On EFSM-based Test

Aleksandr Nikitin

Abstract—Formal model based test derivation is now widely
used in software testing. One of the formal modelwhich is very
close to software implementations is the model ofnaExtended
Finite State machine (EFSM). Compared with an FSMhe EFSM
has predicates for condition representation and cdext variables.
However, when deriving tests for an EFSM very comgix
reachability and distinguishability problem should be solved. For
this reason, when deriving tests from an EFSM a nuber of FSM
slices are used. In this paper, we discuss how terive a test
using an FSM slice with limited number of states am how to
represent data in the PC memory for fast generatiomf such slice.
Preliminary experimental results with protocol EFSMs are
provided.

Index Terms—Software
representation

testing, EFSM, computer

. INTRODUCTION

HE complexity of digital systems and devices inee=a

quickly and software is a usual part of almost ea@dtem

or device. Thus, ad hoc testing of software impletaigons

now is insufficient and a number of methods forfal model

based software testing are proposed and widely, usade

model based testing provides tests with the gueegnfault
coverage.

One of formal models which is very close to softsvar
implementations is the model of an Extended FiiState
machine (EFSM)The EFSM model extends the classic FS
model with input and output parameters, contexiatées,
operations and predicates defined over contexabbes and
input parameters. If specification domains of inpatameters
and context variables are finite then an EFSM aaanrifolded
to an equivalent FSM (FSM slice) by simulating bshavior
with respect to all possible values of context ables and
input vectors [1]. A test suite then is derived nfrathe
corresponding equivalent FSM. However, the numibstaies
of such corresponding FSM grows exponentially, #ng, it
is necessary to limit the maximal number of stated in this
case, the corresponding FSM becomes nondeterrinisti

Derivation Strategies

, Natalia Kushik

derived when the number of a corresponding FShhigdd.
Section Il is devoted to EFSM computer represéoat
Section IV discusses preliminary experimental rsswlith
protocol EFSMs while Section V concludes the paper.

The EFSM Model
An extended finite state machine [RJis a pair § T) of a set
of statesS and a set of transitionE between states fror§,
such that each transitidri] T is a tuple §, x, P, op, y, up, "),
where:

s, sl Sare the initial and final states of a transition;

x O X is an input, andj,, is the set of possible input
vectors, associated with the inpyi.e., each component of an
input vector is the value of a corresponding inpatameter
associated witly;

y O Y is output, whereY is the set of outputs, ard,., is
the set of possible output vectors, associateld thi¢ output
y, i.e. each component of an output vector corredpda an
output parameter associated wjth

P, op, andup are functions, defined over input parameters,
and context variables, namely:

P: Dinpx X Dy — {True, False} is a predicate, whellg is a
set of context vectons

op: Dinpx X Dy — Douy is an output parameter update

PRELIMINARIES

I\junction;

up: Dinpx X Dy — Dy is a context update function.

As in [2], we use the following definitions.

Given an inpui and a vectop O Dinp.x the pair X, p) and
vector fromDin,. is called gparameterized inputA sequence
of parameterized inputs is called @arameterized input
sequenceA context vector [0 Dy is called acontextof M. A
configurationof M is a pair §, v). Given a parameterized input
sequence of an EFSM we can calculate the corregpgpnd
parameterized output sequence by simulating thavieh of
the EFSM under the input sequence starting fromirhl
state and initial values of the context variables.

this paper, we show how tests can be derived fahsu ag agn example, consider the EFSEin Figure 2 that

nondeterministic FSM slice. In order to derive sesffectively
an efficient computer representation of the compEs:SM
model is proposed in this paper.

The structure of the paper is as follows. Sectlozohtains
preliminaries and a discussion how tests for anNE[ESn be

! This work is partly supported by FCP grani02.514.12.402.

corresponds to the C functiépresented in Figure 1.

int f(int *a, int size_a)

L

inti, m;
i=0;

m = a[0];

while(i < size_a)

if(m < al[i]) m = afi];
i++;
}

return m;

}
Figure 1. The functiof

by the EFSM for the given input sequence.

Unfolding a given EFSM to an equivalent FSM

Given an EFSMA, in order to obtain an equivalent FSM
we proceed as follows. Given a statef EFSMA, a context
vector v, an inputx and vectorp of input parameters, we
derive the transition from configuratios, /) under input X,
p) in the corresponding FSMF. We first determine the
outgoing transitiong, x, P, op, y, up, s') from states where the
predicateP is true for input vectop and context vectov,
update the context vector to the vectdraccording to the
assignmenup of this transition, determine the parameterized
outputyw and add the transitiosy, xp, yw, s'V') to the set of

Functionf in Figure 1 returns the maximal integer in thdransitions of the FSM. The obtained FSM has thmesa

array a where size a is the cardinality ofa. To obtain an
EFSM that corresponds to the given C function wmest fi
determine the se$ of states. LeS be the seS = {s;, 5, 3}

number of states as the number of different condiions §,
v) of the EFSMF that are reachable from the initial state.
Such unfolding can help to detect transfer, preadicand

wheres,, s,, s; are three different points in the C function. Theassignment faults of the given EFSMHowever, it is known

states, corresponds to the beginning of the funcfiptihe state
s, represents the state of the program before comgpariith
size a; the program moves to the stagif i is less than
size a. The se¥X of input consists of the array pointea &nd
of the cardinalitysize a of a. Input *a is a parameterized
input, hereindex (item number) is a parameter. Outguil Y
is not parameterized; it corresponds to the vagiablthat is

that the simulation usually leads to a state expfoproblem.
That is the reason why the maximal number of stafethe
FSM F is limited by integeB, for example. In this case, all
the states corresponding to configuratioss () with the
numbers that are greater thBrare marked by a special state
DNC (don't care state). Two ways are then approgriar
FSMF testing.

returned by the functiof. We also add special input (and @) Transitions with DNC states are deleted fierandF is
output) NULL' to specify cases when program accepts (d€sted as a partial FSM [3].

returns) no external data. The Bedf predicates consists Bf
andP,: P, istrueif i is less thasize a while P, istrue if mis
less thana[i]. The variablei is the context variable. The
corresponding EFSM is presented in Figure 2.

t,: a(index) /| NULL
m:=a.0:7i:=0

S1) T S2

t.:size ali>=size_alm

ty:s8ize_a/i<size_al,

NULL

t,: a(index) /m<a.
NULL

t.: a(index) / m = a.i | NULL
=i+l

Figure 2. The EFSNE

In this paper, we consider deterministic and coteple
EFSMs, i.e., for each parameterized input sequeheee
exists a single parameterized output sequencestipgoduced

b) FSM F is tested as completely specified FSM fhd
then the test suit is “cleaned” by deleting allfixes of test
sequences that lead to the DNC state. However,fahk
coverage of such a test suite is still unknown.

As an EFSM model is rather complex, a suitable agemp
EFSM representation can be of a big help when dirfgland
deriving tests automatically.

Computer representation of the EF$Mises the following
items kept in the PC memory: a number of state#\,0én
array of parameterized inputs, an array of paramzeit
outputs, an array of context variables, an arrafpo€tionsop
andup, an array of integers that are used in functiopsnd
up, an array of predicates, and an array of tramstioNe
define a set of structures in the C language ferdbmputer
representation of an EFSM.

Structure input is used for parameterized (or
parameterized) input representation.

struct input

{

char *input_name;

int par_quantity;

char **parameters_names;

float *parameters_values;

2

The field input nameof the structurénput captures initial
input name while the@ar_quantity field is a number of input

EFSM COMPUTER REPRESENTATION

not

parameters. Theparametersnames array saves initial
parameter names and tharametersvaluesarray is used for
an assignment of the input parameters.
Structure output is similar toinput structure and is used for
parameterized (or not parameterized) output reptasen.
struct output

{

char *output_name;

int par_quantity;

char **parameters_names;
float *parameters_values;

}

The field output name of the structureoutput captures
initial output name; thepar_quantity field is a number of
output parameters. Thearametersnamesarray is also used
for initial parameters names and th@ametersvaluesarray
keeps an assignment of the output parameters.

We use structure variable for context
representation.

struct variable

{

char *variable_name;

float value;

2

The field variable name of the structure variable
corresponds to initial name of the variable whitdue of the
context variable is stored in thaluefield.

When simulating behavior of the EFSMwe use integers
instead of strings. In other words, we hash inpotgputs,
variables, functions and predicates and use caynebpg
integer identifiers when deriving tests. We notatthuch a
hashing significantly accelerates the simulatiorocpss.
Reverse Polish Notation [5] is utilized for fasteanslation of
EFSM predicates and functions into computer reprtasien.
That is the reason why tiséructure function has two fields.

struct function

{

int *rpr;

int rpr_size;

h

variable

The Reverse Polish Notation that corresponds to the

function is stored in thepr array ofrpr_sizeitems. The items
of the rpr array are identifiers of parameterized inputs o
context variables. Arithmetic operators are alsshkd and
stored in therpr array. We use speciapr item ‘-1’ to
separate operators and operands of the ReverseshPo
Notation.

When constructing the Reverse Polish Notation foe t

predicate P we hash comparison operators and divide a

arithmetic expression into two parts: the arithmetkpression
that is in the left hand side of the comparisonrafme is the
‘left notation. In the right hand side of the comparison
operator is theright notatiori. Correspondingly, we consider

only predicates where left hand and right hand si

comparison operators {<, >, >=, <=,
structure predicate has four fields.

, 1=}, Theve,

struct predicate

{

int *rpr_left;

int rpr_left_size;
int *rpr_right;

int rpr_right_size;
int sign_op;

}

Therpr_left array ofrpr_left_sizeitems corresponds to the
‘left notation’ while rpr_left array ofrpr_left sizeitems are
used for the ‘right notation’. Theign op field corresponds to
the comparison operator identifier.

As the EFSM is a pailY T) of a set of stateS and a set of
transitionsT, it is necessary to save all the transitions efgét
T. Correspondingly we definestructure transition fort 0 T.

struct transition

{

ints;

ints_prime;

input i;

output o;

int *predicate_numbers;

int *function_numbers;

¥

Integerss and s prime are initial and final states of the
transitiont = (s, x, P, op, y, up, s) while x andy are
parameterized input and output of the transitiotemk of the
predicate numbers array and function numbers array are
identifiers of predicates and functions which guatte
transitiont.

Therefore,structure EFSM consists of the following data
items.
struct EFSM
{
int s_number;
input *input_array;
int input_array_size;
output *output_array;
int output_array_size;
variable *variable_array;
int variable_array_size;
int *integers_array;
int integers_array_size;
function *functions_array;
int function_array_size;
predicate *predicates_array;
int predicates_array_size;
transition *transitions_array;
int transitions_array_size;

%
5 numberis the number of states of the EFSM;.

input array (of input array_size items) andutput array
f output array_size items) form the sets of parameterized

r

n

0
. . q(ﬁ uts and outputs;
expressions are separated with one of the fOHOW'ngpvariable arrgy

stores variable array size context

variables.

If predicates or functions use constant integeen tthese

integers are saved in tirgegers array. The functions and the
predicates are stored in théunctionsarray and the [y
predicatesarray. The setT of transitions is listed in the

transitions array. (2
[3]
IV. EXPERIMENTAL RESULTS (4]

We experimented with several protocol EFSMs. The
preliminary experimental results show that for saelprotocol
EFSM the unfolding procedure at an appropriaterabsbn
level can be performed without limiting the maxinmalmber g
of states of an equivalent FSM. Those protocols RO 3,
SMTP, and TIME [6]. The reason is that the numlfestates
of the corresponding protocol EFSMs (at an appeberi
abstraction level) is up to four and the numbercohtext
variables is less than three while the number afhditions
does not exceed 16. The equivalent FSM for POP3IVER&S
six states and 106 transitions while the equivale®i for
SMTP EFSM has four states and 36 transitions. TIMET
EFSM is rather small that is why the number of TIREM
transitions is 12. More detailed information abpetformed
experiments is presented in Table 1.

Pro- | Num- Number | Number | Number Number

tocol | ber of of EFSM | of of of FSM
EFSM context | EFSM equivalent| transi-
states variables | transi- FSM tions

tions states

POP | 4 2 16 6 106

3

SM 2 1 8 4 36

TP

TIM | 2 0 2 2 12

E

Table 1. Preliminary experimental results

V. CONCLUSIONS

In this paper, we described the EFSM computer
representation that is of a big help when autorahyic
unfolding a given EFSM to an equivalent FSM. Such
unfolding needs the explicit enumeration of all feliént
configurations reachable from the initial EFSM staAs the
enumeration can lead to the state explosion prablimm
maximal number of an equivalent FSM is usually tedi We
experimented with several protocol EFSMs and our
preliminary experimental results show that the difg
procedure (at an appropriate description level) sIametimes
be performed without limiting the maximal number sphtes
of an equivalent FSM. More experiments with diffare
protocol EFSMs are needed in order to estimate the
effectiveness of the developed software.

REFERENCES

A. Faro and A. Petrenko. Sequence Generation frdASMs for
Protocol Testing. In Proc. of COMNET’'90, Budapd$90.

A. Petrenko, S. Boroday, R. Groz. Confirming confg@fions in EFSM
testing.IEEE Trans. on Software Engineerjri2p04, 30(1), pp. 29-42.
A. Petrenko and N. Yevtushenko. Testing from Phifiaterministic
FSM SpecificationdEEE Trans. on Computer2005.

R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, Ydvtushenko.
Experimental evaluation of FSM-based testing methéd Proc. of the
IEEE International Conference on Software Engimeerand Formal
Methods (SEFMO05). Germany, pp. 23-32.

V.A. Sibirjakova. Reverse Polish Notation: manudlomsk State
University Publishers, 1997, 27 p.

N.V. Spitsyna, A.V. Shabaldin. Web-programming: mman Tomsk
State University Publishers, 2002, 50 p.

