
Informational System to Support Development and
Usage of Linux Interface Standards

Denis Silakov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

Email: silakov@ispras.ru

Abstract—This paper presents an approach for developing
Linux interface standards aimed to improve portability of ap-
plications among different Linux distributions. The approach
is based on usage of database-driven informational system that
simplifies creation and maintenance of interface standards by
standardization committees and their usage by application and
distribution developers. A logical model of interfaces between
Linux applications and distributions is described which is used
to design schema of the informational system’s database.

Keywords-Software requirements and specifications, Software
standards, Data management.

I. INTRODUCTION

The Linux operating system becomes more and more pop-
ular. Nowadays it is used not only by enthusiasts, but by
many commercial companies, corporations and government
organizations. Nevertheless, the market share of Linux in some
areas (in particular, on desktops) is still relatively small. One
of the main reasons which prevents the growth of Linux
popularity in these market segments is lack of applications
for this operating system that would satisfy all the needs of
target audience.

This lack of applications arises, in particular, from a huge
variety of existing operating systems based on the Linux
kernel, GNU libraries and utilities and other common com-
ponents. Such systems are called Linux distributions; there
are several hundreds of distributions at the moment [1] and
the situation is constantly changing – as time goes by, new
distributions appear, while the others become obsolete and un-
supported, but the total number of distributions is permanently
increasing.

Most components that form a distribution are maintained
not by distribution vendors themselves, but by different third
party developers. This allows to save a lot of resources and
efforts, but leads to another kind of problems. The thing is
that many developers in the Open Source Software (OSS)
world follow the “Release early, release often” policy [2], and
it is not uncommon for software updates to appear several
times a month. Such often releases lead to situations when a
lot of different versions of the same component exist which,
in general, provide different functionality. Moreover, distri-
bution vendors often modify software taken from upstream,
sometimes slightly, but sometimes significantly – for example,
they can add some new unique functionality which will give

more advantages to their system with respect to the others.
As a result, functionality of the same component in different
distributions can vary significantly.

A large variety of distributions provides users with a wide
choice of Linux implementations, but such a variety makes it
difficult to develop portable software that would be able to
run in every Linux distribution without any additional actions
from the user side. Approaches used by software vendors to
increase the number of supported distributions depend on kind
of license under which their programs are delivered. From
licensing point of view, we should distinguish open software,
whose source code can be obtained by interested parties
for investigation and modification, and closed, or proprietary
software, whose license forbids code modifications.

Developers of open source programs usually leave the
task of software adoption for those distribution vendors who
want to include their programs. In this case it is distribution
engineers who test applications inside particular systems and
modify their source code, if necessary. Finally, users them-
selves can build program from sources (and rely on programs
like GNU Autotools that can take care of differences in build
environments [3]).

Developers of proprietary software cannot follow this way.
Instead, they have to provide binary executable files and
shared libraries for their applications that are ready to use
“as is”, without recompilation or other actions. But it can be
very expensive and time consuming to test some application
in every existing distribution. That’s why many proprietary
vendors declare that they only support a few selected systems –
usually those that have significant market share, such as SUSE
Enterprise Linux or Red Hat Enterprise Linux (for example,
IBM XL Fortran supports only these two distributions [4];
Intel Fortran Compiler supports seven systems [5], but this is
also not a large number). However, end users normally expect
to buy products “for Linux”, not “for SUSE” or “for Red Hat”.

A promising approach to simplify creation of portable
applications distributions is standardization – development of
requirements that should be satisfied by all standard com-
patible systems. In our case, interface standards are required
guaranteeing that every compliant operating system provides
certain interfaces (in particular, libraries and functions) that
can be used by applications.

Standards are useful not only for proprietary vendors, but



also for developers of open source programs. The thing is
that the more modifications are required to adopt a particular
application for some distribution, the more likely the modified
program will significantly differ from its origin and will be not
exactly that thing which the original developer wants it to be.
In addition, it’s likely that if several programs exist providing
the same functionality, then distribution vendors will choose
those that require less efforts for maintenance and adoption.
Following standards will give developers guarantees that their
product will suite perfectly for any standard compliant system
and will be unlikely subjected to significant modifications.

Modern Linux distributions are large and provide millions of
interfaces of different kinds. For standardization committees, it
is important to investigate which interfaces are mostly required
and useful; due to a huge number of existing interfaces, some
automation of this analysis is desired. But even with careful
selection of standardized interfaces, standards can, in turn,
become huge, so their size will cause problems for both
standardization committees (responsible for standard mainte-
nance and further development) and for developers, who will
have to investigate thousands of pages of specification text.
Thus, an approach is required to organize development process
of an interface standard which will simplify both standard
maintenance and development by appropriate committees and
standard usage by its target audience – primarily, application
and distribution developers.

The remainder of the paper is structured as follows: Section
2 observes the most valuable interface standards in the OSS
world and analyzes approaches and techniques used during
their development. Section 3 introduces an approach for inter-
face standard development process organization which is based
on using of database-driven informational system. Section 4
describes the application of the approach to the Linux Standard
Base development process. Finally, Section 5 summarizes the
main ideas.

II. STANDARDS IN THE OPEN SOURCE WORLD

Portability problem is not a new one for Open Software,
and standardization is declared to be one of the key principles
of the Open Systems that should solve this problem (at least
partially). However, even with such a principle, real life shows
that it’s not always easy to achieve full compatibility between
different products. Problems arise in two areas – standard
development and maintenance by standardization groups
and committees and standard usage by its target audience –
developers of applications and OS components.

Roots of the first problem lie in a huge number of existing
libraries and functions – a modern Linux distribution delivered
on a single DVD disk provides several hundreds of libraries
which, in turn, export hundreds of thousands of functions.
Not all of these functions can be considered as stable, safe,
backward compatible, etc. – that is, not all functions can be
characterized as a ”best practice” and recommended to be
used by everyone. One of the main tasks of standardization
committee is to select those interfaces that are proved to be
useful, and probably try to help to improve those interfaces

which are not mature yet. That’s why it is important to estimate
real needs of applications, capabilities of existing Linux im-
plementations and common practices used to solve particular
problems, in order to standardize the mostly requested and
important interfaces first. The more so, since besides such
interface importance analysis, standardization process involves
development and maintenance of specification text, tests and
other accompanying products and informational resources –
that is, standardization is actually an expensive and time-
consuming task, so it is not desirable to waste resources.

Another effect of a large number of existing libraries and
interfaces is that standards can become very large, too. This
leads to the second problem – large specifications are hard to
use for their target audience, since it’s not easy to investigate
a dozen volumes of specification, several hundreds of pages
each. In order to make developers life easier, some standards
are accompanied by auxiliary tools, informational resources
and other additional products. A common example of such a
product is a test suite that can be used to check if application
meets all standard requirements. A more sophisticated example
is a specialized development environment whose usage during
the application compilation and build processes guarantees
compliance of resulting program with the standard.

Such auxiliary components form a standard environment.
All parts of this environment should be kept in sync with
each other and with the specification text. For example, if it is
decided to remove some interface from the specification, then
the test suite for applications should be updated to forbid usage
of this interface, the application development tools should be
modified to avoid usage of this interface, and so on. Thus,
while complicated and feature rich environment of a standard
is useful for its target audience, it can significantly complicate
development and maintenance of standard and accompanying
tools.

One more issue of standardization we’d like to mention is
that standards are not always fully suitable for every particular
area. It’s not uncommon when several standards exist that
cover some area or when a small subset of a standard is
enough for some class of systems. In such cases, standard
profiles are developed – unions of existing standards or their
subsets aimed to create a specification covering a certain class
of systems. As for interface standardization, profiles are asked
for when developing highly tailored products – for example,
intended to be used only on high-loaded servers or inside
mobile devices. Developers of such applications only consider
operating systems that can work on their target platforms,
and it would be useful for them to have a standard that
describes only such particular class of systems. To be sure,
existence of specifications that already cover (at least partially)
target area can simplify development of a new document, and
profile development is usually cheaper then development of
a standard from scratch. However, it can introduce its own
problems – when selecting subsets of existing standards and
then joining these subsets into a single document, it is im-
portant to keep internal consistency of resulting specification.



In addition, it can be useful to reuse existing auxiliary tools,
and these tools should be also adopted for a new profile –
superfluous tests should be dropped, informational resources
from different specifications that form the profile should be
somehow combined and so on. Thus, profile development is
not as cheap as it can seem to be.

All the problems mentioned above are not new and they
were faced by different standardization workgroups. Let’s
consider different approaches used in order to solve them by
some famous interface standards that are in use in the Linux
world.

A. POSIX and SUS

The most famous and mature open standards for operating
system interface are POSIX and Single UNIX Specification
(SUS). Initially, these specifications were developed to achieve
portability of applications among different UNIX implemen-
tations on the source level. This approach supposes stan-
dardization of the system Application Programming Interface
(API), the core part of which are functions provided by
system libraries and declared in appropriate header files. It
is guaranteed that any application that meets requirements of
some API standard can be compiled from its sources in any
operating system compatible with that standard.

Roots of the Single UNIX Specification lie in the Common
API Specification, developed in the early 1990th by the COSE
alliance formed by all leading UNIX vendors of that time.
The main purpose of this alliance was to investigate existing
UNIX implementations and create a list of functions that were
present in all UNIX systems. The resulting list contained 1170
functions and due to this reason it is also known as Spec 1170.
In 1992-1993, during the SUS development, an additional
research of 50 leading UNIX applications was performed and
additional list of 130 functions was created that were suggested
for standardization [7].

Application and distribution analysis during SUS and
POSIX development was primarily performed manually and
involved deep source code investigation by analysts. In early
1990th, this approach was suitable and allowed to perform a
high quality and complete analysis.

A problem with initial versions of POSIX and SUS was
that these standards considered only some relatively low
level functions and calls, but this was not enough for many
applications even in that time – such popular areas as graphical
user interface or multimedia were completely out of standard-
ization scope. The need for more areas was understood by
standardization committees, and it was decided to develop
several SUS profiles – specifications that were based on
POSIX but extended it with interfaces specific to particular
areas. The SUS version 2 specification presented three profiles
– Base Specification (predecessor of POSIX 2001), UNIX98
Workstation (with GUI requirements based on the Common
Desktop Environment – CDE – and the Motif library) and
UNIX98 Server (specifying additional network services and
Java Runtime Environment).

Unlike the base specification, extended profiles were suit-
able for UNIX-based systems only – for example, there
were no free Motif and CDE implementations for Linux.
Moreover, there were no concurrent implementations of CDE
or Motif at all; concurrent implementations of some other
standardized items were allowed, but they had to follow other
existing specifications (like Java RE). Thus, during extended
UNIX profile development, standardization workgroups didn’t
have to analyze alternative implementations, they only had to
choose some top-level standardization directions – for exam-
ple, once it was decided that CDE would be a standard desktop
environment, there were no need to investigate different (and
partially incompatible) implementations of CDE, since there
was only one implementation of it in the wild.

On the other side, the POSIX itself was divided on sev-
eral subsets that also formed a set of profiles – such as
POSIX.1b real-time extensions. However, these profiles were
even smaller than POSIX and their creation haven’t require
investigation of some new standardization techniques.

B. LSB

An alternative approach to API standardization is to stan-
dardize Application Binary Interface (ABI), giving developers
an opportunity to use the same executable files and shared
libraries in all compliant systems, without a need for recom-
pilation. The core part of such ABI standards are shared
libraries that should be provided by operating system and
binary symbols exported by them (binary symbol is a binary
level entity corresponding to either a function or a global
variable exported by library). For application developers, this
ABI standardization is more preferable than the one for API,
since it doesn’t require any actions (neither from developers
nor from users) in order to port a program to any standard
compliant system. However, ABI standards contain much more
limitations for OS – in particular, it is clear that all target
systems should use the same format for binary executables
and shared libraries. That’s why ABI standards often cover
less systems than API ones.

Nowadays this approach is used by the Linux Standard Base
specification (LSB) which is intended to be applied for Linux
based systems only [12]. Roots of LSB lie in POSIX and
SUS, and standardization process is also similar in many ways.
In particular, LSB developers constantly perform analysis
existing distributions and applications in order to select the
mostly important and useful interfaces. Initially, the analysis
process was also performed manually; but up to now the size
of data that should be analyzed increased dramatically, and
manual analysis doesn’t work fine any more. In particular,
during LSB 3.0 development, only interfaces provided by
RHEL and SLES distributions were taken into account, while
there were several hundreds of different Linux distributions in
the world.

LSB has a rich environment, consisting of test suites,
development environment for application vendors, online in-
formational resources and other products. All these items are,
on the one hand, independent products; on the other hand, they



all represent the LSB in some way and should be kept in con-
sistency with it. The size of all these products makes it hard to
perform such synchronization manually; in order to automate
this task, a specification database was designed to store some
information about standardized elements accompanied with a
set of tools that were used to synchronize LSB environment
components with each other and with LSB itself.

After LSB 3.0 was released and development of the next
version was started, it became clear that the current infras-
tructure implies too many manual work and can’t satisfy the
all the needs of the LSB workgroup. In December, 2006, Ian
Murdock (CIO of Free Standards Group that was responsible
for LSB development at that moment) on the LSB Face-to-
Face meeting formulated the following problems of the LSB
Infrastructure [12]:

• absence of possibilities of Linux ecosystem analysis that
would allow to effectively select further development
directions;

• complexity of support of several LSB versions at once
caused by absence of information about standard evolu-
tion in the database;

• high complexity of adding new interfaces to LSB –
though the database solved the problem of synchroniza-
tion of specification text and environment components,
the task of populating database with data was not a trivial
task;

• lack of auxiliary tools that would help distribution and
application vendors to use LSB in the development pro-
cess.

Summarizing POSIX and LSB experience, we can conclude
that as the size of operating systems (measured in a number
of interfaces) grows, the amount of work to be performed by
standardization committees increases dramatically, and those
approaches for standard development that proved to be useful
a decade ago nowadays fail to satisfy all the needs of both
standardization committees and those developers who use
standards. New approaches are required that would help both
standardization workgroups and standard users to perform
their work effectively.

III. AN APPROACH FOR LINUX INTERFACE STANDARDS
DEVELOPMENT

In this paper, we present an approach for Linux Interface
Standards Development. The approach includes the following
stages:

1) Analysis of the Linux ecosystem:
• selection of popular and mostly important appli-

cations, analysis of their requirements for system
libraries and functions;

• collection of information about existing distributions
– in particular, about provided libraries and exported
functions.

The set of applications and distributions is constantly
evolving, so it is necessary to have data not only with

Fig. 1. Analysis of the Linux ecosystem during standard development

respect to some fixed time point, but collect information
about the Linux ecosystem evolution during last several
years. It is important to perform constant monitoring of
the ecosystem, and results of this monitoring at some
certain time points can be used to create next version of
a standard, as demonstrated at Fig.1.

2) Preparation of a new standard version. This stage in-
cludes selection of interfaces which are mostly needed
by applications, proved to be stable and provided by all
modern distributions. Then, on the basis of this set of a
consistent set of interfaces is constructed which will be
included in the specification.

3) Addition of semantic information (in particular, de-
scriptions of functionality that should be provided by
interfaces), development of tests, adopting the standard
certification system to support certification process for
the new version and other tasks that should finalize
release of a new standard version.

In order to support this method, we suggest to build an
informational system which could be used to automate (at least
partially) the mostly time-consuming tasks. The suggested
informational system is based on a logical model of interfaces
in the Linux ecosystem.

A. Logical Model of Application Interfaces with the Linux OS

In this paper, we concentrate on Application Binary Inter-
face (ABI) – that is, we consider interfaces between binary
executables and libraries of applications and shared libraries
of distributions. Thus, we consider applications as a set of
compiled files (executables and shared objects). In Linux,
the main format used for such files is ELF (“Executable
and Linking Format”). In our model, we’ll include some
items related to the ELF format; the general ELF description
is provided by the System V ABI Specification [6]; some
Linux specific extensions are described in the appropriate LSB
sections [8].

All properties of any item which is a part of system ABI
or API can be divided in two groups:

• structural properties, that can be checked statically –
for example, names of functions exported by library or
signature of any function from a given header file;



• semantic properties, whose analysis usually requires run-
time testing – for example, function behavior.

The model described in this paper includes structural inter-
face properties only, abstracting away from semantic aspects.

As elements represented in the model, we use interfaces
involved in the process of dynamic loading of application
files [10]. Compatibility between application and distribution
with respect to such interfaces guarantees that application can
be successfully launched in the distribution – that is, dynamic
loader will be able to resolve all external dependencies of
application, form the executable image in memory and pass
the control to application’s main entry.

The following interfaces are considered:
• libraries – a special kind of ELF files that can export

interfaces;
• binary symbols exported by libraries – these are binary

level entities corresponding to functions and global vari-
ables;

• structure and size of types used as function parameters
and return values;

• ELF file attributes – class (32bit or 64bit), target
architecture of a file and types of sections that exist in
file.

Concentrating on application launching process, the model
leaves out of account the following ways of interaction be-
tween Linux applications and distributions:

• dynamic loading of shared libraries and dynamic in-
vocation of symbols exported by them at runtime (for
example, using the libdl library capabilities);

• invocation of external commands and utilities at runtime
(for example, using the system or exec functions).

However, modern recommendations on developing of
portable applications forbid usage of such possibilities, unless
all files involved in the interaction are part of the application.
Indirect dependency on a system library or command cannot
be checked by means of the operating system itself (e.g., by
dynamic loader), so it is application developer who should
check that necessary files exist and provide all required inter-
faces. However, such checks add complexity to any program,
and improperly performed checks can lead to program crash
or unexpected behavior [9].

B. Informational System to Support Development and Usage
of Linux Interface Standards

In order to support the approach to interface standard
development described above, we use an informational system
providing the following possibilities:

• planning of further standard evolution;
• creation of new versions of standard and its profiles;
• ensuring consistency of standard environment compo-

nents;
• checking of how different Linux distributions and appli-

cations are compliant with the standard.
The informational system is aimed to automate the most

time consuming tasks that arise during the processes described
above.

The main components of the system are like the following:
• a database with information about both standardized

interfaces and interfaces used by existing applications and
provided by distributions. The database schema is based
on the logical model of interfaces described above;

• automated data collection tools used to gather informa-
tion to populate the database with data;

• automated generators that use the database to create
components of standard environment.

The database should store information about all interfaces
with their characteristics described in the specification which
are used by at least one component of the standard envi-
ronment. If any component during its work requires some
information about standardized interfaces which is described
in the specification, this information should be either directly
queried from the database when such a need occurs, or should
be embedded in the component code at compilation time
by appropriate automated generators. In particular, if some
component needs to know the list of included interfaces, this
list should be always taken from the database. This approach
guarantees that all components are kept synchronized with
each other and with specification text. To be sure, it is required
for the specification text itself to be synchronized with the
database; one of the ways to achieve it is to generate those
parts of the text that are represented in the database – that
is, the database should be the only one source of information
about standardized items.

Besides the information about standardized items, the
database should also contain all the data which is used by
several components of standard environment, even though this
data doesn’t concern the standard itself. This will allow to
keep different components synchronized with respect to their
common data.

Due to a large number of interfaces that exist in the Linux
world and should be subjected for analysis, data collection
tools should be as automated as possible. Collection of data
about interfaces included in our logical model can be al-
most fully automated, as demonstrated in authors’ work [15].
Moreover, collection of additional information (e.g., header
files) which is not used during Linux ecosystem analysis
but required for development of different LSB environment
components can be also automated significantly [14].

A data work flow diagram in out informational system is
shown at the Fig.2.

In order to store information about interfaces that exist
in the Linux ecosystem, we suggest to represent each kind
of interface as two separate entities in the database schema
– the first one will correspond to standardized interfaces
of this kind, the other will represent interfaces which are
present in distributions and used by applications. The reason
is that information about standardized objects and data about
ecosystem interfaces are used in different ways – the former
is picked up by environment generators, the latter is supposed
to be used during the ecosystem analysis, when planning
further directions of standard development. In general, these



Fig. 2. Data work flow in the informational system

two tasks can require knowledge about different characteristics
of the same interfaces. In particular, due to the big amount
of existing interfaces that should be subjected to analysis, it
can be reasonable to store only those ecosystem data that can
be collected automatically; however, standards can be more
descriptive and include more characteristics in addition to the
collected ones, so the automatically collected data can be
insufficient for environment generators.

In order to store information about several versions of
a standard (that is, to store standard history), the database
schema should be extended with attributes containing tem-
poral data. Different approaches exist for introducing such
extensions; in our work, we use the Temporal Relationship
Model (TRM) [11], which is based on the relational model
but adds new temporal attributes to every relation. With this
model, there is no need to use a specialized temporal DBMS;
the database can be served by any relational DBMS – the most
popular and widespread kind of DBMS at the moment.

The two obligatory attributes added by the temporal model
are the beginning and the end of entity life period – a time
interval during which the entity preserves its characteristics.
In our case, such interval boundaries are standard versions –
that is, a time interval for some standardized item indicates a
set of standard versions where this item was included with the
same characteristics. A special value NULL is used to indicate
unbounded intervals which correspond to items which exist in
the last standard version (that is, that have been never excluded
from the specification).

Temporal attributes are added only to those entities that cor-
respond to standardized items; these attributes are not required
for entities that represent interfaces existing in the Linux
ecosystem. More details about using temporal databases for
tracking standard evolution can be found in another author’s
work – [13].

IV. THE LSB INFRASTRUCTURE PROGRAM

One of the largest standards that specify interfaces of
the Linux OS is Linux Standard Base (LSB). The standard
is being developed by international consortium named The
Linux Foundation which is formed by leaders of the Linux
market. The primary content of the standard is formed by
lists of libraries that should be present in any compliant
Linux distribution, accompanied by lists of binary symbols
that should be exported by these libraries. The standard is
constantly evolving, and more and more interfaces are added
– the latest version, LSB 4.0, describes more than 38.000
functions from 57 libraries. It is noticeable that during the
four years passed from LSB 3.0 release, more than 30.000
functions were added.

Such a swift growth of the specification size exposed some
significant problems in its development process and surround-
ing infrastructure. Among the most important issues, the lack
of support for Linux ecosystem analysis was mentioned, as
well as difficulties with specification text usage by application
developers – even LSB 3.0 consisted of several thousands
of pages and contained references to several dozens of other
specifications [12].

In 2006, the joint Program of The Linux Foundation and
Institute for System Programming of RAS was started aimed
to improve the LSB Infrastructure. The main purpose of the
Program was to resolve existent issues that made difficulties
for standard maintenance; it was decided to create an informa-
tional system that would allow to both simplify further LSB
development and simplify its usage by target audience – Linux
application developers and distribution vendors.

By the beginning of the Program, the LSB infrastructure
already contained a central database with information about
standardized interfaces. That database was used to gener-
ate parts of the specification text (lists of libraries, binary
symbols, etc.), to create header files and stub libraries for
LSB Development Environment and to generate primitive tests
checking presence of certain objects (libraries, commands,
etc.) in distributions.

During the LSB Infrastructure Program, the following tasks
were performed:

• an extension of the LSB database was developed called
Community Database to store information about inter-
faces provided by existing Linux distributions and used
by Linux applications; automated tools were developed
to collect such data and populate the database with it.
Nowadays that database contains information about 250
Linux distributions and 1200 applications;

• during the LSB Navigator development, automated tools
were created aimed to support analysis of data about
existing Linux distributions and applications during the
LSB development process. The tools allow to discover
potential candidates for standardization and check formal
rules that should be met by candidates to be finally
included in the specification;

• a temporal extension of the LSB database was developed



Fig. 3. LSB Environment structure

to store information about all existing LSB versions.
All tools that use information from the database were
modified to be able to extract data corresponding to
any given specification version. Moreover, some products
created using the database now support several LSB
versions at once – in particular, the LSB Development
Environment can be used to build applications compliant
with any given LSB version.

Nowadays the work is in progress on improving profile
support in the LSB Infrastructure, caused by a need to develop
a profile for mobile devices.

The current structure of the LSB Environment is shown at
the Fig.3.

The tools developed during the Program allowed to re-
organize LSB development process – automation of many
time-consuming tasks allowed LSB workgroup members to
concentrate on their primary objective – selecting interfaces
that should be included in the specification and elaborating
descriptions of their behavior. Moreover, the decision making
process itself was also significantly improved – the new
infrastructure allowed to perform deeper analysis of the Linux
ecosystem and to better understand current needs and evolution
tendencies of applications and distributions. For example,
during the LSB 3.0 development only two distributions were
subjected to deep analysis (RHEL and SLES), and information
about application needs was limited to direct requests from
application developers (expressed in either LSB Bugzilla or
mail lists). With the new infrastructure, during the LSB
4.0 development the workgroup analyzed all versions of 12
distributions released during the last three years and more than
1.000 applications.

This, in turn, allowed to significantly increase the number
of standardized interfaces from 6.000 in LSB 3.0 to 38.000
in LSB 4.0. Nowadays we can say that the most significant
problem with standardization of new interfaces is development
of runtime tests; all other tasks (collecting data for the LSB
database, keeping components of the LSB Development Envi-
ronment synchronized, etc.) are highly automated and do not
require much engineering efforts.

V. CONCLUSION

This paper has suggested and approach of developing Linux
interface standards aimed to improve portability of applica-
tions among different Linux distributions. The approach is
based on usage of a database-driven informational system that
simplifies creation and maintenance of interface standards and
their environment by standardization committees and their us-
age by application and distribution developers. A logical model
of interfaces between Linux applications and distributions is
described which is used to design schema of the informational
system’s database.

Usage of a central database to create different components
of the standard environment allows to keep these components
synchronized with each other and with the specification text
automatically – every change in the database is automatically
reflected in all components by means of appropriate gen-
erators. Temporal extensions of the database allow to store
standard evolution history, which, in turn, allows to support
several standard versions by means of the same database and
accompanying tools.

Though in this paper we have considered ABI standards, the
approach suggested is suitable for developing API standards,
too. In order to support API specification, the model of inter-
faces between Linux applications and distributions should be
modified – binary-only elements (e.g., ELF attributes) should
be dropped, while entities that are present on source level
only (e.g., constants and macros) should be added. Actually,
the LSB database, described in this paper, already store some
source-level entities and tools exist to automate collection of
such information.

The LSB Infrastructure project has demonstrated the prac-
tical strength of the method of Linux interface standards
development suggested in this paper. The informational system
created during the project allowed to automate analysis of
the Linux ecosystem and significantly increased the speed
of decision making process. The automated data collection
tools and database-driven generators eliminated the technical
complexity of adding new interfaces to LSB. Finally, the new
LSB Infrastructure supports development of profiles based on
the LSB specification.

REFERENCES

[1] The LWN.net Linux Distribution List. http://lwn.net/Distributions/
[2] E. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly Media, Inc.; Revised &;
Expanded edition, 2001.

[3] G.V. Vaughan, B. Elliston, T. Tromey, I. Lance Taylor. GNU Autoconf,
Automake and Libtool. Sams Publishing; online edition, 2006. [Online]
Available: http://sources.redhat.com/autobook/

[4] IBM XL Fortran for Linux. [Online] Available: http://www-01.ibm.com/
software/awdtools/fortran/xlfortran/linux/

[5] Intel Fortran Compiler Professional Edition 11.0 for Linux – Installation
Guide and Release Notes. [Online] Available: http://cache-www.intel.
com/cd/00/00/40/60/406087 406087.pdf

[6] System V Application Binary Interface. 24 April, 2001. [Online] Avail-
able: http://refspecs.linuxfoundation.org/elf/gabi4+/contents.html

[7] A. Josey. API Standards for Open Systems. The Open Group, 2001.
[Online] Available: http://www.opengroup.org/austin/papers/wp-apis.txt



[8] Linux Standard Base Core Specication 4.0. Executable And Linking
Format (ELF). [Online] Available: http://refspecs.linuxfoundation.org/
LSB 4.0.0/LSB-Core-generic/LSB-Core-generic/elf-generic.html

[9] Coding practices for compatibility. Hewlett-Packard Developer & So-
lution Partner Program. [Online] Available: http://sysdoc.doors.ch/HP/
compat.pdf

[10] M. Tim Jones. Anatomy of Linux dynamic libraries. IBM developer-
Works, 2008. [Online] Available: http://www.ibm.com/developerworks/
linux/library/l-dynamic-libraries/

[11] Abdullah Uz Tansel. “Temporal Relational Data Model.” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 9, N3, pp. 464-479,
May-June 1997.

[12] Ian Murdock. LSB Overview and Progress Report. LSB Face-
to-Face Meeting. December 2006. [Online] Available: http://www.
linuxfoundation.org/images/c/c2/Lsb-f2f-200612-overview.pdf

[13] D. Silakov. Tracking Specification Requirements Evolution: Database
Approach. Proceedings of SYRCoSE 2007, vol. 2, pp. 15-22. Moscow,
Russia.

[14] E. Novikov, D. Silakov. The Automated Analysis of Header Files for
Support of the Standardization Process. Proceedings of SYRCoSE 2009,
pp. 27-34. Moscow, Russia.

[15] D. Silakov. Linux Distributions and Applications Analysis During Linux
Standard Base Development. Proceedings of SYRCoSE 2008, vol. 1, pp.
11-18. St.Petersburg, Russia.


