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In this paper we introduce a software system which allows to 

carry out and visualize computational experiments for 

studying and researching the parallel algorithms of solving 

complicated computational problems in imitation mode on one 

single sequential computer. User can “assemble” a parallel 

computational system of cluster type that consists of 

multiprocessor and multicore nodes connected with the 

network, set up the problem to be solved, carry out the parallel 

solving algorithm, collect and analyze the results of 

computational experiments. To estimate the execution time of 

parallel method on current hardware system we use the 

sophisticated models. For every implemented parallel method 

we proved the theoretical estimations of the execution time by 

comparing the real time of the execution on the NNSU high 

performance cluster with the time, that can be calculated using 

the model. 

High performance computing, parallel computing, parallel 

computations modeling, cluster, multiprocessor architecture, 

multicore architecture. 

I.  INTRODUCTION  

The development of the computer architecture and 
network technologies, together with investigations of new 
time-consuming scientific and applied problems that demand 
massive computations showed high necessity of parallel 
computations, made high performance computing the 
cornerstone of programming and computational technology. 

But despite of science needs and the actuality of parallel 
computations, so far they are not as widely used as it was 
predicted. One of the possible reasons is the necessity of 
developing new parallel algorithms to solve the new 
computationally intensive problems. It is well-known that 
the speedup of solving the task on parallel computational 
system can only be achieved when the algorithm is divided 
into set of independent processes that can be run 
simultaneously. The other reason is that the debugging of 
parallel code is a high complexity problem, which makes it 
necessary to fully understand the behavior of the system of 
computational processes run in parallel. That is why 
competence in modern high perforamnce computational 
system design trends, in new tools developed to achieve 
parallelism, the ability to create models, methods for solving 
the problems in parallel are the major qualities for specialists 
in applied mathematics, computer science and information 
technologies. 

One more reason why “real” parallel programs are so 
hard to understand is that there is no simple tool to visualize 
their behavior. It is getting even worse now when unified 
interfaces are used to organize an access to multiprocessor 
computational systems. Such interfaces allow user to put the 
task into the queue remotely, and then after a while get the 
result of program execution stored in the file. 

An access to real parallel computational system is not 
necessary for learning the basic principles of parallel 
algorithm‟s execution. Textbooks will help to gain the 
sufficient level of theoretical knowledge. ParaLab system 
introduced in this paper will help to get the practical 
expertise. 

II. WORKING WITH PARALAB 

While working with ParaLab user has an access to a wide 
range of tools to set the computational experiment 
parameters. She can model the computational system, chose 
the problem, carry out the parallel algorithm, collect and 
analyze the results of computational experiments. 

A. Modeling the Parallel Computational System 

ParaLab allows to simulate the parallel computational 
experiments execution on multiprocessor (SMP) and 
multicore architectures. The computational system appears to 
consist of the computational nodes (computers). Each node 
has one or more processors, and each processor has one or 
more cores. The ParaLab system architecture doesn‟t limit 
the maximum amount of cores in processor and processors in 
one node, but for the sake of visualization we limit the 
number of cores to be equal to 1, 2 or 4 and number of 
processors to be 1 or 2. 

In order to simulate the computer system, it is necessary 
to determine the network topology, the number of 
computational nodes, the number of processors and cores on 
one node, the performance of each core, and the 
characteristics of the communication network (latency, 
bandwidth and data communication method). It should be 
noted that the computer system is assumed to be 
homogeneous in the ParaLab system, i.e. all the 
computational nodes have the equal amount of processors, 
every processor consists of the same number of cores, cores 
possess equal performance, and all the communication lines 
have the same characteristics. 

The data communication network topology is defined by 
the structure of communication lines among the computer 



system nodes. The system ParaLab supports the following 
network topologies: farm, ring, star, mesh, hypercube, full 
graph (clique). 

 
Figure 1.  Dialog windows to set up the computational system parameters 

The system ParaLab allows user to set the desirable 
number of nodes for the selected topology. The choice of the 
system configuration is performed in accordance with the 
type of the topology used. Thus, for instance, the number of 
processors in a two-dimensional grid must be a perfect 
square (the sizes of the grid both vertically and horizontally 
are the same), while the number of the processors in a 
hypercube must be a power of 2. 

The performance of the core in the ParaLab system is 
measured by the number of floating point operations per 
second (flops). It should be noted that to estimate the 
execution time of the experiment, it is assumed that all the 
computer instructions correspond to the same floating point 
operation. 

The time of data transmission among the processors 
determines the communication overhead of the parallel 
algorithm execution in a multiprocessor system. The main 
set of parameters, which makes possible to estimate the data 
communication time, contains the following values: 

 latency (α). It is the time, which characterizes the 
duration of preparing a message for transmission, as 
well as the duration of the searching for the route in 
the network, etc.; 

 network bandwidth (β). It is defined as the maximum 
amount of data, which can be transmitted in a certain 
unit of time through a data communication channel. 
This characteristic is measured, for instance, in 
Mbits per second. 

Among the data communication methods, implemented 
in ParaLab, there are the following two well-known 
communication methods (see, for instance, Kumar, et al. 
(1994)). The first method is aimed at passing messages as 
indivisible information blocks (store-and-forward routing or 
SFR). The second communication method is based on 
representing the transmitted messages as a set of information 
blocks of smaller sizes (packets). As a result, the data 
transmission may be reduced to passing packets. In case of 
this communication method (cut-through routing or CTR) 
the transit processor may perform transmitting the data along 
the chosen route directly after the reception of the next 
packet without waiting for the termination of receiving all 
the message data. 

B. Selecting the Problem and the Parallel Method 

The following widely used parallel algorithms applied to 
solving complicated computational problems in various 
scientific and technical applications are implemented in the 
system ParaLab: the algorithms for data sorting, the 
algorithms for matrix operations, the algorithms for solving 
the systems of linear equations, graph processing, the 
algorithms for solving differential equations in partial 
derivatives and the algorithms for global multiextremal 
optimization. 

As a rule, for every task there are several solving parallel 
methods implemented. For the matrix-vector multiplication 
task we implemented algorithms based on block, row-wise 
and column-wise matrix decomposition. For the matrix 
multiplication problem there are parallel Fox‟s and Cannon‟s 
algorithms and the algorithm based on striped matrix 
decomposition. For the problem of solving the system of 
linear equations we present the parallel variants of Gauss 
method and conjugate gradient method. For the sorting 
problem we implemented parallel variants of bubble sort, 
Shell sort and quick sort. For the graph processing task there 
are parallel algorithm for building minimal spanning tree, 
Dijkstra‟s and Floyd‟s algorithms for shortest paths problem. 
For the problem of solving the differential equation in partial 
derivatives we have parallel Gauss-Seidel algorithm. Parallel 
index method is implemented for the problem of 
multiextremal optimization. 

 
Figure 2.  Dialog window to set the parameters for the problem of solving 

differential equation in partial derivatives 

The main problem parameter in the system ParaLab is the 
initial data amount. For the problem of sorting this is the size 
of the array. For the matrix operations and the problem of 
solving a system of linear equations this is the order of the 
matrices. For the problem of processing graphs this is the 
number of graph vertices. 

User can set additional parameters for some types of 
problems. For example there is a possibility to chose the 
boundary conditions for the problem of solving the 
differential equation in partial derivatives, to chose the type 
of function for the problem of multiextremal optimization, to 

 

 



create a graph with the help of built-in graph editor for the 
graph processing problem. 

C. Carrying out the computational experiment 

ParaLab provides various forms of graphical 
demonstration of parallel computation results in order to 
observe the process of carrying out a computational 
experiment of solving complicated time consuming 
computational problems. Before the parallel algorithm 
execution user can set the visualization parameters for 
demonstration speed, the mode of communication operation 
visualization, the required level of details to be shown. 

 
Figure 3.  The window of the computational experiment while solving the 

problem of matrix-vector multiplication 

The system ParaLab provides different schemes of 
carrying out experiments to give convenient possibilities for 
studying and using parallel algorithms of solving 
complicated computational problems. Problems may be 
solved in the sequential execution mode, in the time sharing 
mode with the possibility to simultaneously observe the 
algorithm iterations in all the computational experiment 
windows. Carrying out experiment series that require long-
continued computations, may take place in the automatic 
mode with the possibility of saving the results of solving 
problems in the experiment log. Experiments may be also 
carried out in the step-by-step mode. 

 
Figure 4.  The experiment log window 

D. Accumulating and Analyzing the Experiment Results 

To accumulate the results of the executed experiments, 
ParaLab provides a special memory, which is hereinafter 
referred to as the experiment log. The results are stored in the 
experiment log by the system automatically. Accumulated 
results can be used for observing and analyzing. The stored 
data can be also taken to restore the previous state of the 
experiment – that allows to rerun the experiment. Also it 
allows to continue computations from the suspended state. 

Saving the current experiment in a file, all the 
accumulated results will be also saved. 

For the experiments saved in the experiment log, we 
build the graph that shows how the execution time and the 
speedup depend on problem and computational system 
parameters. These graphs are built in accordance with the 
theoretical models we use to estimate the execution time of 
the parallel algorithm. 

III. MODELING PARALLEL COMPUTATIONS 

A. Model for the local computations 

While creating a model to estimate the time of local 
computations we assume that this time is the sum of the 
calculation time and the memory access time: 

 T1 = Tcalc + Tmem  (1) 

Here the calculation time is the result of multiplication of 
the executed operations number N by the time of one 
operation execution τ. The memory access time is the result 
of division of the maximum amount of data M by the 
memory bandwidth βRAM. To make the estimation more 
precise we should consider that the data comes from memory 
not in byte-by-byte mode but in full cache lines, the length of 
one cache line is equal to L bytes. The worst case is when 
every data element should be downloaded from the memory 
and it falls in the separate cache line. Thus, the model for the 
local computations execution time can be the following: 

 T1 = N ∙ τ+ L ∙M/βRAM  (2) 

We should also consider the RAM latency αRAM that can 
significantly influence the time of computations: 

 T1 = N ∙ τ+M ∙  αRAM + L/βRAM   (3) 

This model doesn‟t reflect the modern processor 
architecture, where the processor has small but fast local 
memory, which is called cache memory. In order to get the 
fast access to the necessary data this data is downloaded 
from RAM to cache before the computations with the use of 
different prediction algorithms. This download can be 
performed simultaneously with computations and doesn‟t 
affect the time of computation execution. The situation when 
the necessary data is not in the cache and the processor 
should wait for them to be downloaded from RAM is called 
cache miss. To make the model of computational time more 
precise we need to know the number of cache misses 

 

 



appeared during computations. With this new information 
we can correct the time that the processor spends on waiting 
for the data to be downloaded from the RAM: 

 𝑇1 = 𝑁 ∙ 𝜏 + γ ∙ 𝑀 ∙  𝛼𝑅𝐴𝑀 + 𝐿/𝛽𝑅𝐴𝑀  

where γ is the cache miss ratio (number of cache misses 
divided by the number of cache access operations), which 
can be theoretically estimated. 

Thus, to estimate the time of local computations 
execution we need to know: 

 αRAM – RAM latency, 

 βRAM – RAM bandwidth, 

 γ – cache miss ratio, 

 τ – the time of one operation execution. 
To make a decision about the model accuracy the 

computational experiments were carried out on the computer 
with the Intel core 2 quad Q6600 processor. The architecture 
of this processor includes first-level caches with the 
bandwidth of 153 Gb/sec and latency of 1,22 nsec. The 
RAM of the target system has a bandwidth of 12,4 Gb/sec 
and latency of 8,31-80 nsec. The algorithm of matrix-vector 
multiplication was executed. The code for this algorithm is: 

for (i=0; i<Size; i++) { 

  pResult[i] = 0; 

  for (j=0; j<Size; j++) 

    pResult[i] +=  

      pMatrix[i*Size+j]*pVector[j]; 

} 

To calculate the time of one operation execution τ we 
measured the time spent on performing the algorithm for 
small object size, when matrix and vectors can fit in cache 
L1. We divide this time by the number of performed 
operations and get the time of one operation execution τ = 
3,78 nsec. 

TABLE I.  COMPARISON OF THE EXPERIMENTAL AND THEORETICAL 

EXECUTION TIME OF THE MATRIX-VECTOR MULTIPLICATION ALGORITHM 

Matrix Size Experimental 

Time 

Theoretical 

Time 

Relative Error 

100 0,0001 0,0001 0,0062 

1000 0,0076 0,0076 0,0011 

2000 0,0303 0,0304 0,0021 

3000 0,0688 0,0685 0,0043 

4000 0,1222 0,1217 0,0036 

5000 0,1909 0,1903 0,0035 

6000 0,2748 0,2740 0,0029 

7000 0,3741 0,3729 0,0033 

8000 0,4894 0,4872 0,0044 

9000 0,6186 0,6164 0,0036 

10000 0,7637 0,7611 0,0034 

 
In current version of ParaLab the simplier model for 

estimating the time of local computation is realized. This 
model only uses the number of operations and the time of 
one operation execution τ. We plan to implement the 
described approach to local computations time estimation in 
the next version of ParaLab. 

B. Model for data passing operations execution 

The time necessary for transmitting data between the 
processors defines the communication overhead of the 
duration of parallel algorithm execution in a multiprocessor 
computer system. The basic set of parameters, which can 
help to evaluate the data transmission time, consists of the 
following values:  

 initializing time (α) characterizes the duration of 
preparing the message for transmission, the search of 
the route in the network etc.; 

 control data transmission time (tc) between two 
neighboring processors (i.e. the processors, 
connected by a physical data transmission channel); 
to control data we may refer the message header, the 
error detection data block etc.; 

 transmission time of one data byte along a data 
transmission channel (1/β ); the duration of this 
transmission is defined by the communication 
channel bandwidth. 

Let‟s consider store-and- forward routing (SFR). In case 
of this approach the processor, which contains a message for 
transmission, gets all the amount of data ready for 
transmission, defines the processor, which should receive the 
data, and initializes the operation of data transmission. The 
processor, to which the message has been sent, first receives 
all the transmitted data and only then begins to send the 
received message further along the route. The time of data 
transmission tcomm for the method of transmitting the message 
of m bytes along the route of length l is defined by the 
expression: 

 tcomm = α+  tc +
m

β
 ∙ l (5) 

If the messages are long enough, the control data 
transmission time may be neglected, and the expression for 
data transmission time may be written in a simplified way: 

 tcomm = α +
m

β
l (6) 

Let‟s consider cut-through routing (CTR), when the 
receiving processor may send the data further along the route 
immediately after receiving the current packet without 
waiting for the termination of the whole message data 
transmission. The data transmission time in case of packet 
communication method will be defined by the following 
expression: 

 tcomm = α+
m

β
+ tc ∙ l (7) 

If we compare the obtained expressions, it is possible to 
notice that in the majority of cases the packet communication 
leads to faster data transmission. Besides, this approach 
decreases the need for memory for storing the transmitted 
data. Different communication channels may be used for 
packet communication simultaneously. On the other hand, 
the implementation of the packet communication requires the 



development of more complex hardware and software. It 
may also increase the overhead expenses (initialization time 
and control data transmission time). Deadlocks may also 
occur in case of packet communication. 

C. The data passing operations in multiprocessor and 

multicore architectures 

As it was previously mentioned, in ParaLab the 
computational system consists of computational nodes, the 
network links between them are determined by the topology 
(farm, ring, etc.). Every node has one or more processors, 
every processor consists of one or more cores. We assume 
that the internal links between cores in frame of one 
computer (busses) form the full graph topology. 

To make the time estimation model easier we assume that 
the computations and data passing operations cannot overlap, 
which means that the computations stop when the cores are 
performing the data transmission, and vice versa. 

Every collective data passing operation between cores 
can be divided into 3 stages: 

1) Data transmission between cores in frames of one 

computational node and sending the data into the external 

network (via network adapters), 

2) Data transmission between different computational 

nodes through the local network (in ParaLab if all the data 

was sent to the network from one core then it is visualized 

like one envelope, if the data was sent by different cores it is 

shown like passing the pile of envelopes), 

3) Receiving the data from the network adapter by the 

different cores in frames of one computational node. 
To estimate the time spent on data passing operation we 

need to know: 

 the size of one data unit in bytes, 

 the number of units being transmitted for every pair 
of cores that perform the data passing operation on 
the current iteration of the algorithm. 

To calculate the final time of the communication 
operation we only take into account the time of the second 
stage (passing the data through local network). The time 
spent on transmitting the data through the bus is 3 to 4 
degrees less than that. 

D. An Example of Computational Experiment Time 

Estimation 

Let‟s consider the complexity of the parallel algorithm 
for matrix-vector multiplication based on rowwise matrix 
decomposition. Every core performs the multiplication of the 
matrix stripe by the vector, each stripe has n/p rows, where n 
is the size of the matrix and p is number of cores. One scalar 
product of the matrix row and a vector involves n 
multiplications and (n-1) additions. Let‟s assume that the 
multiplication and addition have the same duration τ. 
Besides, let us assume that the computer system is 
homogeneous, i.e. all the processors of the system have the 
same performance. With regard to the introduced 
assumptions, the computation time of the parallel algorithm 
is: 

 Tp calc =  n p  ∙  2n − 1 ∙ τ (8) 

The „all gather‟ operation is used to put the result vector 
on all the processes of the parallel program. This operation 
can be performed in  𝑙𝑜𝑔2𝑝  iterations. At the first iteration 
the interacting pairs of processors exchange messages of size 
𝑤 𝑛 𝑝   bytes (w is the size of one element of the vector in 
bytes). At the second iteration the size becomes doubled and 
is equal to 2𝑤 𝑛 𝑝   etc. As a result, the all gather operation 
execution time when the Hockney [2] model is used can be 
represented as: 

 
Tp comm =   α+

2i−1w 
n

p
 

β
 =

 log 2p 
i=1

= α log2p + w n/p  2 log 2p − 1 /β

 (9) 

where α is the latency of data communication network, β is 
the network bandwidth. Thus, the total time of parallel 
algorithm execution is 

 Tp =
n

p
 2n − 1 τ+ αlog2p +

w n/p (p−1)

β
 (10) 

(to simplify the expression (9) it was assumed that the values 
n/p and 𝑙𝑜𝑔2𝑝 are whole numbers). 

Let us analyze the results of the computational 
experiments carried out in order to estimate the efficiency of 
the discussed parallel algorithm of matrix-vector 
multiplication. Besides, the obtained results will be used for 
the comparison of the theoretical estimations and 
experimental values of the computation time. Thus, the 
accuracy of the obtained analytical relations will be checked.  

The experiments were carried out on the computational 
cluster on the basis of the processors Intel XEON 4 EM64T, 
3000 Mhz and the network Gigabit Ethernet under OS 
Microsoft Windows Server 2003 Standard x64 Edition. 

The comparison of the experiment execution time 𝑇𝑝
∗and 

the theoretical time 𝑇𝑝 calculated in accordance with the 
expression (10), is shown in Table 2.  

TABLE II.  THE COMPARISON OF THE EXPERIMENTAL AND 

THEORETICAL EXECUTION TIME FOR PARALLEL ALGORITHM OF MATRIX-
VECTOR MULTIPLICATION BASED ON ROWWISE MATRIX DECOMPOSITION 

Matrix 

Size 

2 processors 4 processors 8 processors 

𝐓𝐩 𝐓𝐩
∗ 𝐓𝐩 𝐓𝐩

∗ 𝐓𝐩 𝐓𝐩
∗ 

1000 0,0069 0,0021 0,0108 0,0017 0,0152 0,0175 

2000 0,0132 0,0084 0,014 0,0047 0,0169 0,0032 

3000 0,0235 0,0185 0,0193 0,0097 0,0196 0,0059 

4000 0,0379 0,0381 0,0265 0,0188 0,0233 0,0244 

5000 0,0565 0,0574 0,0359 0,0314 0,028 0,015 

 
Now let us describe the way the parameters of the 

theoretical dependencies (values τ, w, α, β) were evaluated. 
To estimate the duration τ of the basic scalar computational 
operation, we solved the problem of matrix-vector 
multiplication using the sequential algorithm. The 
computation time obtained by this method was divided into 
the total number of the operations performed. As a result of 



the experiments the value of τ was equal to 1.93 nsec. The 
experiments carried out in order to determine the data 
communication network parameters demonstrated the value 
of latency α and bandwidth β correspondingly 47 msec and 
53.29 Mbyte/sec. All the computations were performed over 
the numerical values of the double type, i.e. the value w is 
equal to 8 bytes. 

 

IV. CONCLUSION 

The Parallel Laboratory software system (ParaLab) 
provides the possibility of carrying out computational 
experiments for studying and investigating the parallel 
algorithms of solving complicated computational problems. 
The system may be used for organizing a set of laboratory 
works on various courses in the area of parallel 
programming. This laboratory works will allow the learners 
to do the following: 

 to model multiprocessor systems with various data 
communication network topologies, 

 to obtain the visual presentations of the 
computational processes and data communication 
operations which take place in case of parallel 
solving various problems, 

 to construct the efficiency estimations of the parallel 
methods to be studied. 

In general, ParaLab is the integrated environment for 
studying and investigating the parallel algorithms of solving 
complicated computational problems. A wide set of available 
means to visualize the process of carrying out an experiment 
and to analyze the obtained results allows to study the 
parallel method efficiency on various computer systems, to 
make conclusions concerning the scalability of the 
algorithms and to determine the possible parallel 
computation speedup. 

The processes of study and research realized by ParaLab 
are aimed at mastering the fundamentals of parallel 
computation theory. They allow the leaners to form the basic 
concepts of the models and methods of parallel computations 
through observation, comparison and analysis of various 
visual graphic forms demonstrated in the course of the 
experiment execution. 

ParaLab is mainly used for training purposes. It may be 
used by University professors and students for 
teaching/studying and investigating parallel algorithms of 
solving complicated computational problems using the set of 
the laboratory works, applied to various courses in the area 
of parallel programming. ParaLab may be also used to 
conduct research into estimating the efficiency of parallel 
computations. 

For those who only start to study the problem of parallel 
computations, ParaLab is very useful, as it allows them to 
master the parallel programming methods. Experienced users 
may use the system in order to estimate the efficiency of new 
parallel algorithms, which are being developed. 

REFERENCES 

[1] Foster, I. Designing and Building Parallel Programs: Concepts and 
Tools for Software Engineering. Reading, MA: Addison-Wesley 
(1995). 

[2] Hockney, R. W., Jesshope, C.R. Parallel Computers 2. Architecture, 
Programming and Algorithms. – Adam Hilger, Bristol and 
Philadelphia (1988). 

[3] Kumar V., Grama A., Gupta A., Karypis G. Introduction to Parallel 
Computing. – The Benjamin/Cummings Publishing Company, Inc., 
(1994). 

[4] Quinn, M. J. Parallel Programming in C with MPI and OpenMP. – 
New York, NY: McGraw-Hill (2004). 

[5] Rajkumar Buyya. High Performance Cluster Computing. Volume 1: 
Architectures and Systems. Volume 2: Programming and 
Applications. Prentice Hall PTR, Prentice-Hall Inc. (1999). 

[6] Xu, Z., Hwang, K. Scalable Parallel Computing Technology, 
Architecture, Programming. – Boston: McGraw-Hill (1998). 

[7] Voevodin V.V., Voevodin Vl.V. Parallel Computations. Saint-
Petersburg, BHV (2002). 

[8] Gergel V.P. Theory and Practice of parallel computations. BINOM 
(2007). 

[9] Korneev V.V. Parallel Computational Systems. – Moscow, 
Knowledge (1999). 

[10] Tanenbaum E. Computer Architecture. – Saint-Petersburg, Piter 
(2002). 


