
GPU-BASED EXTENDED CELLULAR MODEL IMPLEMENTATION

A. A. Emelyanov, R. M. Dmitrienko
Special Computing Technologies LLC

N.Novgorod, Russian Federation
office@hopcomp.net

A Cellular Automaton (Cellular Model)  is  a  convenient  and 
efficient way to solve a broad class of problems that belong to 
different  areas  of  science,  including  (but  not  limited  to) 
physics, math, chemistry, biology. A lot of natural phenomena 
and common tasks that are described via differential equations 
are easily modeled this way. But in spite of obvious advantages, 
CA-based algorithm implementations for common CPUs are 
highly parallel and hence extremely resource-intensive. Thus, 
the  idea  of  SIMD  GPU-based  CA  implementation  looks 
feasible. In this paper, we will discuss the problems we faced 
while  developing  GPU-based  cellular  model  implementation, 
and the ways we solved them.

CA – Cellular Automaton

SIMD – Single Instruction Multiple Data

GPU – Graphics Processing Unit

I.  INTRODUCTION

A Cellular Model (a Cellular Automaton) is a set of cells 
and  their  corresponding  states.  These  cells  form a  grid;  a 
certain  set  of  rules  determines  each  cell's  new  state 
depending on the nearby cells'  current  states  at  any given 
moment of time. The most common are the automata whose 
cells'  new states are determined only by their own current 
state and those of corresponding adjacent cells. Cubic grids 
are the most popular, but the irregular grids are possible as 
well.  Different  kinds  of  cellular  automata  are  studied: 
synchronous  and  asynchronous,  deterministic  and 
probabilistic, with regular and irregular cell disposition. An 
Extended Cellular Model is a generic mathematical model of 
a  Cellular  Automaton  that  encapsulates  all  of  the 
aforementioned kinds of Cellular Automata.

One of the most important properties of an Automaton is 
the “Locality of the rules”. It means that the cell's new state 
is  only determined  by the  adjacent  cells  and  probably  by 
itself.  This fact  allows us to suppose that  it  is  possible to 
implement a Cellular Automaton using a SIMD processing 
unit, such as a GPU. First we'll discuss the limitations of the 
SIMD  architecture  (as  implemented  by  a  GPU)  that  are 
related  to  the  problem  of  efficient  Cellular  Automata 
implementation.

II. PROBLEM DEFINITION AND ANALYSIS

When  it  comes  to  implementation  of  highly  parallel 
GPU-based  algorithms,  the  most  important  limitation  that 
arises is caused by the memory access collisions. A memory 
access  collision is  a  situation when more than one of  the 
active threads attempt to access memory either for reading, 
or for writing. At the hardware level, this problem is usually 
partially solved by the means of memory organization: either 
a  collision-free  memory  paragraph  access  method,  or  a 
collision-free  separated  memory  bank  access,  where  each 
bank is  spread  across  the  whole  address  space.  Thus,  the 
problem of efficient algorithm implementation is solved by 
choosing an optimal layout of input and output data in the 
memory and an optimal sequence of memory access attempts 
by the threads.

From  the  software  implementation  point  of  view,  a 
Cellular Automaton is a closely coupled net of finite state 
machines  (the  cells),  where  the  connections  represent  the 
input and output data of these FSMs. From the programming 
point of view,  the only difference between a Synchronous 
and an Asynchronous Cellular Automata is the global  cell 
states'  buffer  that  is  required  by  a  Synchronous  CA. 
Considering the fact that the GPU threads access memory at 
different moments of time, it is possible to implement both 
Synchronous and Asynchronous Cellular Automata equally 
efficiently (when all of the other conditions are the same). A 
Movable Cellular Automaton may be reduced to an ordinary 
Cellular  Automaton by adding the cell's  coordinate  to  the 
cell's  state  variables  list,  while  establishing  connections 
between each and every cell. Thus, instead of recalculating 
cell adjacency before new cell states' calculation, it is safe to 
assume that every other cell is a neighbor of the current cell, 
and  hence  it  becomes  possible  to  use  these  “neighbor”'s 
coordinates  for  state  recalculation.  This  kind of  algorithm 
transformation does not increase the processing load, as the 
quantity of operations remains the same, only their order is 
changed.  Implementing  determined  and  probabilistic 
Cellular  Automata  is  even  simpler.  Probabilistic  state 
recalculation algorithms are slightly more complex, but since 
the random numbers (which are essential  in this case)  are 
calculated independently for each cell, and it is possible to 
use  GPU  registers  to  store  such  small  amounts  of  data, 
memory  access  collisions  are  avoided.  Furthermore,  it  is 
possible to precalculate the random numbers' sequence and 



store  it  optimally  in  the  memory  before  launching  the 
computing algorithm.

So, the only problem of the GPU-based Cellular Model 
implementation that remains is the irregularity of the grid. 
Let's suppose that the cells'  connections are predetermined 
and bear no regular structure. This is highly likely to cause 
collisions when threads will attempt to access memory areas 
that  store  the  parameters  of  the  cells,  since  the  order  of 
access attempts is not known beforehand (it depends only on 
the Cellular Automaton's cells'  interconnections).  It  is also 
important to note that this problem is irrelevant for movable 
Cellular Automata, as the cells' interconnection structure is 
unknown beforehand at  the beginning of every calculation 
step  (and  thus  must  be  recalculated);  so,  it  is  possible  to 
connect  each  and  every  cell,  while  maintaining  the  same 
efficiency. However, this is not the case for Automata with 
irregular  grids:  there can  be much less actual  connections 
than  the  squared  number  of  cells,  so  that  the  SIMD 
architecture-based  implementation's  efficiency  will  drop 
significantly.

Based on the aforementioned  suggestions,  the problem 
that we need to solve is actually a problem of designing of an 
efficient  implementation  of  a  Cellular  Automaton  with 
irregular  connections'  structure.  Implementing  a  Cellular 
Automaton  with  regular  connections'  structure  is  just  a 
special case of this problem.

III. THE PROPOSED SOLUTION

Each  cell  contains  its  state  variables  and  a  list  of 
neighboring cells. In-memory data layout is done this way:

ia - cell i
iU - a set of neighbors of cell i
iB  - a set of cells, for which the cell I is a neighbor

a j∈Bi⇔ai∈U j

( )M A  - cardinality of the set A

Step 1. The cells are ordered by the number of cells that a 
cell is adjacent to, beginning from the greatest number.

M B i≥M Bi1
Step 2.  Cells'  state variables  are laid out this way: the 

first  variables  of  cells'  states  are  stored  beginning from a 
memory paragraph's boundary, then the second variables are 
stored beginning from the next paragraph's boundary, and so 
on.

i
jp - state variable j for then cell i

( )jS p  - size of the state variable j

PH  - size of a memory paragraph

N  - quantity of cells
In-memory layout of parameters: 

1 2 3 4
1 1 1 1 1 1

1 2 3 4
2 2 2 2 2 2

1 2 3 4

...

...

...

...

N

N

N
K K K K K K

p p p p p SPACE

p p p p p SPACE

p p p p p SPACE
where K is the number of state variables.
SPACE – memory boundary alignment space
Size of 

( )( )( )( )j jSPACE = PH S p N modPH modPH− ∗  

where a mod b is a reminder of a/b.
It does not matter whether all of the state variables fit 

into the same memory paragraph or not. Nevertheless, it is 
important to keep the number of used paragraphs low while 
avoiding memory access collisions. 

Step 3. The list of cell's neighbors is a sequence of cells' 
numbers (according to the one we've got at the Step 1); the 
fields that correspond to the non-neighboring cells are filled 
with 0 (-1 may be used if 0 is taken by the first cell).

A  separate  thread  is  launched  per  each  cell.  A single 
thread may correspond to a number of cells in case the total 
amount of cells exceeds the thread count limit. Each thread 
reads  its  corresponding  cell's  neighbors'  states  and 
recalculates  the  cell's  state  variables  accordingly.  If  the 
neighboring  cell  is  marked  as  0  (i.e.  there's  no  such 
neighbor), the thread enters waiting state until a valid cell is 
found.

Memory  access  collision  avoidance  and  processing 
efficiency are achieved by the fact that the waiting threads 
attempt no memory access, and the number of such threads 
may  grow  significantly  while  the  neighbor  list  is  being 
processed.  It  is  worth  mentioning  that  SIMD  threads  are 
always synchronous and hence are put into waiting state only 
when they miss a conditional branch of the code which is 
entered by some other threads (they remain in the waiting 
state until others exit the branch). Thus, this algorithm may 
become especially efficient when applied to Cellular Models 
with  irregular  cells'  disposition  (where  the  efficiency 
depends  significantly  on  the  structure  of  connections).  A 
major  performance  gain  is  also  possible  for  Asymmetric 
Cellular  Automata,  where  the  density  of  cellular 
interconnections  is  distributed  unevenly  and  has  certain 
distinct peaks and troughs.

IV. CONCLUSION

We  have  described  our  approach  to  the  GPU-based 
Cellular Models implementation. This approach is frequently 
employed for our development which is done in conjunction 
with subject matter experts from different areas of science, 
such as physics, chemistry, meteorology and so on. We have 
implemented  it  using  NVidia  GPUs  (as  a  part  of  the 
CUBLIC(TM) project), and the estimated performance gain 
(as compared to the transformation of the source Automaton 
into an Automaton where each and every cell is connected to 
every other cell) ranges from 2 to 5 times. 



REFERENCES

[1] Kalgin  Konstantin  Victorovich  KalginKV@gmail.com 
Supercomputer  Software  Department  (SSD,  ssd.sscc.ru),  “Cellular 
Aitomata on GPU” http://ssdonline.sscc.ru/kalgin/cuda/ca.gpu.pdf

[2] Psakhie, S.G.; Horie, Y.; Korostelev, S.Yu.; Smolin, A.Yu.; Dmitriev, 
A.I.;  Shilko,  E.V.;  Alekseev,  S.V.  (1995).  «Method  of  movable 
cellular  automata as a tool for simulation within the framework of 
mesomechanics». Russian Physics Journal 38 (11)

[3] Psakhie,  S.G.;  Horie,  Y.;  Ostermeyer,  G.P.;  Korostelev,  S.Yu.; 
Smolin, A.Yu.; Shilko, E.V.; Dmitriev, A.I.; Blatnik, S.; Spegel, M.; 
Zavsek, S. (December 2001). «Movable cellular automata method for 
simulating  materials  with  mesostructure».  Theoretical  and  Applied 
Fracture Mechanics 37 (1-3)

mailto:KalginKV@gmail.com

	GPU-based extended cellular model implementation
	I.  Introduction
	II. Problem definition and analysis
	III. The proposed solution
	IV. Conclusion

