
ParaLab – Visual Way to Parallel Progarmming

The software system for investigating the parallel algorithms

Anna Labutina, Victor Gergel

Nizhny Novgorod State University

Nizhny Novgorod, Russia

e-mail: anna.labutina@cs.vmk.unn.ru

In this paper we introduce a software system which allows to

carry out and visualize computational experiments for

studying and researching the parallel algorithms of solving

complicated computational problems in imitation mode on one

single sequential computer. User can “assemble” a parallel

computational system of cluster type that consists of

multiprocessor and multicore nodes connected with the

network, set up the problem to be solved, carry out the parallel

solving algorithm, collect and analyze the results of

computational experiments. To estimate the execution time of

parallel method on current hardware system we use the

sophisticated models. For every implemented parallel method

we proved the theoretical estimations of the execution time by

comparing the real time of the execution on the NNSU high

performance cluster with the time, that can be calculated using

the model.

High performance computing, parallel computing, parallel

computations modeling, cluster, multiprocessor architecture,

multicore architecture.

I. INTRODUCTION

The development of the computer architecture and
network technologies, together with investigations of new
time-consuming scientific and applied problems that demand
massive computations showed high necessity of parallel
computations, made high performance computing the
cornerstone of programming and computational technology.

But despite of science needs and the actuality of parallel
computations, so far they are not as widely used as it was
predicted. One of the possible reasons is the necessity of
developing new parallel algorithms to solve the new
computationally intensive problems. It is well-known that
the speedup of solving the task on parallel computational
system can only be achieved when the algorithm is divided
into set of independent processes that can be run
simultaneously. The other reason is that the debugging of
parallel code is a high complexity problem, which makes it
necessary to fully understand the behavior of the system of
computational processes run in parallel. That is why
competence in modern high perforamnce computational
system design trends, in new tools developed to achieve
parallelism, the ability to create models, methods for solving
the problems in parallel are the major qualities for specialists
in applied mathematics, computer science and information
technologies.

One more reason why “real” parallel programs are so
hard to understand is that there is no simple tool to visualize
their behavior. It is getting even worse now when unified
interfaces are used to organize an access to multiprocessor
computational systems. Such interfaces allow user to put the
task into the queue remotely, and then after a while get the
result of program execution stored in the file.

An access to real parallel computational system is not
necessary for learning the basic principles of parallel
algorithm‟s execution. Textbooks will help to gain the
sufficient level of theoretical knowledge. ParaLab system
introduced in this paper will help to get the practical
expertise.

II. WORKING WITH PARALAB

While working with ParaLab user has an access to a wide
range of tools to set the computational experiment
parameters. She can model the computational system, chose
the problem, carry out the parallel algorithm, collect and
analyze the results of computational experiments.

A. Modeling the Parallel Computational System

ParaLab allows to simulate the parallel computational
experiments execution on multiprocessor (SMP) and
multicore architectures. The computational system appears to
consist of the computational nodes (computers). Each node
has one or more processors, and each processor has one or
more cores. The ParaLab system architecture doesn‟t limit
the maximum amount of cores in processor and processors in
one node, but for the sake of visualization we limit the
number of cores to be equal to 1, 2 or 4 and number of
processors to be 1 or 2.

In order to simulate the computer system, it is necessary
to determine the network topology, the number of
computational nodes, the number of processors and cores on
one node, the performance of each core, and the
characteristics of the communication network (latency,
bandwidth and data communication method). It should be
noted that the computer system is assumed to be
homogeneous in the ParaLab system, i.e. all the
computational nodes have the equal amount of processors,
every processor consists of the same number of cores, cores
possess equal performance, and all the communication lines
have the same characteristics.

The data communication network topology is defined by
the structure of communication lines among the computer

system nodes. The system ParaLab supports the following
network topologies: farm, ring, star, mesh, hypercube, full
graph (clique).

Figure 1. Dialog windows to set up the computational system parameters

The system ParaLab allows user to set the desirable
number of nodes for the selected topology. The choice of the
system configuration is performed in accordance with the
type of the topology used. Thus, for instance, the number of
processors in a two-dimensional grid must be a perfect
square (the sizes of the grid both vertically and horizontally
are the same), while the number of the processors in a
hypercube must be a power of 2.

The performance of the core in the ParaLab system is
measured by the number of floating point operations per
second (flops). It should be noted that to estimate the
execution time of the experiment, it is assumed that all the
computer instructions correspond to the same floating point
operation.

The time of data transmission among the processors
determines the communication overhead of the parallel
algorithm execution in a multiprocessor system. The main
set of parameters, which makes possible to estimate the data
communication time, contains the following values:

 latency (α). It is the time, which characterizes the
duration of preparing a message for transmission, as
well as the duration of the searching for the route in
the network, etc.;

 network bandwidth (β). It is defined as the maximum
amount of data, which can be transmitted in a certain
unit of time through a data communication channel.
This characteristic is measured, for instance, in
Mbits per second.

Among the data communication methods, implemented
in ParaLab, there are the following two well-known
communication methods (see, for instance, Kumar, et al.
(1994)). The first method is aimed at passing messages as
indivisible information blocks (store-and-forward routing or
SFR). The second communication method is based on
representing the transmitted messages as a set of information
blocks of smaller sizes (packets). As a result, the data
transmission may be reduced to passing packets. In case of
this communication method (cut-through routing or CTR)
the transit processor may perform transmitting the data along
the chosen route directly after the reception of the next
packet without waiting for the termination of receiving all
the message data.

B. Selecting the Problem and the Parallel Method

The following widely used parallel algorithms applied to
solving complicated computational problems in various
scientific and technical applications are implemented in the
system ParaLab: the algorithms for data sorting, the
algorithms for matrix operations, the algorithms for solving
the systems of linear equations, graph processing, the
algorithms for solving differential equations in partial
derivatives and the algorithms for global multiextremal
optimization.

As a rule, for every task there are several solving parallel
methods implemented. For the matrix-vector multiplication
task we implemented algorithms based on block, row-wise
and column-wise matrix decomposition. For the matrix
multiplication problem there are parallel Fox‟s and Cannon‟s
algorithms and the algorithm based on striped matrix
decomposition. For the problem of solving the system of
linear equations we present the parallel variants of Gauss
method and conjugate gradient method. For the sorting
problem we implemented parallel variants of bubble sort,
Shell sort and quick sort. For the graph processing task there
are parallel algorithm for building minimal spanning tree,
Dijkstra‟s and Floyd‟s algorithms for shortest paths problem.
For the problem of solving the differential equation in partial
derivatives we have parallel Gauss-Seidel algorithm. Parallel
index method is implemented for the problem of
multiextremal optimization.

Figure 2. Dialog window to set the parameters for the problem of solving

differential equation in partial derivatives

The main problem parameter in the system ParaLab is the
initial data amount. For the problem of sorting this is the size
of the array. For the matrix operations and the problem of
solving a system of linear equations this is the order of the
matrices. For the problem of processing graphs this is the
number of graph vertices.

User can set additional parameters for some types of
problems. For example there is a possibility to chose the
boundary conditions for the problem of solving the
differential equation in partial derivatives, to chose the type
of function for the problem of multiextremal optimization, to

create a graph with the help of built-in graph editor for the
graph processing problem.

C. Carrying out the computational experiment

ParaLab provides various forms of graphical
demonstration of parallel computation results in order to
observe the process of carrying out a computational
experiment of solving complicated time consuming
computational problems. Before the parallel algorithm
execution user can set the visualization parameters for
demonstration speed, the mode of communication operation
visualization, the required level of details to be shown.

Figure 3. The window of the computational experiment while solving the

problem of matrix-vector multiplication

The system ParaLab provides different schemes of
carrying out experiments to give convenient possibilities for
studying and using parallel algorithms of solving
complicated computational problems. Problems may be
solved in the sequential execution mode, in the time sharing
mode with the possibility to simultaneously observe the
algorithm iterations in all the computational experiment
windows. Carrying out experiment series that require long-
continued computations, may take place in the automatic
mode with the possibility of saving the results of solving
problems in the experiment log. Experiments may be also
carried out in the step-by-step mode.

Figure 4. The experiment log window

D. Accumulating and Analyzing the Experiment Results

To accumulate the results of the executed experiments,
ParaLab provides a special memory, which is hereinafter
referred to as the experiment log. The results are stored in the
experiment log by the system automatically. Accumulated
results can be used for observing and analyzing. The stored
data can be also taken to restore the previous state of the
experiment – that allows to rerun the experiment. Also it
allows to continue computations from the suspended state.

Saving the current experiment in a file, all the
accumulated results will be also saved.

For the experiments saved in the experiment log, we
build the graph that shows how the execution time and the
speedup depend on problem and computational system
parameters. These graphs are built in accordance with the
theoretical models we use to estimate the execution time of
the parallel algorithm.

III. MODELING PARALLEL COMPUTATIONS

A. Model for the local computations

While creating a model to estimate the time of local
computations we assume that this time is the sum of the
calculation time and the memory access time:

 T1 = Tcalc + Tmem (1)

Here the calculation time is the result of multiplication of
the executed operations number N by the time of one
operation execution τ. The memory access time is the result
of division of the maximum amount of data M by the
memory bandwidth βRAM. To make the estimation more
precise we should consider that the data comes from memory
not in byte-by-byte mode but in full cache lines, the length of
one cache line is equal to L bytes. The worst case is when
every data element should be downloaded from the memory
and it falls in the separate cache line. Thus, the model for the
local computations execution time can be the following:

 T1 = N ∙ τ+ L ∙M/βRAM (2)

We should also consider the RAM latency αRAM that can
significantly influence the time of computations:

 T1 = N ∙ τ+M ∙ αRAM + L/βRAM (3)

This model doesn‟t reflect the modern processor
architecture, where the processor has small but fast local
memory, which is called cache memory. In order to get the
fast access to the necessary data this data is downloaded
from RAM to cache before the computations with the use of
different prediction algorithms. This download can be
performed simultaneously with computations and doesn‟t
affect the time of computation execution. The situation when
the necessary data is not in the cache and the processor
should wait for them to be downloaded from RAM is called
cache miss. To make the model of computational time more
precise we need to know the number of cache misses

appeared during computations. With this new information
we can correct the time that the processor spends on waiting
for the data to be downloaded from the RAM:

 𝑇1 = 𝑁 ∙ 𝜏 + γ ∙ 𝑀 ∙ 𝛼𝑅𝐴𝑀 + 𝐿/𝛽𝑅𝐴𝑀

where γ is the cache miss ratio (number of cache misses
divided by the number of cache access operations), which
can be theoretically estimated.

Thus, to estimate the time of local computations
execution we need to know:

 αRAM – RAM latency,

 βRAM – RAM bandwidth,

 γ – cache miss ratio,

 τ – the time of one operation execution.
To make a decision about the model accuracy the

computational experiments were carried out on the computer
with the Intel core 2 quad Q6600 processor. The architecture
of this processor includes first-level caches with the
bandwidth of 153 Gb/sec and latency of 1,22 nsec. The
RAM of the target system has a bandwidth of 12,4 Gb/sec
and latency of 8,31-80 nsec. The algorithm of matrix-vector
multiplication was executed. The code for this algorithm is:

for (i=0; i<Size; i++) {

 pResult[i] = 0;

 for (j=0; j<Size; j++)

 pResult[i] +=

 pMatrix[i*Size+j]*pVector[j];

}

To calculate the time of one operation execution τ we
measured the time spent on performing the algorithm for
small object size, when matrix and vectors can fit in cache
L1. We divide this time by the number of performed
operations and get the time of one operation execution τ =
3,78 nsec.

TABLE I. COMPARISON OF THE EXPERIMENTAL AND THEORETICAL

EXECUTION TIME OF THE MATRIX-VECTOR MULTIPLICATION ALGORITHM

Matrix Size Experimental

Time

Theoretical

Time

Relative Error

100 0,0001 0,0001 0,0062

1000 0,0076 0,0076 0,0011

2000 0,0303 0,0304 0,0021

3000 0,0688 0,0685 0,0043

4000 0,1222 0,1217 0,0036

5000 0,1909 0,1903 0,0035

6000 0,2748 0,2740 0,0029

7000 0,3741 0,3729 0,0033

8000 0,4894 0,4872 0,0044

9000 0,6186 0,6164 0,0036

10000 0,7637 0,7611 0,0034

In current version of ParaLab the simplier model for

estimating the time of local computation is realized. This
model only uses the number of operations and the time of
one operation execution τ. We plan to implement the
described approach to local computations time estimation in
the next version of ParaLab.

B. Model for data passing operations execution

The time necessary for transmitting data between the
processors defines the communication overhead of the
duration of parallel algorithm execution in a multiprocessor
computer system. The basic set of parameters, which can
help to evaluate the data transmission time, consists of the
following values:

 initializing time (α) characterizes the duration of
preparing the message for transmission, the search of
the route in the network etc.;

 control data transmission time (tc) between two
neighboring processors (i.e. the processors,
connected by a physical data transmission channel);
to control data we may refer the message header, the
error detection data block etc.;

 transmission time of one data byte along a data
transmission channel (1/β); the duration of this
transmission is defined by the communication
channel bandwidth.

Let‟s consider store-and- forward routing (SFR). In case
of this approach the processor, which contains a message for
transmission, gets all the amount of data ready for
transmission, defines the processor, which should receive the
data, and initializes the operation of data transmission. The
processor, to which the message has been sent, first receives
all the transmitted data and only then begins to send the
received message further along the route. The time of data
transmission tcomm for the method of transmitting the message
of m bytes along the route of length l is defined by the
expression:

 tcomm = α+ tc +
m

β
 ∙ l (5)

If the messages are long enough, the control data
transmission time may be neglected, and the expression for
data transmission time may be written in a simplified way:

 tcomm = α +
m

β
l (6)

Let‟s consider cut-through routing (CTR), when the
receiving processor may send the data further along the route
immediately after receiving the current packet without
waiting for the termination of the whole message data
transmission. The data transmission time in case of packet
communication method will be defined by the following
expression:

 tcomm = α+
m

β
+ tc ∙ l (7)

If we compare the obtained expressions, it is possible to
notice that in the majority of cases the packet communication
leads to faster data transmission. Besides, this approach
decreases the need for memory for storing the transmitted
data. Different communication channels may be used for
packet communication simultaneously. On the other hand,
the implementation of the packet communication requires the

development of more complex hardware and software. It
may also increase the overhead expenses (initialization time
and control data transmission time). Deadlocks may also
occur in case of packet communication.

C. The data passing operations in multiprocessor and

multicore architectures

As it was previously mentioned, in ParaLab the
computational system consists of computational nodes, the
network links between them are determined by the topology
(farm, ring, etc.). Every node has one or more processors,
every processor consists of one or more cores. We assume
that the internal links between cores in frame of one
computer (busses) form the full graph topology.

To make the time estimation model easier we assume that
the computations and data passing operations cannot overlap,
which means that the computations stop when the cores are
performing the data transmission, and vice versa.

Every collective data passing operation between cores
can be divided into 3 stages:

1) Data transmission between cores in frames of one

computational node and sending the data into the external

network (via network adapters),

2) Data transmission between different computational

nodes through the local network (in ParaLab if all the data

was sent to the network from one core then it is visualized

like one envelope, if the data was sent by different cores it is

shown like passing the pile of envelopes),

3) Receiving the data from the network adapter by the

different cores in frames of one computational node.
To estimate the time spent on data passing operation we

need to know:

 the size of one data unit in bytes,

 the number of units being transmitted for every pair
of cores that perform the data passing operation on
the current iteration of the algorithm.

To calculate the final time of the communication
operation we only take into account the time of the second
stage (passing the data through local network). The time
spent on transmitting the data through the bus is 3 to 4
degrees less than that.

D. An Example of Computational Experiment Time

Estimation

Let‟s consider the complexity of the parallel algorithm
for matrix-vector multiplication based on rowwise matrix
decomposition. Every core performs the multiplication of the
matrix stripe by the vector, each stripe has n/p rows, where n
is the size of the matrix and p is number of cores. One scalar
product of the matrix row and a vector involves n
multiplications and (n-1) additions. Let‟s assume that the
multiplication and addition have the same duration τ.
Besides, let us assume that the computer system is
homogeneous, i.e. all the processors of the system have the
same performance. With regard to the introduced
assumptions, the computation time of the parallel algorithm
is:

 Tp calc = n p ∙ 2n − 1 ∙ τ (8)

The „all gather‟ operation is used to put the result vector
on all the processes of the parallel program. This operation
can be performed in 𝑙𝑜𝑔2𝑝 iterations. At the first iteration
the interacting pairs of processors exchange messages of size
𝑤 𝑛 𝑝 bytes (w is the size of one element of the vector in
bytes). At the second iteration the size becomes doubled and
is equal to 2𝑤 𝑛 𝑝 etc. As a result, the all gather operation
execution time when the Hockney [2] model is used can be
represented as:

Tp comm = α+

2i−1w
n

p

β
 =

 log 2p
i=1

= α log2p + w n/p 2 log 2p − 1 /β

 (9)

where α is the latency of data communication network, β is
the network bandwidth. Thus, the total time of parallel
algorithm execution is

 Tp =
n

p
 2n − 1 τ+ αlog2p +

w n/p (p−1)

β
 (10)

(to simplify the expression (9) it was assumed that the values
n/p and 𝑙𝑜𝑔2𝑝 are whole numbers).

Let us analyze the results of the computational
experiments carried out in order to estimate the efficiency of
the discussed parallel algorithm of matrix-vector
multiplication. Besides, the obtained results will be used for
the comparison of the theoretical estimations and
experimental values of the computation time. Thus, the
accuracy of the obtained analytical relations will be checked.

The experiments were carried out on the computational
cluster on the basis of the processors Intel XEON 4 EM64T,
3000 Mhz and the network Gigabit Ethernet under OS
Microsoft Windows Server 2003 Standard x64 Edition.

The comparison of the experiment execution time 𝑇𝑝
∗and

the theoretical time 𝑇𝑝 calculated in accordance with the
expression (10), is shown in Table 2.

TABLE II. THE COMPARISON OF THE EXPERIMENTAL AND

THEORETICAL EXECUTION TIME FOR PARALLEL ALGORITHM OF MATRIX-
VECTOR MULTIPLICATION BASED ON ROWWISE MATRIX DECOMPOSITION

Matrix

Size

2 processors 4 processors 8 processors

𝐓𝐩 𝐓𝐩
∗ 𝐓𝐩 𝐓𝐩

∗ 𝐓𝐩 𝐓𝐩
∗

1000 0,0069 0,0021 0,0108 0,0017 0,0152 0,0175

2000 0,0132 0,0084 0,014 0,0047 0,0169 0,0032

3000 0,0235 0,0185 0,0193 0,0097 0,0196 0,0059

4000 0,0379 0,0381 0,0265 0,0188 0,0233 0,0244

5000 0,0565 0,0574 0,0359 0,0314 0,028 0,015

Now let us describe the way the parameters of the

theoretical dependencies (values τ, w, α, β) were evaluated.
To estimate the duration τ of the basic scalar computational
operation, we solved the problem of matrix-vector
multiplication using the sequential algorithm. The
computation time obtained by this method was divided into
the total number of the operations performed. As a result of

the experiments the value of τ was equal to 1.93 nsec. The
experiments carried out in order to determine the data
communication network parameters demonstrated the value
of latency α and bandwidth β correspondingly 47 msec and
53.29 Mbyte/sec. All the computations were performed over
the numerical values of the double type, i.e. the value w is
equal to 8 bytes.

IV. CONCLUSION

The Parallel Laboratory software system (ParaLab)
provides the possibility of carrying out computational
experiments for studying and investigating the parallel
algorithms of solving complicated computational problems.
The system may be used for organizing a set of laboratory
works on various courses in the area of parallel
programming. This laboratory works will allow the learners
to do the following:

 to model multiprocessor systems with various data
communication network topologies,

 to obtain the visual presentations of the
computational processes and data communication
operations which take place in case of parallel
solving various problems,

 to construct the efficiency estimations of the parallel
methods to be studied.

In general, ParaLab is the integrated environment for
studying and investigating the parallel algorithms of solving
complicated computational problems. A wide set of available
means to visualize the process of carrying out an experiment
and to analyze the obtained results allows to study the
parallel method efficiency on various computer systems, to
make conclusions concerning the scalability of the
algorithms and to determine the possible parallel
computation speedup.

The processes of study and research realized by ParaLab
are aimed at mastering the fundamentals of parallel
computation theory. They allow the leaners to form the basic
concepts of the models and methods of parallel computations
through observation, comparison and analysis of various
visual graphic forms demonstrated in the course of the
experiment execution.

ParaLab is mainly used for training purposes. It may be
used by University professors and students for
teaching/studying and investigating parallel algorithms of
solving complicated computational problems using the set of
the laboratory works, applied to various courses in the area
of parallel programming. ParaLab may be also used to
conduct research into estimating the efficiency of parallel
computations.

For those who only start to study the problem of parallel
computations, ParaLab is very useful, as it allows them to
master the parallel programming methods. Experienced users
may use the system in order to estimate the efficiency of new
parallel algorithms, which are being developed.

REFERENCES

[1] Foster, I. Designing and Building Parallel Programs: Concepts and
Tools for Software Engineering. Reading, MA: Addison-Wesley
(1995).

[2] Hockney, R. W., Jesshope, C.R. Parallel Computers 2. Architecture,
Programming and Algorithms. – Adam Hilger, Bristol and
Philadelphia (1988).

[3] Kumar V., Grama A., Gupta A., Karypis G. Introduction to Parallel
Computing. – The Benjamin/Cummings Publishing Company, Inc.,
(1994).

[4] Quinn, M. J. Parallel Programming in C with MPI and OpenMP. –
New York, NY: McGraw-Hill (2004).

[5] Rajkumar Buyya. High Performance Cluster Computing. Volume 1:
Architectures and Systems. Volume 2: Programming and
Applications. Prentice Hall PTR, Prentice-Hall Inc. (1999).

[6] Xu, Z., Hwang, K. Scalable Parallel Computing Technology,
Architecture, Programming. – Boston: McGraw-Hill (1998).

[7] Voevodin V.V., Voevodin Vl.V. Parallel Computations. Saint-
Petersburg, BHV (2002).

[8] Gergel V.P. Theory and Practice of parallel computations. BINOM
(2007).

[9] Korneev V.V. Parallel Computational Systems. – Moscow,
Knowledge (1999).

[10] Tanenbaum E. Computer Architecture. – Saint-Petersburg, Piter
(2002).

