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Abstract 
 

In different areas attempts are made to organize 

data into multi-linked structures which are well suited 

for information search, in particular the nearest 

neighbor search where the result data items are 

metrically close to a given data item. These structures 

often take the form of trees (M-Tree, cover tree, KD-

tree, GNAT) or networks (M-Chord, VoroNet, RayNet) 

built over a set of data items.  

In this paper we give the regular approach to the 

construction of links between data items which 

provides logarithmical time complexity of the nearest 

neighbor search in the structure. According to this 

approach, data items are organized into an undirected 

graph with Small World properties, which ensure the 

existence of a short path between any two data items 

regardless of the graph size. 

We propose different construction and search 

algorithms depending on the properties of the metric 

which determines the proximity of data items. The 

types of metric we consider are abstract metric and 

ordered metric. Further we extend the ordered metric 

approach to compound data items in the form of 

attribute-value pair sets to enable inclusion search by 

an arbitrary subset of attribute-value pairs.  

Finally we provide simulation results for the 

structure with compound data items. 

 

 

1. Introduction 
 

The nearest neighbor search problem is defined as 

follows: given a set S of n points in some metric space 

, build a data structure on S so that for a given 

query point  one can efficiently find a point  

 which minimizes . 

Different approaches exist for building such a 

structure. The works [4, 5, 11] suggest hierarchical tree 

structures constructed using information about metric 

proximity of the elements. One notable shortcoming of 

this approach is the presence of the mandatory root 

node in tree-like structures which makes building 

totally distributed implementations problematic. 

There are also ways to build a distributed structure 

over the set S. The works [12] suggest distributed hash 

table as the data structure using the pivot-based metric 

space indexing approach.  

The work [6] discusses the VoroNet distributed data 

structure. The elements of S are two-dimensional 

Euclidian space points. Each point from S is linked to 

all of its neighbor points on Voronoi diagram 

(Delaunay graph) plus additional distant points to give 

the structure Small World properties. Greedy search 

algorithm is used. 

The following work [7] by the same authors 

considers the structure where the elements are points in 

a n-dimensional Euclidean space. The main difference 

from the previous work is that every point is connected 

with only a subset of the Voronoi neighbors to avoid 

exponential dependence of complexity on the number 

of dimensions. But this link set reduction leads to 

inexact search results, i.e. the result point is not always 

the nearest neighbor of the query point although 

number of such result can be made insignificant.  

Another drawback of this approach is that it can only 

be applied to the points of Euclidian space with a fixed 

number of dimensions. 

In this paper we propose a regular approach to the 

construction of links between data elements in the form 

of an undirected graph with Small World properties [9, 

10] to provide logarithmical complexity of the nearest 

neighbor search. We called the resulting structure 

Metrized Small World [1] (MSW). 

We propose different construction and search 

algorithms depending on the properties of the metric 

which determines the proximity of data items.  

The rest of the paper is structured as follows. 

Section 2 describes the construction of MSW structure 

based on abstract semi-metric. Section 3 describes 

MSW structure construction algorithms for ordered 

metrics.  In the section 4 we extend the ordered metric 

approach to compound data items in the form of 

attribute-value pair sets to enable inclusion search by 

an arbitrary subset of attribute-value pairs. Finally we 
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provide simulation results for the structure with 

compound data items in the section 5. 

 

2. Metrized Small World data structure 
 

Metrized Small World data structure on the set of 

data items S is expressed by the graph . Each 

vertex  corresponds to a single element of the set 

S. Each edge  is associated with a link between 

two data items from the set S. Assume that  

equivalent to  where s is the data item which 

corresponds to the vertex v. Then the search of the 

nearest neighbor of the query point  comes to 

finding the vertex  with the minimal distance to 

. 

In the work [1] we gave the construction and search 

algorithms for that structure. In the paper [2] we also 

suggested a distributed storage architecture based on 

the proposed structure. Here we re-cite those algorithm 

according to the notation assumed for this paper.  

We provide the algorithm which adds  vertex to 

the graph , where  is the set of previously 

added vertices. Thus the parameters of the algorithm 

are  — the set of previously added vertices,  the 

vertex being added,  – an arbitrarily selected 

vertex from  (the starting point of the search) and two 

integer numbers m and n. 

Algorithm:  

1. Arbitrarily  select  an  element    

2. Let VisitedList be the set of visited elements.  

3. Let  CandidateList  be  the  set  of  candidate 

elements for link establishment sorted by value of 

semi-metric to  in ascending order.   

4. Assume  that  CandidateLists  initially  

contains only .  

5. For i =1  to n do  

5.1. Sort CandidateList  by  value  of  

semi-metric to    in ascending order.  

5.2. Select  the  first  element p from  

CandidateList  not  contained  in VisitedList. 

If no such element exists then break.   

5.3. Add  p to VisitedList.  

5.4. Add the set of  p neighbor elements 

to CandidateList.  

6. Mutually  connect  the    element  with m  

arbitrary elements from VisitedList.  

We shown that the structure constructed using this 

algorithm provides the necessary condition for the 

existence of effective search algorithm, because the 

Small World properties of the graph  ensure 

the existence of a short path between any two vertices. 

But this structure requires search algorithms which are 

more complex than the greedy algorithm due to the 

existence of metric local minimums. 

An advantage of this approach is that the proximity 

measure M can be any function which is a general 

metric or even semi-metric defined over the set S. 

 

3. Single-attribute Distributed Metrized 

Small World Data Structure 
 

In the paper [3] we gave the algorithm for 

constructing the similar structure for a narrower class 

of metrics, i.e. for the metrics for which the order 

between data items is defined. If any data item will be 

linked with its direct predecessor and successor with 

regard to the metric, there will be no local minimums. 

The condition of the data item being linked to its direct 

successor and predecessor ensures the existence of the 

Delaunay graph which in its turn provides for 

correctness of the greedy search algorithm which 

attempts to minimize the distance from the query on 

each step. 

Algorithm: 

 

1. Let . 
2. For each neighbor  of  calculate 

. 
3. If  let  for 

which  and go to step 2. 
4. If  let  and let  be 

the direct successor of  chosen from the 
neighbors of . 

5. If If  let let  and let 
 be the direct predecessor of  chosen 

from the neighbors of . 
6. Mutually connect  with  and  if 

they exist. 
7. Repeat  times: 

7.1. If  exists, let  be the direct 

predecessor of  chosen from its 

neighbors. 
7.2. If  exists, let  be the direct 

successor of  chosen from its 
neighbors. 

7.3. If none of  and  exist then break. 

7.4. If only  exists or 

 mutually connect  
and  and let . 

7.5. If only  exists or 
 mutually connect  and 

 and let . 
 



The nearest neighbor search is performed by 
following links from one element to another in the 
direction of the minimal metric. 

The Small World properties of the graph ensure the 

logarithmical search complexity for a random data set. 

The absence of the root element and the construction of 

the structure on the data item level provides for 

creating a completely distributed implementation of the 

structure. As can be seen on Fig. 1 and 2, both average 

shortest path length and maximum vertex degree scale 

logarithmically with the number of vertexes. Therefore 

the structure is suitable for storing very large amounts 

of data. 

The nearest neighbor search is reduced to finding 

the minimum of the metric from the query to a data 

item. If the distance between the query and the found 

data item is lower than the query radius than the fond 

data item is the result, otherwise there is no result. If 

we must find all data items inside the query radius, we 

perform a sequential search in both directions from the 

first found data item. 

The proposed data addition algorithm is 

incremental, i.e. the addition of a new data item affects 

only a small number of existing data items.  

 

4. Multi-attribute Distributed Metrized 

Small World Data Structure 
 

In the two previous sections we considered the 

elements as atomic entities relative to the metric. Now 

we want to extend our approach to composite data 

items. We will consider the composite objects which 

are represented by an unordered set of atomic objects 

for all of which one common ordered metric is defined. 

Then we define the search problem as the search of 

at least one of all of the composite objects which 

include the given set of atomic objects. This data 

model is often used for describing application domain 

entities with a set of tags or keywords, e.g. images, 

hyperlinks, musical tracks, blog posts etc. This model 

can also represent objects consisting of non-fixed set of 

attribute-value pairs. 

Therefore for convenience we will consider 

arbitrary strings (or tags) as atomic objects. Hence the 

composite objects will be represented as unordered sets 

of tags.  

Our main idea was to construct the graph  in 

a way that objects with any matching subset of atomic 

objects  would constitute the sub graph (layer)  

 consisting of a single connected 

component which in its turn would form the MSW 

structure described in the previous section. Then the 

search for an element containing the given set of tags 

 would be performed by first 

finding object from sub graph (layer)  consisting of 

objects containing the tag t1. After that, inside this 

subgraph-layer  another element from the 

subgraph-layer  is recursively searched 

for. The subgraph-layer  consists of objects 

containing both tags t1 and t2. The process continues 

until an object form the subgraph-layer  is 

found which consists of objects containing all the 

given tags .  

Figure 1. Average shortest path length between two 

vertexes 
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Figure 2. Maximum vertex degree 
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For demonstration purposes we provide the example 

of the network of objects almost all of which contain 

three tags. Dashed curved lines show the links between 

objects which contain tags which are neighbors in 

lexicographical order. Solid straight lines show the 

links between objects having a common subset of tags. 

Further we give a more formal description of the 

construction and search algorithms for this structure 

Let  be the set of all possible tags which are 

distinct string values.  

For each data element  let there be the unordered 

set  of tags associated with the object. Given a 

query set  we must find the set  of 

resulting data elements such that , i.e. 

all data elements which have all of the tags specified in 

the query. 

Let the set 

 be the MSW structure built over a set 

of elements . Every element of  represents a 

link between pair of tags in data elements (it can be the 

same element). If there is no element corresponding to 

a pair tags, there is no link between them. Two 

identical tags on the different items cannot have links 

simultaneously in one . We consider a tag  

being a member of the  if . 

We can use our algorithm described in the section 3 of 

this paper to search for given tag in MSW. 

Let  be the MSW layer built 

over a set of tags . For every tag that is a member  

of . 
 

 

Let the   

be the operation of searching for a single element, 

member of  for which .  The tag  

(member of ) is the entry point of the algorithm 

described in the second section of this paper.  

Let  be the operation 

of addition of the tag  of the element  to the MSW 

layer . The tag  is used as the entry point. 

The time complexity of the  operation is 

logarithmic to the number of tags in . We consider 

an element  being a member of the MSW layer  

if it has been partially added to  at least once. 

Let  be the operation of 

complete addition of the element  to the MSW layer 

. The  operation is performed 

using the following algorithm: 

Algorithm:  
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Figure 3. Example Multi-attribute Distributed Metrized Small World Data Structure. The dashed lines represent 

the edges in the  layer. Solid straight lines show the links between objects having a common subset of tags. 



1. Let  be the set of all tags 

associated with the element  but not 

contained in . 

2. For each  do 

. 

Let  be the set of all MSW layers (the 

structure being described). An arbitrary member 

 of the MSW layer  can serve as a global 

entry point for addition process. 

Let  be the 

operation of addition of the element  to the structure 

.  

The  operation is performed using 

the following algorithm, assuming that the initial 

values are  and . 

Algorithm:    

For each   

1. Find 

 

2. If  exist, perform 

, 

where  is a random tag of , 

 else 

  

Let  

be the operation of searching all elements  for 

which .  

The  operation is performed 

using the following algorithm, assuming that the initial 

values are  and . 

 

Algorithm: 

 

1. If  then return all elements in 

layer  

2. for random  find. 

3.  

4. Remove  from  

5.  

where is a random tag of  

 

Constructing link using the above approach is to a 

certain degree equivalent to indexing by all possible 

combinations of columns in a relational database. The 

main advantage of this approach is the possibility to 

quickly find an object or a set of objects with any given 

set of tags without regard to the quantity of objects 

with a certain subset of tags (atomary objects). 

Further we give the experimental data obtained on the 

structure prototype to confirm the theoretical 

assumptions regarding the advantages of our approach. 

 

 

5. Experimental data 
 

The experiments were set up as follows. 

In the first experiment a set of N objects was 

generated half of which contained the single common 

tag ―X‖, other half contained the single common tag 

Figure 4. Experimental results. Left: two common tags. Right: three common tags. 
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―Y‖ and a single object with both ―X‖ and ―Y‖ tags. 

The objects were added to the structure in random 

order. We measured the time of search for the object 

containing ―X‖ and ―Y‖ tags. The measurement was 

repeated many times for different values of N, the set 

of random objects was regenerated each time. See the 

left graph. 

In the second experiment the test set contained N 

random objects containing equal amounts of object 

containing two common tags ―X‖, ‖Y‖;  ―Y‖, ‖Z‖; 

―X‖, ―Z‖ and the single object containing all three tags 

―X‖,‖Y‖,‖Z‖. See the right graph. 

The results are shown on Figure 4. The graphs  

show that in both cases the object search time depends 

logarithmically on the number the objects in the 

structure which confirms our theoretical assumptions. 

 

6. Conclusion and future work 
 

We believe that the key to the building of search-

oriented distributed systems is the construction of 

multilinked structures similar to social networks. But 

the metric distance between data items must be 

correlated to the number of links which separate them. 

In this paper we described the methods of construction 

of such structures for certain data types. The necessary 

and sufficient condition of correctness of the greedy 

search algorithm is the inclusion of Delaunay graph 

into the structure graph. Failure to satisfy this 

particular condition was the obstacle for using the 

greedy search algorithm with the structure described in 

the section II. The condition of existence of Delaunay 

subgraph has been satisfied in the structures described 

in sections III an IV. But supporting the correct 

Voronoi tessellation as in [6] or in section IV requires 

large overhead with the number of dimensions greater 

than two. For this reason we intend to focus our further 

research on finding the compromise between search 

accuracy and calculation overhead. 
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