools. Given also the severe limitations on its applicability,
we think that further improvement of the prototype developed
to make it useful in industrial application is ineffectual.

References

[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
cartesian abstractions for model checking c programs. Proc.
TACAS, page 268–283, 2001.

[2] T. Ball and S.K. Rajamani. The slam project: Debugging
system software via static analysis. Proc. POPL, page 1–3,
2002.

[3] D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape
analysis. Proc. CAV, LNCS, 4144:532–546, 20006.

[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan
Keremoglu, and Roberto Sebastiani. Software model check-
ing via large-block encoding. In Proceedings of the 9th
International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2009, Austin (TX), November 15-
18), pages 25–32. IEEE Computer Society Press, Los Alami-
tos (CA), 2009.

[5] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. The software model checker blast. Int J Softw
Tools Technol Transfer, 9:505–525, 2007.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Proc. CAV,
LNCS, 1855:154–169, 2000.

[7] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, Psreanu,
Robby C.S., and H Zheng. Zheng, h.: Bandera: extracting
finite-state models from java source code. ICSE’00: Proc.
22nd Intl. Conf. on Software Engineering, page 439–448,
2000.

[8] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. Proc. POPL, page 58–70, 2002.

[9] K.L. McMillan. An interpolating theorem prover. Theor.
Comput. Sci., pages 101–121, 2005.

105 of 168

On Context Switch Upper Bound for Checking
Linearizability

Vadim S. Mutilin

Institute for System Programming, RAS
Moscow, Russia

Abstract—Approaches that tackle multithreaded programs
suffer from state explosion problem. Promising idea is bounding
the number of context switches of running threads. Recent work
[10] shows that most bugs can be detected even with two context
switches. Despite of the fact that it was successful in practice we
still can not be sure that no bug has escaped. In this paper we
use context-bounding for checking linearizability property, which
proved to be useful both for simplifying specifications and usage
of programs and as a common property for finding potential bugs
in the same way as race conditions. For linearization we provide
an algorithm, which returns an upper bound of context switches.
Having the upper bound we can be sure that if the program is
not linearizable then context-bounding algorithm will show it.

I. INTRODUCTION

Lately multithreaded programming has become widely
spread and gained popularity. Aiming at increasing effec-
tiveness, programs consist of several threads that do the
work in parallel. But their development is much harder than
development of sequential ones. This is caused by the fact
that the scheduling order of instructions from different threads
cannot be predicted before actual execution and the developer
should foresee correct work of the program for all possible
interleavings of instructions.

Here we consider programs providing interface (API),
which other programs use for interacting with them. Interface
consists of operations (procedures) which can be executed
(invoked) with different values of parameters. Operation exe-
cution ends with returning a value called a result. Moreover,
operations can be executed in different threads simultaneously.
Execution of operations in several threads we will call parallel
execution, and execution in a single thread – sequential
execution.

Parallel execution is linearizable, if it is equivalent to some
sequential execution conforming to specification. Formally, the
notion of linearizability will be defined in section II. As we
can see, the task of checking linearizability is a special case of
functional testing where we check whether the program meet
functional requirements given as specification. But in contrast
to general case, linearizable programs require specification
only for sequential executions.

As shown in [7], linearizability is local and nonblocking
property. Locality means that if we have shown that operations
working with the same object are linearizable then they are
linearizable together with any other linearizable operations

working with different objects. Hence hereafter we will con-
sider operations working with single shared object. In lineariz-
able program running operation does not require invocation
of new operations for its completion. This is nonblocking
property. Moreover, proof of properties for programs which
use linearizable operations is simplified because behaviour of
linearizable program is reduced to sequential executions.

Linearizability has much in common with such properties
as serializability [8], [11], atomicity [3], [15], sequential
consistency [9]. In contrast to it linearizability requires a
specification while these properties impose restrictions on the
program only. In some works the term atomicity is used as
synonymous to linearizability, in the others it means what we
call self-linearizability.

The problem of checking linearizability in general case is
not decidable. The key issue is lack of restrictions on the
number of threads and operations which occur in parallel
executions. There is only manual proof approaches for general
case [7], [14]. The automatized approaches work only in the
special case, which we consider in our work. In these settings
the number of threads is finite and the number of operations in
each thread is also finite. For example, in [1] it is shown that
with limited number of threads, states of implementation and
specification the problem can be solved by model checking.

The principle source of the complexity is a great amount of
executions resulting from interleavings of instructions. Partial
order reduction, heuristic search, as well as context-bounding
methods are used to reduce the amount of them. The last one
is used in our paper. The main idea of it is to bound the
number of context switches in parallel executions. As shown
in [10] in practice tricky errors can be detected even with small
number of context switches. But the question of choosing
an upper bound of switches which is sufficient for ensuring
linearizability is still open. That is the question we give answer
here that forms novelty of our work.

Next section gives a formal definition of linearizability.
Section III describes a formal model of program. In section IV
we prove a theorem on which the algorithm given in section
V is based. This algorithm gives an upper bound of context
switches sufficient for checking linearizability. Section VI dis-
cusses significancy of upper bound produced by the algorithm.
Section VII contains comparison with related works.

106 of 168

1 volatile int x;
2 volatile boolean b = false;
3
4 boolean insert(int i) {
5 if(b==false) {
6 x=i;
7 b=true;
8 return true;
9 } else return false;
10 }

11 void delete() {
12 b = false;
13 return;
14 }
15
16 int lookUp() {
17 if(b==true)
18 return x;
19 else return -1;
20 }

Fig. 1. Cell Example

II. THE NOTION OF LINEARIZABILITY

A. History

Suppose we have a set of operations op〈name〉, each of
which has begin (invocation) op〈name〉 begin〈parameters〉
and end (response) op〈name〉 end〈result〉.

History is a finite sequence of events
α:op〈name〉 begin〈args〉 and α:op〈name〉 end〈res〉,
where α is a thread. End matches begin, if thread names and
operation names agree.

Consider an example of Cell program shown in Fig.1 written
in Java language, which will be used hereafter. Examples of
histories:
h1 =

α : op〈insert〉 begin〈0〉,
β : op〈delete〉 begin〈〉,
α : op〈insert〉 end〈true〉,
γ : op〈lookUp〉 begin〈〉,
β : op〈delete〉 end〈〉,
γ : op〈lookUp〉 end〈0〉
h2 =

α : op〈insert〉 begin〈0〉,
α : op〈insert〉 end〈true〉,
γ : op〈lookUp〉 begin〈〉,
γ : op〈lookUp〉 end〈0〉,
β : op〈delete〉 begin〈〉,
β : op〈delete〉 end〈〉
h3 =

α : op〈insert〉 begin〈0〉,
α : op〈insert〉 begin〈1〉,
β : op〈insert〉 end〈true〉,
β : op〈insert〉 end〈true〉

Definition 1: History is sequential if
1) The first event is a begin of operation.
2) Each event except the last one is immediately followed

by matching end.
In the example, history h2 is sequential and h1, h3 are not
sequential.

Thread history(projection, subhistory) in a history H (H |
α) is a subsequence of all events in H , which have thread
name α. For instance, h1 | α = α op〈insert〉 begin〈0〉, α
op〈insert〉 end〈true〉. Two histories H , H ′ are equivalent,
denoted as H ∼ H ′, if for any thread α subhistory H | α

insert:
{true}
op〈insert〉 begin〈i〉 op〈insert〉 end〈r〉
{r = ¬b ∧ (b ∧ (b′ = b) ∧ (x′ = x) ∨ ¬b ∧ (b′ = true) ∧ (x′ = i))}
delete:
{true}
op〈delete〉 begin〈〉 op〈delete〉 end〈〉
{b′ = false}
lookUp:
{true}
op〈lookUp〉 begin〈〉 op〈lookUp〉 end〈i〉
{(b′ = b) ∧ (b ∧ (i = x′ = x) ∨ ¬b ∧ (i = −1))}

Fig. 2. Cell Specification

equals to H ′ | α. In the example h1 ∼ h2. History is a well-
formed if any subhistory H | α is sequential. All histories
considered in the paper are well-formed.

Operation is pending in a history if some begin is not
followed by matching end. complete(H) is maximal subse-
quence of H consisting only from begins and matching ends
(pending operations are removed).

A set S is prefix-closed if for any history H in S holds
that any prefix of H is also in S. Sequential specification of a
program is a prefix-closed set if sequential histories. History
H conforms to specification if H ∈ S. Specification can be
presented in different forms. Fig. 2 shows specification of Cell
in the form of pre and postconditions.

B. Definition of Linearizability

History H induces irreflexive partial order on operations
<H , such that e0 <H e1 if end(e0) precedes begin(e1) in H

Definition 2: History H is linearizable if it can be extended
(appending zero or more responses) to some history H ′ for
which

1) complete(H ′) is equivalent to some sequential history
S which conforms to specification.

2) <H⊆<S .
History h1 is linearizable, because it is equivalent to h2

while preserving partial order of operations. History h3 is
not linearizable, because any sequential specification which
is equivalent to it contains two sequential successful insert
operations that contradicts to specification.

By reachable history of a program we shall mean a history
which can actually occur in the program. Later on we will
define the notion of reachable history on the base of execution
trace. Program is linearizable if any reachable history is
linearizable.

C. Self-linearizability of Program

For checking linearizability it is helpful to define a notion
of self-linearizability independent from specification. In work
[6] self-linearizability is called atomicity, but there is no
formal definition. They introduce atomicity using sufficient
conditions. Here we give a formal definition.

107 of 168

Definition 3: Program is self-linearizable if for any reach-
able history H there exists a reachable sequential history H ′

such that H ′ ∼ H .
If a program is self-linearizable then by checking that all
reachable sequential histories conform to specification we
show that program is linearizable.

III. PROGRAM MODEL

Program (system, implementation) is a triple

Sys = 〈s0, S, P 〉
where s0 ∈ S is an initial state, S is a set of shared states, P
is a finite set of opeartion subprograms.

Each subprogram P is a quadruple

P = 〈l0, L, ν, T 〉
where l0 ∈ L is an initial local state, L is a set of local
states (control states), ν : T → Σ is a labeling function, T ⊆
L×G× C × L′ is a set of transitions.

Σ = {τ, op begin〈parameters〉, op end〈result〉}.
All transitions from initial local state are labeled
by op〈name〉 begin〈arguments〉, intermediate are
transitions labeled by τ . Transitions which are labeled
by op〈name〉 end〈result〉 finish the subprogram.

In a transition c ∈ C is a command S → S changing the
state (instruction, sequence of instructions), g ∈ Gd is guard
condition S → {true, false}. We assume that sets of local
states of different subprograms do not intersect. Start and end
transitions of operations do not change the shared state.

In Cell example, the program model consists of a set S in-
cluding states of variables x,b and stacks of each subprogram,
an initial state s0 = {x = 0, b = false, empty stacks } and a
set P = {pinsert, pdelete, plookUp}. Evidently, that subprogram
stacks can be separated from S thus showing that this part of
the state is accessible to one subprogram only, but this feature
is not essential in the paper.
pinsert:

Li = {4 . . . 10}, li0 = 4
T i = { ti1 = (4, true, invoke〈i〉, 5),
ti2 = (5, true, b̂ = get〈b〉, 5′),
ti3 = (5′, b̂ = false, nop, 6),
ti4 = (5′, b̂ 6= false, nop, 9),
ti5 = (6, true, put〈x, i〉, 7),
ti6 = (7, true, put〈b, true〉, 8),
ti7 = (8, true, ret〈true〉, 10),
ti8 = (9, true, ret〈false〉, 10) }
ν(ti1) = op〈insert〉 begin〈i〉
ν(ti7) = op〈insert〉 end〈true〉
ν(ti8) = op〈insert〉 end〈false〉
For the others ν(ti) = τ
pdelete:

Ld = {11 . . . 14}, ld0 = 11
T d = { td1 = (11, true, invoke, 12),
td2 = (12, true, put〈b, false〉, 13),
td3 = (13, true, ret, 14) }
ν(td1) = op〈delete〉 begin〈〉

ν(td3) = op〈delete〉 end〈〉
ν(td2) = τ

plookUp:
Ll = {16 . . . 20}, ll0 = 16
T l = { tl1 = (16, true, invoke, 17),
tl2 = (17, true, b̂ = get〈b〉, 17′),
tl3 = (17′, b̂ = true, nop, 18),
tl4 = (17′, b̂ 6= true, nop, 19),
tl5 = (18, true, x̂ = get〈x〉, 18′),
tl6 = (18′, true, ret〈x̂〉, 20),
tl7 = (19, true, ret〈−1〉, 20) }
ν(tl1) = op〈lookUp〉 begin〈〉
ν(tl6) = op〈lookUp〉 end〈x̂〉
ν(tl7) = op〈lookUp〉 end〈−1〉
For the others ν(tl) = τ

In order to execute a program it is necessary to provide
user threads Ψ = ψ1

u, . . . , ψ
n
u , which will be executed. User

thread ψi is defined as a sequence of operation subprograms
p0, . . . , pni with values of input parameters. Thread starts
execution in an initial state of subprogram p0. After the end
of each subprogram it moves from the end state to the initial
state of the next subprogram. Thread finishes execution after
finishing the last subprogram pni .

For the given user threads Ψ we define execution state as
g = (s, l1, . . . , ln) ∈ G, where s is a shared state, li is a local
state of the thread ψi. g0 = (s0, l10, l

2
0, . . . , l

n
0) is an initial

state. A set of all execution states we denote as G.
We will use the following definitions:

1) enabled(t, s) ≡ t.guard(s).
2) pre(t) is a start state of t, post(t) is an end state.
3) local(α, g) returns a local state of the thread p in g.
4) shared(g) returns a shared state s.
5) t(α) means that t is executed in thread α ∈ Ψ.
6) active(t(α), g) ≡ pre(t) = local(α, g).
7) enabled(t(α), g) ≡ active(t(α), g) ∧

enabled(t, shared(g)).

Define a transition relation −→. There is a transition g
t(α)−→

g′ from g = (s, l1, . . . , lα, . . . , ln) if enabled(t(α), g) = true
and g′ = (ŝ, l1, . . . , l̂α, . . . , ln), where ŝ = t.command(s)
and l̂α = post(t).

Execution trace of a program is a sequence
t1(α1), . . . , tm(αm) such that g0

t1(α1)−→ g1
t2(α2)−→ · · · tm(αm)−→

gm. Thread trace is a projection of execution trace on
a thread. Operation trace in a thread is a projection of
thread trace on an operation. Execution history for a trace
σ = t1(α1), . . . , tm(αm), denoted as H(σ), is a sequence
of labels ν(ti(αi)) with all τ labels removed. History H is
reachable if there exists a trace σ such that H = H(σ).

Let a thread α executes insert〈0〉, β executes delete〈〉, γ
executes lookUp〈〉. Consider the examples of traces.

σ1 = ti1(α), ti2(α), td1(β), ti3(α), ti5(α), ti6(α), ti7(α),
tl1(γ), t

l
2(γ), t

l
3(γ), t

l
5(γ), t

d
2(β), td3(β), tl6(γ)

(1)

108 of 168

H(σ1) = h1.

σ2 = ti1(α), td1(β), ti2(α), ti3(α), ti5(α),
td2(β), ti6(α), td3(β), ti7(α) (2)

σ3 = tl1(γ), t
i
1(α), tl2(γ), t

i
2(α), tl3(γ),

ti5(α), tl5(γ), t
i
6(α), tl6(γ), t

i
7(α) (3)

IV. AN UPPER BOUND OF CONTEXT SWITCHES

A. The Notion of Independence

We will use classical definition of independence [4], [5],
[12] (Definition 4) and extend it for an arbitrary set of user
threads (Definition 5).

Definition 4: D(Ψ) is a symmetric dependence relation for
an execution Ψ, iff for all (t1(α), t2(β)) /∈ D(Ψ) (indepen-
dent) implies that the two following conditions hold for all
reachable states g:

1) From enabled(t1(α), g) and g
t1(α)−→ g′ follows that

enabled(t2(β), g′) = enabled(t2(β), g),
2) If enabled(t1(α), g) and enabled(t2(β), g) then there

exists unique state ĝ such that g
t1(α),t2(β)−→ ĝ and

g
t2(β),t1(α)−→ ĝ.

Definition 5: D is a symmetric dependence relation for a
program iff (t1, t2) /∈ D (independent) implies that ∀Ψ, ∀α, β
∃D(Ψ) : (t1(α), t2(β)) /∈ D(Ψ).

Note 1: Independent transitions can be interchanged in a
trace, but the history of the trace and the final state will stay
unchanged. [5]

Consider an example of dependence relation for Cell pro-
gram. We can see that some transitions do not access shared
data. Such transitions are obviously independent. Consider
transitions accessing shared data ti2, t

i
5, t

i
6, t

d
2, t

l
2, t

l
5. Among

them we can distinguish transitions which only read or write
variables. rb(wb), rx(wb) denote transitions performing read
(write) of variables b and x correspondingly. Then rb: ti2, t

l
2;

wb: ti6, t
d
2; rx: tl5; wx: ti5. Transition pairs performing read/read

of arbitrary variables, write/write or read/write of different
variables are independent with each other. The others are con-
sidered as dependent. Hence dependence relation D includes
{(t, t′) | t ∈ {ti6, td2}, t′ ∈ {ti6, td2, ti2, tl2}}

⋃ {(t, t′) | t ∈
{ti5}, t′ ∈ {ti5, tl5}} and symmetric pairs.

B. The Notion of Dependence Cycle

Let σ = t1(α1), . . . , tm(αm) be a trace of a program.
Define successor relation.

Definition 6: Successor relation (without transitive closure)
1) ti(αi) < tj(αj), if ti(αi) precedes tj(αj) in the trace

and one of the following conditions holds
a) ti, tj 6= {op begin, op end}, (ti, tj) ∈ D and

αi 6= αj ,
b) ti = op end, tj = op begin and ti, tj do not

belong to the same operation.
2) ti(αi) = tj(αj), if ti, tj belong to the same operation.
Statement 1: Let a trace σ contains neighbouring pair

ti(αi), tj(αj) and ti(αi) 6≤ tj(αj). Let σ′ be the trace

obtained from σ by interchanging ti(αi), tj(αj) in the reverse
order. Then the history of σ′ is equivalent to the history of σ
(H(σ′) = H(σ)).
Follows from independence of ti(αi), tj(αj), because
ti(αi) 6≤ tj(αj).

Sequence by successor relation is a sequence of transitions
related by definition 6: ti1(αi1) ≤ ti2(αi2) ≤ . . . ≤ tip(αip),
where tij (αij) is a trace element.

Cycle is a sequence by successor relation ti1(αi1) <
ti2(αi2) ≤ . . . < tip−1(αip−1) = tip(αip), in which ti1(αi1) =
tip(αip) and ti1(αi1) precedes tip−1(αip−1). Element ti1(αi1)
is called the start of a cycle and tip−1(αip−1) is the end.

Consider examples of cycles. Trace σ2(2) has a cycle

ti2(α) < td2(β) < ti6(α) = ti2(α) (4)

Trace σ3(3) has two cycles

tl2(γ) < ti6(α) = ti5(α) < tl5(γ) = tl2(γ) (5)

ti5(α) < tl5(γ) = tl2(γ) < ti6(α) = ti5(α) (6)

Schematically these cycles are shown in Fig. 3(a,b).
Arrows mean that transitions are related by <. Trace
td1(β), tl1(γ), t

l
2(γ), t

d
2(β), tl3(γ), t

d
3(β), tl5(γ), t

l
6(γ) has no cy-

cles (Fig. 3(c)).

Fig. 3. Examples of Cycles

Two cycles with ends tk1 , tk2 , belonging to the same
operation, where tk1 precedes tk2 are equivalent if there is
no cycle with a start t′ preceding tk2 and not preceding tk1
(t′ ∈ [tk1 , tk2)).

The equivalence of cycles defines an equivalence relation
and corresponding division of cycles into equivalence classes.

Holding cycle is an equivalence class of cycles.

C. The Notion of Context Switch

Let σ = t1(α1), . . . , tk(αk), tk+1(αk+1), . . . , tn(αn) be a
trace.

We say that there is a context switch between tk(αk),
tk+1(αk+1) if αk 6= αk+1. Context switch is nonpreemptive
if tk(αk) is the last transition in the operation trace. Other-
wise context switch is called preemptive which means that a
scheduler suspends the executions of the running thread at an
arbitrary point. Note that context switches between different
operations in the same thread are defined as nonpreemptive.

109 of 168

The number of preemptive context switches in a trace σ we
denote as csw(σ). For instance, csw(σ2) = 5, csw(σ3) = 8.

Theorem 1: If the number of holding cycles in a trace σ is
k then there exists a trace σ′ such that H(σ) = H(σ′) and
csw(σ′) ≤ k.
Proof of the theorem can be found in the Appendix on page
6.

Corollary 1: If there is no reachable traces with cycles then
program is self-linearizable.
If there is no cycles in a trace σ then it is equivalent to a trace
σ′ without preemptive switches. Hence σ′ is a sequential trace
and the program is self-linearizable.

V. CYCLECOUNT ALGORITHM

Traditional model checking algorithms suffer from state
explosion problem. It is not difficult to show that the number
of executions grows exponentially both in the length of thread
traces and in the number of threads. More precisely, (nm)!

(m!)n ,
where n is the number of threads, m is the maximal length of
thread trace. Promising approach for solving this problem is
bounding the number of context switches. This idea appeared
in [13] and in [10] it was evaluated in practice. In the approach
the number of executions with k switches is estimated as
(n2m)kn!, i.e. polynomial in the trace length. Empirical results
show that 90% of state coverage can be achieved with eight
context switches and the majority of errors are detected even
with two switches. The novel result of our paper is that we
can guarantee linearizability if we apply context-bounding
search algorithm [10] with a bound calculated by CycleCount
algorithm (Fig. 4). The linearizability of each trace found
during the search we check using one of existing methods.
For example, if we have a recognizing automaton as in [1] we
can check it in O(m).

CycleCount algorithm takes user threads Ψ, i.e. ψ1, . . . , ψn,
where ψi = p0, . . . , pni and for each subprogram p it takes a
complete set of operation traces traces(p). The completeness
means, that any operation trace that can occur in executions of
Sys(Ψ) should be in traces(p). Execution traces of threads
in the algorithm are overapproximated as traces(ψi) =
traces(p0)× · · · × traces(pni). Execution traces of program
with Ψ are overapproximated as all possible interleavings of
thread traces traces(ψ1), . . . , traces(ψn).

Complexity of the algorithm is O(n(mk)3l2), where n is
the max number of threads, m is the max number operations in
a thread, k is the max number of traces for a single operation,
l is the max operation trace length.

For Cell example the complete set of operation traces is as
follows:
insert:
σi1 = ti1, t

i
2, t

i
3, t

i
5, t

i
6, t

i
7

σi2 = ti1, t
i
2, t

i
4, t

i
8

delete:
σd1 = td1, t

d
2, t

d
3

lookUp:
σl1 = tl1, t

l
2, t

l
3, t

l
5, t

l
6

σl2 = tl1, t
l
2, t

l
4, t

l
7

K := 0
For each thread ψi

For each operation pj ∈ ψi
For each operation trace σk ∈ traces(pj)

For each σ′ ∈ op′ : ψ(op′) 6= ψ(opj)
Find Dk(σ′) = {t ∈ σ | ∃t′ ∈ σ′ : (t′, t) ∈ D(Ψ)}
If Dk(σ′) 6= ∅, then

Let E(σ′) = {σ′}
∪ {traces(ôp) | ψ(ôp) 6= ψ(op′), ψ(opj)}.

Else let E(σ′) = ∅.
For each σ′ ∈ op′ : ψ(op′) 6= ψ(opj)

Mark transitions t ∈ σk: L(t) = {B,E, τ}.
Let LE =

⋃
σ̂∈E(σ′)Dk(σ̂).

If LE 6= ∅
Let LB = {t′ ∈ Dk(σ′) | t′ precedes tr}.
where tr is the most right end in LE .

Else let LB = ∅.
Transitions in LB we mark as B (starts),
LE – E(ends), the others – τ .

K(σk) is the number of continuous intervals
of {E, τ}, i.e. ends not separated by starts.

K := K +K(σk)

Fig. 4. CycleCount Algorithm

Suppose that a thread α executes operation pinsert, β exe-
cutes pdelete, γ executes plookUp. Then CycleCount(β, γ) =
0, because there is no cycles. CycleCount(α, γ) = 2, because
we have cycles with ends ti6, tl5. CycleCount(α, β, γ) = 3,
because we have cycles with ends ti5, ti6, tl5. Cycle with end tl5
(5) is shown in Fig. 3(a). Cycles (4,6) with end ti6 are shown
in Fig. 3(a), 3(b). Cycle

ti2(α) < td2(β) = td3(β) < tl1(γ) = tl5(γ) < ti5(α) = ti2(α)
(7)

is shown in Fig. 3(d). Here td3(β) < tl1(γ), because ν(td3(β)) =
op end and tl1(γ) = op begin.

VI. DISCUSSION

While formulating CycleCount algorithm in section V we
assumed that we have complete set of operation traces. One
way to get the traces in practice is to run a test suite. Moreover,
our experience in analysing multithreaded programs suggests
that in most cases complete set of traces can be generated
even by sequential executions. In the worst case it requires
minimal number of switches. For ensuring completeness the
existing tools measuring path coverage [2] can be used.

Note, that the number of context switches in execution is
bounded by maximal number. There are at most

∑

ψi∈Ψ

∑

pi
1,...,p

i
ni

Maxσ∈traces(pi
j
)(|σ| − 1),

context switches, i.e. not more than the sum of context
switches in the longest operation traces for each thread.
Besides, context switches can occur only between transitions
inside operation trace, i.e. |σ| − 1. Table 5 shows maximal

110 of 168

Threads CycleCount POR Maximum
β, γ 0 1 6
α, γ 2 3 9
α, β, γ 3 3 11

Fig. 5. Context Switch Bounds

bounds for Cell example. We can see, that in comparison with
maximal bounds CycleCount algorithm has an advantage.

Results of the algorithm CycleCount can be improved. We
notice three reasons why the algorithm gives crude estimates.
First, theorem 1 does not take into account the fact that several
cycles can be broken by one switch. For instance, two cycles
in Fig.3(a) can be broken by one context switch instead of
two.

Second, CycleCount algorithm does not detect contradictory
cycles, i.e. cycles which can not appear together in one trace,
but can appear in different ones. For example, while running
CycleCount(α, β, γ) cycle (7) does not appear together with
(4), because the same transition ti5 is both start of the cycle
(4), and end of (7) related with the same transition tl5.

Third, algorithm does not consider nonappearance of transi-
tions between the other ones. Such situation occur in acquiring
locks. Transitions from mutual exclusion intervals cannot
interfere with each other, i.e. at first the instructions from the
one interval will be executed then the rest ones.

VII. RELATED WORK & CONCLUSIONS

Novelty of the results of the paper is in estimation of upper
bound of context switches which provided to context-bounding
algorithm will guarantee linearizability of the program. Along
with context bounding algorithm there are heuristic search and
partial order reduction (POR) which reduce the number of
executions. In comparison with heuristic search our method
can guarantee linearizability. The same as in our estimations
the key notion in POR is independence. In this sense our
derivation of upper bound is a reduction of non linearizable
traces to non linearizable traces with at most k switches.

Table 5 shows the number of context switches in traces
found with POR search in the lucky case of a search order.
The benefit of CycleCount can be explained by the fact that
it knows operation traces in advance, hence reductions can be
calculated before search of actual program executions.

Our future work is to improve CycleCount algorithm and
implement it with one of model checking engines.

REFERENCES

[1] Rajeev Alur, Ken McMillan, and Doron Peled. Model-checking of
correctness conditions for concurrent objects. In LICS ’96: Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science,
pages 219–228, Washington, DC, USA, 1996. IEEE Computer Society.

[2] Robert V. Binder. Testing object-oriented systems: models, patterns,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[3] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL ’04: Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 256–267, New York, NY, USA, 2004. ACM.

[4] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduc-
tion for model checking software. SIGPLAN Not., 40(1):110–121, 2005.

[5] Patrice Godefroid. Partial-Order Methods for the Verification of Con-
current Systems: An Approach to the State-Explosion Problem. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996. Foreword By-Pierre
Wolper.

[6] John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity spec-
ifications for concurrent object-oriented software using model-checking.
In In Proceedings of the International Conference on Verification, Model
Checking and Abstract Interpretation, pages 175–190. Springer, 2004.

[7] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[8] A. Khoroshilov. Specification and testing components with asynchronous
interfaces. PhD thesis. ISP RAS, Moscow, 2006.

[9] Leslie Lamport. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst., 5(2):190–222, 1983.

[10] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding
for systematic testing of multithreaded programs. SIGPLAN Not.,
42(6):446–455, 2007.

[11] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, 1979.

[12] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In CAV ’94: Proceedings of the 6th International Conference
on Computer Aided Verification, pages 377–390, London, UK, 1994.
Springer-Verlag.

[13] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of
concurrent software. In In TACAS, pages 93–107. Springer, 2005.

[14] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Prov-
ing correctness of highly-concurrent linearisable objects. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 129–136, New York, NY,
USA, 2006. ACM.

[15] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for
multithreaded programs. IEEE Transactions on Software Engineering,
32(2):93–110, 2006.

APPENDIX

Theorem 2: If the number of holding cycles in a trace σ is
k then there exists a trace σ′ such that H(σ) = H(σ′) and
csw(σ′) ≤ k.

Proof.
Let β1, . . . , βn are operations in a trace σ.

β1 = t11 . . . t
1
q1

. . .
βn = tn1 . . . t

n
qn

A division Ξ is
β1 = β1

1 . . . β
p1
1

. . .
βn = β1

n . . . β
pn
n

where βli is a union of neighbouring transitions in the same
operation trace.

Given Ξ we can define partial order HB (βli ≺ βmj) on it.
Definition 7: Partial order HB on Ξ is consistent if
1) ∀i ∀ l < m holds βli ≺ βmi
2) ∀ t1 < t2 in σ, t1 in βli , t2 in βmj holds βli ≺ βmj .
Lemma 1: If partial order HB is consistent on the division

Ξ then ∃σ′ such that H(σ) = H(σ′) and csw(σ′) ≤ (p1 −
1) + · · ·+ (pn − 1).
As σ′ it is sufficient to take any trace composed from βli , with
respect to partial order HB. The number of context switches
for βi is pi − 1. σ′ can be derived from σ by interchanging
transitions ti(αi) 6≤ tj(αj), because it preserves equivalence
of histories (Statement 1). From consistency of HB it follows

111 of 168

that transitions for which ti(αi) ≤ tj(αj) need not to be
interchanged.

Now for proving theorem we need to choose division Ξ
such that

∑n
i=1(pi − 1) ≤ k and to choose consistent partial

order HB on it.
Choosing division. For each βi. If there is no cycles then

βi = β1
i . Otherwise, suppose there is s holding cycles.

tk1 , tk2 , . . . , tks are the most left ends of cycles in each holding
cycle (i.e. tkj is the most left end of the cycles in a holding
cycle j).

Suppose that tk1 , tk2 , . . . , tks appear in βi in the same order.
Chose division βi:
β1
i = [op begin, tk1)
β2
i = [tk1 , tk2)
β3
i = [tk2 , tk3)

. . .
βs+1
i = [tks , op end]
We define relation < on Ξ as follows. βli < βmj if one of

the following conditions holds
1) i = j, l < m
2) ∃ t1 in βli , t2 in βmj : t1 < t2.
We define HB (≺) on Ξ as a transitive closure of <.

Lets show that ≺ is consistent partial order. Consistency
immediately follows from definition of <. Lets show that ≺
is a partial order.

Proof by contradiction. Let exists βli , β
m
j such that βli ≺ βmj

and βmj ≺ βli .
Hence there exists chains

βli < βl1i1 < . . . < βmj
βmj < βm1

j1
< . . . < βli

or
βli < βl1i1 < . . . < βmj < βm1

j1
< . . . < βli

Hence there exists a sequence t1(βi) ≤ t2(βi1) ≤ . . . ≤
tw(βmj) ≤ tw+1(βj1) ≤ . . . ≤ t′(βi). Two signes are strictly
less, because there should appear β̂ 6= βi.

Either t1 precedes t′ then let ta = t1, tb = t′ or t1 does
not precede t′. Then in one of the equivalences . . . < tb(β̂) =
. . . = ta(β̂) < . . ., ta precedes tb. Because otherwise, if in all
equivalencies tb precedes ta, then t1 precedes t′.
ta precedes tb then exists a cycle: ta(β̂) < . . . ≤ t′(βi) =

t1(βi) ≤ . . . < tb(β̂). This cycle can not be equals to any
cycle with the end which is not later than ta. Hence one of
the most left ends of cycles in holding cycle lies after ta and
not after tb. That contradicts to the chosen division. •

112 of 168

Observable Form of a Timed Finite State Machine

Maxim Gromov, Olga Kondratjeva
Faculty of Radiophysics
Tomsk State University

Tomsk, Russia
E-mail: {gromov, kondratjeva olga}@sibmail.com

Abstract—This paper is devoted to the problem of an
observable form for a given Timed Finite State Machine.
This problem, together with the problem of the number of
states in the observable form, has theoretical value, since it
shows the way to build an observable form, and answers the
question, does an observable form exist for any TFSM. Also
it has a practical use in testing, since Finite State Machine
methods of test generation rely on the fact that specification
of a system is an observable FSM and those methods are
intended to be applied for TFSMs.

Keywords-observable form; non-deterministic Timed Finite
State Machine;

I. INTRODUCTION

Problem of testing communication protocols has drawn
a lot of attention of different researches. The most popular
paradigm for such testing is model based testing, when a
system and its specification are supposed to be described
as models of some kind, and the problem of testing is
re-expressed as a problem of checking relations on those
models. One of the most popular model for communi-
cation protocols description is a Finite State Machine
(FSM) [1] and there are lots of tests generation methods
for FSMs [6]–[8]. These methods suppose, that an FSM
is given in observable form [2]. But FSM as a model
has some limitations, one of which is that FSM does not
consider time explicitly, but a communication protocol
usualy has different behaviour depending on the time
elapsed after last message it has receved or sent. This issue
can be dealt with by direct introduction delay transitions
into FSMs and such a model has been called Timed Finite
State Machine(TFSM) [?], [4].

New model rises a problem of new methods for test
generation. The obvious solution to this problem is to
adopt well-known methods of test generation for regular
FSMs. And this, as a consequence, gives a problem of an
observable form for a given non-observable TFSM. In our
work we give a solution to this problem as an observable
form construction procedure.

The rest of the paper has the following structure. In
section II all necessary definitions and notions are given.
Section III gives some comparison of TFSM with other
timed models. Section IV discusses a problem of observ-
able form construction and gives corresponding procedure.
Section V concludes the paper.

II. PRELIMINARIES

Here and further N denotes the set of natural numbers,
Z+

0 denotes the set of unsigned integer numbers (that is

Z+
0 = N ∪ {0}).
Definition 1. A Timed Finite State Machine (TFSM) is

a sixtuple S = 〈S, I,O, ŝ, λS,∆S〉, where S is finite, not
empty set of states with designated initial state ŝ, I and
O are finite, not empty sets of input and output actions
respectively, λS ⊆ S × I ×O× S is a transition relation,
∆S : S → S × N is a delay function. We assume, that if
∆S(s) = 〈s′,∞〉, then s′ ≡ s.

With every TFSM we associate an internal clock vari-
able χ, which measures time in integer number of ticks
passed from the last state change of the TFSM.

If 〈s, i, o, s′〉 ∈ λS (we denote this fact as s
i/o−−→ s′

and call o an output reaction of the TFSM in the state
s on input action i), then we say, that TFSM S being in
the state s accepts input i, immediately produces output
action o and at the same moment changes state to s′. In
the state s′ clock variable χ is reset to 0.

Function ∆S(s) = 〈s′′, t〉 (denoted as s
t−→ s′′) de-

scribes delay transitions of the TFSM: if no input action
is applied to TFSM S in the state s within t ticks, then
at the moment χ = t it changes its state to s′′ and resets
its clock variable to 0. If ∆S(s) = 〈s,∞〉, then TFSM S
can stay in the state s infinitely long, waiting for an input
action.

Definition 2. A timed input action is a tuple 〈i, t〉 ∈
∈ I × Z+

0 , meaning that input action i should be applied
to a TFSM at the moment t, after last state change of the
TFSM. A timed input-output pair is a tuple 〈〈i, t〉, o〉 ∈
∈ I ×Z+

0 ×O, usually denoted as 〈i, t〉/o. A timed input
sequence α is a sequence of timed inputs, that is α ∈
∈ (I × Z+

0)∗.
Definition 3. Given a TFSM S = 〈S, I,O, ŝ, λS,∆S〉.
• out(s, i) def= {o ∈ O | ∃s′ ∈ S : 〈s, i, o, s′〉 ∈ λS} –

set of output reactions of the TFSM S in the state s
on the input i.

• [[s]]i/o
def= {s′ ∈ S | 〈s, i, o, s′〉 ∈ λS} – set of states,

reachable from the state s under input-output pair
〈i, o〉 ∈ I ×O.

• [[s]]t – is such state s′, that TFSM S reaches s′ from
s after t time units, that is there exist states s ≡ s1,
s2, . . . , s′ ≡ sn and s1

t1−→ s2
t2−→ s3 . . .

tn−1−−−→
sn and Σn−1

j=1 tj 6 t < Σn
j=1tj , where ∆S(sj) =

〈sj+1, tj〉, j = 1, n. Note, that due to the fact, that
∆S is completely defined function on the set S, such
a state s′ always exists and is unique.

• [[s]]〈i,t〉/o
def= [[[[s]]t]]i/o – set of states, reachable from

113 of 168

the state s under timed input-output pair 〈i, t〉/o. If
s′ ∈ [[s]]〈i,t〉/o, then we say, that there is a transition
form the state s to the state s′ under the timed input
〈i, t〉 with output reaction o and denote this fact as

s
〈i,t〉/o−−−−→ s′.

• out(s, 〈i, t〉) def= out([[s]]t, i) – set of output reactions
of the TFSM S on timed input 〈i, t〉.

Definition 4. Given a TFSM S and timed input sequnce
α = 〈i1, t1〉 · 〈i1, t1〉 · . . . · 〈in, tn〉. We say, that timed
input sequnce α brings TFSM S from the state s to the
state s′ if there exist such states s1, s2, . . . , sn−1 and
output sequence β = o1 · o2 · . . . · on, that the following
property holds: s

〈i1,t1〉/o1−−−−−−→ s1
〈i2,t2〉/o2−−−−−−→ s2

〈i3,t3〉/o3−−−−−−→
. . .

〈in−1,tn−1〉/on−1−−−−−−−−−−−→ sn−1
〈in,tn〉/on−−−−−−−→ s′. We denote this

fact as s
α/β−−→ s′ and call the sequence β output reaction

of TFSM S on timed input sequence α and the pair α/β
timed input-output sequence of the TFSM S in the state
s. The set of all input-output sequnces of the TFSM S in
the state s we shall denote as ΓS(s).

All notions from Definition 3 are naturally extended to
timed input-output sequences.

Definition 5. Two TFSMs S and P are called equiva-
lent, iff ΓS(ŝ) = ΓP(p̂).

Definition 6. Given a TFSM S.
• TFSM S is called deterministic, iff for any pair
〈s, i〉 ∈ S × I there exists at most one pair 〈o, s′〉 ∈
∈ O × S such, that s

i/o−−→ s′, otherwise it is called
non-deterministic.

• TFSM S is called observable, iff for any triple
〈s, i, o〉 there exists at most one state s′ ∈ S such, that

that s
i/o−−→ s′, otherwise it is called non-observable.

Definition 7. Given non-observable TFSM S. An
observable TFSM P, such that S is equivalent to P we
shall call an observable form of the TFSM S.

III. TIMED FINITE STATE MACHINE AND TIMED
AUTOMATA

Comparing TFSM with classical timed automa-
ton (TA) [9] one can see several differences. Most obvious
is the number of time variables: TFSM always has only
one time variable, while a TA can have any finite number
of time variables. This prevents from turning an arbitrary
TA into TFSM, since it is known [10], that the number of
time variables is not reducable in general case.

Another difference is the roles of actions. TA considers
just a set of actions, labling transitions, without assigning
any roles to them, while in TFSM actions are split
into input and output actions and actions always occur
in pairs “input/output”. This issue can be overcome by
assigning roles to actions and, eo ipso, by consideration
of timed atomata with inputs and outputs (TAIO) [11] and
restricting TAIO to the form, when output action always
comes after input action. TAIO model also overcomes an
issue of the time behaviour representation. In a TFSM

it is done in a form of time delay transitions. A TAIO
analogue of time delay transitions is a transition with
unobservable action τ . Howevere, the latter does not mean,
that a TAIO is more general model, than TFSM, because
in general case TAIO, which has been gotten from TFSM,
can occur nondeterministic, even if given TFSM was
deterministic and no one has shown yet, that such a TAIO
is determinizable. This should be done, since it is known,
that in general nondeterministic TA (and TAIO as well) is
not determinizable [10].

IV. BUILDING OBSERVABLE FORM OF A TFSM

A. A State Stay Time

In the theory non-deterministic Finite State Machines
(FSM) to build an observable form G of a given non-
observable FSM F one should map subsets of states of the
FSM F , which appear due to non-observable transitions
(transitions from a given state under the same input-output
pair to a diffrent states) to states of G [5]. We shall adopt
the same idea to TFSMs with the following modification.
Due to delay transitions some set of states can appear
with different values of the internal time variable χ for
each state in the considering set of states. This leads to
the necessity to keep value of internal time variable for
each state as it is done for intersection of TFSMs [4]. For
example, let us imaging, that we have the following delay
transitions: s1

2−→ s′1
2−→ s1 and s2

3−→ s′2
2−→ s2 and we

consider the set of states {s1, s2} when χ = 0 for each
state. Then we shall get following transitions:

s1
0
s2
0

2−→ s′1
0
s2
2

1−→ s′1
1
s′2
0

1−→ s1
0
s′2
1

1−→ s1
1
s2
0

1−→ . . .

Under each state we write the value of internal time
variable χ. As you can see, pair s1s2 appears in the
sequence twice, but with different times.

B. A Procedure to Build an Observable Form for a Given
TFSM

Given non-observable TFSM S = 〈S, I,O, ŝ, λS,∆S〉.
With each state s ∈ S we associate set Ks =
= {0, 1, . . . , ks − 1}, where ∆S(s) = 〈s′, t〉 and ks = t,
when t 6= ∞, or ks = 0, when t = ∞. Each state
of observable form P for TFSM S corresponds to some
subset of the set U = ∪s∈S{s} × Ks – the set of all
possible pairs state-stay time.

The observable form P for TFSM S is constructed as
follows.

1) Initial state of P is a pair 〈ŝ, 0〉, that is p̂ = {〈ŝ, 0〉}.
2) Let {〈s1, t1〉 . . . 〈sn, tn〉} is under consideration. If,

according to λS , the following holds [[{s1, . . . , sn}]]i/o =
= {s′1, . . . s′m}, then transition

{〈s1, t1〉 . . . 〈sn, tn〉}
i/o−−→ {〈s′1, 0〉, . . . 〈s′m, 0〉}

is in λP .
3) Let {〈s1, t1〉 . . . 〈sn, tn〉} is under consideration and

let ∆S(s1) = 〈s′1, t′1〉, . . . , ∆S(sn) = 〈s′n, t′n〉. Then

∆P({〈s1, t1〉 . . . 〈sn, tn〉}) = 〈{〈s′′1 , t′′1〉 . . . 〈s′′n, t′′n〉}, t〉,

114 of 168

where t = min {(t′1 − t1), . . . , (t′n − tn)} – time for the
earliest delay transition to fire. If t′j = ∞ or (t′j − tt) = t,
then s′′j = s′j and t′′j = 0, otherwise s′′j = sj and t′′j =
tj + t.

Proposition 1. TFSM P, built with decribed procedure,
is an observable form for a given S.

It is known [5], that the number of states in observable
form for a given FSM F is not greater then 2|F | − 1,
where |F | is the number of states in the given FSM F .
This estimation comes from the fact, that the number of
all possible non-empty subsets of the state space F is
exactly 2|F | − 1 and only such subsets describe states in
observable form. We use the same reasoning to estimate
the states number upper bound in observable form P for
non-observable TFSM S. Since to describe states in P we
use non-empty subsets of the set U = ∪s∈S{s}×Ks, then
the number of states in P is limited by the number of such
subsets, that is |P | 6 2|U | − 1 = 2Σs∈Sks − 1, ks = |Ks|.
But this estimation is too rough, since we do not take into
account the fact, that due to observable form construction
procedure, any state p = {〈s1, t1〉, . . . , 〈sn, tn〉} of the
observable form P is so, that at least one tj ∈ {t1, . . . , tn}
equals 0. For example, in extreme case when for any
state s of the given non-observable TFSM S holds the
following: ∆S(s) = 〈s′, t〉 (time of a delay transition is
the same for any state), all states of the observable form
are subsets like the following {〈s1, 0〉, . . . , 〈sn, 0〉} and
their number is exactly 2|S| − 1.

For the reasons described above the general estimation
for the number of states in observable form for a given
TFSM is no reachable (as opposed to the estimation for
regular FSMs [5]).

V. CONCLUSIONS

In this paper we have considered the problem of the
observable form for a TFSM. We have provided the
procedure to build an observable form for a given non-
observable TFSM and gave some estimation for the num-
ber of states in observable form.

The open problem of this paper is the problem of more
accurate estimation of number of states in observable form
of a given TFSM and the question of its reachability.

REFERENCES

[1] ЕвтушенкоН.В., ПетренкоА.Ф., ВетроваМ.В.
Недетерминированные автоматы: анализ и синтез.
Ч. 1. Отношения и операции: Учебное пособие.
— Томск: Томский государственный университет,
2006. — 142 с.

[2] StarkeP.H. Abstract Automata // Elsiver, 1972. —
419 pp.

[3] MerayoM.G., NúñezM. and Rodŕiguez I. Formal
Testing from Timed Finite State Machines //
Computer Networks. — 2008. — Vol. 52, No. 2. — Pp.
432-460.

[4] ГромовМ.Л., ЕвтушенкоН.В. Синтез различаю-
щих экспериментов для временных автоматов //
поступила в редакцию журнала Программирова-
ние.

[5] ТрахтенбротБ.А., БарздиньЯ.М. Конечные авто-
маты (поведение и синтез). — М.: Наука, 1970. —
400с.

[6] BochmannG.v. and PetrenkoA.F. Protocol testing:
review of methods and relevance for software testing
// Proceedings of ISSTA’94. — New York, NY, USA:
ACM, 1994. — Pp. 109-124

[7] PetrenkoA.F. and YevtushenkoN.V. Testing from
Partial Deterministic FSM Specifications // IEEE
Trans. Comput. — 2005. — Vol. 54, No. 9. — Pp. 1154-
1165.

[8] HieronsR.M. Testing from a Nondeterministic Finite
State Machine Using Adaptive State Counting //
IEEE Trans. Comput. — 2004. — Vol. 53, No. 10. —
Pp. 1330-1342.

[9] AlurR. and Dill D. A Theory of Timed Automata //
Theoretical Computer Science. — 1994. — Vol. 126. —
Pp. 183-235.

[10] Tripakis. S. Folk theorems on the determinization and
minimization of timed automata
Information Processing Letters. — 2006. — Vol. 99,
Issue 6. — Pp. 222-226.

[11] KrichenM. and Tripakis S. State Identification
Problems for Timed Automata // LNCS. — 2005. —
Vol. 3502. — Pp. 175-191.

115 of 168

Abstract—Formal model based test derivation is now widely

used in software testing. One of the formal models which is very
close to software implementations is the model of an Extended
Finite State machine (EFSM). Compared with an FSM the EFSM
has predicates for condition representation and context variables.
However, when deriving tests for an EFSM very complex
reachability and distinguishability problem should be solved. For
this reason, when deriving tests from an EFSM a number of FSM
slices are used. In this paper, we discuss how to derive a test
using an FSM slice with limited number of states and how to
represent data in the PC memory for fast generation of such slice.
Preliminary experimental results with protocol EFSMs are
provided.

Index Terms—Software testing, EFSM, computer
representation

I. INTRODUCTION
HE complexity of digital systems and devices increases

quickly and software is a usual part of almost each system
or device. Thus, ad hoc testing of software implementations
now is insufficient and a number of methods for formal model
based software testing are proposed and widely used, since
model based testing provides tests with the guaranteed fault
coverage.

One of formal models which is very close to software
implementations is the model of an Extended Finite State
machine (EFSM). The EFSM model extends the classic FSM
model with input and output parameters, context variables,
operations and predicates defined over context variables and
input parameters. If specification domains of input parameters
and context variables are finite then an EFSM can be unfolded
to an equivalent FSM (FSM slice) by simulating its behavior
with respect to all possible values of context variables and
input vectors [1]. A test suite then is derived from the
corresponding equivalent FSM. However, the number of states
of such corresponding FSM grows exponentially, and thus, it
is necessary to limit the maximal number of states and in this
case, the corresponding FSM becomes nondeterministic. In
this paper, we show how tests can be derived for such
nondeterministic FSM slice. In order to derive tests effectively
an efficient computer representation of the complex EFSM
model is proposed in this paper.

The structure of the paper is as follows. Section II contains
preliminaries and a discussion how tests for an EFSM can be

1 This work is partly supported by FCP grant № 02.514.12.402.

derived when the number of a corresponding FSM is limited.
Section III is devoted to EFSM computer representation.
Section IV discusses preliminary experimental results with
protocol EFSMs while Section V concludes the paper.

II. PRELIMINARIES
The EFSM Model

An extended finite state machine [2] A is a pair (S, T) of a set
of states S and a set of transitions T between states from S,
such that each transition t ∈ T is a tuple (s, x, P, op, y, up, s)́,
where:

s, s∈́ S are the initial and final states of a transition;
x ∈ X is an input, and Dinp-x is the set of possible input

vectors, associated with the input x, i.e., each component of an
input vector is the value of a corresponding input parameter
associated with x;

y ∈ Y is output, where Y is the set of outputs, and Dout-y is
the set of possible output vectors, associated with the output
y, i.e. each component of an output vector corresponds to an
output parameter associated with y;

P, op, and up are functions, defined over input parameters,
and context variables, namely:

P: Dinp-x × DV → {True, False} is a predicate, where DV is a
set of context vectors v;

op: Dinp-x × DV → Dout-y is an output parameter update
function;

up: Dinp-x × DV → DV is a context update function.
As in [2], we use the following definitions.
Given an input x and a vector ρρρρ ∈ Dinp-x, the pair (x, ρρρρ) and

vector from Dinp-x, is called a parameterized input. A sequence
of parameterized inputs is called a parameterized input
sequence. A context vector v ∈ DV is called a context of M. A
configuration of M is a pair (s, v). Given a parameterized input
sequence of an EFSM we can calculate the corresponding
parameterized output sequence by simulating the behavior of
the EFSM under the input sequence starting from the initial
state and initial values of the context variables.

As an example, consider the EFSM E in Figure 2 that
corresponds to the C function f presented in Figure 1.

On EFSM-based Test Derivation Strategies 1

Aleksandr Nikitin, Natalia Kushik

T

116 of 168

int f(int *a, int size_a)
{
int i, m;
i = 0;
m = a[0];
while(i < size_a)
{
if(m < a[i]) m = a[i];
i++;
}
return m;
}
Figure 1. The function f

Function f in Figure 1 returns the maximal integer in the

array a where size_a is the cardinality of a. To obtain an
EFSM that corresponds to the given C function we first
determine the set S of states. Let S be the set S = {s1, s2, s3}
where s1, s2, s3 are three different points in the C function. The
state s1 corresponds to the beginning of the function f; the state
s2 represents the state of the program before comparing i with
size_a; the program moves to the state s3 if i is less than
size_a. The set X of input consists of the array pointer *a and
of the cardinality size_a of a. Input *a is a parameterized
input, here index (item number) is a parameter. Output y ∈ Y
is not parameterized; it corresponds to the variable m that is
returned by the function f. We also add special input (and
output) ‘NULL’ to specify cases when program accepts (or
returns) no external data. The set P of predicates consists of P1
and P2: P1 is true if i is less than size_a while P2 is true if m is
less than a[i]. The variable i is the context variable. The
corresponding EFSM E is presented in Figure 2.

Figure 2. The EFSM E

In this paper, we consider deterministic and complete

EFSMs, i.e., for each parameterized input sequence there
exists a single parameterized output sequence that is produced

by the EFSM for the given input sequence.

Unfolding a given EFSM to an equivalent FSM
Given an EFSM A, in order to obtain an equivalent FSM F

we proceed as follows. Given a state s of EFSM A, a context
vector v, an input x and vector ρρρρ of input parameters, we
derive the transition from configuration (s, v) under input (x,
ρρρρ) in the corresponding FSM F. We first determine the
outgoing transition (s, x, P, op, y, up, ś) from state s where the
predicate P is true for input vector ρρρρ and context vector v,
update the context vector to the vector v´ according to the
assignment up of this transition, determine the parameterized
output yωωωω and add the transition (sv, xρρρρ, yωωωω, ś v´) to the set of
transitions of the FSM. The obtained FSM has the same
number of states as the number of different configurations (s,
v) of the EFSM F that are reachable from the initial state.

Such unfolding can help to detect transfer, predicate, and
assignment faults of the given EFSM A. However, it is known
that the simulation usually leads to a state explosion problem.
That is the reason why the maximal number of states of the
FSM F is limited by integer B, for example. In this case, all
the states corresponding to configurations (s, v) with the
numbers that are greater then B are marked by a special state
DNC (don’t care state). Two ways are then appropriate for
FSM F testing.

a) Transitions with DNC states are deleted from F and F is
tested as a partial FSM [3].

b) FSM F is tested as completely specified FSM [4] and
then the test suit is “cleaned” by deleting all suffixes of test
sequences that lead to the DNC state. However, the fault
coverage of such a test suite is still unknown.

As an EFSM model is rather complex, a suitable computer
EFSM representation can be of a big help when unfolding and
deriving tests automatically.

III. EFSM COMPUTER REPRESENTATION
 Сomputer representation of the EFSM A uses the following

items kept in the PC memory: a number of states of A, an
array of parameterized inputs, an array of parameterized
outputs, an array of context variables, an array of functions op
and up, an array of integers that are used in functions op and
up, an array of predicates, and an array of transitions. We
define a set of structures in the C language for the computer
representation of an EFSM.

Structure input is used for parameterized (or not
parameterized) input representation.

struct input
{
char *input_name;
int par_quantity;
char **parameters_names;
float *parameters_values;
};
The field input_name of the structure input captures initial

input name while the par_quantity field is a number of input

117 of 168

parameters. The parameters_names array saves initial
parameter names and the parameters_values array is used for
an assignment of the input parameters.

Structure output is similar to input structure and is used for
parameterized (or not parameterized) output representation.

struct output
{
char *output_name;
int par_quantity;
char **parameters_names;
float *parameters_values;
};
The field output_name of the structure output captures

initial output name; the par_quantity field is a number of
output parameters. The parameters_names array is also used
for initial parameters names and the parameters_values array
keeps an assignment of the output parameters.

We use structure variable for context variable
representation.

struct variable
{
char *variable_name;
float value;
};
The field variable_name of the structure variable

corresponds to initial name of the variable while value of the
context variable is stored in the value field.

When simulating behavior of the EFSM A we use integers
instead of strings. In other words, we hash inputs, outputs,
variables, functions and predicates and use corresponding
integer identifiers when deriving tests. We note that such a
hashing significantly accelerates the simulation process.
Reverse Polish Notation [5] is utilized for faster translation of
EFSM predicates and functions into computer representation.
That is the reason why the structure function has two fields.

struct function
{
int *rpr;
int rpr_size;
};
The Reverse Polish Notation that corresponds to the

function is stored in the rpr array of rpr_size items. The items
of the rpr array are identifiers of parameterized inputs or
context variables. Arithmetic operators are also hashed and
stored in the rpr array. We use special rpr item ‘–1’ to
separate operators and operands of the Reverse Polish
Notation.

When constructing the Reverse Polish Notation for the
predicate P we hash comparison operators and divide an
arithmetic expression into two parts: the arithmetic expression
that is in the left hand side of the comparison operator is the
‘ left notation’. In the right hand side of the comparison
operator is the ‘right notation’. Correspondingly, we consider
only predicates where left hand and right hand side
expressions are separated with one of the following
comparison operators {<, >, >=, <=, ==, !=}. Therefore,
structure predicate has four fields.

struct predicate
{
int *rpr_left;
int rpr_left_size;
int *rpr_right;
int rpr_right_size;
int sign_op;
};
The rpr_left array of rpr_left_size items corresponds to the

‘left notation’ while rpr_left array of rpr_left_size items are
used for the ‘right notation’. The sign_op field corresponds to
the comparison operator identifier.

As the EFSM is a pair (S, T) of a set of states S and a set of
transitions T, it is necessary to save all the transitions of the set
T. Correspondingly we define a structure transition for t ∈ T.

struct transition
{
int s;
int s_prime;
input i;
output o;
int *predicate_numbers;
int *function_numbers;
};
Integers s and s_prime are initial and final states of the

transition t = (s, x, P, op, y, up, s)́ while x and y are
parameterized input and output of the transition. Items of the
predicate_numbers array and function_numbers array are
identifiers of predicates and functions which guard the
transition t.

Therefore, structure EFSM consists of the following data
items.

struct EFSM
{
int s_number;
input *input_array;
int input_array_size;
output *output_array;
int output_array_size;
variable *variable_array;
int variable_array_size;
int *integers_array;
int integers_array_size;
function *functions_array;
int function_array_size;
predicate *predicates_array;
int predicates_array_size;
transition *transitions_array;
int transitions_array_size;
};
s_number is the number of states of the EFSM;.
input_array (of input_array_size items) and output_array

(of output_array_size items) form the sets of parameterized
inputs and outputs;

 variable_array stores variable_array_size context
variables.

If predicates or functions use constant integers then these

118 of 168

integers are saved in the integers_array. The functions and the
predicates are stored in the functions_array and the
predicates_array. The set T of transitions is listed in the
transitions_array.

IV. EXPERIMENTAL RESULTS
We experimented with several protocol EFSMs. The

preliminary experimental results show that for several protocol
EFSM the unfolding procedure at an appropriate abstraction
level can be performed without limiting the maximal number
of states of an equivalent FSM. Those protocols are POP3,
SMTP, and TIME [6]. The reason is that the number of states
of the corresponding protocol EFSMs (at an appropriate
abstraction level) is up to four and the number of context
variables is less than three while the number of transitions
does not exceed 16. The equivalent FSM for POP3 EFSM has
six states and 106 transitions while the equivalent FSM for
SMTP EFSM has four states and 36 transitions. The TIME
EFSM is rather small that is why the number of TIME FSM
transitions is 12. More detailed information about performed
experiments is presented in Table 1.

Pro-
tocol

Num-
ber of
EFSM
states

Number
of EFSM
context
variables

Number
of
EFSM
transi-
tions

Number
of
equivalent
FSM
states

Number
of FSM
transi-
tions

POP
3

4 2 16 6 106

SM
TP

2 1 8 4 36

TIM
E

2 0 2 2 12

Table 1. Preliminary experimental results

V. CONCLUSIONS
In this paper, we described the EFSM computer

representation that is of a big help when automatically
unfolding a given EFSM to an equivalent FSM. Such
unfolding needs the explicit enumeration of all different
configurations reachable from the initial EFSM state. As the
enumeration can lead to the state explosion problem, the
maximal number of an equivalent FSM is usually limited. We
experimented with several protocol EFSMs and our
preliminary experimental results show that the unfolding
procedure (at an appropriate description level) can sometimes
be performed without limiting the maximal number of states
of an equivalent FSM. More experiments with different
protocol EFSMs are needed in order to estimate the
effectiveness of the developed software.

REFERENCES
[1] A. Faro and A. Petrenko. Sequence Generation from EFSMs for

Protocol Testing. In Proc. of COMNET’90, Budapest, 1990.
[2] A. Petrenko, S. Boroday, R. Groz. Confirming configurations in EFSM

testing. IEEE Trans. on Software Engineering, 2004, 30(1), pp. 29-42.
[3] A. Petrenko and N. Yevtushenko. Testing from Partial Deterministic

FSM Specifications. IEEE Trans. on Computers, 2005.
[4] R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, N.Yevtushenko.

Experimental evaluation of FSM-based testing methods. In: Proc. of the
IEEE International Conference on Software Engineering and Formal
Methods (SEFM05). Germany, pp. 23-32.

[5] V.A. Sibirjakova. Reverse Polish Notation: manual. Tomsk State
University Publishers, 1997, 27 p.

[6] N.V. Spitsyna, A.V. Shabaldin. Web-programming: manual. Tomsk
State University Publishers, 2002, 50 p.

119 of 168

Comparing GALS Architectures and Communicational Protocols

S. O. Bykov

dept. of Computer Engineering

Vladimir State University

Vladimir, Russia

e-mail: sobykov@gmail.com

S.G. Mosin

dept. of Computer Engineering

Vladimir State University

Vladimir, Russia

e-mail: smosin@vpti.vladimir.ru

Abstract—This paper describes the existing GALS (Globally

Asynchronous Locally Synchronous) architectures and

communicational protocols with respect to their applications

for meeting concrete requirements. So it should help in

decision-making during designing asynchronous systems.

Keywords-GALS systems, pausible clocks, handshake

protocols.

I. INTRODUCTION

The problem of distributing the global clock in a chip

with minimal clock skew is getting difficult to solve due to

the increasing complexity of digital circuits. Additionally

the integration of complex systems on chip (SoC) requires a

multitude of clock frequencies to be integrated on a

common die. A fundamentally different synchronization

strategy is used in asynchronous design methodologies. So

far as synchronous digital design is well understood and the

design methodology and flow are established, it is more

effective to combine this two strategies and get advantages

of both of them. This idea has been realized in the GALS

(Globally Asynchronous Locally Synchronous) approach.

A GALS system consists of complex digital blocks

operating synchronously. Those blocks are usually

developed using standard synchronous CAD tools and

design flow. However, the operation of the blocks is not

mutually synchronized— that why the term locally

synchronous is used. The locally synchronous blocks

communicate with one another asynchronously; on the

block level (globally), the system is asynchronous. A

common approach is to add an asynchronous wrapper,

which provides an interface from the synchronous

environment to the asynchronous one (and vice versa), to

every locally synchronous block.

There are three main strategies for implementing GALS

systems: pausible clocking, FIFO-based approach, and

boundary synchronization [1]. All of them have their own

advantages and should be applied in special cases.

The most popular communication protocol is handshake

protocol [2]. But also there are some other protocols, for

example, protocols based on clock transfers from sender to

receiver, and choice of protocol to be used should be done

for each concrete design. there are three main requirements

for GALS systems: throughput, area consumption, and

power consumption. Meeting all of them is often

impossible, so one should choose the most important factor

and use it for making decisions during design process. This

paper presents the solution which might help to meet each

requirement.

II. THROUGHPUT

For systems, processing big streams of information and

therefore requiring good throughput, the optimal choice is a

FIFO-based solution. This approach uses asynchronous

FIFO buffers between locally synchronous blocks to hide

the synchronization problem. A SoC architecture that uses

distinct clock domains connected through bisynchronous

FIFO buffers is commonly called a GALS system. Such

systems can tolerate very large interconnect delays and are

also robust with with regard to metastability - a state that

doesn't settle into a stable '0' or '1' logic level within the time

required for proper operation. Designers can use this method

to interconnect asynchronous and synchronous systems and

also to construct synchronous-synchronous and

asynchronous-asynchronous interfaces. Figure 1 diagrams a

typical FIFO interface.

The advantage of FIFO synchronizers is that they don’t

affect the locally synchronous module’s operation, therefore

the FIFO-based approach allows achieving high throughput.

However, with very wide interconnect data buses, FIFO

structures can be costly in terms of silicon area. Also, they

require specialized complex cells to generate the empty/full

flags used for flow control [1]. Another disadvantage of

FIFO-based solution is high power consumption. That is

why this architecture cannot be effective in mobile systems.

In such kind of systems a standard protocol for working

with FIFO is generally used: sender writes data to FIFO and

receiver read it. But there are some systems, for example the

DSP platform described in [3], where data transmission is

performed through communication network. Such solutions

use communicational protocol based on clock transfers from

sender to receiver. Sender sends clock signal with data and

these data are written to FIFO, clocked on write side by sent

120 of 168

Locally
synchronous
module 1 FIFO

buffer

Locally
synchronous
module 2

Data Data

empty
Rd_valid

Rd_enWr_en

full

Write_clock Read_clock

Clock 1 Clock 2

Figure 1. Typical FIFO-based GALS system

Figure 2. Timing diagram for protocol

 based on clock transfers

clock. Receiver reads these data from read side of FIFO.

Timing illustration for this protocol is presented on Figure

2.

III. AREA OVERHEAD AND POWER CONSUMPTION

Area overhead and power consumption can be considered

together, because power consumption is generally related to

area if no special techniques are used. The most effective

solution for these requirements is pausible clocking. This

approach is described in [4]. Figure 3 illustrates the general

structure of such system. The basic idea of this approach is

transferring data between wrappers when both the data

transmitter and data receiver clocks are stopped. This

elegantly solves the problem of synchronization between the

two clock domains [1]. But throughput of this solution

strongly depends on data transfers rate. If the rate is high,

frequent clock pauses will practically stop work of

synchronous block. This problem is solved in boundary

synchronization approach, where data synchronization at the

borders of the locally synchronous island performs without

affecting the inner operation of locally synchronous blocks

and without relying on FIFO buffers. This method can

achieve very reliable data transfer between locally

synchronous blocks. On the other hand, such solutions

generally increase latency and reduce data throughput,

resulting in limited applicability for high-speed systems [1].

Pausible clocking and boundary synchronization

approach require programmable ring oscillators. This is an

inexpensive solution that allows full control of the local

clock. However, it has significant drawbacks. Ring

oscillators are impractical for industrial use. They need

careful calibration because they are very sensitive to

process, voltage, and temperature variations. Moreover,

embedded ring oscillators consume additional power

through continuous switching of the chained inverters.

Solutions, based on pausible clocking, use standard

handshake protocol and its different modifications. Existing

asynchronous handshake protocols are bundled data

protocol, dual-rail data protocol, 1/N data protocol and

single-track data protocol [5]. Timing illustration for

bundled data protocol is presented on Figure 4. Req and Ack

signals need to be changed two times in one transmission

cycle, so it is much slower. It allows reusing existing

synchronous units, and it can be implemented in a small

area, but fail to conquer electromagnetic interference (EMI)

[5]. The advantage of dual-rail data protocol is that the data-

121 of 168

Locally
synchronous
module 1

Output
port

Input
port

Locally
synchronous
module 2

Local
clock

generator
1

Local
clock

generator
2Stretch 1 Stretch 2

Handshake

Data

Asynchronous
wrapper 1

Asynchronous
wrapper 2

Figure 3. GALS system with pausible clocking

Figure 4. Timing diagram for bundled data protocol

validation information can be carried on data themselves,

that there is no need to use Req signal to denote data

validation, thus avoiding the delaymatching efforts brought

by the complex clocking relationship between req signals

and ack signals. Dual-rail data protocol has a better anti-

EMI capability due to the fact that two lines represent one

data. However, the protocol implementation requires extra

chip area (nearly twice as large as the bundle data protocol

does) [5].

IV. APPLICATION OF GALS SOLUTIONS

GALS systems can be used for video coding/decoding.

MPEG-4 decoder is example of system, which requires a

high throughput. All systems, worked with video, must

process big information streams. So, it is necessary to use

FIFO-based solution for such designs, because other

architectures cannot provide needed throughput.

V. CONCLUSION

GALS systems are roughly developing direction in a

modern science. This paper presented some methods for

design such systems. In some cases it may be not optimum,

but generally these solutions can be used for various types

of designs.

REFERENCES

[1] Miloš Krstić, Eckhard Grass, Frank K. Gürkaynak, Pascal Vivet,

“Globally Asynchronous, Locally Synchronous Circuits: Overview
and Outlook”, IEEE Design & Test, v.24 n.5, pp.430-441, September
2007, doi:10.1109/MDT.2007.164

[2] Joep L. W. Kessels, Ad M. G. Peeters, Paul Wielage, Suk-Jin Kim,
“Clock Synchronization through Handshake Signalling”, Eighth
International Symposium on Asynchronus Circuits and Systems
(ASYNC'02), IEEE Computer Society Press, April 2002, doi:

[3] Anh Tran, Dean Truong and Bevan Baas, "A GALS Many-Core
Heterogeneous DSP Platform with Source-Synchronous On-Chip
Interconnection Network," ACM/IEEE International Symposium on
Networks on Chip (NOCS), San Diego, CA, USA, May 2009, pp.
214-223.

[4] K.Y.Yun, R.P.Donohue “Pausible Clocking: A First Step Toward
Heterogenous Systems”, Proc. International Conference on Computer
Design (ICCD), IEEE Computer Society Press. 1996, pp. 118-123.

[5] Xuguang Guan, Duan Zhou, Dan Wang, Yintang Yang, Zhangming
Zhu “A Novel GALS Single-Track Protocol Asynchronous
Communication Circuits”, Pacific-Asia Conference on
Circuits,Communications and System’ 2009(PACCS’09), May 2009,
pp. 269 - 272.

122 of 168

Strategy of selecting power reduction technique for energy-efficient

semiconductor designs

P.V. Parnevich

dept. of Computer Engineering

Vladimir State University

Vladimir, Russia

e-mail: PVParnevich@gmail.com

S.G. Mosin

dept. of Computer Engineering

Vladimir State University

Vladimir, Russia

e-mail: smosin@vpti.vladimir.ru

Abstract – There are a lot of techniques, which oriented on

power consumption reducing. Unfortunately, there is no

such method that is able to meet all the system requirements

for energy minimization. This paper presents a strategy of

power reduction technique selecting that can be used to

make effective decisions in developing energy-efficient

semiconductor designs. Techniques operating at

synchronous and asynchronous schemes are described,

including dynamic voltage and frequency scaling, clock

gating, state-retention power gating and others.

Keywords-energy-efficient technique; clock gating; power

gating; dual voltage scheme; GALS

1. Introduction

The design of an electronic system is almost always

constrained by power and energy considerations –

whether it is battery life for a mobile device, thermal

power dissipation in a high-performance processor or

ultra-low power consumption for a wireless sensing

application. In addition, recent economic forces and

increased environmental awareness have changed the

landscape for new product design. Now energy efficiency

is often the lead discussion as companies formulate new

product strategies. However, even though energy budgets

are playing a larger role in determining the finished

designs, manufacturers realize that the market will not

allow them to compromise on performance.

There are some techniques, like GALS (globally

asynchronous, locally synchronous) systems [1], DVFS

(dynamic voltage and frequency scaling) based techniques

[2], clock gating [3], state-retention power gating (SRPG)

techniques [4], which oriented on power consumption

reducing.

Unfortunately, there is no single power reduction

technique that is able to meet all the system requirements

for energy minimization. The trick is to effectively

combine different techniques to intelligently develop

energy-efficient semiconductor designs.

This paper presents a strategy of power reduction

technique selecting that can be used to make effective

decisions in developing energy-efficient semiconductor

designs.

2. Synchronization strategy selecting

The scientific community is showing great interest in

GALS solutions and architectures nowadays due to their high

performance. However, sometimes it’s profitably to use fully

synchronous schemes, because synchronous digital design

is well understood and the design methodology and flow

are established. Thereby it’s necessary to care about

guaranteeing energy efficiency in both cases.

2.1. GALS systems

A GALS system consists of complex digital blocks

operating synchronously. Those blocks are usually

developed using standard synchronous CAD tools and

design flow. However, the operation of the blocks is not

mutually synchronized – hence the term locally

synchronous. These locally synchronous blocks

communicate with one another asynchronously by using

handshaking protocol.

Since each block is in its own frequency domain, it

becomes possible to reduce the power dissipation and

increase energy efficiency in many ways:

 GALS clocking design allows to utilize simple

local ring oscillator for each core, and hence

eliminates the need of complex and power hungry

global clock trees [5].

 Unused cores can be effectively disconnected by

power gating, and thus reducing leakage.

 When workloads distributed for cores are not

identical, we can allocate different clock

frequencies and supply voltages for these cores

either statically or dynamically. This allows the

total system to consume a lower power than if all

active cores had been operating at a single

frequency and supply voltage [6].

However, there are several reasons why standard design

practice has not adopted GALS techniques. Ring oscillators

are impractical for industrial use. They need careful

calibration because they are very sensitive to process,

voltage, and temperature variations. Moreover, embedded

ring oscillators consume additional power through

continuous switching of the chained inverters.

Another significant drawback is that functional test of

asynchronous circuits is very difficult because most ATE

(Automatic Test Equipment) is cycle based and cannot

provide event-based handshake signals. For GALS circuits,

the process of arbitration and stretching leads to

nondeterministic timing behavior. Therefore, the test result

can differ from chip to chip and from test run to test run.

2.2. Synchronous schemes

Like in GALS systems there are many ways to

increase energy efficiency in synchronous schemes.

123 of 168

mailto:PVParnevich@gmail.com
mailto:smosin@vpti.vladimir.ru

 DVFS allows on-the-fly frequency adjustment

according to existing system performance

requirements. By lowering the frequency, it is

possible to lower the operating voltage (on-the-fly

as well), dramatically reducing the power

consumption. A drawback of the proposed

approach is a reduction in reliability, resulting

from the lower link voltage.

 Clock gating is an effective strategy that is widely

used to help reduce power consumption while

maintaining the same levels of performance and

functionality. A circuit uses more power when it’s

being clocked than when the clock is gated or

turned off. Clocks can consume as much as 40

percent of active power. Shutting off the clocks

and stopping the data toggling in unused portions

of the semiconductor brings sizable energy saving.

In this case the organization of clock management

becomes a crucial task.

 SRPG is a technique that allows the voltage supply

to be reduced to zero for the majority of a block’s

logic gates while maintaining the supply for the

state elements of that block. SRPG can thereby

greatly reduce power consumption when the

application is in stop mode, yet it still

accommodates fast wake up times. Reducing the

supply to zero in stop mode allows both dynamic

and static power to be removed. Retaining the

supply on the state elements allows processing to

continue quickly when exiting stop mode.The

quality of complex power network is critical to the

success of a power-gating design.

3. Energy-efficient technique appliance

The effective combination of energy-efficient

techniques was presented in [7]. The main idea of the

proposed design is to implement a complete Dynamic

Voltage and Frequency Scaling architecture within a

complex GALS NOC.

Each units of the dedicated SoC are arranged around a

fully asynchronous Network-on-Chip. As shown Figure 1,

the NoC units are fully synchronous islands.

Synchronization between the communication router and

the units is done thanks to a pausable clock mechanism

called SAS (containing Synchronous-to-Asynchronous

and Asynchronous-to-Synchronous interfaces). A

programmable Local Clock Generator (LCG), using a

delay line, is implemented within each unit to generate a

variable frequency in a predefined applicative range. The

power unit manages the local unit voltage, sharing a

power switch between a VDD hopping technique and an

ultra-cut-off block. The Power Unit uses two external

voltages : VHIGH and VLOW to be automatically switched

during DVS phases. The Network Interface (NI) is in

charge of communications with respect to NoC protocol

and is also in charge of local voltage and frequency

control for DVFS using a Low Power Manager.

The power management strategy is programmed by

the main CPU, through NoC unit attached Network

Interface’s Low Power Managers, according to required

performance and power constraints. DVFS can be

executed during IP computation and communication

according to their own activity. The only global signals

are regarding units’ reset and off control. The main CPU

is required to directly disable/enable the units for power

off mode and the corresponding reset phase.

Figure 1. DVFS NOC architecture.

The power efficiency of the proposed system has been

evaluated close to 95%.

4. Conclusion

All the described methods are oriented on energy

minimization. The trick is to learn how to use and

combine them effectively to reach more energy savings.

This paper presented a strategy of power reduction

technique selecting that can be used to create low energy

designs.

References

[1] Miloš Krstić, Eckhard Grass, Frank K. Gürkaynak, Pascal Vivet,

“Globally Asynchronous, Locally Synchronous Circuits: Overview
and Outlook”, IEEE Design & Test, v.24 n.5, pp.430-441,
September 2007, doi:10.1109/MDT.2007.164.

[2] Wen-Yew Liang, Shih-Chang Chen, Yang-Lang Chang, and Jyh-
Perng Fang, “Memory-aware dynamic voltage and frequency
prediction for portable devices”, Proc. 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'08), August 2008, pp. 229-236, doi:
10.1109/RTCSA.2008.19.

[3] Jithendra Srinivas, Madhusudan Rao, S. Jairam, H. Udayakumar,
Jagdish Rao, “Clock gating effectiveness metrics: Applications to
power optimization”, Proc. 10th International Symposium on
Quality of Electronic Design, pp. 482-487,
doi:10.1109/ISQED.2009.4810342.

[4] Kanak Agarwal, Kevin Nowka, Harmander Deogun, Dennis
Sylvester, “Power Gating with Multiple Sleep Modes”, Proc. 7th
International Symposium on Quality Electronic Design, pp.633-
637, March 27-29, 2006 , doi:10.1109/ISQED.2006.102.

[5] V. Tiwari, D. Singh, et al., “Reducing power in high-performance
microprocessors”, Proc. 35th annual Design Automation
Conference, pp. 732 – 737, June 1998.

[6] Sebastian Herbert, Diana Marculescu, “Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors”, Proc. 2007
international symposium on Low power electronics and design, pp.
38 – 43, August 27-29, 2007.

[7] E. Beign´e, F. Clermidy, S. Miermont, and P. Vivet, “Dynamic
voltage and frequency scaling architecture for units integration
within a GALS NoC,” in Network on Chip, Proc. International
Symposium, pp. 129–138, 2008, doi:10.1109/NOCS.2008.26.

124 of 168

Contract Specification of Hardware Designs at
Different Abstraction Levels: Application to

Functional Verification
Mikhail Chupilko and Alexander Kamkin

Institute for System Programming of the Russian Academy of Sciences
25, A. Solzhenitsyn st., Moscow, 109004, Russia

E-mail: {chupilko, kamkin}@ispras.ru

Abstract— The paper touches upon the issues of functional
specification and verification of digital hardware at different
abstraction levels. It shows how behavioral models of various
degrees of abstraction can be represented by means of the
contract paradigm and how contract specifications can be applied
to generate test sequences in an automated way. The testing
technique under consideration is based on the traversal of FSM
derived from specifications. Taking into account that contract
specifications are well known to be a high-efficient tool for
constructing response checkers and estimating test coverage,
we can assuredly report that the contract-based approach is a
universal solution for hardware verification at different levels of
abstraction.

I. I NTRODUCTION

Automation of hardware design verification is feasible only
if requirements to hardware are represented in a formal way.
This refers not only to formal methods where using mathemati-
cal models is one of the integral parts but to simulation-based
methods as well. Requirements being represented formally,
i.e., in a machine-readable form, are calledformal specifi-
cations. Basing on such specifications one can automatically
derive a design model (usually, some kind of automaton) and
apply it to functional verification (e.g., to generate stimuli,
check reactions, or estimate test adequacy).

When verifying hardware of different size and complexity
it is reasonable to use specifications and models of different
levels of abstraction. For example, a hardware unit can be
specified cycle-accurately, while description of a whole system
can be done in a more generalized manner. Choice of an
abstraction level depends on the requirements to be specified
(they are not always very accurate) and in many cases is
conditioned by reusability and maintenance reasons – more
accurate specifications are, less reusable they are, and more
labor-consuming their maintenance is.

Nowadays, there are lots of specification-based techniques
for functional verification of hardware, but there is a lack of
unified solutions, which are applicable to various abstraction
levels, e.g., contemporary unit and system verification methods
are completely different. This paper classifies the modeling
levels used in hardware verification and considers how diverse
models can be uniformly described with the help ofcontract

This work was supported by the RFBR (grant 08-01-00889-).

specifications(i.e., pre- and post-conditions) and how such
specifications can be used to automate simulation-based veri-
fication (test sequence generation, in particular).

The testing technique concerned is based on the traversal
of FSM constructed from contract specifications. It is obvious
that specifications of different size and accuracy produce
different automata in terms of determinacy and number of
transitions. It is not always possible to make use the derived
FSM model due to the huge size or for some other reason.
To make the model useable for test generation, one should
generalize it. Doing this involves many factors and mostly
remains the art of verification. Some of the approaches to
construct automata from specifications are described in the
paper.

The rest of the article is organized as follows. Section II
reviews the papers devoted to specification-based verification
of hardware designs. In Section III classification of the ab-
straction levels used for hardware modeling is given. This
section also describes how various models can be represented
by means of contract specifications. In Section IV construction
of FSM from contract specifications (to be afterwards used
for test sequence generation) is considered. Section V gives
a concise description of tool support. Finally, Section VI
concludes the paper and outlines the directions of our future
work.

II. RELATED WORK

There are lots of research and industrial papers on
specification-based verification methods. This gives evidence
that using formal specifications and models is a right direction
for hardware verification. The main question is what kind of
specifications and models are preferable. To automate different
tasks of testing, distinct types of models are usually used.
For example, stimuli generation can be performed on the base
of FSM models, while correctness checking can be done by
means of temporal assertions. This has a certain disadvantage.
Two models require maintenance during the design process to
keep up their mutual consistency.

The most of the papers are dedicated to the methods of
test sequence generation. Many of them suggest using explicit
cycle-accurate models to generate test sequence, e.g., Ur et
al. [1] and Mishra et al. [2], [3], [4] use SMV models; Ho

125 of 168

et al. [5] utilize Synchronous Murϕ. The main differences
between the approaches are concentrated in the following
methods: a model construction method (manual develop-
ment [1], automatic derivation from an RTL description [5],
and automatic derivation from specifications [2]) and a test
sequence generation method (FSM traversal [1], [5] and model
checking [2], [3], [4]).

Manual development of a model is error-prone, while au-
tomatic derivation from an RTL description does not scale
well on complex hardware designs. In our opinion, the most
promising method of model construction is automated extrac-
tion from formal specifications. Speaking about test gener-
ation, model checking techniques are not intended for full-
scale functional verification. They are aimed to verification of
a relatively small number of properties. The most usable way
of test sequence generation is based on FSM traversal.

In the suggested approach, a model for test sequence
generation, so-called generalized FSM model, is almost au-
tomatically derived from specifications. The approach uses
implicit specifications in the from of pre- and post-conditions
and irredundant algorithms for FSM traversal. The distinction
feature of the approach is that it does not require two different
models for checking design correctness and for test sequence
generation. All testing tasks are carried out basing on contract
specifications.

III. SPECIFICATION OFHARDWARE DESIGNS AT
DIFFERENTABSTRACTION LEVELS

When specifying hardware designs we mostly focus on
their behavior (functionality). In other words, hardware is
considered to be a black box with the given inputs and outputs,
and our goal is to specify the input-output relation of the DUV
(Design Under Verification).

It is widely recognized that EFSM (Extended Finite State
Machine) is one of the most natural formalisms for hardware
modeling [6]. It would be recalled that, roughly speaking,
EFSM is an automaton with parameterized inputs (stimuli)
and outputs (reactions) where state is divided into control and
data parts.

In this paper, it is implied that a functional model of
hardware is an EFSM-like automaton (formal definitions are
not given not to overload the paper). We distinguish the
following abstraction levels for hardware modeling (in order
of increasing abstractness):

• cycle-driven models:
– cycle-accurate models;
– adaptive cycle-driven models;

• event-driven models:
– ordered events models;
– unordered events models;

• operation-driven models.
Let us describe the basic properties of hardware models at

each of the abstraction levels given above.

Fig. 1. A control flow graph of an operation.

A. Cycle-Driven Models

Cycle-driven models are the least abstract and most detailed
ones. A model is calledcycle-drivenif each of its transitions
corresponds to exactly one clock cycle in hardware1. To
formally describe a cycle-driven model by means of contract
specifications, the operations implemented by a DUV should
be decomposed into a number of one-cyclemicro-operations
each being described by an individualcontract (i.e., a pre-
conditionandpost-condition). It should be noticed that micro-
operations of an operation can be connected to each other not
only by linear ordering but using more complex control flow
relation as well (see Fig. 1, for example).

Summing up, cycle-driven specification of an operation
includes its pre-condition (which constrains the situations in
which the operation is allowed to start), a set of interconnected
micro-operations, and pre- and post-conditions of the micro-
operations. Semantics of a micro-operation’s pre-condition
(which is also called aguard condition) differs from the
semantics defined for an operation’s pre-condition – if a guard
condition is not satisfied, it indicates that the micro-operation
is interlocked (it will be unlocked, when the guard condition
becomes true).

Cycle-driven models are subdivided into two types: cycle-
accurate models and adaptive cycle-driven models.

1) Cycle-Accurate Models: A cycle-driven model is re-
ferred to ascycle-accurateif for any admissible input sequence
it allows deterministically identifying (predicting) a DUV’s
reaction. In other words, it is a self-contained description
of the design cycle-by-cycle execution, which can be used
independentlyfrom the implementation (that is the difference
between accurate and adaptive models).

In a sense cycle-accurate models are ideal forco-simulation.
In each cycle a testbench applies an input both to a DUV and

1It does not make any serious difference whether a transition or staying in
a state corresponds to a clock cycle.

126 of 168

Fig. 2. Using a feedback for choosing a branch.

to a model and compares their outputs for equivalence. There
is no problem in determining when to apply a stimulus or
when to check a reaction – these actions are performed in
each cycle of simulation. However, making a cycle-accurate
model is a difficult task which is almost tantamount to writing
one more implementation.

2) Adaptive Cycle-Driven Models: Adaptive cycle-driven
modelsare not as self-contained and deterministic as cycle-
accurate models are. Sometimes they are not able to determine
a DUV’s reaction basing only on the input sequence, but it can
always decide which transition to perform observing some
outputs of the design. In other words, there is afeedback
from a DUV to a model (that is why such models are called
adaptive).

Due to the feedback adaptive models can not be used
independently from the implementation. Speaking in the terms
of contract specifications, micro-operations’ pre-conditions
and branching conditions can be defined not only over the
model variables (control and data state) but over the design’s
outputs as well (see Fig. 2). The post-conditions do not check
the values of the feedback outputs (DUV’s outputs the model
depends on).

Adaptive models are thought to be a bit more abstract than
accurate ones, because they abstract away the way in which
feedback outputs are calculated. When using such kind of
models there is a tacit assumption that feedback outputs are
computed correctly.

B. Event-Driven Models

Event-driven modelsare the next step in increasing ab-
stractness of the hardware functionality description. The key
distinction of that sort of models is that there is no rigid con-
nection between model transitions and clock cycles. Different
transitions (or stays in states) can take different amount of
time to be completed. Moreover, the same transition being
executed several times can take different number of cycles for
each execution.

The main concept of event-driven models is anevent,
which is an instantaneous interaction between a design and
its environment that can be observed or predicted. If we are
talking about verification, an event is an atomic interaction
between a DUV and a testbench (e.g., sending of a stimulus,
assignment of an output, etc.). A model is calledevent-driven
if its transitions are associated with events, not cycles (see
Fig. 3).

To specify an event-driven model by means of contract
specifications, each operation is decomposed into a number of

Fig. 3. A transition in an event-driven model.

sub-operations(interactions). Further thoughts are very similar
to those that are applied to cycle-driven models – all sub-
operations are connected into a control flow graph, while each
sub-operation is specified by pre-and post-conditions.

Event-driven models are subdivided into two types: ordered
events models and unordered events models.

1) Ordered Events Models: An ordered events modelis
an event-driven model where each transition corresponds to a
set of simultaneous events or a linearly ordered set of events
happening at different times. It should be noticed that cycle-
driven models are a particular case of ordered events models.
Indeed, a clock cycle can be considered as a kind of event.

Event-driven models (including models of ordered events)
are usually adaptive, because in general case their behavior
depends not only on input events (stimuli) but on output
events (reactions) as well. To be able to use event-driven
models for simulation-based verification, one should develop
special testbench components that detect a DUV’s reactions
and transmit them into a model. Such components are called
catchers.

2) Unordered Events Models: In contrast to a model of
ordered events, each transition of anunordered events model
is associated with an unordered set of events. In other words,
using such kind of models we know which events have taken
place during a transition, but we do not know the linear order
of the events (because, for example, some events are not visible
or communication medium can change the order).

The distinctive feature of unordered events model is how re-
actions are checked. Since the events order is not fully known,
a testbench tries to create all admissible orders and check the
events’ post-conditions. This process is calledserialization. If
there is at least one sequence of events such that all the post-
conditions are satisfied, the overall reaction is considered to
be correct.

C. Operation-Driven Models

No research on hardware verification would be complete
that did not consideroperation-driven models. Such models
are the most abstract and described by a vacuous single-
state automaton in which each transition corresponds to an
operation call. Operation-driven models abstract away from
operations’ structure (micro- and sub-operations) and cooper-
ative execution of several operations.

Specification of an operation is a classical software contract
consisting of a pre-condition (which constrains the situations

127 of 168

in which the operation is allowed to start) and post-condition
(which constrains the expected results of the operation).

Operation-driven models are often applied to core-level
verification of microprocessors being done with the help of test
programs. The same programs are executed on a microproces-
sor RTL design and its instruction-level simulator (operation-
driven model). The results of the two models are compared
for equivalence.

D. Unified View on Hardware Specification

It is important that models of various degree of abstraction
can be specified in a unified way by means of contract
specifications. Contract specifications abstraction/refinement
is the topic of a separate research, but we can report that
changing abstraction level can be done almost seamlessly. To
illustrate the idea, let us consider a simple example. In the
example, a operation-driven specification is refined into cycle-
driven one by adding timing information without changing the
structure of the specification.

The code below (we use the language SeC, specification
extension of C) describes the functionality of an address
translation operation being implemented by a hypothetical
TLB (Translation Lookaside Buffer): if a virtual address is
invalid, then the outputerror is set to one; if the address is
valid but does not belong to the buffer, then the outputmiss
is set to one; if the address is valid and it belongs to the buffer,
then the outputpa is set to the resultant physical address.

specification void AddressTranslation(VA va) {
TLB *tlb = getDUV();

// Pre-condition of the operation

pre {
return true ;

}
// Post-condition of the operation

post {
TLBEntry *entry;

POST(tlb.out.error == !isValid(va));

if (!isValid(va)) { STOP(); }
POST(tlb.out.miss == !isHit(tlb, va));

if (!isHit(tlb, va)) { STOP(); }
POST(tlb.out.pa == translate(tlb, va));

STOP();

}
}

To simplify description, the specification uses two special
macroses,POST and STOP. The first of them checks the
predicate given and returnfalse if the predicate is not
satisfied. The second macros simply returnstrue.

The code below refines the given specification by adding
some timing information. This is done with the help of the
constructsCYCLEand PRE. Calling CYCLE leads to a one-
cycle delay.PREwaits until the condition given is satisfied.

specification void AddressTranslation(VA va) {

TLB *tlb = getDUV();

pre {
return true ;

}
post {

TLBEntry *entry;

// Post-condition of the micro-operation 1

POST(tlb.out.error == !isValid(va));

if (!isValid(va)) { STOP(); }
// One-cycle delay

CYCLE();

// Post-condition of the micro-operation 2

POST(tlb.out.miss == !isHit(tlb, va));

if (!isHit(tlb, va)) { STOP(); }
// Pre-condition of the micro-operation 3

PRE(tlb.out.ready == 1);

// Post-condition of the micro-operation 3

POST(tlb.out.pa == translate(tlb, va));

STOP();

}
}

IV. T EST SEQUENCEGENERATION AT DIFFERENT
ABSTRACTION LEVELS

The test sequence generation technique we use for verifica-
tion is based on the traversal of a control FSM derived from
specifications. The distinctive feature of the approach is that
it does not require explicit FSM representation – instead, the
only information it operates with is a traversed part of a state
graph, current state, and set of available stimuli. Using such
a technique implies that FSM being traversed is deterministic
(in some sense) and has a strongly connected state graph.

Specifications of different abstractness lead to different
automata in terms of determinacy and number of states.
Obviously, it is not always possible to automatically derive
a deterministic FSM with a rather small number of states –
sometimes a resultant automaton is nondeterministic; other
times it is of a huge size.

Thus, one should choose a right abstraction level and
given the abstraction level, construct a deterministic automaton
(trying to avoid redundant states, of course). This task is not
fully automated, but there are several empiric ideas (testing
patterns) that we would like to consider. These ideas basically
relate to the current state calculation function of the implicit
FSM representation.

A. Cycle-Driven Models

1) Stage-Based FSM: The most usable pattern of FSM
description for cycle-driven specifications is as follows. The
control state is represented as a set of simultaneously execut-
ing micro-operations (see Fig. 4). This approach is called a
micro-operation-based FSMor a stage-based FSM(stageis a
generalization of micro-operations and sub-operations).

If there are inter-operationdata dependencieswhich have
an influence on pipeline interlocks (there are nontrivial micro-

128 of 168

Fig. 4. Constructing a micro-operation-based (stage-based) FSM.

operations’ pre-conditions), the pure stage-based approach
does not work, because the resultant FSM is most likely
nondeterministic. In this case, an extended approach should
be used – an automaton state is not only a set of micro-
operations, but it also contains some control information
describing dependencies between operations. It is also sensible
to use timers (to make states describe not only a micro-
operations but time of their processing as well). More detailed
description of the approach is available in [8].

2) Resource-Based FSM: The other approach is called a
resource-based FSM. An automaton state represents not cur-
rently executing micro-operations but the resources allocated
by the micro-operations. This testing pattern abstracts away
from the particular operations processing by a design, but it
often requires additional work to make an FSM deterministic.

We distinguish some types of resources which hardware de-
signs usually contain: arbiters, FIFO-buffers, RAM-memories,
and data transfer channels. Each resource is specified with
an individual FSM, and each FSM is described implicitly
by defining a way for the resources state calculation. There
are some patterns for specifying states. For example, state of
an arbiter is often represented as a pair〈requests, history〉,
where requests are queries having been sent to the arbiter
during the previous cycle, andhistory is a finite sequence of
the recent arbiters decisions (it is used to calculate priorities
of the requests); state of a FIFO is usually described as a
number of entries in the buffer; and so on. Having got known
what kind of resources a DUV consists of, one is able to
construct a description of a total FSM by concatenating all
state calculation functions.

B. Event-Driven Models

The stage- and resource-based approaches can be also ap-
plied to event-driven specifications. In this case, sub-operations
(instead of micro-operations) are considered. In the stage-
based approach, an FSM state is a set of processing sub-
operations. In the resource-based approach, an automaton state
is a set of the resources allocated by the sub-operations.

C. Operation-Driven Models

Operation-driven specifications are not able to produce an
adequate control FSM due to the low informativeness (high

abstractness). In this case, combinatorial techniques are used
for test generation. The test sequences are generated by sys-
tematic enumeration of all feasible combinations of the given
operations, test situations (i.e., paths in control flow graphs)
and dependencies via shared resources. To reduce number
of tests, one can use heuristics, like operation factorization,
limitation of the number of dependencies, etc. [7]

V. TOOL SUPPORT

The suggested approach to specification and test sequence
generation is supported by the CTESK toolkit developed at the
Institute for System Programming of the Russian Academy of
Sciences (ISPRAS) [9]. This toolkit is originally intended for
testing software systems written in C, but it has been adapted
for verification of hardware designs.

CTESK uses SeC language for development of testbench
components. SeC is a C extension, which has additional con-
structs to define specifications, FSM-based test scenarios, etc.
Testbench functionality connected with functional verification
of hardware designs is implemented as a library extension of
CTESK.

VI. CONCLUSION

Contract specifications are applicable to a wide rage of
hardware including complex parallel-pipeline designs with
control flow branching and parallel threads inside individual
operations [8]. Their usage allows automating all tasks of
simulation-based verification. This simplifies maintenance of
functional tests and reduces verification efforts. The important
quality of contract specifications is that they can be easily
applied to functional verification of hardware at different
abstraction levels. Futher we are planning to do a research on
smooth changing of specification abstractness. Choosing right
abstraction level for verification is a problem which is really
hard to formalize. We believe that a tool that could change the
abstractness without changing the structure of specifications
would be rather useful for verification engineers.

REFERENCES

[1] S. Ur, Y. Yadin. “Micro architecture coverage directed generation of test
programs”. Proc. of Design Automation Conference, 1999.

[2] P. Mishra, N. Dutt. “Functional coverage driven test generation for
validation of pipelined processors”. Proc. of Design, Automation and Test
in Europe, 2005.

[3] H.M. Koo, P. Mishra. “Test generation using SAT-based bounded model
checking for validation of pipelined processors”. Proc. of ACM Great
Lakes Symposium on VLSI, 2006.

[4] H.M. Koo, P. Mishra. “Functional test generation using property de-
composition for validation of pipelined processors”. Proc. of Design,
Automation and Test in Europe, 2006.

[5] R. Ho, C. Yang, M. Horowitz, D. Dill. “Architecture validation for
processors”. Proc. of International Symposium on Computer Architecture,
1995.

[6] A. Petrenko, S. Boroday, R. Groz. “Confirming Configurations in EFSM
Testing.” IEEE Transactions on Software Engineering, 2004.

[7] A. Kamkin. “Combinatorial model-based test program generation for
microprocessors”. Preprint of ISPRAS, 2009.

[8] M. Chupilko, A. Kamkin. “Specification-driven testbench development
for synchronous parallel-pipeline designs”. Proc. of the NORCHIP con-
ference, 2009.

[9] http://hardware.ispras.ru

129 of 168

An Approach to Test Programs Generation for Microprocessors Based on
Pipeline Hazards Templates

Alexander Kamkin, Dmitry Vorobyev
Institute for System Programming of the Russian Academy of Sciences

25, A.Solzhenitsyn Street, Moscow, 109004, Russia
E-Mail: {kamkin, vorobyev}@ispras.ru

Abstract — In this paper we describe an approach to
automated test programs generation intended for
microprocessor verification. The approach is based on formal
specification of microprocessor ISA and description of pipeline
hazards templates. The use of formal specifications allows
automating development of test program generators and
systematizing control logic verification. Since the approach is
underlain by high-level descriptions, all specifications and
templates developed, as well as the constructed test programs,
can be easily reused when the processor’s microarchitecture
changes. It makes it possible to apply the methodology in early
stages of a microprocessor development cycle when the design
is frequently modified.1

I. INTRODUCTION
Functioning of a modern pipelined microprocessor is
implemented in a very difficult way. Pipeline can
concurrently process multiple instructions, which, in
addition, can interact each other via shared resources. At
every cycle of execution a microprocessor makes lots of
decisions on hazards resolution, branches processing,
exceptions handling, and so on. The microprocessor
mechanisms responsible for controlling instructions
execution are called control logic.

Control logic is a key component of a microprocessor;
that is why it should be designed and verified thoroughly, not
missing any detail. However, the common practice is to
produce tests manually or using random generation
techniques, which is obviously inefficient and unsystematic.
The other kinds of methods are based on cycle-accurate
models. Such approaches are aimed at detailed verification of
control logic, but the problem is that accurate models are
very hard to develop and maintain.

The approach suggested in this work is thought to be
somewhere between random generation techniques and
techniques based on cycle-accurate models. The approach
uses formal specification (modeling) of a microprocessor
instruction set (ISA, Instruction Set Architecture). Of course,
instruction-level models are less informative in comparison
with cycle-accurate ones, but they have a number of practical
advantages. First, they are much easier to develop, and
second, they can be reused even if the microarchitecture is
considerably altered.

This work was supported by the RFBR (grant 08-01-00889-а).

The rest of the paper is organized as follows. Section II is
a survey of the related work. Section III introduces the main
concepts of the suggested approach. The description of the
approach is given in Section IV. Section V considers a case
study. Finally, Section VI concludes the paper.

II. RELATED WORK
In the paper [1] two mutually complementary techniques are
described. The first one is a test generation technique basing
on model checking, while the second one uses template-
based procedures. Source information for the both
approaches is a microprocessor specification written in
EXPRESSION [2]. Basing on the specification, a generic
structure-behavior model in SMV [3] is automatically
derived. For this model, a test developer defines a fault
model. For each element of the fault model the negation of
the corresponding property is produced. Then, a counter-
example is generated using the SMV model checker. As the
authors say, model checking does not scale on complex
designs. So, the technique employing templates is used as an
addition.

Templates are developed by hands and describe
sequences of instructions that create special situations in
microprocessor behavior (in the first place, pipeline hazards).
Generation is performed with the help of the graph model
extracted from the specification. The template-based
technique requires greater efforts, but it scales well. It should
be noticed that both approaches are based on rather accurate
specifications, and it is better to apply them in late design
stages, when the microarchitecture is stable. Otherwise, there
would be a need to modify the specification to keep up its
consistency.

In the approach [4], pipeline structure is formally
specified in the form of state machine, which is called OSM
(Operation State Machine). OSM describes control logic at
two levels, called operational and hardware levels. At the
first level, “movement” of instructions through the pipeline
stages is described (every operation is described by a
separate state machine). At the second level, hardware
resources are modeled using so-called token managers. An
operation state machine changes states by capturing and
moving tokens. A pipeline model is defined as a composition
of operation state machines and resource state machines. The
goal of testing is to traverse all the transitions of the joint

130 of 168

automaton. Like the previous techniques, this approach is
based on accurate specifications.

The paper [5] considers the test program generation tool
Genesys-Pro (IBM Research). A generator is composed of
two main components, an engine (which does not depend on
target architecture) and a model (which describes
microprocessor-specific knowledge). A verification engineer
develops templates, which specify structure of test programs
and properties they should satisfy. Genesys-Pro transforms
each template into a set of constraints and builds a test
program using constraint solving techniques. The tool is
quite universal and applicable to different microprocessor
architectures. However, so far as development of test
templates is done by hand, tests maintenance is hard enough.

In the paper [6] a technique for test generation basing on
FSM traversal is described. In one of the stages the technique
uses Genesys (the previous version of Genesys-Pro). A test
developer creates a microprocessor model using the SMV
language. After this, a set of paths covering all the edges of
the state graph extracted from the model is built. Each path
(so-called abstract test) is translated into a Genesys template.
The technique allows achieving good coverage of control
logic, but it has two principal shortcomings. First, one needs
a skilled expert to develop a microprocessor model. Second,
to be able to map abstract tests into Genesys templates, a
complex description has to be done.

Summing up, all the techniques reviewed can be divided
into two classes: techniques based on accurate
models [1,4,6] and techniques based on templates [5]. The
techniques of the first class allow achieving high quality of
verification. However, it is not practical to use them in early
design stages. Template-based techniques do not have this
shortcoming, but they are unsystematic and cannot guarantee
high quality of verification.

III. FOUNDATIONS OF THE SUGGESTED APPROACH
The suggested approach is based on combinatorial model-
based generation [7]. It uses formal specifications of
microprocessor ISA, which describe instructions regardless
of their processing on a pipeline. Description of each
instruction includes a mnemonic, list of operands,
precondition, latency, and semantics in the imperative form.
Besides instructions, test situations and dependencies
between instructions are formally described. Test programs
are generated automatically by combining test situations and
dependencies for finite sequences of instructions.

A. Structure of a Test Program
Test program is a sequence of test cases. The key part of a
test case is a test action, which is a specially prepared
sequence of instructions intended to create a certain situation
in microprocessor behavior (hazard, exception, and so on). A
test action is prepared by initializing instructions and
followed by a test oracle (sequence of instructions that
checks correctness of a microprocessor state after execution
of the test action). Thus structure of a test program can be
described by the expression:

Test = {〈Prei, Actioni, Posti〉}i=0,n-1,

where Prei is the initializing instructions of the ith test case,
Actioni is the test action, and Posti is the test oracle. In
elementary case a test program consists of a singular test
case without a test oracle (Test = 〈Pre, Action〉).

The assembler code below is a test program fragment that
contains one test case (we use MIPS ISA [8] to illustrate
ideas of the approach).

// Initialization of sub[0]: IntegerOverflow=true
// s5[rs]=0xffffffffc1c998db, v0[rt]=0x7def4297
lui s5, 0xc1c9
ori s5, s5, 0x98db
lui v0, 0x7def
ori v0, v0, 0x4297

// Initialization of add[1]: Exception=false
// a0[rs]=0x1d922e27, a1[rt]=0x32bd66d5
...
// Initialization of div[2]: DivisionByZero=true
// a2[rs]=0x48f, a1[rt]=0x0
...

// Dependencies: div[2].rt[1]-sub[0].rd[0]

// Test action: 2010
sub a1, s5, v0 // IntegerOverflow=true
add t7, a0, s3 // Exception=false
div a2, a1 // DivisionByZero=true

In this fragment, Action is represented as a sequence of

three instructions: sub, add and div. There is a register
dependency between the rt operand of the div instruction
and the rd operand of the sub instruction. This dependency
implies using the same register for each of the operands.
Initializing instructions Pre load values into the independent
input registers of all instructions of the test action (see
preparation of the instruction sub, for example). Post is
empty here.

B. Test Templates
Test template is an abstract representation of a test action
where constraints (test situations and dependencies) are
specified instead of concrete instructions and their operands’
values. Generally speaking, each template defines a testing
purpose (situation that should be tested). The goal of test
program generation is to construct a representative set of test
templates. One of the possible templates for the example
above is shown below.

IADDInstruction R, ?, ? @ IntegerOverflow=true
IADDInstruction ?, ?, ? @ Exception=false
IDIVInstruction ?, R @ DivisionByZero=true

The template is composed of three instructions. The first
two instructions belong to the equivalence class
IADDInstruction, while the third one belongs to
IDIVInstruction. For the first instruction the situation
IntegerOverflow=true is given (instruction should
throw the integer overflow exception). The situation of the
second instruction is Exception=false (absence of
exceptions). The third instruction should raise division by
zero (DivisionByZero=true). In addition, there is a
dependency between the first and the third instructions (the
first register of the first instruction is equal to the second
register of the third instruction). Independent operands of the
instructions, i.e., operands that are not revolved by the
dependency are denoted as ?.

131 of 168

Test templates are allowed to be parameterized. The
example below demonstrates a template with four
parameters: $FirstInstruction (equivalence class of
the first instruction), $Situation (test situation of the first
instruction), $ThirdInstruction (equivalence class of
the third instruction), and $Dependency (dependency of
the third instruction on the first and the second instructions).

$FirstInstruction @ $Situation
IADDInstruction @ IntegerOverflow=false
$ThirdInstruction @ $Dependency

C. Test Situations
Speaking about control logic verification, test situations
related to execution of instructions on a pipeline are of
interest. As a rule, processing of an instruction is performed
in the same way for all values of the operands (of course, if
exceptions are not taken into account). Thereby, for an
instruction that can raise N exceptions, N+1 test situations
are usually defined: Exception=false, Exception0=true, …,
ExceptionN-1=true. For an instruction which handling
depends on the operands values one should specify all
possible paths of its execution.

Branch instructions are examined in a particular way. A
test situation of a branch instruction includes a target address
and truth values of the condition (if the branch instruction is
conditional). In general case, a test situation is as follows:
Target=Label, Trace={C0, …, CM-1}, where Label is a target
label (address) and Ci is a truth value of the branch condition
for the ith time of the instruction execution.

D. Dependencies between Instructions
Dependencies between instructions are thought to have a key
role in creation of pipeline hazards. There are two main types
of dependencies: register dependencies and address
dependencies (data dependencies). Register dependencies
are expressed as equality of registers being used as operands
of two instructions. Such dependencies can be of the
following types:

• read-read — both instructions read from the same
register;

• read-write — the first instruction reads from a
register, while the second one writes into it;

• write-read — the first instruction writes into a
register, while the second one reads from it;

• write-write — both instructions write into the same
register.

Address dependencies have more complex structure and
are related to internal organization of memory management
units [9]. Some examples of the address dependencies are
itemized below.

• VAEqual — equality of virtual addresses;
• TLBEqual — equality of TLB entries;
• PAEqual — equality of physical addresses;
• CacheRowEqual — equality of cache rows.

IV. THE SUGGESTED APPROACH
Basing on documentation analysis, a verification engineer
marks out situations “interesting” from the control logic
point of view (different types of pipeline hazards). For each
hazard type its generalized specification is developed, which
is a parameterized template creating the corresponding
hazard situation. Such templates are also called pipeline
hazards templates or basic templates. Basic templates are
usually of a small size, because hazards between instructions
occur if instructions are close to each other. To be able to
generate tests, one should define iterators of templates’
parameters. After this, a generator constructs test programs
using different values of the parameters and combining
templates together.

A. Specification of Hazards
Let us examine a general scheme of pipeline hazards
specification. All of the situations derived from the
documentation are classified by their types (see Fig. 1). The
four main types are exceptions, data hazards, structural
hazards, and control hazards.

Pipeline Hazard
Situations

Exceptions Data Hazards Structural
Hazards

Control
Hazards

Exception
IntegerOverflow

ALU Hazards

GPR Registers
Hazards

Incorrect
Prediction

Figure 1. Classification of pipeline hazard situations

Generally, all situations of the same type are described
by one basic template. The difference between two single-
type specifications is connected with various constraints for
template parameters – parameters domain is divided by a
verification engineer into a number of equivalence classes,
and this serves as a basis for the further construction of
iterators (see Fig. 2).

Specification of a Hazard Situation

Constraints for Parameter $P1

Constraints for Parameter $PK

Pipeline Hazard
Template

…

Figure 2. Specification of a hazard situation

1) Specification of Exceptions

Exception is a special event that signals that something goes
wrong during instruction execution. When an exception is
raised, control flow is switched to a special routine, called
exception handler, and all the instructions loaded after the
instruction throwing the exception are flushed. The typical
errors related to exception handling are incorrect setting of
an exception signal (incorrect calculation of an exception
condition) and incorrect flushing of loaded instructions.

There are two main strategies for exception handling in
test programs. First, if an exception is raised, execution is
switched to the next instruction of the test action. Second,
execution is switched to the test oracle passing the rest

132 of 168

instructions of the test action. To check pipeline flushing
mechanisms, the second strategy is preferable. Generalized
specification of an exception is given by the template below.

$PreInstructions
$ExceptionInstruction @ $ExceptionType
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes

an exception (pre-instructions should not raise exceptions);
• $ExceptionInstruction — an instruction that raises an

exception;
• $ExceptionType — an exception type;
• $PostInstructions — a sequence of instructions that

succeeds an exception (post-instructions should be flushed).

Here is an example of a concrete test action that
corresponds to the template given.

dadd r25, r30, r7
lb r22, 0(r4) // TLBInvalid=true
daddiu r5, r18, 13457

The sequence $PreInstructions consists of the
only instruction dadd. $ExceptionInstruction is
instantiated by the instruction lb that raises the exception
TLBInvalid ($ExceptionType). The sequence
$PostInstructions includes the only instruction
addiu.

2) Specification of Data Hazards

Data hazards are situations in which different instructions
try to access the same data and at least one instruction tries to
write them. Thereby, to describe data hazards, one should
use “read-write”, “write-read”, and “write-write” types of
dependencies. The typical error related to data hazard
resolution is incorrect implementation of pipeline interlocks
resulting in data flow integrity violation. Generalized
specification of a data hazard is given by the template below.

$PreInstructions
$FirstInstruction
$InnerInstructions
$SecondInstruction @ $Dependency
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes a

dependency (pre-instructions should not raise exceptions);
• $FirstInstruction and $SecondInstruction — a pair of

dependent instructions that causes a data hazard;
• $Dependency — a dependency between instructions that causes a

data hazard;
• $InnerInstructions — a sequence of instructions between

dependent instructions (inner-instructions should not raise exceptions
and produce hazards);

• $PostInstructions — a sequence of instructions that succeeds a
data hazard (post-instructions are usually suspended with the
dependent instruction).

Here is an example of a concrete test action that
corresponds to the template given.

madd.s $f18, $f6, $f28, $f10
add.s $f8, $f17, $f3
ceil.l.s $f2, $f18 // Data hazard
div.s $f23, $f13, $f24

3) Specification of Structural Hazards

Structural hazards occur when several instructions try to
access the same unit of a microprocessor (or some other
resource). Usually, such kinds of hazards happen when two
similar multi-cycle instructions are located closely to each
other. In some cases an additional data dependency is
required to create a structural hazard between instructions.
The typical error related to structural hazard resolution is the
same as for data hazards (incorrect implementation of
pipeline interlocks). Generalized specification of a structural
hazard is absolutely the same. A concrete example is given
below.

div.s $f11, $f27, $f3
add.s $f28, $f7, $f30
div.d $f23, $f1, $f20 // Structural hazard
add.d $f18, $f2, $f25

4) Specification of Control Hazards

Control hazards are related to branch instructions.
Depending on microprocessor organization, execution of a
branch instruction can result in pipeline stalling or flushing.
Errors of control hazard resolution relate to pipeline
interlocks, branch prediction and other control logic
mechanisms. Generalized specification of a control is given
by the template below.

$PreInstructions
$BranchInstruction @ $Target, $Trace
$DelaySlots
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes

a branch instruction;
• $BranchInstruction — a branch instruction;
• $Target — a target address of a branch instruction;
• $Trace — an execution trace of a branch execution (sequence of

truth values of a branch condition);
• $DelaySlots — instructions in delay slots;
• $PostInstructions — a sequence of instructions that

succeeds a branch instruction.

Here is an example of a concrete test action that
corresponds to the template given.

L:addi r1, r1, 1
 beq r1, r0, L // Target=L, Trace={1, 0}
 dadd r7, r12, r23

B. Test Programs Generation

Let us consider how test programs are generated on the base
of test templates. Test actions are divided into two types:
simple test actions (which correspond to a single basic
template) and composite test actions (which are constructed
by composition of several basic templates).

1) Constructing Simple Test Actions

Simple test actions are targeted at creation of one hazard
situation. A technique for their construction is easy and
based on using basic templates and iterators. For each
situation derived from documentation, a set of test actions is
built. Test actions are constructed by iterating parameters

133 of 168

values and combining them to each other (commonly, all
possible combinations are used) (see Fig. 3).

Generation of Simple Test Actions

Iterator for Parameter $P1

Iterator for Parameter $PK

Pipeline Hazard
Template

…

Figure 3. Generation of simple test actions for a pipeline hazard

Let us examine simple test action construction for a
structural hazard on FPU (Floating Point Unit) being
described by the following basic template:

$PreInstructions
$FirstInstruction
$InnerInstructions
$SecondInstruction @ $Dependency
$PostInstructions

Some constraints on parameters values are defined for
this hazard. For example, the hazard occurs only between
instructions being executed more than one cycle. It is also
obvious that size of $InnerInstructions should not
exceed latency of $FirstInstruction subtracted by
two. In addition, equivalence classes of dependent
instructions can be given. Assume that the template’s
parameters are setup with the following values.

FMULInstruction : {mul.s, mul.d}
FDIVInstruction : {div.s, div.d}
IADDInstruction : {add, sub}

$PreInstructions : {}
$FirstInstruction : FMULInstruction, FDIVInstruction
$SecondInstruction : FMULInstruction, FDIVInstruction
$Dependency : class($FirstInstruction) ==
 class($SecondInstruction)
$InnerInstruction : {IADDInstruction}
$PostInstructions : {}

Given the parameters values, two test actions are
generated:

$PreInstructions →
$FirstInstruction → mul.d $f12, $f3, $f21
$InnerInstructions → sub r6, r15, r3
$SecondInstruction → mul.s $f9, $f23, $f7
$PostInstructions →

$PreInstructions →
$FirstInstruction → div.s $f18, $f28, $f4
$InnerInstructions → add r25, r13, r27
$SecondInstruction → div.s $f5, $f12, $f10
$PostInstructions →

2) Constructing Composite Test Actions

The aim of composite test actions as opposed to simple test
actions is creation of several “simultaneous” pipeline
hazards. Composite actions allow testing complex situations
in microprocessor behavior (parallel hazards, nested
hazards, parallel exceptions, and so on). Construction of
composite actions is performed by composition of several
basic templates.

Let T be a template of an arbitrary type, TE be a template
of an exception, TH be a template of a data or structural

hazard, and, finally, TC be a control hazard template. The
main composition operations are given below.

a) Overlapping: T=TH1|TH2
TH.PreInstructions = TH1.PreInstructions ≡ TH2.PreInstructions
TH.FirstInstruction = TH1.FirstInstruction ≡ TH2.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction ≡ TH2.SecondInstruction
TH.Dependency = TH1.Dependency & TH2.Dependency
TH.InnerInstructions = TH1.InnerInstructions ≡ TH2.InnerInstructions
TH.PostInstructions = TH1.PostInstructions ≡ TH2.PostInstructions

b) Shift: TH=TH1↓TH2
TH.PreInstructions = TH1.PreInstructions
TH.FirstInstruction = TH1.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction
TH.Dependency = TH1.Dependency & TH2.Dependency
TH.InnerInstructions = {TH1.InnerInstructions, TH2.FirstInstruction, TH2.InnerInstructions}
TH.PostInstructions = {TH1.PostInstructions, TH2.SecondInstruction, TH2.PostInstructions}
TH1.PostInstructions ≡ TH2.PreInstructions

c) Concatenation: T=T1→T2
T.PreInstructions = T1.PreInstructions
T.MainParameters = T1.MainParameters2
T.PostInstructions = T2
Тype of a template T matches with the type of a template T1

d) Nesting: TH=TH1[T]
TH.FirstInstruction = TH1.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction
TH.Dependency = TH1.Dependency
TH.PreInstructions = TH1.PreInstructions
TH.InnerInstructions = T
TH.PostInstructions = TH1.PostInstructions

To clearify the semantics of composite templates, let us
consider an example where the overlapping is used to
compose a data hazard and a structural hazard:
$PreInstructions1,2 → add.s $f28, $f7, $f30
$FirstInstruction1,2 → div.s $f11, $f27, $f3
$InnerInstructions1,2 → dsub r25, r30, r7
$SecondInstruction1,2
 @ $Dependency1 & $Dependency2 → div.d $f23, $f11, $f20
$PostInstruction1,2 → lb r22, 0(r4)

It is intuitively obvious how to iterate test actions for a
given composite test template. Some parameters of different
basic test templates are identified. After this, iterators are
specified for resultant parameters (commonly, iterators
developed for simple templates are used). Generation of
composite test templates is perform by enumeration of
different syntactical structures consisting of a small number
of basic templates connection by composition operations.

V. CASE STUDY
The suggested approach was applied to verification of
control logic of two arithmetical coprocessors, floating point
coprocessor (CP1) and complex arithmetic coprocessor
(CP2). Coprocessors have common control flow with CPU
and use three execution channels (functional pipelines):

• channel of floating point arithmetic;

2 MainParameters is set of template parameters excluding PreInstructions
and PostInstructions.

134 of 168

• channel of RAM operations;
• channel of on-chip memory operations.

The control logic supports solving of different types of
hazards. In both coprocessors memory exceptions can occur.
In addition, in CP1 arithmetic exceptions can be raised. The
CPU implements static branch prediction and speculative
execution mechanisms.

The test actions were composed of four instructions of
different types. Structure of the test situations and
dependencies was very much the same as it is described in
the paper, but some particular features of the
microarchitecture were taken into account and additional
data dependencies were included.

TABLE I. CASE STUDY INFORMATION

CPU
revision

Code volume
(LOC)

Number of
instructions

Affected
instructions

Affected code
(LOC)

Coprocessor CP1
8 28500 113 — —
20 28650 114 94 485 (1.7%)
Coprocessor CP2
8 4950 15 — —
20 11550 59 5 45 (0.9%)
29 14350 100 18 165 (1.4%)

Table I shows code volume (including ISA specifications

and pipeline hazards templates), number of implemented
instructions, number of instructions affected by the revision
and volume of the affected code. As it is seen in the table,
when the microprocessor is modified, a small part of the
generated code has to be changed. It took us less than half an
hour to alter the code.

The generated test programs detected a considerable
number of errors in both coprocessors which had not been
found by randomly generated test programs.

VI. CONCLUSION
Verification of a pipeline microprocessor is a very difficult
task that cannot be carried out without using automation
techniques. In the paper the technique for automated test
programs generation is described. As opposed to the
common approaches, like manual development and random
generation, the suggested methodology has a high level of
automation and allows systematically testing control logic of
a microprocessor. At the same time, the methodology differs
from the approaches that use accurate models by the
possibility of using it in early design stages when
microarchitecture is frequently revised.

Using accurate models of control logic is reasonable in
late stages of a microprocessor design cycle when control
logic is stable. Due to the high informativeness of accurate
models, such approaches allow finding errors which are
really hard to detect. Moreover, accurate models make it
possible to create more compact set of tests. In the future we
are planning to extend the approach to support accurate
models as well. This would make the generator to be more
flexible – it would be applicable to both early and late design
stages unifying the verification process.

REFERENCES
[1] P. Mishra, N. Dutt. Specification-Driven Directed Test Generation for

Validation of Pipelined Processors. ACM Transactions on Design
Automation of Electronic Systems, 2008.

[2] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, A. Nicolau.
EXPRESSION: An ADL for System Level Design Exploration.
Technical Report 1998-29, University of California, Irvine, 1998.

[3] www.cs.cmu.edu/~modelcheck/smv.html.
[4] T.N. Dang, A. Roychoudhury, T. Mitra, P. Mishra. Generating Test

Programs to Cover Pipeline Interactions. Design Automation
Conference, 2009.

[5] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
A. Ziv. Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification. Design and Test of Computers,
2004.

[6] S. Ur, Y. Yadin. Micro-Architecture Coverage Directed Generation
of Test Programs. Design Automation Conference, 1999.

[7] A. Kamkin. Test Program Generation for Microprocessors. Institute
for System Programming of RAS, 2008. (in Russian)

[8] MIPS64TM Architecture For Programmers. Revision 2.0. MIPS
Technologies Inc., 2003.

[9] D. Vorobyev, A. Kamkin. Test Program Generation for Memory
Management Units of Microprocessors. Institute for System
Programming of RAS, 2009. (in Russian)

135 of 168

Abstract — In this work the database index for approximate
string search is proposed. In particular the task of finding
strings from some data domain which have a distance from
given string less than given number is considered. Some kind of
editorial string distance is used in capacity of string distance.
Some subclass of regular expressions is used in the capacity of
tree node predicates. The analysis of performance tests was
performed and the areas of further researches were surveyed.

Index Terms — database systems, approximate string
searching, search tree, dictionary search

I. INTRODUCTION
raditional database queries support a limited number of
predicates. The limitation of standard search queries is

caused in part by lack of implementation of required data
types and search predicates in DBMS. This limitation is also
caused by finite data structures on which database indexes are
based. Search predicate support by database index frequently
is required in order for a database to be scalable in terms of
data amount incensement. The traditional search query
predicates which are supported by database indexes are
equality and linear range predicates [1].

Modern database applications tend to extend their
functionality. Part of this functionality can be implemented
without extension of DBMS, but the other part is not. Modern
database applications frequently require the support of
nonstandard data types and nonstandard search query
predicated from a DBMS. An example of an application of
nonstandard data types and nonstandard search query
predicates is geographical informational systems (GIS). In
these systems the geometrical data types which are
nonstandard in DBMS are used. Also, the search predicates
like overlap and containment are non-standard on DBMS.
The spatial indexes are used for search optimization of these
predicates [2].

This work considers the implementation of a database
index for approximate stirng searching. The search predicate
is based on the editorial distance between strings. The
database index was implemented as an extension of GiST,
which is a universal framework for database index
implementation.

II. APPROXIMATE STRING SEARCH
An approximate string search is implied as a string search

when search pattern or search domain can suffer from some
kind of distortion. Some examples of approximate string
search are finding DNA subsequences after possible
mutations [3, 4, 5] and searching for typing and spelling
errors in text [6, 7, 8].

In this work the searching data domain is the set S of
strings si; S = {s1, s2, … , sn}. The search predicate is the
assertion that the editorial distance from the element of
domain si to the search string p is less or equal than fixed
number d, i.e. ed(si, p) ≤ d. The editorial distance between
string s1 and string s2 is the minimal number of editorial
actions required to transform s1 to s2. In this work the
Levenshtein distance [9] is used in the capacity of editorial
distance. In the Levenshtein distance there are three editorial
actions: character insertion, character deletion, and character
replacement. This type of search predicate can be applied to
search for a misspelled word in the dictionary. However, the
application of this search predicate is not limited by described
case.

Various implementations of database indexes for
approximate string search in this definition already exist [10].
In this work the search index implementation based on a
generalized search tree is presented. The pg_trgm module
which is an implementation of approximate string search
indexes already exists for GiST [11]. However in the pg_trgm
the amount of matching trigrams is used in the capacity of
string distance whereas in this work the Levenshtein distance
is used.

III. GENERALIZED SEARCH TREE
Generalized search tree presents a very general solution of

the generalization of database access methods. GiST is the
data structure which is extensible in terms of search queries
as well as in terms of indexing data types. GiST defines the
set of interface functions, for which implementation defines
search indexes. These interface functions only depend on
indexing data type and search predicates, but these functions
are abstracted from data pages, records, query processing, etc.
Thus to implement a search index using GiST it is not

Database index for
approximate string matching

Alexander Korotkov
National Research Nuclear University "MEPhI"

Moscow, Russia
email: aekorotkov@gmail.com

T

136 of 168

required to write a code which maintains data structure [12].
Additionally, GiST generalizes the majority of currently
existing search trees. For example B+-tree and R-tree can be
implemented as GiST extensions [13].

At this moment GiST is fully implemented in open source
postrelational DBMS PostgreSQL, though the result of GiST
researches is used in the majority of commercial DBMSs such
as Oracle and DB2. Several reasons for implementation of
search index based on GiST in this work can be noted:
 To provide open source and license free solutions for

approximate string searching
 To see completely new application of GiST
 Simplicity of GiST extension implementation

IV. USING GIST FOR APPROXIMATE STRING SEARCH
As it was noted before the Levenshtein distance is used in

the capacity of string distance. The Levenshtein distance is
the minimum number of elementary operations needed to
transform one string to another one. There are the following
elementary operations:
 Insertion of arbitrary character to arbitrary position of

string
 Replacement of arbitrary character of string with

another arbitrary character
 Deletion of arbitrary character of string
The two sequences alignment algorithm [14, 15] can be

used in order to calculate the distance between strings a and
b. The two modifications of this algorithm were introduced in
this work. Next let’s consider this algorithm in detail.

The a = a1a2…an and b = b1b2…bm are two strings of
length n and m. The alignment is produced when a null
character «-» is inserted into the strings; the new strings must
have the same length L. After insertion of «–» the a =
a1a2…an becomes a* = a1

*a2
*…an

* and b = b1b2…bm becomes
b* = b1

*b2
*…bm

*. The alignment is the two sequences which
are written one over the other.

*
L

*
2

*
1

*
L

*
2

*
1

b...bb
a...aa

The distance between strings a and b is introduced as:

L

1i

*
i

*
i)b,d(amin),D(ba

The d(a,b) represents the distance between characters a and
b. In the case of Levenshtein distance d(a,b) is defined below:

ba1,
ba0,

b)d(a,

1a),d()d(a,

The matrix D is introduced as the distance between
prefixes of strings a and b.

Di,j = D(a1a2…ai,b1b2…bj)

There are following rules of matrix filling:
0D0,0

j

1k
kj0,)b,d(D

i

1k
ki,0),d(aD

)}b,d(D),b,d(aD),,d(amin{DD j1ji,ji1j1,iij1,iji,

TABLE 1. THE MATRIX OF ALIGNMENT
 – b1 b2 … bm

– D0,0 D0,1 D0,2 … D0,m
a1 D1,0 D1,1 D1,2 … D1,m
a2 D2,0 D2,1 D2,2 … D2,m
… … … … … …
an Dn,0 Dn,1 Dn,2 … Dn,m

The bottom right element of the matrix represents the
distance between strings.

Dn,m = D(a1a2…an,b1b2…bm) = D(a,b)

A. Search predicate
In this work the optimizable search predicate is P(x) =

(levenshtein (s,x) ≤ d), where levenshtein – the function of
Levenshtein distance calculation, s – given string, d – given
nonnegative number. Thus this predicate is true for strings
which have Levenshtein distance to a given string less than or
equal to a given number. Considering Levenshtein distance as
metrics (it is possible because this distance has metrics
properties) set of strings satisfying this predicate can be
represented as solid sphere with center in s string and d
radius.

B. Tree node predicate
The selection of tree node predicate is critical for GiST

extension implementation. All the characteristics of the
resulting tree generally depend on selected tree node
predicate. In this work the predicate of matching to some
class of regular expressions was selected. The description of a
selected class of regular expressions is below. Each
expression of a selected class can be represented as a
concatenation of n (n is nonnegative integer) sub-expression.
Each sub-expression can be defined in one of the ways below:
 One character from set of m characters (format of sub-

expression is “[a1a2…am]”)
 One character from set of m characters or empty string

(format of sub-expression is “[a1a2…am]?”)
 Any character or empty string (format of sub-

expression is “.?”)
In this work when the term “regular expression” is used

this class of regular expressions is mentioned.

C. GiST interface methods implementation
The GiST interface consists of 7 methods. The purpose of

these methods is considered below.
1) compress and decompress – these two methods are

responsible for key compression and decompression
(in keys should be suitable to work with them but it
is frequently reasonable to compress a key before
storing it to disc)

2) consistent – this method calculates compatibility of

137 of 168

tree node key and search query (The search
optimization performs at the expense of this method.
If the predicate of the tree node is incompatible with
the search predicate then all the sub-tree should be
skipped)

3) union – this method returns the union of two keys
(all the values which conform to any of source keys
should conform to the resulting key)

4) penalty – this method returns the measure of growth
of the source key after addition of another key to it
(this value should represent the measure of growth of
values set which conforms to the key predicate)

5) picksplit – this method splits an array of keys into
two arrays. It is desirable that union keys of the
resulting two arrays have a minimal size (the size of
the key is assumed to be the size of set of values
which conform to the key predicate)

6) same – this methods checks if two keys are the same
In this work the compression of keys before writing them to

the disc is not used. This is why the implementation of the
compress and decompress methods was trivial. The
implementation of same method also was trivial because all
the regular expressions are stored in same manner. The
penalty and picksplit methods were implemented using the
keys union function and key size measurement function. The
penalty method calculates keys union and calculates the
difference between keys union size and source key size. The
picksplit method is based on the Guttmann’s clusterization
algorithm. The union and consistent methods use the
modification of two strings alignment algorithm.

1) Consistent method
The consistent method implementation uses the

modification of two strings alignment algorithm[14] which
makes it possible to find the minimal Levenshtein distance
between any string which conforms to regular expression and
the search query string. The resulting minimal distance can
be represented by the expression:

d = min{levenstein(s,x)|x~r}
where s – search query string, r – regular expression, “~” –

operator of regular expression conformance.
The decision on compatibility of search query and regular

expression is made by comparing the resulting value and
maximum distance of the search query.

The modification of two strings alignment algorithm is
used in calculations of minimal distance. In this modification
alignment between s = s1s2…sn and r = r1r2…rm is produced.
The minimal distance between a string which conforms to r
and s is calculated by expression:

L

1i

*
i

*
i),d(min),D(rsrs

There is following definition d(s,r):

s allowt doesn'r if 1,

s allowsr if 0,
r)d(s,

1d(s,-)

stringempty allowt doesn'r if 1,

stringempty allowsr if 0,
r)d(-,

TABLE 2. THE EXAMPLE OF ALIGNMENT MATRIX FOR FINDING MINIMAL
DISTANCE BETWEEN STRING AND REGULAR EXPRESSION

 - [dk] [uzm] [oc] .?
- 0 1 2 2 2
d 1 0 1 1 1
o 2 1 1 1 1
m 3 2 1 1 1

Other parts of this algorithm is similar to the original

algorithm. Let’s consider an example. Let’s find minimal
distance between “dom” word and “[dk][uzm][oc]?.?”
expression.

2) Union method
In the union method some other modification of the two

strings alignment algorithm was used. The following distance
function between two sub-expressions was used:

1

2

2

1
21 uc

u
uc

u)r,d(r

 ,

There u1 – the number of unique characters in the first sub-
expression (the number of characters which are allowed by
the first sub-expression and are not allowed by the second
sub-expression), u2 – the number of unique characters in the
second sub-expression and c – number of common characters
in sub-expressions. The empty string is assumed to be a
separate character.

The case of equality of one sub-expression to “.?” should be
considered separately (when the both sub-expressions are
equal to “.?”, it is evident that distance should be assumed as
zero). In this case following measure was used:

0)".?",d(".?"

n
cn)r,d(".?" 2

2

There c2 – the number of characters of second sub-
expressions and n – the total number of characters in the
alphabet used.

In the case of one sub-expression being skipped, the
following measure was used:

cu
u1 r)d(-, d(r,-)

 ,

There u = 0, when an empty string was allowed by sub-
expression, u = 1, otherwise; c – the number of characters in
sub-expression.

In this modification of alignment it is not only necessary to
calculate the distance but also to find the union expression.
Let’s consider alignment of two expressions a = a1a2… an and
b = b1b2…bm.

*
L

*
2

*
1

*
L

*
2

*
1

b...bb
a...aa

The resulting expression c = c1c2…cm can be calculated by
ci = u(ai,bi), where u – the function of two subexpressions

138 of 168

unification.
u(".?", a) = u(a, ".?") = ".?"

u("[a1a2…an]","[b1b2…bm]") = "[a1a2…anb1b2…bm]"
u("[a1a2…an]","[b1b2…bm]?") =
u("[a1a2…an]?","[b1b2…bm]")

= u("[a1a2…an]?","[b1b2…bm]?") = "[a1a2…anb1b2…bm]?"
In the operation of unification of sub-expressions if the

number of characters in the final sub-expression exceed the
threshold value k then this sub-expression is replaced by “.?”.
This replacement is performed in order to decrease the length
of sub-expression and to improve the performance.

Let’s consider the process of unification of
“[abc][def][hg]?.?” and “.?[ad][bef]?h?h?” expressions as an
example. The final matrix is presented below.

TABLE 3. THE EXAMPLE OF ALIGNMENT MATRIX UNIFICATION OF TWO

REGULAR EXPRESSION
 - .? [ad] [bef]? h? h?
- 0,00 1,00 2,33 3,33 4,33 5,33
[abc] 1,25 0,88 1,88 2,88 3,88 4,88
[def] 2,50 2,13 1,75 2,75 3,75 4,75
[hg]? 3,50 3,13 2,75 2,63 3,63 4,63
.? 4,50 3,50 3,75 3,59 3,53 4,53

The resulting alignment is

h?.?[befhg][adef].?union
h?h?[bef]?[ad].?2 expression

.?[hg][def][abc]1 expression

The union expression is “.?[adef][befhg]?.?h?”.

V. THE PERFORMANCE TESTING
Two tasks should be completed in order to perform

synthetic testing of a database index. These tasks are to
prepare test data domain and to prepare the test set of queries.
The English dictionary with a volume of 61 505 words was
used as test date domain.

After that the test was generated. There are two kinds of
generated tests. The first kind of test is with random
generated words. The second kind of test is with random
distortion in existing words.

In the tests with random generated words the sequence of
random characters of English alphabet with a length between
3 and 18 was generated. After that a random number between
1 and n/5 was generated. This number was used as the
radius of the search query. The expression n/5 was used as
the upper boundary in order to prevent the radius of the
search query from being too high in comparison with word
length.

In the tests with random distortion in existing words the
random word from the dictionary was selected. Let’s assume
the length of this word as n. After that the random distortions
(insertion, replacement and deletion of character) with
number between 1 and n/5 was applied to the selected word.
Eventually the random number between 1 and n/5 is

selected as the radius of search query.
The results of the tests are presented in the tables.

TABLE 4. THE RESULTS OF INDEX TESTING WITH RANDOM DISTORTIONS IN

EXISTING WORDS
Search query radius

 1 2 3
Average

Dist. S WOI WI S WOI WI S WOI WI S WOI WI

0 2,29 124 66 1,36 141 115 1,529 186 132 1,72 150 104

1 2,91 124 58 1,54 143 108 1,751 180 126 2,07 149 98

2 3,52 142 63 1,62 142 102 1,851 184 121 2,38 156 95

3 10,7 180 36 6,66 187 063 2,549 182 116 6,64 183 72

Avg. 4,85 142 56 2,80 153 097 1,920 183 124 3,19 160 92

In the table 4 the results of testing of search queries with
random distortion in existing words. The dependence of
average speedup (S), average search time without index (NI)
and average search time with index(I) on radius of search
query and number of distortion in source word is presented.
The speedup (S) calculates as S = Twoi / Ti, where Twoi and Ti
are the time of search without using of index and the time of
search with using of index respectively. As it is shown in the
table the quotient of NI and WI is less then S as the rule.
There is no contradiction because the average of quotient is
not the quotient of average. This argues that the faster queries
have higher speedup than slower ones.

In the table 5 the results of testing of search queries with
random generated words are shown. In this table the same
data as in the table above is presented but it depends on the
length of generated word and radius of search query. As it is
shown in the table the speedup increases as the length of
generated word increases, and speedup decreases as the
search radius increases.

TABLE 5. THE RESULTS OF INDEX TESTING WITH RANDOM WORDS

Search query radius
 1 2 3 4

Average

Len. S NI I S NI I S NI I S NI I S NI I
3 5,3 80 16 5,3 80 16
4 4,5 89 24 4,5 89 24
5 4,6 99 29 4,5 99 29
6 4,6 109 33 1,8 109 68 3,2 109 51
7 5,7 119 30 2,2 119 71 4,0 119 50
8 6,6 128 27 2,7 128 63 4,7 128 45
9 8,4 139 22 3,2 138 58 5,8 138 40

10 11 148 16 6,1 148 35 8,5 148 26
11 12 157 14 7,3 156 28 3,4 157 58 7,7 157 33
12 16 166 11 9,8 167 20 5,4 167 47 10,5 166 26
13 21 175 9,4 13,2 174 14 8,5 175 25 14,1 175 16
14 28 183 7,5 15,4 184 13 9,3 184 23 17,6 184 14
15 49 193 4,9 20,3 192 10 12,7 194 17 27,4 193 11
16 88 201 2,8 32,3 202 7,4 16,1 200 13 10,58 202 20 36,7 201 11
17 201 211 1,6 63,6 210 4,4 25,5 209 10 13,74 211 16 76,1 210 7,9
18 353 220 0,8 116 218 2,2 43,6 218 5,8 17,90 220 13 132 219 5,4

Avg. 51,3 151 16 22,6 165 30 15,6 188 25 14,07 211 16 25,9 179 22

VI. CONSLUSION
In this work the development of a new search index for the

approximate string search based in GiST was considered. The
new search index which allows searching in the domain of

139 of 168

strings S = (s1, s2, … sn) such si that levenshtein(si, p) ≤ d was
developed. The index testing with the English dictionary with
the volume of 61 505 words in the capacity of a data domain
was performed. The average speedup in the tests with random
distortions in existing words was 3.19 times. The average
speedup in the tests with random words was 25.88 times.

There are following directions of further researches:
 To research the developed index behavior on the different

data domains. To understand which domain can be used
with considerable performance improvement and which
is not.

 To improve the performance of the index. There are two
ways to improve the performance. The first way is to
change the implementation of some GiST interface
methods (in particular the PickSplit method). The second
way is to change the class of regular expressions used in
the capacity of tree node predicates.

 To apply the developed index for other search predicates.
These predicates are the following: predicate based on
the editorial distance different than Levenshtein distance,
the regular expressions in the capacity of search
predicate.

REFERENCES
[1] Douglas Comer, “The Ubiquitous B-Tree”, Computing Surveys 11(2),

June 1979, pp. 121–137.
[2] Antonin Guttman, “R-Trees: A Dynamic Index Structure For Spatial

Searching”, In Proc. ACM SIGMOD International Conference on
Management of Data, June 1984, pp. 47–57.

[3] Miller , and DJ Lipman, “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs”, Nucleic Acids Res., Sep.
1997, pp. 3389-3402.

[4] Zemin Ning, Anthony J. Cox, and James C. Mullikin, “METHODS:
SSAHA: A Fast Search Method for Large DNA Databases”, Genome Res.,
Oct. 2001, pp. 1725-1729.

[5] Maria B. Chaley, Eugene V. Korotkov, and Konstantin G. Skryabin,
“Method Revealing Latent Periodicity of the Nucleotide Sequences
Modified for a Case of Small Samples”, DNA Res, June 1999, pp. 153-
163.

[6] Sun Wu, Udi Manber, “Fast text searching: allowing errors”,
Communications of the ACM, Oct. 1992, pp. 83 – 91.

[7] James L. Peterson, “Computer programs for detecting and correcting
spelling errors”, Communications of the ACM archive, Dec. 1980, pp. 676
– 687.

[8] Fred J. Damerau, “A technique for computer detection and correction of
spell-ing errors”, March 1964, pp. 171 – 176.

[9] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals”, Soviet Physics 10, 1966, pp. 707–710.

[10] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio, “Indexing methods
for approximate string matching”, IEEE Data Engineering Bulletin 24,
April 2001, pp. 19-27.

[11] R. C. Angell, G. E. Freund, P. Willett, “Automatic spelling correction
using a trigram similarity", Information Processing and Management
19(4), 1983, pp. 255-262.

[12] M. Kornacker, C. Mohan, J.M. Hellerstein, “Concurrency and recovery in
generalized search trees”, In Proceedings of the ACM-SIGMOD
Conference, May 1997, pp. 62-72.

[13] Paul M. Aoki, “Generalizing “search” in generalized search trees” in
Proc. 14th Int'l Conf. on Data Engineering, Feb. 1998.

[14] Robert A. Wagner, Michael J. Fischer, “The String-to-String Correction
Problem”, Journal of the ACM, Jan. 1974, pp. 168 – 173.

[15] Michael S. Waterman, “Introduction to computational biology: maps,
sequences and genomes”, 1995.

140 of 168

Adaptation of Hierarchical clustering by areas for
automatic construction of electronic catalogue

Fedor Vladimirovich Borisuyk
N.I. Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia
fedorvb@gmail.com

Vladimir Ivanovich Shvetsov
N.I. Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, Russia
shvetsov@unn.ru

Abstract

This paper explores adaptation of Hierarchical clustering by
areas algorithm, presented in [1], for automatic construction of
electronic catalogue of text documents. Electronic catalogue is
traditionally maintained and built by hand, significant research
was done to classify the documents to existing hierarchical
structures, but little was done about to build the electronic
catalogue from scratch. We describe enhancements of
Hierarchical clustering by areas algorithm and compare it (to be
applied in the field of automatic catalogue construction) with
other researches. This paper also proposes an algorithm of
feature space reduction for preparation of document
representations for text clustering.

Keywords - electronic catalogue, rubrication, informational
retrieval, text clustering, area tree

I. INTRODUCTION
At present in different stores of knowledge (electronic and

traditional) have accumulated vast amount of information. At
the same time because of large volumes of information, their
weak structuring and reporting non-electronically, the
obtaining of relevant and complete information on a specific
topic is quite complex, and majority of the accumulated
information resources becomes useless because of it immense.
It can be noted that the search of solution for a specific
scientific objectives requires high labor costs to find and
analyze information on the topic. Therefore, in connection with
the stated above, there is the problem of efficient structuring,
storing, processing and retrieval of information in the data
arrays. To solve this problem people use different thematic
classifiers, rubricators, electronic catalogues, which allows
finding (either automatically or manually) the documents in a
small subset of the document database corresponding to the
interesting for the user topic. Electronic catalogues is usually a
set of headings grouped into a hierarchy (directory). For each
category there is set of documents, which is assigned
corresponding to category subject. Currently there are available
are two types rubricators - manual and automated. In case of
manual rubricator, each new document must be manually
analyzed and expert have to define which sections of directory
of electronic catalogue it belongs to, after that document
becomes available for search. Also there are automated

categorization systems, which store sets of characteristics for
each category of catalogue and automatically determines
corresponding category for the analyzed document. At most the
list of attributes for each entry is made by the expert. The
disadvantage of the existing automated systems is their static
character and the inability to automatically, without the
participation of expert rebuild formed earlier catalogue.

In this paper we propose the way of automatic construction
of an electronic catalogue for text documents as one of the
most effective ways to access the necessary data. The urgency
of this problem is increasing as the number and volume of
electronic texts is constantly increasing. To automatically
construct electronic catalogue the adaptation of novel
Hierarchical clustering by areas algorithm is presented. The
proposed hierarchical structure of electronic catalogue
supposes a quick and efficient way to find the relevant
information.

II. RELATED WORK
Much of the previous work concentrates on the

classification of text documents, either on flat classification or
on hierarchical classification to predefined categories. In case
of flat classification of text documents each category treated
individually and equally so that no structures exist to define
relationships among them [2]. For example, good work in the
hierarchical classification to two layer hierarchical structure
described by Dumais and Chen in [3], they used SVM
classifiers and explored small advantage for accuracy for
hierarchical model over flat models.

Only a little research was done in the field of automatic
construction of hierarchical catalogue structures. There can be
observed two qualitative articles.

Tao Li and Shenghuo Zhu [4] have used linear discriminant
projection approach for transformation of document space onto
lower-dimensional space and then cluster the documents into
hierarchy using Hierarchical agglomerative clustering
algorithm [5]. They have found good benefit from using linear
projection approach as according to the paper it preserves
underlying class structure relation (semantic relations between
clustering objects). The paper investigates the affect of using
generated hierarchical structure for text classification. They
have used LIBSVM [13] as a classifier, which is library for
support vector classification, regression and support multi-class

141 of 168

classification. Taken experiments showed that generated
hierarchies improve classification performance in most cases,
the most significant gain in accuracy (growth up to 53 %) they
have reached on the Reuters-top10 collection.

A promising work was done by O. Peskova [6], which
presents some improvements for clustering feature selection
referred as selective feature space reduction and develops a
modification of layerwise clustering method of Ayvazyan [7].
Suggested method of selective feature space reduction
decreases feature space in 3.5 times, decreases a computation
time, and improves accuracy of clustering algorithm. Presented
method was tried on small collections of text documents
generated from electronic library on informational technologies
http://citforum.ru. Author of the [6] found a 4% advantage in
average f-measure of the developed clustering method over
Hierarchical agglomerative clustering algorithm [5].

Our work explores the way of automatic construction of an
electronic catalogue for text documents as one of the most
effective ways to access the necessary data. We propose
adaptation of Hierarchical clustering by areas algorithm, which
is described in [1].

In next sections we will describe clustering feature
selection, description of datasets used for testing of the
proposed approach, description of the adapted hierarchical
clustering by areas algorithm and evaluation of the proposed
approach.

III. CLUSTERING FEATURE SELECTION
For the clustering purpose each text document is presented

as the vector of keywords. Universal of document keyword
vectors presents keywords feature space. To reduce the feature
space stop words (words that usually does not used for search,
for example, conjunctions and prepositions) are eliminated.
Also modified TFxIDF [8] metric is used to calculate the
weight of the word in relation to the document. Finally no more
than top 300 features with the highest weight of the word in
relation to the document are selected to represent the
document. Hereby the following algorithm for keywords
extraction from the documents is used:

1) For all words of the document stem is extracted using
 Porter algorithm[9]. Number of occurances TFi of
 each stem in the document D is counted.
2) Stop words are removed from list of extracted words.
3) Remove words, which have frequency more than
 predefined max frequency or less than predefined
 minimum frequency.
4) Weight of the stemi in the document D is calculated

 using modified TFxIDF formular, and if to denote -
 max frequency between all stems as MaxStemFreqD ,

 total number of documents in collection as TDN,
 number of documents where this stem occurs as DNi ,

then we have these formulars to compute weight of the stem:
 IDFi = log (1+TDN/ DNi) (1)
 WeightD(stemi) = ((0.5+0.5*TFi)/MaxStemFreqD)*IDF i (2)

5) No more than 300 stems with the highest weight are
selected as keywords to represent the document (document
representation).

To improve the determinant behavior of features of
document representations, we use the idea of Selective feature
space reduction presented in [6]. Our implementation is
different to [6]. Firstly we cluster the documents collection
using modified algorithm of Hierarchical clustering by areas
(see section IV.C). Each area in the resulted hierarchical area
tree has vector of keywords, which describes it. If to assume
areas collection similarly to the documents collection, we can
execute keywords extraction algorithm described above on the
areas collection to select the vector of most significant
keywords of each area in relation to other areas in the areas
feature space: this way we reduce the number of keywords
used for describing of areas in the area tree (see section IV).
Keywords, which are not present in the areas feature space,
area removed from document vectors; this way we reduce
document vector sizes. The quality of clustering rises two
times (for Hierarchical clustering by areas algorithm) in
comparison with the clustering without using this technique.

IV. MODIFIED HIERARCHICAL CLUSTERING BY AREAS
ALGORITHM

For construction of the electronic catalogue we propose
adaptation of Hierarchical clustering by areas algorithm, which
is described in [1]. Hierarchical clustering by areas algorithm
builds hierarchical tree of the areas, which consists of the
documents of initial collection. Characteristics of the areas are
calculated during algorithm execution. Final clusters of the
algorithm are placed in the nodes of the tree. Node of the
hierarchical tree contains objects, which is most closed to each
other. Hierarchy of the tree reflects relations between areas.

A. Initialization of the hierarchical by areas algorithm

Lets we have incoming stream of the documents, which are
supposed to be integrated into the hierarchy. Each document is
represented by vector of the keywords. Primarily all incoming
documents are put into the recycle bin area of the tree until the
number of the documents exceeds a predefined limit, noted as
KMax. When the number of the documents of the recycle bin
area surpasses KMax, it divides into subareas. Hereby the list
of root areas appears.

B. Improvements of the hierarchical by areas algorithm

To improve the quality of the hierarchical structure we
propose the enhancement of hierarchical by areas algorithm
with three additional techniques:

1) Limitation of depth of the tree.
2) Recycle bin at each level.

Traditionally electronic catalogue has limited number of

layers. For example, catalogue of Yandex Corp. has up to 6
layers in depth [10]. Therefore clustering hierarchical
algorithm should provide possibility to manage the number of
layers in the hierarchy tree. This feature makes the catalogue

142 of 168

to be observable for the user and to locate necessary
information easily.

To improve the quality of clustering we introduce the
instance of recycle bin at each level. The idea of recycle bin is
that all those documents which do not meet entry criteria of
the areas of the certain level should be temporary stored in the
special area on the same level. Areas on the same level should
be as much different from each other as possible, and the idea
of recycle bin helps in this question. When the number of
objects in the recycle bin surpasses the predefined limit, it is
divided and a new detached area is connected to the current
level.

C. Phase of processing of incoming document flow

This section describes in detail modified Hierarchical
clustering by areas algorithm.

In the capacity of data for the phase of processing there is
document, which is represented by vector of keywords, and
tree of areas. On the first step of algorithm there is a
verification of possibility of correct insertion the document to
the area tree. The possibility of correct insertion is determined
by measuring of the closeness between document and areas of
root level. If closeness does not exceed the dynamically
calculated limit, which is defined as minimum of closeness
between already processed documents, then document is
temporary stored in the recycle bin of the root level. If
document has closeness, which is more than predefined limit
then, it is directed along the tree to the closest subareas. On the
next steps of the algorithm document moves until it meets the
closest area of the tree. Document is accommodated in the
found area. In case if number of elements of area exceed
predefined limit then area is divided into subareas. If number of
subareas exceeds the predefined limit then operation of
integration of subareas executes. The operation of integration
of subareas consists of two basic operations:

1) Partitoining of subareas in two groups of most close to
each other.

2) Aggregation of subareas under one area from the
elements of the group.

For the notations of modified Hierarchical clustering by areas
algorithm see Table I.

TABLE I. NOTATIONS OF THE HIERARCHICAL BY AREAS ALGORITHM

Notation Description

KMax Maximal number of elements in the area

RootArea Root of the tree which points to the list
of first level areas of the hierarchical tree

MinProximity
Minimum proximity for the document
(to be inserted) that should be between
document and node of the area tree.

Divide (area) Operation of division of area to subareas

proximity(A,B) Operation of calculation of the nearness
between objects A and B

getСhildren
(area)

Operation of building the list of
descendants of area

Notation Description

ConnectToTree
(Area)

Connect new area as a child to its parent
area from which it was derived (Divide
operation) or to the parent of Recycle bin
from which was derived.

Integrate (area) Operation of integration of subareas of
the area

RecycleBin Recycle bin - special area, which stores
declined objects.

Take a look at algorithm of insertion of the document in the
tree of areas:

1 step. New document Doc has been supplied.

2 step. areaList=getСhildren(RootArea);

3 step. FOR EACH area IN areaList: find area which is the

 most close to Doc.

4 step. Verify if document can be inserted in the hierarchy:

 IF (proximity (Area, Doc) < MinimumProximity)) {

 RecycleBin.Add (Doc);

 IF (RecycleBin.size() > KMax) {

Result = Divide (RecycleBin);

 ConnectToTree (Result);

 } End of algorithm;

 }

 5 step. areaList=getСhildren(Area);

 IF (areaList.size() == 0) GOTO 8 step.

 6 step. FOR EACH area IN areaList: find area NArea

– which is maximally close to Doc.

 7 step. IF (proximity (Area, Doc) <

proximity (NArea, Doc)) {

 Area = NArea; GOTO 5 step;

 } ELSE {

 Area.add (Doc);

 IF (Area.size() > KMax) { divide (Area);

 IF (number of descendants of Area is over limit) {

Integrate (Area);

 }

 }

 GOTO 8 step.

 }

8 step. Update vectors of keywords of areas, which is

located on the path to the resulted area.

143 of 168

(4)

V. RESULTS
For the verification of the presented approach we have used

two datasets and compare proposed algorithm with
Hierarchical agglomerative clustering algorithm.

A. Datasets selection

For testing purposes we have used two datasets. One is
subset of 20Newsgroups (20000 articles), which contains 2000
articles evenly divided among 20 Usenet newsgroups
(http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/news20.html). Second dataset NNSU8 was
prepared by us from the scientific articles of Nizhny Novgorod
state University, because in future the approach described in
this article is supposed to be integrated in the environment of
internet portal of Nizhny Novgorod State University as
scientific catalogue. NNSU8 contains 1302 scientific articles in
8 scientific areas.

B. Evaluation

For evaluation of proposed algorithm of electronic
catalogue construction we have used standard external metrics.
In the context of clustering tasks, the terms true positives, true
negatives, false positives and false negatives are used to
compare the given clustering of the documents with the
desired, ”sample” partitioning of documents to the groups,
which is given a priori. This is illustrated by the Table II
below:

TABLE II. EVALUATION METRICS

For each pair
of the

documents Di
and Dj

Di and Dj contain in one
cluster of “sample”

partitioning

Di and Dj contain in
different cluster of

“sample” partitioning

Di and Dj
contain in one
cluster of
automatic
clustering

tp (true positive) fp (false positive)

Di and Dj
contains in
different
clusters of
automatic
clustering

fn (false negative) tn (true negative)

We have used these metrics to evaluate the clustering [12]:

• Recall (1) is the fraction of number of correctly
grouped documents in automatically generated cluster
to the number of documents in “sample” cluster:

 (3)

• Precision (2) is the fraction of number of correctly
grouped documents in automatically generated cluster
to the number documents in generated cluster:

• F-measure (3) that combines Precision and Recall is
the harmonic mean of precision and recall:

(5)

We compared the modified Hierarchical clustering by areas
algorithm with Hierarchical agglomerative clustering algorithm
(Single link algorithm), implementation of which was taken
from the Yooreeka project [11]. The results of computational
experiments, which are presented in Table III, show good
advantages of Hierarchical clustering by areas algorithm in
comparison with Hierarchical agglomerative clustering by
means of precision, recall and f-measure characteristics, and
computation time. There is a 27% advantage in average f-
measure of Hierarchical clustering by areas algorithm over
Hierarchical agglomerative clustering algorithm on the NNSU8
collection and a 38% advantage in average f-measure on the
20NewsGroups collection.

TABLE III. EVALUATION OF AVERAGE METRICS OF HIERARCHICAL BY
AREAS ALGORITHM IN COMPARISON WITH HIERARCHICAL AGGLOMERATIVE

CLUSTERING ALGORITHM

Metric

 Algorithms and datasets

Hierarchical by areas Hierarchical Agglomerative
20News
groups

NNSU8
20News
groups

NNSU8

Recall 0.79 0.66 0.1 0.40

Precision 0.35 0.59 0.11 0.38

F-measure 0.48 0.6 0.1 0.33
Time
(msec) 2505 2391 2896 45116

Top levels of catalogue generated by Hierarchical by areas

clustering for NNSU8 collection and 20Newsgroups are
presented in Table IV and Table V accordingly.

TABLE IV. TOP LEVELS OF CATALOGUE GENERATED BY THE
HIERARCHICAL BY AREAS CLUSTERING FOR NNSU8

Areas Members

1 Law, philosophy;

2 Mathematics;

3 Sociology;

4 Economics;

5 Physics

6 Biology, Chemistry;

Addition of new documents to the ready-built catalogue do

not need rebuilding of the whole catalogue structure, it
supposes the same insertion algorithm, which is presented in
section IV.C.

144 of 168

TABLE V. TOP LEVELS OF CATALOGUE GENERATED BY THE
HIERARCHICAL BY AREAS CLUSTERING FOR 20NEWSGROUPS

Areas Members

1
talk.politics.mideast,
talk.politics.guns,
talk.politics.misc

2 comp.graphics, comp.os.ms-
windows.misc

3
rec.sport.baseball,
rec.sport.hockey, rec.autos,
rec.motorcycles

4 sci.crypt, sci.med, sci.space

5 comp.sys.ibm.pc.hardware;
comp.sys.mac.hardware

6 soc.religion.christian

7 sci.electronics; misc.forsale;
comp.windows.x

8 talk.religion.misc

CONCLUSION
The research presented in this paper explores adaptation of

Hierarchical clustering by areas algorithm for automatic
construction of electronic catalogue of text documents. The
computational experiments showed advantages of Hierarchical
by areas algorithm for automatic electronic catalogue
construction in comparison with Hierarchical agglomerative
clustering by means of quality and time for computation. In
this paper we also present algorithm of feature space reduction
for preparation of document representations for clustering,
which substantially increases quality of clustering. The
addition of new documents to ready-built Hierarchical
electronic catalogue, in other words – classification of new
documents to the hierarchy, does not need rebuilding of
catalogue. Presented in this article approach can be used for
construction of web electronic catalogues.

REFERENCES
[1] F.V Borisyuk. and V.I. Shvetsov “New search method based on

hierarchical clustering by areas of text documents,” Vestnik of N.I.
Lobachevsky State University of Nizhny Novgorod, 2009, # 4, pp. 165–
171.

[2] Yiming Yang and Xin Liu. “A re-examination of text categorization
methods”, Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information retrieval,
Berkeley, California, United States, 1999, pp. 42 – 49.

[3] S. T. Dumais and H. Chen (2000). “Hierarchical classification of web
content”. Proceedings of SIGIR'00, 2000, pp. 256-263.

[4] Tao Li and Shenghuo Zhu. “Hierarcical document classification using
automatically generated hierarchy”, Journal of Intelligent Information
Systems, V. 29 , Issue 2, 2007, pp. 211 - 230.

[5] A.K. Jain and R.C.Dubes, (1988). “Algorithms for clustering
data”, Prentice Hall, 1988, 320 p.

[6] O.V. Peskova, “Automatic full-text documents classifier building”.
Electronic Libraries: perspective methods and technology, electronic
collections:Proceedings of 9th all-russian scientific conference
«RCDL'2008» . Russia, Dubna, 2008, pp. 139-148.

[7] “Applied statistics: Classification and dimintion reduction”: Sprav. izd.
S.A. Ayvazyan, V.M. Buhshtaber, I.S.Enyukov, L.D. Meshalkin; under
the editorship of S.A. Ayvazyan. Moscow: Finance and statistics, 1989.
607 p.

[8] Kelleher D., Luz S. Automatic Hypertext Key phrase Detection
// Proceedings of the Nineteenth Inter national Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK. 2005. P. 1608–1610.

[9] The Porter stemming algorithm.
http://tartarus.org/~martin/PorterStemmer/

[10] Yandex catalogue: http://help.yandex.ru/catalogue/?id=873432
[11] The Yooreeka project. A library for data mining, machine learning, soft

computing, and mathematical analysis.
http://code.google.com/p/yooreeka/

[12] Stein, B., S. M. Eissen, F. Wissbrock. On Cluster Validity and the
Information Need of Users. In: Proc. 3-rd IASTED Intern. Conf. on
Artificial Intelligence and Applications (AIA'03), Acta Press, 2003, pp.
216–221.

[13] Koller D., Sahami M.(1997).Hierarchically classifying documents using
very few words. Proceedings of the Fourteenth International Conference
on Machine Learning, 1997, pp. 170 – 178.

\

145 of 168

The method of programs compression based on the
frequency characteristics of programs behaviour

Alexander Shalimov
Lomonosov Moscow State University, Russian Federation

Email: ashalimov@lvk.cs.msu.su

Abstract—This article presents a method of programs com-
pression based on the frequency characteristics of programs
behaviour. The proposed method allows us to keep in the
compiled form only frequently executed portions of programs
and to store infrequently executed portions of programs in the
compacted interpreted form, and to dynamically unpack and
load them into the memory for execution only when they are
requested. The method also allows us to control the growth
of the compacted program execution time. The theoretical and
experimental results of the research prove the possibility of using
the proposed method for programs compression in embedded
real-time controlling systems.

Index Terms—code compression; code compaction; program
compaction; decompression; program analysis; execution fre-
quency; embedded systems.

I. INTRODUCTION

Embedded real-time controlling systems is one of the main
areas of the computer engineering and software develop-
ment [1].

Let’s list the characteristics of such systems:
1) The necessity to fulfill the requirements of high relia-

bility and safety of an embedded system operation.
2) The programs must be executed in their deadlines, i.e.

program’s execution time must not exceed a given time
limit.

3) Memory limitation. Such systems have small amount of
main memory (for example, in modern aircraft available
approximately 10MB of RAM [2], [3]).

4) Systems space and weight limitations.
The complexity of tasks for embedded real-time controlling

systems is increasing, which results in consuming more mem-
ory resources. Therefore the most important characteristic of
a program for such systems is the program’s runtime memory
size.

Programs compression methods reduce the program’s run-
time memory size (memory footprint). Hence it will enable to
create major amount of services configured the system func-
tionality. Besides, the modern tendency of preferential using
of low-level programming languages for designing embedded
systems (due to the fact that using of high-level programming
languages leads to generation of exceeding program code)
may serve as an additional argument for necessity of using
programs compression methods in embedded systems.

In fact compressed programs run slower than original
programs (overhead on execution speed). But, as mentioned

above, for embedded real-time controlling systems it is impor-
tant that the programs should be executed in its deadlines. This
fact leads to the following main requirement for the compres-
sion methods: the compressed program must not exceed the
execution time limit set for the original program. As a matter
of fact there is always some gap between the time limit set for
a program and its real time execution. This gap can be used
as a time resource for compression.

Generally all program compression methods can be divided
into two main groups: without decompression process [4],
[5], [6] and with decompression process [7], [8], [9]. Pro-
grams compression methods without decompression can be
used in the embedded real-time control systems, because
they practically don’t increase programs execution time. But
its compression ratio strongly depends on the program (for
example, how often program uses the different libraries, how
many duplicated code are contained in the program, etc).
Programs compression methods with decompression have a
high compression ratio, but methods lead to considerable
increasing execution time without possibility to control this
process and the exists method can’t be used in real-time
controlling systems.

That is why it is necessary to create a program compression
method with decompression which would allow us to control
the program execution time depending on the compression
ratio.

The method presented in this article guaranties that the com-
pressed program execution time will not exceed on average
a given time limit (Sections 2, 3). Also the article contains
the mathematical dependencies for determining the possibility
of using the proposed method for a given embedded system
(Section 4). The experimental results of the research prove the
possibility of using the proposed method for programs com-
pression in embedded real-time controlling systems (Section
5).

II. METHOD DESCRIPTION

The idea of the proposed method rises from [10], [11], [12]
and is based on the following two facts:

1) For a consequent program, execution of 15-20% of the
program usually takes 80% of total program execution
time [10], [11].

2) Program presentation in the interpreted form is usually
smaller than it is in the compiled form [12].

146 of 168

These two facts served as a starting point for making a de-
cision to research a method, that would allow us to keep in the
compiled form only frequently executed portions of programs
and to store infrequently executed portions of programs in the
compacted interpreted form, and to dynamically unpack and
load them into the memory for execution only when they are
requested. The basic compression/decompression scheme was
first described in [9].

Fig. 1. Main scheme

The developed method of programs compression consists
of two main parts: program compression and the compressed
program execution. Figure 1 shows the basic principles of the
method. Consider a program with three infrequently executed
fragments of code, f, g and h, as shown in Figure 1(a). The
structure of the code after compression is shown in Figure
1(b).The code for each of these fragments of code is replaced
by a stub (a very short sequence of instructions) that invokes
a decompressor whose job is to decompress the interpreted
code for a fragment into the runtime buffer and then to transfer
control to the interpreter for this decompressed code execution.
A fragments offset table specifies the location within the
compressed code where the code for a given fragment starts.
The stub for each compressed fragment passes an argument to
the decompressor that is an index into this table; this argument
is indicated in Figure 1(b) by the label ((0), (1), . . .) on the
edge from each stub to the decompressor. The decompressor
uses this argument to index into the fragment offset table,
retrieves the start address of the compressed code for the
appropriate fragment, and starts generating uncompressed in-
terpreted code into the runtime buffer. The decompressor then
transfers control to the interpreter for the generated interpreted
code execution. When this decompressed code finishes its
execution, it returns to its caller in the usual way.

The proposed idea of programs compression provides some
possibilities and advantage over the existing programs com-
pression methods.

1) Using ”80-20 rule”. Using compressor/decompressor
scheme allows us to exploit 80/20 aspect of pro-
grams [10], [11]. For a consequent program the greater

part of its execution time is usually spent on a smaller
program part execution. Therefore the infrequently ex-
ecuted code compression will not lead to significant
increasing program execution time.

2) This method’s organization allows us to manage the
program compression level depending on requirements
to a program execution time and amount of available
memory. This will allow us for embedded real-time
controlling systems to consider requested time limits of
programs execution time.

3) Using software implementation of the compres-
sor/decompressor scheme enable to use programs, which
can not be fully loaded into the main memory, due
to keeping infrequently executed code fragments in the
auxiliary memory.

4) This method does not require any hardware and hence
great expenses and time losses related to adding hard-
ware to an embedded system.

III. METHOD DETAILS

The proposed method is intended to solve the following
tasks:

1) Determining frequency characteristics of programs be-
havior;

2) Determining infrequently executed portions of programs.

A. Determining execution frequency of programs basic blocks

To solve this task the author has developed the method of
determining execution frequency [13].

Given Π(x1, . . . , xp) = {V,E} - the original sequential
program with p input parameters (x1, . . . , xp). The program
is presented in the form of a control flow graph where the
vertices V = {bj} (j = 1,m) represent basic blocks and
edges E = {(bj1 , bj2)} represent possible transfer of control
flow from one basic block to another.

For each input parameter x1, . . . , xp we know a finite set
of admissible values and the distribution function for these
values. The program Π(x1, . . . , xp) does not get caught in an
endless loop on admissible sets of input parameters (i.e. each
basic block is executed a finite number of times).

Lets use the following notations:
1) T (xi) — the set of admissible values of input parameter

xi;
2) x̂i — the value of the input parameter from T (xi);
3) Mp = T (x1) × . . . × T (xp) — the set of all inputs of

power |Mp| and of dimension p;
4) Πj(x̂1, . . . , x̂p) — the number of basic block executions

while program running on the (x̂1, . . . , x̂p).
Each input parameter can be treated as a random variable

with a given distribution function. Lets assume X1, . . . , Xp

random values for input parameters (x1, . . . , xp).
Then, the frequency of bj we will consider as

e(bj) =
∑

(x̂1,...,x̂p)∈Mp

Πj(x̂1, . . . , x̂p) · P ((X1, . . . , Xp) =

(x̂1, . . . , x̂p)) - the value of mathematical expectation of bj
execution count.

147 of 168

Calculation of e(bj) requires an enormous computational
outlay comparable with an outlay for running a program on all
input values. In the paper [13] it was proposed to calculate the
frequency e(bj) with a given precision ε and reliability γ, i.e.
to find such estimated value Nj that P (|e(bj)−Nj | ≤ ε) = γ.

The idea of proposed approach is to use the Monte Carlo
method. In the beginning of each basic block we add a special
counter which is incremented each time when a control flow
goes into that basic block. The modified program is being
iteratively re-run. On each iteration new values for input
parameters are generated using their distribution functions.
After n program runs we will have n values of execution
counter for each basic block Π1

j ,Π
2
j , . . . ,Π

n
j . It is proved that

Law of Large Numbers, Central Limit Theorem and the Berry-
Essen theorem are applicable for analysis of these numbers.

According to the Law of Large Numbers, Nj = 1/n ·
n∑

i=1

Πi
j

— the average of the values of basic block execution counter
obtained from a large number of program runs should be close
to the mathematical expectation e(bj), and will tend to become
closer as more program runs are performed (Nj → e(bj) when
n → ∞).

Both Central Limit Theorem and the Berry-Essen theorem
allow us to estimate a number of program runs to get the
execution frequency with a given precision and reliability.

See the next algorithm for evaluation basic block execution
frequency.

1) Set ε, γ.
2) Set counter of program runs to zero, n = 0.
3) Run modified program on a generated set of input data.

Πn
j – the value of bj execution counter. Increase the

number of program runs, n = n+ 1.
4) If n > 30 then calculate the following values (we

assume that after 30 iterations we can trust to sample
characteristics). Else go to step 2.

a) Nj = 1/n ·
n∑

i=1

Πi
j — the average,

b) s2j = 1
n−1 ·

n∑
i=1

(Πi
j −Nj)

2 — the sample variance,

c) m3
j = 1

n−1 ·
n∑

i=1

(Πi
j − Nj)

3 — the sample third

central moment.

5) If the
0.5m3

j

s3
j

√
n

≤ 1−γ
10 and n >

(
u 1+γ

2

ε

)2

· s2j then Nj

evaluates e(bj) with a given precision and reliability
(u 1+γ

2
- quantile of order 1+γ

2 of the standard normal
law). Else go to step 2.

Note, that this algorithm is not applicable to basic blocks
with constant execution frequency (i.e. if a basic block execu-
tion counter does not depend on input data or probability of its
execution is closer to zero). Therefore if during the program
runs the execution counter of some basic block remains the
same, then the final decision about the execution frequency
of such basic block should be taken by a programmer, i. e. a
programmer should decide to continue programs reruns or to
stop.

B. Determining infrequently executed code

Lets use the following notations:
1) threshold θ – the part (quota) of a total program execu-

tion time that infrequently code can account for. I.e. if
execution time of any program’s code is less than θ, then
this code is called infrequently executed (how to choose
threshold are described in Section 4). Note further we
assume that execution times of instructions are the same
and take one unit of time (program execution time
is measured in the number of instruction executed at
program runtime).

2) weight(bj) = e(bj) · |bj | — the weight of a basic block
be the number of instructions in the block multiplied by
its execution frequency.

3) Tav =
m∑
j=1

weight(bj) — the average number of instruc-

tions executed at program runtime.
We consider all basic blocks in the program in increasing

order of execution frequency until the sum of their weights will
not exceed θ ·Tav. All selected basic blocks are considered to
be infrequently executed.

IV. METHOD APPLICATION

This section is about the mathematical dependencies for
determining the possibility of using the proposed method for
a given embedded system. Use the following notations:

1) τ ≥ 1 – the coefficient of admissible increasing of a
program execution time. This coefficient is necessary
for using a gap between actual and requested execution
time.

2) λ(θ) — the compression ratio achieved by using the
proposed method. It is calculated empirically for a given
implementation of the method.

3) I – the number of instructions used for execution of a
single interpreted command.

4) M – the amount of additional memory for using the
proposed program compression method.

It is important to note that last three parameters are the
characteristics of a given implementation of the method (see
next section).

The proposed method stores infrequently executed portions
of programs in compacted interpreted form and dynamically
executes them. According with infrequently code definitions,
no more than θ · Tav executed instructions are transformed.
So, the count of executed instruction growths on θ · Tav · I
instructions and the total execution time of compacted program
is equal to (1−θ) ·Tav+θ ·Tav ·I = (1+θ ·(I−1)) ·Tav. This
time should be not more than τ ·Tav and (1+θ ·(I−1))·Tav ≤
τ · Tav . Therefore, in order to compacted program execution
time not to exceed a given time limit, the threshold θ should be
no more than τ−1

I−1 . Note that it is only guaranteed on average,
because determining of infrequently executed code based on
average execution frequencies of basic blocks.

The memory overhead resultant from a programs compres-
sion method use must not exceed the amount of memory saved

148 of 168

due to code compression. Therefore it is necessary to select
programs with total memory footprint exceeded M

1−λ(θ) .
Then for using the proposed method it is necessary:
1) Choose parameter θ ≤ τ−1

I−1 .
2) Choose for compression programs whose total size more

than M
1−λ(θ) .

3) If the above conditions (1, 2) can not be concurrently
met or a greater compression ratio should be gained,
then it is possible to add the requirement to increase the
system performance in 1+θ·(I−1)

τ times.
If to follow the above recommendations on use of the

proposed code compression method, it is guaranteed, that
programs execution time will increase on average no more
than in τ factor with the compression ratio λ(θ).

V. METHOD IMPLEMENTATION

The system of programs compression implemented the
proposed method is written on the C++ language. It consists
of two parts: program compression and compressed program
execution (see Figure 2). The input for the system is a program
for compression (written on C language), a distribution func-
tions of program’s input parameters, and maximum quota the
program total execution time. The output is the compressed
program and files with an offset table and compressed inter-
preted code.

The compressor transforms infrequently executed program
code into the interpreted presentation and compresses it as
a text. Based on distribution functions of input parameters
the compressor determines average execution frequency of
program basic blocks. The threshold and average frequencies
calculated for a given program are used to determine fragments
of infrequently executed code. The infrequently executed code
are grouped that the memory overhead due to their compres-
sion would not exceed the code size reduction that can be
achieved.

The decompressor consists of two main parts: the interpreter
and a service of decompression of compressed interpreted
code.

Fig. 2. Implemetation scheme

Programs for an on-board aircraft computer system were
used for testing the proposed method implementation [14].
The aim of the work was to determine dependency between
input parameter θ and the compression ratio achieved as a
result of using the proposed method.

On each test program the system runs 10 times with
different values of θ (0.1, 0.2, . . . , 1). The compression ratios
λ(θ) obtained for each run were saved and averaged after
finishing of all the experiments. This resulted in getting the
following dependency presented in the Figure 3.

Fig. 3. Compression Ratio

So, for θ = 1 the best compression ratio was achieved
λ(θ) = 77%. For θ = 0.5 the compression ratio λ(θ) = 89%
is achieved. For 0.2 < θ < 0.4 the grade of the compression
ratio decreases. Therefore it is necessary to choose the input
parameter from the recommended (given, specified) range.

VI. CONCLUSION

This article represents a program compression method based
on the frequency characteristics of programs behaviour. The
implementation of the proposed method has been written on
the C++ language. Testing of this implementation was aimed
to determine the dependency of the compression ratio on the
input parameter for the system implemented the proposed
method. For testing the system were used the real programs
for on-board aircraft computer systems. The testing results
prove the possibility of using the proposed method for on-
board embedded systems.

The proposed compression method allows us to control the
program execution time depending on the compression ratio.
The mathematical dependencies guarantee that compressed
program execution time will not exceed on average a given
time limit.

It should be noted, that the proposed method is universal
and can be used not only in embedded systems.

REFERENCES

[1] Embedded Computing Design [HTML] (www.embedded-
computing.com)

[2] K. Kolpakov History of onboard embedded systems in Russia // PCWeek,
N32, 1999

[3] A.M. Pavlov Principles of organization of advanced onboard computing
systems [HTML] (http://www.mka.ru/?p=41177)

[4] B. Bus, D. Kastner, D. Chanet, L. Put, B. Sutter POST-PASS Compaction
Techniques // Communications of the ACM August 2003/Vol. 46, No.8

[5] Sheayun Lee, Jaejin Lee Selective code transformation for dual instruction
set processors // ACM Transactions on Embedded Computing Systems
(TECS), Volume 6, Issue 1, May 2007

149 of 168

[6] B. Sutter, K. Bosschere Software techniques for Program Compaction //
Communications of the ACM August 2003/ Vol. 46, No.8

[7] T.M. Kemp, R.M. Montoye A Decompression Core for PowerPC //
IBM Journal of Research and Development, Volume 42 Number 5/6,
September, 1998

[8] S. Seong, P. Mishra Bitmask-Based Code Compression for Embedded
Systems // IEEE Transactions on computer-aided design of integrated
circuits and systems, 2007

[9] S. Debray, W. Evans Profile-Guided Code Compression. // Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, 2002

[10] R.L. Smeliansky, D.E. Guryev, A.G. Bahmurov About one mathematical
model for calculation of programs behavior. Programming, N6, 1986

[11] R.L. Smeliansky, T. Alanko On the calculation of control transition
probabilities in a program Inform. Processing Letters N.3, 1986

[12] P. Brown Macros without tears // Software: Practice and Experience.
Volume 9, Issue 6, 1979

[13] A.V. Shalimov Method of determining execution frequency of programs
basic blocks // Modeling and analysis of information systems, Volume
18, Number 2, 2010.

[14] DrTesy [HTML] (http://lvk.cs.msu.su/index.php/articles/65)

150 of 168

Metrized Small World Approach for Nearest Neighbor Search

Andrey Logvinov, Alexander Ponomarenko, Vladimir Krylov, Yury Malkov
MeraLabs, Nizhny Novgorod, Russia

alogvinov@meralabs.com, aponom@meralabs.com, vkrylov@meralabs.com,
ymalkov@meralbs.com

Abstract

In different areas attempts are made to organize

data into multi-linked structures which are well suited

for information search, in particular the nearest

neighbor search where the result data items are

metrically close to a given data item. These structures

often take the form of trees (M-Tree, cover tree, KD-

tree, GNAT) or networks (M-Chord, VoroNet, RayNet)

built over a set of data items.

In this paper we give the regular approach to the

construction of links between data items which

provides logarithmical time complexity of the nearest

neighbor search in the structure. According to this

approach, data items are organized into an undirected

graph with Small World properties, which ensure the

existence of a short path between any two data items

regardless of the graph size.

We propose different construction and search

algorithms depending on the properties of the metric

which determines the proximity of data items. The

types of metric we consider are abstract metric and

ordered metric. Further we extend the ordered metric

approach to compound data items in the form of

attribute-value pair sets to enable inclusion search by

an arbitrary subset of attribute-value pairs.

Finally we provide simulation results for the

structure with compound data items.

1. Introduction

The nearest neighbor search problem is defined as
follows: given a set S of n points in some metric space

, build a data structure on S so that for a given
query point one can efficiently find a point

 which minimizes .
Different approaches exist for building such a

structure. The works [4, 5, 11] suggest hierarchical tree
structures constructed using information about metric
proximity of the elements. One notable shortcoming of
this approach is the presence of the mandatory root

node in tree-like structures which makes building
totally distributed implementations problematic.

There are also ways to build a distributed structure
over the set S. The works [12] suggest distributed hash
table as the data structure using the pivot-based metric
space indexing approach.

The work [6] discusses the VoroNet distributed data
structure. The elements of S are two-dimensional
Euclidian space points. Each point from S is linked to
all of its neighbor points on Voronoi diagram
(Delaunay graph) plus additional distant points to give
the structure Small World properties. Greedy search
algorithm is used.

The following work [7] by the same authors
considers the structure where the elements are points in
a n-dimensional Euclidean space. The main difference
from the previous work is that every point is connected
with only a subset of the Voronoi neighbors to avoid
exponential dependence of complexity on the number
of dimensions. But this link set reduction leads to
inexact search results, i.e. the result point is not always
the nearest neighbor of the query point although
number of such result can be made insignificant.
Another drawback of this approach is that it can only
be applied to the points of Euclidian space with a fixed
number of dimensions.

In this paper we propose a regular approach to the
construction of links between data elements in the form
of an undirected graph with Small World properties [9,
10] to provide logarithmical complexity of the nearest
neighbor search. We called the resulting structure
Metrized Small World [1] (MSW).

We propose different construction and search
algorithms depending on the properties of the metric
which determines the proximity of data items.

The rest of the paper is structured as follows.
Section 2 describes the construction of MSW structure
based on abstract semi-metric. Section 3 describes
MSW structure construction algorithms for ordered
metrics. In the section 4 we extend the ordered metric
approach to compound data items in the form of
attribute-value pair sets to enable inclusion search by
an arbitrary subset of attribute-value pairs. Finally we

151 of 168

mailto:alogvinov@meralabs.com
mailto:aponom@meralabs.com
mailto:vkrylov@meralabs.com
mailto:ymalkov@meralbs.com

provide simulation results for the structure with
compound data items in the section 5.

2. Metrized Small World data structure

Metrized Small World data structure on the set of
data items S is expressed by the graph . Each
vertex corresponds to a single element of the set
S. Each edge is associated with a link between
two data items from the set S. Assume that
equivalent to where s is the data item which
corresponds to the vertex v. Then the search of the
nearest neighbor of the query point comes to
finding the vertex with the minimal distance to

.
In the work [1] we gave the construction and search

algorithms for that structure. In the paper [2] we also
suggested a distributed storage architecture based on
the proposed structure. Here we re-cite those algorithm
according to the notation assumed for this paper.

We provide the algorithm which adds vertex to
the graph , where is the set of previously
added vertices. Thus the parameters of the algorithm
are — the set of previously added vertices, the
vertex being added, – an arbitrarily selected
vertex from (the starting point of the search) and two
integer numbers m and n.

Algorithm:
1. Arbitrarily select an element
2. Let VisitedList be the set of visited elements.
3. Let CandidateList be the set of candidate

elements for link establishment sorted by value of
semi-metric to in ascending order.
4. Assume that CandidateLists initially

contains only .
5. For i =1 to n do

5.1. Sort CandidateList by value of
semi-metric to in ascending order.
5.2. Select the first element p from

CandidateList not contained in VisitedList.
If no such element exists then break.
5.3. Add p to VisitedList.
5.4. Add the set of p neighbor elements

to CandidateList.
6. Mutually connect the element with m

arbitrary elements from VisitedList.

We shown that the structure constructed using this
algorithm provides the necessary condition for the
existence of effective search algorithm, because the
Small World properties of the graph ensure

the existence of a short path between any two vertices.
But this structure requires search algorithms which are
more complex than the greedy algorithm due to the
existence of metric local minimums.

An advantage of this approach is that the proximity
measure M can be any function which is a general
metric or even semi-metric defined over the set S.

3. Single-attribute Distributed Metrized
Small World Data Structure

In the paper [3] we gave the algorithm for
constructing the similar structure for a narrower class
of metrics, i.e. for the metrics for which the order
between data items is defined. If any data item will be
linked with its direct predecessor and successor with
regard to the metric, there will be no local minimums.
The condition of the data item being linked to its direct
successor and predecessor ensures the existence of the
Delaunay graph which in its turn provides for
correctness of the greedy search algorithm which
attempts to minimize the distance from the query on
each step.

Algorithm:

1. Let .
2. For each neighbor of calculate

.
3. If let for

which and go to step 2.
4. If let and let be

the direct successor of chosen from the
neighbors of .

5. If If let let and let
 be the direct predecessor of chosen

from the neighbors of .
6. Mutually connect with and if

they exist.
7. Repeat times:

7.1. If exists, let be the direct
predecessor of chosen from its
neighbors.

7.2. If exists, let be the direct
successor of chosen from its
neighbors.

7.3. If none of and exist then break.
7.4. If only exists or

 mutually connect
and and let .

7.5. If only exists or
 mutually connect and

 and let .

152 of 168

The nearest neighbor search is performed by
following links from one element to another in the
direction of the minimal metric.

The Small World properties of the graph ensure the
logarithmical search complexity for a random data set.
The absence of the root element and the construction of
the structure on the data item level provides for
creating a completely distributed implementation of the
structure. As can be seen on Fig. 1 and 2, both average
shortest path length and maximum vertex degree scale
logarithmically with the number of vertexes. Therefore
the structure is suitable for storing very large amounts
of data.

The nearest neighbor search is reduced to finding
the minimum of the metric from the query to a data
item. If the distance between the query and the found
data item is lower than the query radius than the fond
data item is the result, otherwise there is no result. If
we must find all data items inside the query radius, we
perform a sequential search in both directions from the
first found data item.

The proposed data addition algorithm is
incremental, i.e. the addition of a new data item affects
only a small number of existing data items.

4. Multi-attribute Distributed Metrized
Small World Data Structure

In the two previous sections we considered the
elements as atomic entities relative to the metric. Now
we want to extend our approach to composite data
items. We will consider the composite objects which

are represented by an unordered set of atomic objects
for all of which one common ordered metric is defined.

Then we define the search problem as the search of
at least one of all of the composite objects which
include the given set of atomic objects. This data
model is often used for describing application domain
entities with a set of tags or keywords, e.g. images,
hyperlinks, musical tracks, blog posts etc. This model
can also represent objects consisting of non-fixed set of
attribute-value pairs.

Therefore for convenience we will consider
arbitrary strings (or tags) as atomic objects. Hence the
composite objects will be represented as unordered sets
of tags.

Our main idea was to construct the graph in
a way that objects with any matching subset of atomic
objects would constitute the sub graph (layer)

 consisting of a single connected
component which in its turn would form the MSW
structure described in the previous section. Then the
search for an element containing the given set of tags

 would be performed by first
finding object from sub graph (layer) consisting of
objects containing the tag t1. After that, inside this
subgraph-layer another element from the
subgraph-layer is recursively searched
for. The subgraph-layer consists of objects
containing both tags t1 and t2. The process continues
until an object form the subgraph-layer is
found which consists of objects containing all the
given tags .

Figure 1. Average shortest path length between two
vertexes

0

1

2

3

4

5

6

7

8

9

1 10 100 1000 10000 100000 1000000

A
vg

. p
at

h
le

ng
th

Number of vertexes
m=0 m=1 m=2

m=5 m=7 m=15

Figure 2. Maximum vertex degree

0

50

100

150

200

250

1 10 100 1000 10000 100000 1000000

M
ax

. v
er

te
x

de
gr

ee

Number of vertexes

m=0 m=1 m=2

m=5 m=7 m=15

153 of 168

For demonstration purposes we provide the example
of the network of objects almost all of which contain
three tags. Dashed curved lines show the links between
objects which contain tags which are neighbors in
lexicographical order. Solid straight lines show the
links between objects having a common subset of tags.

Further we give a more formal description of the
construction and search algorithms for this structure
Let be the set of all possible tags which are
distinct string values.

For each data element let there be the unordered
set of tags associated with the object. Given a
query set we must find the set of
resulting data elements such that , i.e.
all data elements which have all of the tags specified in
the query.

Let the set
 be the MSW structure built over a set

of elements . Every element of represents a
link between pair of tags in data elements (it can be the
same element). If there is no element corresponding to
a pair tags, there is no link between them. Two
identical tags on the different items cannot have links
simultaneously in one . We consider a tag
being a member of the if .

We can use our algorithm described in the section 3 of
this paper to search for given tag in MSW.

Let be the MSW layer built
over a set of tags . For every tag that is a member
of .

Let the
be the operation of searching for a single element,
member of for which . The tag
(member of) is the entry point of the algorithm
described in the second section of this paper.
Let be the operation
of addition of the tag of the element to the MSW
layer . The tag is used as the entry point.
The time complexity of the operation is
logarithmic to the number of tags in . We consider
an element being a member of the MSW layer
if it has been partially added to at least once.
Let be the operation of
complete addition of the element to the MSW layer

. The operation is performed
using the following algorithm:

Algorithm:

A:2

M:4

A:3

B:1

X:7
A:3

B:4

H:3

A:3

B:2

Z:9

A:3

B:3

C:7

A:3

B:5

D:8

A:5

P:1

R:6

A:3

B:9

K:9

A:3

B:8

J:7

A:3

B:6

E:6

A:3

B:1

X:8

A:3

B:1

X:9

A:3

B:6

E:1

A:3

B:1

X:2

A:3

B:1

X:6

A:3

B:3

C:1

A:3

B:3

C:3
A:3

B:3

C:6

A:3

B:3

C:9

A:3

B:5

D:9

A:3

B:6

E:9

A:3

B:6

E:7

A:3

B:6

E:5

A:1

S:5

Figure 3. Example Multi-attribute Distributed Metrized Small World Data Structure. The dashed lines represent
the edges in the layer. Solid straight lines show the links between objects having a common subset of tags.

154 of 168

1. Let be the set of all tags

associated with the element but not

contained in .

2. For each do

.

Let be the set of all MSW layers (the
structure being described). An arbitrary member

 of the MSW layer can serve as a global
entry point for addition process.

Let be the
operation of addition of the element to the structure

.
The operation is performed using

the following algorithm, assuming that the initial
values are and .

Algorithm:
For each

1. Find

2. If exist, perform

,

where is a random tag of ,

 else

Let
be the operation of searching all elements for
which .

The operation is performed
using the following algorithm, assuming that the initial
values are and .

Algorithm:

1. If then return all elements in

layer

2. for random find.

3.

4. Remove from

5.

where is a random tag of

Constructing link using the above approach is to a
certain degree equivalent to indexing by all possible
combinations of columns in a relational database. The
main advantage of this approach is the possibility to
quickly find an object or a set of objects with any given
set of tags without regard to the quantity of objects
with a certain subset of tags (atomary objects).
Further we give the experimental data obtained on the
structure prototype to confirm the theoretical
assumptions regarding the advantages of our approach.

5. Experimental data

The experiments were set up as follows.
In the first experiment a set of N objects was

generated half of which contained the single common
tag ―X‖, other half contained the single common tag

Figure 4. Experimental results. Left: two common tags. Right: three common tags.

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000

Se
ar

ch
 e

xe
cu

ti
o

n
 t

im
e

, m
s

Number of objects

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000 10000

Se
ar

ch
 e

xe
cu

ti
o

n
 t

im
e

, m
s

Number of objects

155 of 168

―Y‖ and a single object with both ―X‖ and ―Y‖ tags.

The objects were added to the structure in random
order. We measured the time of search for the object
containing ―X‖ and ―Y‖ tags. The measurement was

repeated many times for different values of N, the set
of random objects was regenerated each time. See the
left graph.

In the second experiment the test set contained N
random objects containing equal amounts of object
containing two common tags ―X‖, ‖Y‖; ―Y‖, ‖Z‖;

―X‖, ―Z‖ and the single object containing all three tags
―X‖,‖Y‖,‖Z‖. See the right graph.

The results are shown on Figure 4. The graphs
show that in both cases the object search time depends
logarithmically on the number the objects in the
structure which confirms our theoretical assumptions.

6. Conclusion and future work

We believe that the key to the building of search-
oriented distributed systems is the construction of
multilinked structures similar to social networks. But
the metric distance between data items must be
correlated to the number of links which separate them.
In this paper we described the methods of construction
of such structures for certain data types. The necessary
and sufficient condition of correctness of the greedy
search algorithm is the inclusion of Delaunay graph
into the structure graph. Failure to satisfy this
particular condition was the obstacle for using the
greedy search algorithm with the structure described in
the section II. The condition of existence of Delaunay
subgraph has been satisfied in the structures described
in sections III an IV. But supporting the correct
Voronoi tessellation as in [6] or in section IV requires
large overhead with the number of dimensions greater
than two. For this reason we intend to focus our further
research on finding the compromise between search
accuracy and calculation overhead.

7. References

[1] V. Krylov, A. Logvinov, A. Ponomarenko,

D.Ponomarev ―Metrized Small World Properties Data
Structure‖, Proc. Software Engineering and Data
Engineering (SEDE 2008).

[2] V. Krylov, A. Logvinov, A. Ponomarenko,
D.Ponomarev ―Active Database Architecture for XML
Documents‖, Proc. Computer applications in Industry
and Engineering (CAINE 2008).

[3] V. Krylov, A. Logvinov, A. Ponomarenko,
D.Ponomarev, ―Single-attribute Distributed Metrized
Small World Data Structure‖, Proc. IEEE International
Conference on Intelligent Computing and Intelligent
Systems 2009 (CAS)

[4] CIACCIA, P., PATELLA,M., AND ZEZULA, P. 1998.
A cost model for similarity queries in metric paces. In
Proc. 17th ACMSymp. on Principles of Database
Systems (Seattle), 59–67.

[5] BRIN, S. 1995. Near neighbor search in large metric
spaces. In Proceedings of the 21st conference on Very
Large Databases (VLDB’95), 574–584.

[6] Beaumont, O. and Kermarrec, A.M. and Marchal, L.
and Riviere, E., VoroNet: A scalable object network
based on Voronoi tessellations, in IEEE IPDPS, 2007

[7] O. Beaumont, A.-M. Kermarrec, and E. Rivire. Peer to
peer multidimensional overlays: Approximating
complex structures. In OPODIS,11th International
conference on principles of distributed systems, 2007.

[8] J.-D. Boissonnat and M. Yvinec. Algorithmic
Geometry. Cambridge University Press, 1998.

[9] D.J. Watts ―Small Worlds‖, Princeton, New Jersey:
Princeton University Press, 1999.

[10] R. Albert and A.-L. Barabasi ―Statistical mechanics of
complex networks.‖ Rev. Mod. Phys., 74(1): pp. 47-97,
January 2002.

[11] A. Beygelzimer, S. Kakade, and J. Langford. ―Cover
trees for nearest neighbor‖. Proceedings of the 23rd
International Conference on Machine Learning, pages
97–104, 2006

[12] D. Novak and P. Zezula. M-Chord: A scalable
distributed similarity search structure. In Proceedings of
First International Conference on Scalable Information
Systems (INFOSCALE 2006), Hong Kong, May 30
June 1 . IEEE Computer Society, 2006.

156 of 168

An approach to on the fly activation and deactivation of virtualization-based
security systems

D. Yefremov
Moscow State University

Moscow, Russian Federation
Email: yefremov.denis@gmail.com

Scientific Advisor:
P. Iakovenko

Institute for System Programming RAS
Moscow, Russian Federation

Email: yak@ispras.ru

Abstract—We report on work in progress which allows on
the fly activation and deactivation of hardware virtualization
based security systems intended for protecting applications
running under the control of untrusted operating system.
We present an approach for reserving hardware resources
from the operating system for the hypervisor and additional
virtual machines that may be required by the security system.
We also consider that hypervisor is launched from the
untrusted environment that may try to fool the user during
the startup and shutdown of the hypervisor.

Keywords-VMM; hypervisor; virtual machine monitor;
virtualization; secure activation; on the fly load.

I. INTRODUCTION

Hardware virtualization technology is widely used for
consolidating hardware resources, reducing power con-
sumption, simplifying datacenter administration and im-
proving system’s reliability. Recently it has got spread
into the computer security area. Among the problems that
are being solved with it are malware analysis [1], reliable
host-based intrusion detection systems [2], securing appli-
cations in the untrusted operating systems [3] and others.

Virtualization technology provides the means for exe-
cuting unmodified operating system (OS) inside a hard-
ware virtual machine (VM) under the control of a relative
small system program — virtual machine monitor (hyper-
visor) [4]. Depending on the requirements hypervisor may
assign a device to a particular VM or share a device among
virtual machines multiplexing their accesses to it. In the
former case VM has exclusive access to the device and
no other virtual machines may use it. In the later case the
amount of virtual machines that may access the device is
not limited but hypervisor must virtualize it providing each
VM with the device software model. Such models may
constitute significant amount of overall hypervisor code
size and require having device driver inside the hypervisor
or priviledged control virtual machine [5].

The common property of the existing virtualization-
based systems that secure applications inside the untrusted
operating system is the absence of necessity for such
systems to stay activated all the time the computer is
up and running. They are needed only for that periods
of time when user executes trusted applications. The
rest of time the execution of OS inside the VM may
introduce restrictions into the user workflow. In particular
the performance of virtualized system is lower than of real

one and some features of specific devices may become
unavailable.

Overshadow [3] secures applications by keeping their
executable and data files encrypted in the file system.
When user launches such applications Overshadow dy-
namically decrypts their content in the memory. Over-
shadow is idle for the time when only untrusted appli-
cations are running. The same case applies to Proxos [6]
which runs trusted applications in the dedicated virtual ma-
chines. All other applications execute in one and the same
untrusted VM. In [7] hypervisor prevents data leakage
through the network connection by running OS in the VM
that doesn’t have network adapter at all. Then it provides
network access for trusted applications by delegating their
socket-related system calls to other network-enabled VM.
The same level of isolation may be ensured without the
hypervisor if network cable is disconnected from the
computer.

Obviously when user activities are restricted due to
system is virtualized he may switch between the bare
hardware and virtualized configurations by rebooting the
computer. During the boot time he selects the desired
configuration: bare system with high performance or vir-
tualized system with ability to run trusted applications.
However such workflow may be inconvenient for the user
and lead to declining using particular virtualization-based
security solution.

Therefore we deem that that the problem of dynamic
activation and deactivation of virtualization-based security
system is topical. The solution should allow on the fly
launch of the hypervisor which moves the up and running
OS into the virtual machine environment and if necessary
launches additional virtual machines. Then some time later
user should be able to bring the system to the original state
without rebooting the computer. Meaning that hypervisor
stops all additional virtual machines, brings back OS to
the bare environment and finally terminates itself. It is also
important to include robust attestation procedure into such
solution since hypervisor is launched from the untrusted
environment.

Dynamic load of the hypervisor is described in [8].
Authors discuss the consequences of using hardware as-
sisted virtualization for implementing malware and present
BluePill system that loads on the fly into the memory
putting operating system into the virtual machine. Authors

157 of 168

claim that malware hypervisor may fool OS inside the
VM that it runs on bare hardware. Since hypervisor has
unrestricted access to VM resources it may bypass built-on
OS security mechanisms and perform intended malicious
actions. Our work follows the same approach for on the
fly hypervisor loading however we propose to use our
approach for virtualization-based security systems that
normally do not need to hide from the OS. This gives
more options for reserving hardware resources from the
OS for the hypervisor own usage (for example, legally
disabling OS access to some devices).

The attestation of a software stack launched from the
untrusted environment is discussed in [9]. Authors present
an approach and describe attestation protocol that allows
safe usage of public computer by providing secure initial-
ization of trusted software stack. The protocol uses Trusted
Platform Module (TPM) chip that must be installed on
the machine and provides convincing evidences to the
user that actually initialized software stack is exactly the
same as the expected by the user one. Our approach to
attestation of the dynamically loaded hypervisor is also
based on the TPM chip however unlike the system in [9]
we do not need rebooting the computer which in turn
allows achieving simpler attestation procedure.

We will describe our approach with regards to the
security system described in [7]. However, we believe that
suggested approach may be used for other virtualization-
based security systems that 1) assign hardware devices to
virtual machines for exclusive usage 2) allow their late
launch (i.e. after OS has been booted) without sacrificing
security requirements.

We assume that computer has CPU supporting AMD-
SVM technology [10] including memory virtualization
(Nested Page Tables) [11]. Computer is also equiped with
Trusted Platform Module chip supporting TPM specifica-
tion version 1.2 [12] whose public certificate is known to
the user. However our choice of using AMD virtualization
technology is merely based on the hardware available to us
and the approach described in this article may be applied
to the computers equiped with Intel processors supporting
Intel-VT [13] virtualization technology.

We will briefly describe the security architecture pre-
sented in [7]. Hypervisor executes two virtual machines:
primary (called private VM) and service (called public
VM). User works in the primary VM which controls
all hardware devices except network adapter. Hypervisor
runs primary VM without network adapter since OS in
the primary VM is not trusted and may use network
connection to leak sensitive data from the VM. Service
VM may run in the background since the only purpose of
this VM is to serve socket-related system calls executed
by the trusted processes in the primary VM. System call
requests are delivered by the hypervisor to the service VM
through the tamper-proof inter-VM channel. It should be
noted that 1) primary VM must run on one CPU (one
CPU core) and 2) the only device that is controlled by the
service VM is network adapter while primary VM must
not have access to it at all.

Service VM is required only for providing network
access for the trusted applications. During the time in-
tervals when these applications are not executing the OS
in the primary VM may run directly on the bare hardware
and even may control network adapter as long as the
user ensures that network cable is disconnected from
the computer. Additionally primary and service virtual
machines do not share any peripheral devices.

This article is organized in the following way. In section
2 we describe the steps taken during the on the fly security
system activation. In section 3 we discuss the attestation of
activated system. In section 4 we describe the steps taken
to deactivate the security system in a fool-proof way. In
section 5 we conclude presented approach.

II. SECURITY SYSTEM ACTIVATION PROCESS

Initially user boots operating system installed on the
computer (hereafter we call it primary OS) ensuring that
network cable is disconnected from it, i.e. computer is
physically isolated from the network. Hypervisor is not
started during the boot process however it is possible
that there is a malware hypervisor (or any other kind of
malware) running on the computer.

The file system contains hypervisor image, image for
OS in the service VM (hereafter we call it service OS) and
a secure loader. Secure loader is a special piece of software
required for SKINIT instruction. OSLO secure loader may
be used for it [14]. It is worth mentioning that all these
files are not required to be encrypted however user knows
their checksums (hash codes) and these checksums were
calculated on a trusted machine.

There is a driver preloaded into the operating system
kernel which exposes an interface to the user space ap-
plications via a device file in the file system. The driver’s
task is to reserve specific hardware resources from the
operating system using built-in OS kernel interfaces, load
images from the file system into the memory and start
secure system initialization. Driver is also responsible for
printing informational messages coming from hypervisor
on the display. Hypervisor notifies driver about pending
messages by injecting interrupt into the virtual machine
which passes control to the handler installed by the driver.

To start security system activation user launches an
application that sends “activate” command to the driver
using ioctl system call passing the file names of the
images. The driver then:

1) Unplugs all CPU cores, except the boot strap core
(BSP), using the public Linux API for hot plugging
CPUs.

2) Reserves required amount of physical memory.
This may be done in two ways. The preferred
way is to unplug memory banks using the pub-
lic Linux API for hot plugging memory mod-
ules. Alternatively memory may be reserved using
get_free_pages() function. Unplugging mem-
ory banks gives less fragmented memory areas (in
ideal case not fragmented at all). The advantage for
having contiguous memory is described below.

158 of 168

3) Loads hypervisor image, service OS image and the
secure loader into the reserved memory.

4) Shutdowns network interface, unloads network
driver and installs “pci-stub” driver, that is available
in Linux, instead of it. This stub driver reports to
OS that it controls network adapter without actually
initializing the device.

5) Executes SKINIT instruction which securely trans-
fers control to the secure loader which in turn passes
control to the hypervisor.

Upon receiving the control hypervisor prepares VMCB
structure filling it with the current hardware state, creates
nested page tables [11] for the VM and starts VM exe-
cution. From the user perspective nothing has changed in
the environment except the decrease of active CPU cores
and memory amount. Since network cable was originally
disconnected completely removing network adapter from
the system does not harm user space applications.

Before hypervisor starts VM execution it re-initializes
released CPU cores and starts idle loop on them while
executing inside virtual machine primary OS cannot regain
control over released resources. Attempt to access mem-
ory outside its guest physical address space, re-initialize
unplugged CPU cores or reload original network adapter
driver will lead at worst to the VM crash without getting
access to the hardware resources.

One of the released CPU cores is used for running ser-
vice VM. Hypervisor virtualizes local APIC so it presents
this core to the service OS as a BSP core of a single core
processor. Service OS completely runs inside memory. The
OS kernel is preconfigured by the administrator in such
a way that it does not require access to any peripheral
devices except network adapter.

Both virtual machines execute on separate CPU cores:
primary VM on the BSP core (zero core), service VM
on the other core. Such approach does not require having
VM scheduler in the hypervisor that distributes CPU
time between virtual machines. Hypervisor itself does not
require dedicated CPU cores for execution since it gains
control only on virtual machine exit. We assume that CPU
has at least two cores which is common for most of
modern CPUs.

Mapping of the guest (virtual machine) physical address
space into the host address space (machine memory) is
resolved using nested page tables (NPT) provided by
the hardware. These page tables add additional layer
to the hardware address translation so every memory
access made from inside the virtual machine is translated
with NPT to evaluate machine address. It is desirable
to reserve physical memory from the primary OS using
memory hotplug feature available in Linux since having
large contiguous memory blocks makes the structure of
NPT rather simple. However success of memory unplug
operation depends on proper kernel configuration, kernel
boot options (“movablecore” option) and kernel runtime
state.

With nested page tables the hypervisor can control
accesses to the machine memory made from CPU context.

However if OS in VM owns DMA capable device then it
may use it to modify arbitrary physical memory areas.
This constitutes potential threat to the security system
since malware may use DMA operations to subvert hy-
pervisor [15]. Physical address space visible to a DMA
capable device may be limited by the IOMMU device [16].
IOMMU sits between PCI bus and system memory and
allows specifying page tables that are used to translate ev-
ery memory access originated from the devices connected
to PCI bus. Whenever an address does not have valid
translation in IOMMU page tables the device receives
master abort and memory access is rejected.

Currently hardware supporting IOMMU is not wide
spread so we also consider possibility to use Device
Exclusion Vector (DEV) feature of AMD CPUs. The
major difference between IOMMU and DEV is that DEV
does not support address translation. It simply allows to
specify bit mask (one bit per each physical page) that
marks DMA write-protected pages. Since DEV may not
perform address translation it may be used for one VM
only whose guest physical memory is one-to-one mapped
to the machine memory starting from zero address. That
is the case for the primary VM. DEV bit mask for that
VM write-protects all physical pages outside primary VM
memory.

The use of DEV for the service VM is not that straight-
forward. However service OS kernel is configured by the
administrator and he may include paravirtualized driver for
the network adapter into it. Such driver asks hypervisor
to translate address for every DMA operation. So DEV
may still be used for the service VM with the bit mask
write-protecting all machine memory outside service VM
address space.

It is worth mentioning that DEV does not provide ability
to read-protect pages so every VM may read data from any
machine address. This may violate security requirements if
malware in service VM would use DMA operations to read
sensitive data from the primary VM memory. Therefore
the use of DEV for DMA protection requires service OS
to be trusted. Service OS is merely used to execute socket-
related system calls so a microkernel OS (e.g. Minix 3)
may be used in service VM instead of Linux.

III. SECURITY SYSTEM ATTESTATION

We use Trusted Platform Module (TPM) [12] to perform
attestation of the activated security system. TPM is a chip
normally attached to the motherboard that provides set
of security primitives. TPM has several platform config-
uration registers (PCR) that are intended for accumulat-
ing SHA-1 hash-codes. These hash-codes (measurements)
represent hardware installed or software running on the
machine. The contents of a PCR register may be updated
by executing TPM_Extend operation only (there is no
way to write to PCR directly). TPM_Extend operation
concatenates current value of the PCR register with the
provided data, hashes the result and updates PCR with it.
CPU is integrated with the TPM to perform secure late
launch of the software using SKINIT instruction. Upon

159 of 168

executing SKINIT CPU asks TPM to reset PCR 17 register
to zero value. This is the only way how PCR 17 may
receive zero value.

Contents of the PCR register may be cryptographi-
cally signed with Attestation Identity Key (AIK) using
TPM_Quote operation. Private part of the AIK is sealed
inside the TPM while public part is exposed to the user.
Signed PCR value gives creditable and believable proof
to the user that PCR value originates from the legal
TPM. A random number (nonce) may be provided to the
TPM_Quote operation as a parameter in order to protect
signed PCR value from the replay attacks.

Activation of security system starts from executing
SKINIT instruction passing address of secure loader (SL)
to it [14]. CPU disables interrupts, blocks DMA writes
to the memory area occupied by the SL, asks TPM to
measure (hash) SL and finally transfers control to the SL.
On a multi processor (multi core processor) SKINIT must
be executed on the BSP core with all other cores put into
the idle state. SL in turn performs the same operations with
regards to the hypervisor image and then transfers control
to the hypervisor code. Hypervisor measures service OS
image and asks TPM to sign the PCR 17 contents using the
TPM_Quote operation to which it passes user-provided
nonce. The signed PCR 17 value is delivered to the user
(e.g. displayed on the screen). The necessity of having SL
in this chain is caused by the hardware size limitations for
the SL. It should be at most 64K which may be insufficient
to fit all the hypervisor code.

The resulting PCR 17 value contains measurements of
the SL, hypervisor, service OS image and the nonce. User
knows hash-codes of these components so he may repeat
all calculations performed by TPM on a separate trusted
device (e.g. mobile phone). By comparing hash-code dis-
played on the screen against the hash-code calculated on
the trusted device he checks whether all security system
components have been activated in the proper order. And
by validating TPM signature using the public part of
AIK (known to the user) he gets assurance that displayed
measurement represents the actual state of the system and
is not a fake measurement generated by the malware that
has intercepted activation process and tries to fool the user.
Only after validating displayed measurement the user is
safe to connect network cable to the computer.

We consider that execution of SKINIT instruction may
be trapped by the malware hypervisor running on the
machine. This malware may perform all above-mentioned
measurements without actually passing control to the
security system or it may start security system inside
the virtual machine hence maintaining control over it in
a hidden way. However TPM_Quote operation may be
executed only against PCR register which in turn may be
updated using the TPM_Extend operation only. There-
fore malware must use TPM to perform all measurements.
However since PCR 17 is not reset to zero (this may be
done by executing SKINIT instruction only) the resulting
PCR value will not match the one calculated by the user
on the trusted device.

If malware executes SKINIT instruction to reset PCR 17
to zero value then hardware securely passes control to the
SL which in turn securely transfers it to the hypervisor
thus not allowing malware to interpose on the control
transfer. Malware can modify SL or hypervisor image to
regain control after security system has been activated but
then these modifications will be caught by the user upon
validating the final measurement displayed on the screen.

IV. SECURITY SYSTEM DEACTIVATION PROCESS

The deactivation of security system implies removing
hypervisor from the memory, bringing back primary OS
to the bare hardware and returning all reserved resources to
it. So this procedure may start only as long as hypervisor
has a proof that deactivation command originates from
the user that has disconnected network cable from the
computer. We propose the following protocol for the
deactivation procedure:

1) User disconnects network cable and executes a pro-
gram that requests hypervisor to deactivate security
system.

2) Hypervisor asks TPM to generate nonce using
TPM_GetRandom operation which is then passed
to the user.

3) User signs this nonce on a trusted device using his
own private key and returns signed nonce to the
hypervisor.

4) Hypervisor validates users signature with the public
user key known to him, compares original nonce
with the one received from the user and as long as
they are equal deactivates security system.

While completing deactivation procedure hypervisor
simply stops service VM. There is no information in this
VM that must be persistently stored. Then hypervisor upon
next VM exit event of the primary VM rewrites CPU
registers with the VM state stored in its VMCB struc-
ture and resumes primary OS execution without entering
virtual machine mode. Finally driver in the service OS
returns previously reserved hardware resources back to
the primary OS by hot plugging CPU, memory banks and
reloading original network adapter driver.

V. CONCLUSION

In this article we have presented an approach to on-
the-fly activation and deactivation of virtualization based
security systems. We target this approach on the systems
that allow discrete functioning without violating stated
security properties. Among such systems are hypervisor-
based solutions that secure user applications running under
the control of untrusted operating system. Both activation
and deactivation procedures consider the presence of mal-
ware on the computer and provide means for attesting
security system being activated and for performing safe
deactivation correspondingly.

In our approach the hypervisor is started on the fly from
the up and running operating system upon the user request.
Operating system and all running user applications are
transparently moved inside the hardware virtual machine

160 of 168

where they continue executing but from now under the
control of the launched hypervisor and security system
implemented inside it. If necessary additional virtual ma-
chines may be started at this moment. The security system
shutdown procedure is performed upon the user request
too with hypervisor being unloaded from the memory
and operating system brought back to the bare hardware.
Both activation and deactivation procedure do not require
rebooting the computer.

Currently we are working on implementing proposed
approach for the security system described in [7].

REFERENCES

[1] R. Riley, X. Jiang, and D. Xu, “Multi-aspect profiling of
kernel rootkit behavior,” in EuroSys ’09: Proceedings of
the 4th ACM European conference on Computer systems.
New York, NY, USA: ACM, 2009, pp. 47–60.

[2] T. Garfinkel and M. Rosenblum, “A virtual machine in-
trospection based architecture for intrusion detection,” in
Proc. Network and Distributed Systems Security Sympo-
sium, February 2003.

[3] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports, “Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems,” in
ASPLOS XIII: Proceedings of the 13th international confer-
ence on Architectural support for programming languages
and operating systems. New York, NY, USA: ACM, 2008,
pp. 2–13.

[4] K. Adams and O. Agesen, “A comparison of software and
hardware techniques for x86 virtualization,” in ASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and op-
erating systems. New York, NY, USA: ACM, 2006, pp.
2–13.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems
principles. New York, NY, USA: ACM, 2003, pp. 164–
177.

[6] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces:
making trust between applications and operating systems
configurable,” in OSDI ’06: Proceedings of the 7th sym-
posium on Operating systems design and implementation.
Berkeley, CA, USA: USENIX Association, 2006, pp. 279–
292.

[7] I. Burdonov, A. Kosachev, and P. Iakovenko,
“Virtualization-based separation of privilege: working
with sensitive data in untrusted environment,” in VDTS
’09: Proceedings of the 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems. New
York, NY, USA: ACM, 2009, pp. 1–6.

[8] J. Rutkowska, “Subverting vistaTMkernel for fun and profit.”
BlackHat, 2006. [Online]. Available: http://www.blackhat.
com/presentations/bh-jp-06/BH-JP-06-Rutkowska.pdf

[9] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn,
and X. Zhang, “Trustworthy and personalized computing
on public kiosks,” in MobiSys ’08: Proceeding of the 6th
international conference on Mobile systems, applications,
and services. New York, NY, USA: ACM, 2008, pp. 199–
210.

[10] AMD Architecture Programmer’s Manual Volume2: System
Programming, Advanced Micro Devices Inc., November
2009.

[11] AMD-VTMNested Paging, White paper, Advanced Micro
Devices Inc., July 2008.

[12] “Trusted platform module,” Trusted Computing Group.
[Online]. Available: http://www.trustedcomputinggroup.
org/resources/tpm main specification

[13] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3B: System Programming Guide, Intel
Corporation, March 2010.

[14] B. Kauer, “Oslo: improving the security of trusted com-
puting,” in SS’07: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. Berkeley,
CA, USA: USENIX Association, 2007, pp. 1–9.

[15] R. Wojtczuk, “Subverting the xen hypervisor.”
BlackHat, 2008. [Online]. Available:
http://blackhat.com/presentations/bh-usa-08/Wojtczuk/BH
US 08 Wojtczuk Subverting the Xen Hypervisor.pdf

[16] AMD I/O Virtualization Technology (IOMMU) Specifica-
tion, Advanced Micro Devices Inc., February 2009.

161 of 168

The Modern Educational Course on

Agile Software Development

Evgeny Sorokin
Lobachevsky State University of Nizhni Novgorod,

Russia
e-mail: evgeny.sorokin@inbox.ru

Kirill Kornyakov
Lobachevsky State University of Nizhni Novgorod,

Russia
e-mail: kirill.kornyakov@gmail.com

Abstract — the article presents new educational course
dedicated to Agile Software Development. The course consists
of theoretical and practical parts. Theoretical part gives
an overview of classical agile methodologies, widely accepted
by industry practices and some important programming
principles and patterns. The second part of the course includes
several labs, aimed for practical usage of agile development
principles and patterns. Major feature of the course is its
practical orientation and focus on agile ideas accepted by
the industry.

Keywords – agile; software development; software

engineering education.

I. INTRODUCTION
Agile methodologies are a trend nowadays. The most

appropriate way to work in startup companies is to adopt
software process, which makes team responsive to market.
The same situation is observed within large companies
sometimes [1, 2, 3]. Heavy software processes are usually
good for long-term projects with well-defined requirements.
Small projects and teams prefer lightweight techniques,
which can help them work effectively in uncertain
conditions.

It is most likely that young software engineer will
participate in an agile software project. Regardless of this,
every developer need to now basic agile development
principles and practices, which help to create high-quality,
maintainable and flexible software systems. For example,
refactoring and continuous integration practices are de-facto
standard for now, SOLID object-oriented design (OOD)
principles are also very important for quality of software.

We have created a modern Agile Development
educational course. The goal of the course is to create a set
of materials suitable for training students (and developers) on
agile concepts and practices. This is the list of major course
features:

 General overview of Agile methodologies;
 Detailed discussion of the Scrum and eXtreme

Programming (XP) methodologies;
 Overview of architectural styles;
 Introduction to Domain-Driven Design (DDD);
 Practical explanation of SOLID principles;

 Practical exercises on Test-Driven Development
(TDD) technique.

The rest of the paper is organized as follows. In section 2
we discuss the purpose of the course. Section 3 and 4 give
course overview and information about course evaluation.
Benefits to the Software Engineering community are
discussed in section 5, section 6 concludes the paper.

II. COURSE PURPOSE
Agile methodologies are a growing trend for software

companies nowadays. Many and many projects use Scrum,
XP, Kanban etc. But there is no complete course in academic
program, which covers agile methodologies in such a way so
that student can learn key principles and practices of that
domain. At present time we can see numerous materials
about Software Engineering (SE) and Agile Development
particularly. Most of them can be subdivided into the
following categories:

 Classical Software Engineering courses [4, 5,
6].

 Pioneering books about Agile Development [7,
8, 9] and their followings.

 Commercial training courses by consulting
companies for developers and managers.

 Extensive research on applicability of agile
practices in various environments.

We can see strong attention to the Agile methods from
both industry (software development and consulting
companies) and academy. But there is still a lack of free
Agile Development courses with strong practical orientation.
There is now way for beginner developer to understand agile
programming practices except joining an agile team.

Such situation results in mutual disappointments of
employer and employee during the first years of software
engineer’s career. It also results in a number of failures in
startup projects because of the ignorance of ideas and
recommendation of agile evangelists.

Another point is that classic publications about Agile
don't reflect corrections made by industrial usage and
patterns of adaptation. There are lots of materials in the
Internet, which explains concepts of Agile but there are no
free stand-alone workshops aimed for complete overview of

162 of 168

Agile world and strong practicing of agile techniques in
software projects.

So, there is a demand for a modern and open course,
which can be used for training students and software
developers.

III. COURSE DESCRIPTION
To simplify and facilitate the entering into industrial

software development the agile software development course
has been elaborated. Below we combine the description of
the course and the experience report of its conduction. The
important point is that we encourage senior engineers from
Nizhni Novgorod Hi Tech companies to participate in that
course as guest lecturers. This year we have invited IT
specialists from Intel [10] and Itseez [11], who have
explained materials from their day-to-day work. This has a
serious value to the audience because it, on the one hand,
demonstrates that the material is being applied in the real
world and, on the other hand, exposes the tactical and
practical aspects.

The course provides complete overview of the agile
software development world: Agile Manifesto, detailed
description of the most authentic methodologies — Scrum
and XP, brief introduction to software adaptation of Kanban
(Toyota Production System) and Lean philosophy.

The second part of the course contains introduction to
software architecture and design. Again, the course
approaches this topic from the point of practice: instead of
UML diagrams lectures demonstrate the examples of real-
life software and/or scalable approaches of architectural
decision making. The specifics of the materials chosen from
the Software Engineering are based on real industry demand.
Many IT companies in Russia provide outsourcing of
business application development. So as authors of that
course we made the analysis of most popular practices
adopted by the IT community. We have conducted several
interviews with representatives of different software
companies of Nizhni Novgorod to define their needs.

The stories about success and failures of real adoption of
agile methodologies from practitioners are supported by set
of handouts and homework. The practical exercises are
dedicated to the different programming practices
(refactoring, Test-Driven Development (TDD), SOLID
principles of OOD, application patterns, Domain-Driven
Design (DDD)).

DDD is a modern approach to software development by a
structure of practices and terminology. DDD helps to make
architectural and design decisions for software projects
dealing with complex domains.

TDD is a software development technique which requires
automated unit test to be written before producing the code
which passes that test. This technique influences design
solutions (makes them simple and flexible) and provides
validation of correctness.

The practical exercises helped students to feel deeply do's
and don’ts of practical coding of application in uncertain
conditions. The requirements to the lab work were general
and amended based on concrete solution with intent — to

practice refactoring to patterns, to let students see the value
of TDD and to educate dependency management.

Another point is that students used the same tools, which
usually being used in software companies. The labs were
created in Microsoft Visual Studio with C# programming
language. For refactoring audience used ReSharper from
JetBrains company [12]. It matters because it helped
audience to increase their productivity and leave mechanical
routine of working with syntax to the tools. It is extremely
important for adopting TDD for example.

The tasks of lab work were designed in the way that
students could complete the product. For example, as a result
of TDD task students have DLL, which implements
something useful and a set of unit tests, which supports the
implementation. As a result of lab on Passive View pattern
[13] students have complete Windows- or Web- application
with architectural layers and another set of unit tests for
validation of the presentation logic.

IV. COURSE EVALUATION
Currently we have a strong support from lecturers,

engineers and managers from UNN [16], Itseez, Intel, ITLab
[14].

 Nizhni Novgorod State University facilities are used
as a basis for initial course approbations. The course
has been conducted at the Master's course of Faculty
of Computational Mathematics and Cybernetics of
State University of Nizhni Novgorod.

 The course will be tested at Winter and Summer
Schools (annual sessions) at ITLab.

 Members of ITLab Seminar on Software
Engineering [15] offer their help for course materials
review and discussions.

 Several IT companies of Nizhni Novgorod suggested
their free consulting services and opportunity to test
effectiveness of course materials for their beginner
developers training.

Among the results of the course we can emphasize the

following:
 Students acknowledge and appreciate the part of the

course, which covers process practices. Examination
has demonstrated that key concepts of agile software
development were easy to perceive.

 TDD lab work has been the one of the most “heavy
to learn” practices. Students have often considered
TDD as just writing of unit tests.

 Students who have applied all lab works to a single
software project appeared higher results than those
who have created new projects for every lab work.

 The materials of the engineering part of the course,
which haven’t been covered by lab work (such as
DDD) were not clear to the audience.

163 of 168

V. BENEFITS TO THE SOFTWARE ENGINEERING
COMMUNITY

The course brings the following benefits to the SE
community:

 Course materials will be available online for free.
Community will get the tool for educating students
and developers for agile concepts and techniques.

 Graduates will have strong agile development
knowledge, adequate skills for fast integration into
software development process, ability to adopt agile
methodologies and build up a unique software
process for small and medium sized software
projects. We expect to see developers with deep
understanding of what Agile is, and what it's not. We
hope that students will be ready for joining agile
teams and initiating their own agile projects.

 This course will be valuable for the whole Russian-
speaking software development community.
Especially because there is very few information on
Agile in Russian language.

VI. CONCLUSION
Initial version of modern Agile Development course have

been created and evaluated as Master’s course at the State
University of Nizhni Novgorod, Faculty of Computational
Mathematics and Cybernetics. Feedback was positive in
general both from students and evaluating experts.

We are looking forward to hear from all whom this
course may concern, especially lecturers who also would like
to develop this course together with us, IT companies who
would like to conduct it for their employees (or to participate

as guest lecturers) and for anyone who would like to review
our course and help us to improve it.

REFERENCES
[1] The Dancing Agile Elephant: IBM Software Group's Transition to

Agile and Lean Development
http://www.infoq.com/presentations/dancing-agile-elephant

[2] Agile adoption at Google: Potential and challenges of a true bottom-
up organization
http://www.agile2007.org/agile2007/index.php%3Fpage=sub%252F
&id=713.html

[3] The Microsoft Solutions Framework: An Integrated Approach to
Agile or Formal Software Development Process
http://blogs.msdn.com/askburton/articles/330974.aspx

[4] Ian Sommerville, Software Engineering, 8 ed., Addison Wesley,
2006.

[5] R. Pressman, Software Engineering: A Practitioner's
Approach,McGraw-Hill, 2001.

[6] S. McConnell, Rapid Development: Taming Wild Software
Schedules, Microsoft Press Books, 1996.

[7] A. Cockburn, Agile Software Development. Reading, Massachusetts:
Addison Wesley Longman, 2001.

[8] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM. Prentice-Hall, 2002.

[9] K. Beck, Extreme Programming Explained: Embrace Change, Second
ed. Reading, Massachusetts: Addison-Wesley, 2005.

[10] http://www.intel.com
[11] http://www.itseez.com
[12] http://www.jetbrains.com
[13] http://martinfowler.com/eaaDev/PassiveScreen.html
[14] http://itlab.unn.ru
[15] http://groups.google.ru/group/itlab_se?hl=ru
[16] http://unn.ru

164 of 168

http://www.infoq.com/presentations/dancing-agile-elephant
http://www.agile2007.org/agile2007/index.php%3Fpage=sub%252F&id=713.html
http://www.agile2007.org/agile2007/index.php%3Fpage=sub%252F&id=713.html
http://blogs.msdn.com/askburton/articles/330974.aspx
http://itlab.unn.ru/

Programming as a part of the Software Engineering education

Maksimenkova Olga

State University Higher School of Economics
Moscow, Russia

e-mail: omaksimenkova@hse.ru

Vadim Podbelskiy

State University Higher School of Economics
Moscow, Russia

e-mail: vpodbelskiy@hse.ru

Abstract — Programming for the first-year undergraduates

starts as a part of “Computer science” academic subject. Some

traditional methods of teaching programming are popular in

higher education in Russia nowadays. A different method,

which is used as a part of Software Engineering education in
our University, is described in this article.

Keywords: software engineering; software engineering

education; computer science

I. INTRODUCTION

Software engineering is a modern and complicated field
of knowledge. Following the SWEBOK it contains such
knowledge areas as software requirements, software design,
software construction, software engineering process and so
on. A place of our teaching interests laying in the software
construction part. The term software construction refers to
the detailed creation of working, meaningful software
through a combination of coding, verification, unit testing,
integration testing, and debugging [1]. As we can see coding
is associated with the other fields of knowledge. In any
training course, which is connected with software
engineering, a teacher should provide and explain this
connection at any stage of teaching.

The academic subject “Computer science” within the
bounds of Software engineering education is a significant
brick to train specialists in this field.

II. STRUCTURED PROGRAMMING LANGUAGES AS A BASE

“Computer science” as a course is traditionally widely
connected with coding, algorithms and data structures [2].
Traditional higher education in Russia supposes one of the
structured programming languages such C or Pascal to be
taught to the first-year students.

Of course, such languages as C play a significant part in
further education, because of that the most of modern
programming languages (Java, C++, C# etc.) are based on
theirs syntax. Some students, however, have an experience in
structured programming from schools and special lyceums,
but they should repeat lots of basic concepts at first time.
Therefore, they lose interest to the main course and, for
example, teachers need to prepare problems for all and for
the advanced listeners to keep their interest. If advanced
listeners had to solve easy problems in the beginning they
couldn’t have concentrated further on the new for them
concepts of course.

III. OBJECT-ORIENTED PROGRAMMING LANGUAGES AS A

BASE

The main idea of our course is to teach first-year students
to use theory in the field of information technologies and
programming skills to describe algorithms using one of the
up-to-date programming languages. Graduating student
should have “live” knowledge, which he can successfully use
in his day-to-day activity.

Object-oriented technology is widely used in software
design and development nowadays. So it should have been
quite reasonable to use one of modern object-oriented
programming languages as a base for course. That’s why we
chose C# for our first-year students. C# specification
supposed C# to be a simple, modern, general-purpose,
object-oriented programming language [3].

IV. TARGET AUDIENCE

“Computer science” is lectured during an academic year
to the first-year undergraduates. The most of our students
come to the University just after graduation from secondary
schools, so we expect basic school knowledge in the field of
Math and Computer science. In reality, only mathematical
skills are more or less equal. As for basic skills of our
students in computer science, they are quite different. Mainly
just because of absence government curriculum for the
Computer science in schools. Some of our students, for
example, lyceums-graduates or programming competition
winners have an experience in programming. The others
have basic school knowledge or haven’t got any special
knowledge in “Computer science” at all. Anyway, each other
should be involved and should be given a chance to be a
success.

V. THEORY AND PRACTICE

The whole course of studies consists of two widely
connected parts. First of them is the course of lectures and
the second one is practical training.

Course of lectures is given to students during an
academic year, which is approximately 86 academic hours,
as it postulates in the curriculum. Students also take practical
trainings, which are given during 88 academic hours
following the curriculum.

Curriculum also specifies self-instruction during 204
academic hours for the “Computer science” course.

Course of lectures contains not only theoretical material
but general practical examples with significant algorithms

165 of 168

and data-structures, as well. Theoretical concepts of
structured programming and basic rules of object-oriented
programming are also included into the course of lectures.

Practical trainings consist of set of C# examples and a list
of problems to self-instruction. Theoretical material from the
course of lectures meets its practical application on the
practical trainings. Students consolidate knowledge and gain
programming experience during these lessons.

We use multimedia means to represents material and
make our lessons more interactive and efficient. Materials of
practical trainings with a home task are sent to the students
every week after lessons.

VI. TEST CHECKS

Test checks are represented by class written tests, home
written tests, computer-based module-tests and yearly
project.

Written tests involve one or two short problems to be
done using Microsoft Visual Studio 20xx at class. Students
write their programs for 40-60 minutes, it depends on
difficulty of an introduced written test. We appraise written
tests using special criteria. In them such characteristics as
correspondence of a program with a task, functionality of a
program, its failure stability and so on are taken into
consideration. So, students not only take skills in
programming and algorithmization, but learn basic maxims
of development like constructing functionality programs in
limited time.

Home written test is unassisted work of students. In
which they should implement a program and provide it with
simple documentation. Variant of a home written test is more
complicated as opposed to class written test variant. It can
contain, for example, wider class structure, more difficult
collaboration between classes, user’s interface design and
data processing layer development. Results, which are
reached during the home work, are a great help for students
in yearly project (see “Yearly project” topic).

Our school year is divided into five modules – 7 weeks
each. So students take a computer-based module-test five
times a year during a test period. Each test consists of 30-40
questions of the different types. Usually we use multiple
choice questions, multiple response questions and short-
answer questions. Students are tested during 40 minutes.
Topics of the test problems involve theoretical and practical
questions of a current module.

VII. YEARLY PROJECT

Yearly project isn’t completely included into the
academic subject “Computer science”. But it should
represent a working application with a documentation
package. In yearly project our University carries out an
interdisciplinary approach in education. Such a project,
obviously, do a lot of good for our students, because they
gain not only programming experience, but obtain
experience in such fields of software engineering as software
requirements, software design, software construction, etc.

Within a “Computer science” academic subject we offer
our student a simple method of how to develop a program
easily. This method has grown up from an Agile software

development methodology, to be more precise, from
Extreme Programming. Extreme Programming, XP for short,
is an Agile software development methodology that is made
up of a collection of core values, principles, and practices
that provide a highly efficient and effective means of
developing software [4].

For sure, we didn’t have a goal to teach first year students
such complicated methodologies. We only used some main
ideas of them to answer a hidden question: “How to develop
a yearly question?” We provided our first-year
undergraduates with a method which helps them to develop a
huge application without lots of mistakes. We for ourselves
called this method “Evolutional approach”.

VIII. EVOLUTIONAL APPROACH

Every beginner programmer, like our first-year
undergraduates, has a variety of troubles in making
programs. Efficient but complicated software development
methodologies are not suitable for him. Troubles in
development may lie even in choosing algorithm or standard
library. Sometimes, beginner programmer starts to develop
an application without realizing what kind of means or
structures will be needed for its implementation. Each
beginner programmer is a software architect, developer and
tester at the same time. Our main task, as tutors and teachers,
is to help beginner programmers to solve all the problems in
a way of implementation their applications.

Evolutional approach, following the traditional software
development methodologies, gives next recommendations:

1. Development should be carried out by steps, each of
those contains: design (including interface design),
coding (including syntactic and semantic debugging)
and testing.

2. Stages of development informally divide into two
types: research stages and development stages,
which give software new functionality according to a
requirements specification.

3. In spite of type, the first stage provides creation of
working software with the minimum functionality.

4. The analysis of a current version of software is
carried out at the end of the each stage of
development. A goal of analysis is to assess
possibility of adding constructions for
implementation new, additional requirements
according to a requirement specification.

5. On basis of analysis results refactoring of a current
version is taken place or project decisions are
accepted, coding and testing are carried out.

6. Software, staying in up state, obtains new, or
changes current functionality at the end of each
stage.

Thereby, software every time stays in up state, and
changes makes permanently in it. In the other words,
software is evolving from step to step and its functionality is
growing from minimum to wishful (given in requirement
specification).

166 of 168

IX. MARKS

It should be said that in our University we use ten marks
from 1 to 10. Marks less than 4 are unsatisfactory, 4 and 5
are satisfactory, 6 and 7 are good, 8, 9 and 10 are excellent
marks.

Modular and total marks are accumulative. They are
calculated using special weighting coefficients for each
current mark. As far as all the marks are quite complicated
we are giving, as following, formulas we have used this year:

A. Module 1, 2, 5, current marks:

Μi = min(κi, τi), if κi < 4 or τi < 4,

else

Μi = 0.5 * κi + 0.5 * τi,

there i =1, 2, 5 – number of modules; κ – written test

mark, τ – computer-based test mark.

B. Total mark after module 2:

Θ2 = 0.4 * Μ1 + 0.6 * Μ2,

there Μi – modular current mark, i = 1, 2.

C. Module 3, 4, current marks:

Μi = min(κi, τi, ζi), if κi < 4 or τi < 4 or ζi < 4,

else

Μi = 0.3 * κi + 0.4 * τi + 0.3 * ζi

there i = 3, 4, κ – written test mark, τ – computer-based

test mark, ζ – home written test mark.

D. Total mark after module 5:

Θ5 = 0.3 * Μ3 + 0.35 * Μ4 + 0.35 * Μ5,

there Μi – modular current mark, i = 3, 4, 5.

E. Total yearly mark:

Θy = min(τt, κt), if τt < 4 or κt < 4,

else

Θy = 0.3 * Θ5 + 0.35 * τt + 0.35 * κt,

there Θ5 – total mark after module 5, τt – total computer-

based test mark, κt – total written test mark.
As it is shown in formulas, each mark has a special

threshold value of current marks. Usually written test mark is
one of them, the others are depended on a structure of a
module. If one of threshold values is unsatisfactory the

whole accumulative mark should be unsatisfactory, even
though all the others are satisfactory.

X. RESULTS AND STATISTICS

Described way of teaching programming within the
bounds of “Computer Science” is taught by authors for
almost three years.

Some statistics for second, fifth modules and yearly
project of the last two years is following. We don’t give
statistics for a current year because of it incompleteness.

We didn’t use computer-based modular test in 2007-2008
academic year Fig. 1.

Figure 1. Statistics 2007-2008 acad. year.

We started using computer-based modular test as a test
checks in 2008-2009 academic year Fig. 2.

Figure 2. Statistics 2008-2009 acad.year

CONCLUSION

This work describes educational measures in the field of
teaching programming as a part of Software engineering
education within the bounds “Computer science”. All these
measures are successfully taken for three years in State

167 of 168

University Higher School of Economics by Software
engineering department.

REFERENCES

[1] SWEBOK. Software Engineering – Guide to the Software
Engineering Body of Knowledge (SWEBOK). First edition, - Geneva

(ISO/IEC 19759: 2005(E)). – 173 pp.

[2] Lethbridge, T.C., Leblanc Jr., R.J., Kelley Sobel, A.E., Hilburn,
T.B., Diaz-Herrera, J.L. SE2004: Recommendations for

undergraduate software engineering curricula (2006) IEEE

Software, 23 (6), pp. 21-25

[3] ECMA-334. C# Language Specification. 4
th
 Edition / June 2006, -

Geneva (ISO/IEC 23270:2006). – 553 pp.

[4] G. Pearman, J. Goodwill, “Pro .NET 2.0 Extreme Programming”,
Berkeley: apress, 2006, pp. 3 – 17.

168 of 168

	01_title.doc
	02_annotation.doc
	03_content.doc
	04_foreword.doc
	05_committee.doc
	Committees
	Colloquium Chairs
	
	Program Committee
	
	Organizing Committee
	
	 Referees

	syrcose10_submission_001.pdf
	syrcose10_submission_002.pdf
	I. Introduction
	II. Web Service and Algorythm of Dependencec Searching
	III. Tools for Management of Universal Packages
	IV. Conclusion
	V. References

	syrcose10_submission_003.pdf
	syrcose10_submission_004.pdf
	syrcose10_submission_005.pdf
	I. Introduction
	II. Requirements completeness
	III. Requirements incompleteness sources
	IV. Sources of analyzed documentation
	V. Conclusion

	syrcose10_submission_006.pdf
	syrcose10_submission_007.pdf
	syrcose10_submission_008.pdf
	syrcose10_submission_009.pdf
	syrcose10_submission_010.pdf
	syrcose10_submission_011.pdf
	GPU-based extended cellular model implementation
	I. Introduction
	II. Problem definition and analysis
	III. The proposed solution
	IV. Conclusion

	syrcose10_submission_012.pdf
	syrcose10_submission_013.pdf
	syrcose10_submission_014.pdf
	syrcose10_submission_015.pdf
	syrcose10_submission_016.pdf
	syrcose10_submission_017.pdf
	syrcose10_submission_018.pdf
	syrcose10_submission_019.pdf
	syrcose10_submission_020.pdf
	syrcose10_submission_021.pdf
	syrcose10_submission_022.pdf
	syrcose10_submission_023.pdf
	Throughput
	Introduction
	Area overhead and power consumption
	Conclusion
	Application of GALS solutions

	syrcose10_submission_024.pdf
	syrcose10_submission_025.pdf
	syrcose10_submission_026.pdf
	syrcose10_submission_027.pdf
	syrcose10_submission_028.pdf
	syrcose10_submission_029.pdf
	syrcose10_submission_030.pdf
	syrcose10_submission_031.pdf
	syrcose10_submission_032.pdf
	syrcose10_submission_033.pdf

	XXX:

