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Abstract—Approaches that tackle multithreaded programs
suffer from state explosion problem. Promising idea is bounding
the number of context switches of running threads. Recent work
[10] shows that most bugs can be detected even with two context
switches. Despite of the fact that it was successful in practice we
still can not be sure that no bug has escaped. In this paper we
use context-bounding for checking linearizability property, which
proved to be useful both for simplifying specifications and usage
of programs and as a common property for finding potential bugs
in the same way as race conditions. For linearization we provide
an algorithm, which returns an upper bound of context switches.
Having the upper bound we can be sure that if the program is
not linearizable then context-bounding algorithm will show it.

I. INTRODUCTION

Lately multithreaded programming has become widely
spread and gained popularity. Aiming at increasing effec-
tiveness, programs consist of several threads that do the
work in parallel. But their development is much harder than
development of sequential ones. This is caused by the fact
that the scheduling order of instructions from different threads
cannot be predicted before actual execution and the developer
should foresee correct work of the program for all possible
interleavings of instructions.

Here we consider programs providing interface (API),
which other programs use for interacting with them. Interface
consists of operations (procedures) which can be executed
(invoked) with different values of parameters. Operation exe-
cution ends with returning a value called a result. Moreover,
operations can be executed in different threads simultaneously.
Execution of operations in several threads we will call parallel
execution, and execution in a single thread – sequential
execution.

Parallel execution is linearizable, if it is equivalent to some
sequential execution conforming to specification. Formally, the
notion of linearizability will be defined in section II. As we
can see, the task of checking linearizability is a special case of
functional testing where we check whether the program meet
functional requirements given as specification. But in contrast
to general case, linearizable programs require specification
only for sequential executions.

As shown in [7], linearizability is local and nonblocking
property. Locality means that if we have shown that operations
working with the same object are linearizable then they are
linearizable together with any other linearizable operations

working with different objects. Hence hereafter we will con-
sider operations working with single shared object. In lineariz-
able program running operation does not require invocation
of new operations for its completion. This is nonblocking
property. Moreover, proof of properties for programs which
use linearizable operations is simplified because behaviour of
linearizable program is reduced to sequential executions.

Linearizability has much in common with such properties
as serializability [8], [11], atomicity [3], [15], sequential
consistency [9]. In contrast to it linearizability requires a
specification while these properties impose restrictions on the
program only. In some works the term atomicity is used as
synonymous to linearizability, in the others it means what we
call self-linearizability.

The problem of checking linearizability in general case is
not decidable. The key issue is lack of restrictions on the
number of threads and operations which occur in parallel
executions. There is only manual proof approaches for general
case [7], [14]. The automatized approaches work only in the
special case, which we consider in our work. In these settings
the number of threads is finite and the number of operations in
each thread is also finite. For example, in [1] it is shown that
with limited number of threads, states of implementation and
specification the problem can be solved by model checking.

The principle source of the complexity is a great amount of
executions resulting from interleavings of instructions. Partial
order reduction, heuristic search, as well as context-bounding
methods are used to reduce the amount of them. The last one
is used in our paper. The main idea of it is to bound the
number of context switches in parallel executions. As shown
in [10] in practice tricky errors can be detected even with small
number of context switches. But the question of choosing
an upper bound of switches which is sufficient for ensuring
linearizability is still open. That is the question we give answer
here that forms novelty of our work.

Next section gives a formal definition of linearizability.
Section III describes a formal model of program. In section IV
we prove a theorem on which the algorithm given in section
V is based. This algorithm gives an upper bound of context
switches sufficient for checking linearizability. Section VI dis-
cusses significancy of upper bound produced by the algorithm.
Section VII contains comparison with related works.



1 volatile int x;
2 volatile boolean b = false;
3
4 boolean insert(int i) {
5 if(b==false) {
6 x=i;
7 b=true;
8 return true;
9 } else return false;
10 }

11 void delete() {
12 b = false;
13 return;
14 }
15
16 int lookUp() {
17 if(b==true)
18 return x;
19 else return -1;
20 }

Fig. 1. Cell Example

II. THE NOTION OF LINEARIZABILITY

A. History

Suppose we have a set of operations op〈name〉, each of
which has begin (invocation) op〈name〉 begin〈parameters〉
and end (response) op〈name〉 end〈result〉.

History is a finite sequence of events
α:op〈name〉 begin〈args〉 and α:op〈name〉 end〈res〉,
where α is a thread. End matches begin, if thread names and
operation names agree.

Consider an example of Cell program shown in Fig.1 written
in Java language, which will be used hereafter. Examples of
histories:
h1 =

α : op〈insert〉 begin〈0〉,
β : op〈delete〉 begin〈〉,
α : op〈insert〉 end〈true〉,
γ : op〈lookUp〉 begin〈〉,
β : op〈delete〉 end〈〉,
γ : op〈lookUp〉 end〈0〉
h2 =

α : op〈insert〉 begin〈0〉,
α : op〈insert〉 end〈true〉,
γ : op〈lookUp〉 begin〈〉,
γ : op〈lookUp〉 end〈0〉,
β : op〈delete〉 begin〈〉,
β : op〈delete〉 end〈〉
h3 =

α : op〈insert〉 begin〈0〉,
α : op〈insert〉 begin〈1〉,
β : op〈insert〉 end〈true〉,
β : op〈insert〉 end〈true〉

Definition 1: History is sequential if
1) The first event is a begin of operation.
2) Each event except the last one is immediately followed

by matching end.
In the example, history h2 is sequential and h1, h3 are not
sequential.

Thread history(projection, subhistory) in a history H (H |
α) is a subsequence of all events in H , which have thread
name α. For instance, h1 | α = α op〈insert〉 begin〈0〉, α
op〈insert〉 end〈true〉. Two histories H , H ′ are equivalent,
denoted as H ∼ H ′, if for any thread α subhistory H | α

insert:
{true}
op〈insert〉 begin〈i〉 op〈insert〉 end〈r〉
{r = ¬b ∧ (b ∧ (b′ = b) ∧ (x′ = x) ∨ ¬b ∧ (b′ = true) ∧ (x′ = i))}
delete:
{true}
op〈delete〉 begin〈〉 op〈delete〉 end〈〉
{b′ = false}
lookUp:
{true}
op〈lookUp〉 begin〈〉 op〈lookUp〉 end〈i〉
{(b′ = b) ∧ (b ∧ (i = x′ = x) ∨ ¬b ∧ (i = −1))}

Fig. 2. Cell Specification

equals to H ′ | α. In the example h1 ∼ h2. History is a well-
formed if any subhistory H | α is sequential. All histories
considered in the paper are well-formed.

Operation is pending in a history if some begin is not
followed by matching end. complete(H) is maximal subse-
quence of H consisting only from begins and matching ends
(pending operations are removed).

A set S is prefix-closed if for any history H in S holds
that any prefix of H is also in S. Sequential specification of a
program is a prefix-closed set if sequential histories. History
H conforms to specification if H ∈ S. Specification can be
presented in different forms. Fig. 2 shows specification of Cell
in the form of pre and postconditions.

B. Definition of Linearizability

History H induces irreflexive partial order on operations
<H , such that e0 <H e1 if end(e0) precedes begin(e1) in H

Definition 2: History H is linearizable if it can be extended
(appending zero or more responses) to some history H ′ for
which

1) complete(H ′) is equivalent to some sequential history
S which conforms to specification.

2) <H⊆<S .
History h1 is linearizable, because it is equivalent to h2

while preserving partial order of operations. History h3 is
not linearizable, because any sequential specification which
is equivalent to it contains two sequential successful insert
operations that contradicts to specification.

By reachable history of a program we shall mean a history
which can actually occur in the program. Later on we will
define the notion of reachable history on the base of execution
trace. Program is linearizable if any reachable history is
linearizable.

C. Self-linearizability of Program

For checking linearizability it is helpful to define a notion
of self-linearizability independent from specification. In work
[6] self-linearizability is called atomicity, but there is no
formal definition. They introduce atomicity using sufficient
conditions. Here we give a formal definition.



Definition 3: Program is self-linearizable if for any reach-
able history H there exists a reachable sequential history H ′

such that H ′ ∼ H .
If a program is self-linearizable then by checking that all
reachable sequential histories conform to specification we
show that program is linearizable.

III. PROGRAM MODEL

Program (system, implementation) is a triple

Sys = 〈s0, S, P 〉
where s0 ∈ S is an initial state, S is a set of shared states, P
is a finite set of opeartion subprograms.

Each subprogram P is a quadruple

P = 〈l0, L, ν, T 〉
where l0 ∈ L is an initial local state, L is a set of local
states (control states), ν : T → Σ is a labeling function, T ⊆
L×G× C × L′ is a set of transitions.

Σ = {τ, op begin〈parameters〉, op end〈result〉}.
All transitions from initial local state are labeled
by op〈name〉 begin〈arguments〉, intermediate are
transitions labeled by τ . Transitions which are labeled
by op〈name〉 end〈result〉 finish the subprogram.

In a transition c ∈ C is a command S → S changing the
state (instruction, sequence of instructions), g ∈ Gd is guard
condition S → {true, false}. We assume that sets of local
states of different subprograms do not intersect. Start and end
transitions of operations do not change the shared state.

In Cell example, the program model consists of a set S in-
cluding states of variables x,b and stacks of each subprogram,
an initial state s0 = {x = 0, b = false, empty stacks } and a
set P = {pinsert, pdelete, plookUp}. Evidently, that subprogram
stacks can be separated from S thus showing that this part of
the state is accessible to one subprogram only, but this feature
is not essential in the paper.
pinsert:

Li = {4 . . . 10}, li0 = 4
T i = { ti1 = (4, true, invoke〈i〉, 5),
ti2 = (5, true, b̂ = get〈b〉, 5′),
ti3 = (5′, b̂ = false, nop, 6),
ti4 = (5′, b̂ 6= false, nop, 9),
ti5 = (6, true, put〈x, i〉, 7),
ti6 = (7, true, put〈b, true〉, 8),
ti7 = (8, true, ret〈true〉, 10),
ti8 = (9, true, ret〈false〉, 10) }
ν(ti1) = op〈insert〉 begin〈i〉
ν(ti7) = op〈insert〉 end〈true〉
ν(ti8) = op〈insert〉 end〈false〉
For the others ν(ti) = τ
pdelete:

Ld = {11 . . . 14}, ld0 = 11
T d = { td1 = (11, true, invoke, 12),
td2 = (12, true, put〈b, false〉, 13),
td3 = (13, true, ret, 14) }
ν(td1) = op〈delete〉 begin〈〉

ν(td3) = op〈delete〉 end〈〉
ν(td2) = τ

plookUp:
Ll = {16 . . . 20}, ll0 = 16
T l = { tl1 = (16, true, invoke, 17),
tl2 = (17, true, b̂ = get〈b〉, 17′),
tl3 = (17′, b̂ = true, nop, 18),
tl4 = (17′, b̂ 6= true, nop, 19),
tl5 = (18, true, x̂ = get〈x〉, 18′),
tl6 = (18′, true, ret〈x̂〉, 20),
tl7 = (19, true, ret〈−1〉, 20) }
ν(tl1) = op〈lookUp〉 begin〈〉
ν(tl6) = op〈lookUp〉 end〈x̂〉
ν(tl7) = op〈lookUp〉 end〈−1〉
For the others ν(tl) = τ

In order to execute a program it is necessary to provide
user threads Ψ = ψ1

u, . . . , ψ
n
u , which will be executed. User

thread ψi is defined as a sequence of operation subprograms
p0, . . . , pni

with values of input parameters. Thread starts
execution in an initial state of subprogram p0. After the end
of each subprogram it moves from the end state to the initial
state of the next subprogram. Thread finishes execution after
finishing the last subprogram pni .

For the given user threads Ψ we define execution state as
g = (s, l1, . . . , ln) ∈ G, where s is a shared state, li is a local
state of the thread ψi. g0 = (s0, l10, l

2
0, . . . , l

n
0 ) is an initial

state. A set of all execution states we denote as G.
We will use the following definitions:

1) enabled(t, s) ≡ t.guard(s).
2) pre(t) is a start state of t, post(t) is an end state.
3) local(α, g) returns a local state of the thread p in g.
4) shared(g) returns a shared state s.
5) t(α) means that t is executed in thread α ∈ Ψ.
6) active(t(α), g) ≡ pre(t) = local(α, g).
7) enabled(t(α), g) ≡ active(t(α), g) ∧

enabled(t, shared(g)).

Define a transition relation −→. There is a transition g
t(α)−→

g′ from g = (s, l1, . . . , lα, . . . , ln) if enabled(t(α), g) = true
and g′ = (ŝ, l1, . . . , l̂α, . . . , ln), where ŝ = t.command(s)
and l̂α = post(t).

Execution trace of a program is a sequence
t1(α1), . . . , tm(αm) such that g0

t1(α1)−→ g1
t2(α2)−→ · · · tm(αm)−→

gm. Thread trace is a projection of execution trace on
a thread. Operation trace in a thread is a projection of
thread trace on an operation. Execution history for a trace
σ = t1(α1), . . . , tm(αm), denoted as H(σ), is a sequence
of labels ν(ti(αi)) with all τ labels removed. History H is
reachable if there exists a trace σ such that H = H(σ).

Let a thread α executes insert〈0〉, β executes delete〈〉, γ
executes lookUp〈〉. Consider the examples of traces.

σ1 = ti1(α), ti2(α), td1(β), ti3(α), ti5(α), ti6(α), ti7(α),
tl1(γ), t

l
2(γ), t

l
3(γ), t

l
5(γ), t

d
2(β), td3(β), tl6(γ)

(1)



H(σ1) = h1.

σ2 = ti1(α), td1(β), ti2(α), ti3(α), ti5(α),
td2(β), ti6(α), td3(β), ti7(α) (2)

σ3 = tl1(γ), t
i
1(α), tl2(γ), t

i
2(α), tl3(γ),

ti5(α), tl5(γ), t
i
6(α), tl6(γ), t

i
7(α) (3)

IV. AN UPPER BOUND OF CONTEXT SWITCHES

A. The Notion of Independence

We will use classical definition of independence [4], [5],
[12] (Definition 4) and extend it for an arbitrary set of user
threads (Definition 5).

Definition 4: D(Ψ) is a symmetric dependence relation for
an execution Ψ, iff for all (t1(α), t2(β)) /∈ D(Ψ) (indepen-
dent) implies that the two following conditions hold for all
reachable states g:

1) From enabled(t1(α), g) and g
t1(α)−→ g′ follows that

enabled(t2(β), g′) = enabled(t2(β), g),
2) If enabled(t1(α), g) and enabled(t2(β), g) then there

exists unique state ĝ such that g
t1(α),t2(β)−→ ĝ and

g
t2(β),t1(α)−→ ĝ.

Definition 5: D is a symmetric dependence relation for a
program iff (t1, t2) /∈ D (independent) implies that ∀Ψ, ∀α, β
∃D(Ψ) : (t1(α), t2(β)) /∈ D(Ψ).

Note 1: Independent transitions can be interchanged in a
trace, but the history of the trace and the final state will stay
unchanged. [5]

Consider an example of dependence relation for Cell pro-
gram. We can see that some transitions do not access shared
data. Such transitions are obviously independent. Consider
transitions accessing shared data ti2, t

i
5, t

i
6, t

d
2, t

l
2, t

l
5. Among

them we can distinguish transitions which only read or write
variables. rb(wb), rx(wb) denote transitions performing read
(write) of variables b and x correspondingly. Then rb: ti2, t

l
2;

wb: ti6, t
d
2; rx: tl5; wx: ti5. Transition pairs performing read/read

of arbitrary variables, write/write or read/write of different
variables are independent with each other. The others are con-
sidered as dependent. Hence dependence relation D includes
{(t, t′) | t ∈ {ti6, td2}, t′ ∈ {ti6, td2, ti2, tl2}}

⋃ {(t, t′) | t ∈
{ti5}, t′ ∈ {ti5, tl5}} and symmetric pairs.

B. The Notion of Dependence Cycle

Let σ = t1(α1), . . . , tm(αm) be a trace of a program.
Define successor relation.

Definition 6: Successor relation (without transitive closure)
1) ti(αi) < tj(αj), if ti(αi) precedes tj(αj) in the trace

and one of the following conditions holds
a) ti, tj 6= {op begin, op end}, (ti, tj) ∈ D and

αi 6= αj ,
b) ti = op end, tj = op begin and ti, tj do not

belong to the same operation.
2) ti(αi) = tj(αj), if ti, tj belong to the same operation.
Statement 1: Let a trace σ contains neighbouring pair

ti(αi), tj(αj) and ti(αi) 6≤ tj(αj). Let σ′ be the trace

obtained from σ by interchanging ti(αi), tj(αj) in the reverse
order. Then the history of σ′ is equivalent to the history of σ
(H(σ′) = H(σ)).
Follows from independence of ti(αi), tj(αj), because
ti(αi) 6≤ tj(αj).

Sequence by successor relation is a sequence of transitions
related by definition 6: ti1(αi1) ≤ ti2(αi2) ≤ . . . ≤ tip(αip),
where tij (αij ) is a trace element.

Cycle is a sequence by successor relation ti1(αi1) <
ti2(αi2) ≤ . . . < tip−1(αip−1) = tip(αip), in which ti1(αi1) =
tip(αip) and ti1(αi1) precedes tip−1(αip−1). Element ti1(αi1)
is called the start of a cycle and tip−1(αip−1) is the end.

Consider examples of cycles. Trace σ2(2) has a cycle

ti2(α) < td2(β) < ti6(α) = ti2(α) (4)

Trace σ3(3) has two cycles

tl2(γ) < ti6(α) = ti5(α) < tl5(γ) = tl2(γ) (5)

ti5(α) < tl5(γ) = tl2(γ) < ti6(α) = ti5(α) (6)

Schematically these cycles are shown in Fig. 3(a,b).
Arrows mean that transitions are related by <. Trace
td1(β), tl1(γ), t

l
2(γ), t

d
2(β), tl3(γ), t

d
3(β), tl5(γ), t

l
6(γ) has no cy-

cles (Fig. 3(c)).

Fig. 3. Examples of Cycles

Two cycles with ends tk1 , tk2 , belonging to the same
operation, where tk1 precedes tk2 are equivalent if there is
no cycle with a start t′ preceding tk2 and not preceding tk1
(t′ ∈ [tk1 , tk2)).

The equivalence of cycles defines an equivalence relation
and corresponding division of cycles into equivalence classes.

Holding cycle is an equivalence class of cycles.

C. The Notion of Context Switch

Let σ = t1(α1), . . . , tk(αk), tk+1(αk+1), . . . , tn(αn) be a
trace.

We say that there is a context switch between tk(αk),
tk+1(αk+1) if αk 6= αk+1. Context switch is nonpreemptive
if tk(αk) is the last transition in the operation trace. Other-
wise context switch is called preemptive which means that a
scheduler suspends the executions of the running thread at an
arbitrary point. Note that context switches between different
operations in the same thread are defined as nonpreemptive.



The number of preemptive context switches in a trace σ we
denote as csw(σ). For instance, csw(σ2) = 5, csw(σ3) = 8.

Theorem 1: If the number of holding cycles in a trace σ is
k then there exists a trace σ′ such that H(σ) = H(σ′) and
csw(σ′) ≤ k.
Proof of the theorem can be found in the Appendix on page
6.

Corollary 1: If there is no reachable traces with cycles then
program is self-linearizable.
If there is no cycles in a trace σ then it is equivalent to a trace
σ′ without preemptive switches. Hence σ′ is a sequential trace
and the program is self-linearizable.

V. CYCLECOUNT ALGORITHM

Traditional model checking algorithms suffer from state
explosion problem. It is not difficult to show that the number
of executions grows exponentially both in the length of thread
traces and in the number of threads. More precisely, (nm)!

(m!)n ,
where n is the number of threads, m is the maximal length of
thread trace. Promising approach for solving this problem is
bounding the number of context switches. This idea appeared
in [13] and in [10] it was evaluated in practice. In the approach
the number of executions with k switches is estimated as
(n2m)kn!, i.e. polynomial in the trace length. Empirical results
show that 90% of state coverage can be achieved with eight
context switches and the majority of errors are detected even
with two switches. The novel result of our paper is that we
can guarantee linearizability if we apply context-bounding
search algorithm [10] with a bound calculated by CycleCount
algorithm (Fig. 4). The linearizability of each trace found
during the search we check using one of existing methods.
For example, if we have a recognizing automaton as in [1] we
can check it in O(m).

CycleCount algorithm takes user threads Ψ, i.e. ψ1, . . . , ψn,
where ψi = p0, . . . , pni and for each subprogram p it takes a
complete set of operation traces traces(p). The completeness
means, that any operation trace that can occur in executions of
Sys(Ψ) should be in traces(p). Execution traces of threads
in the algorithm are overapproximated as traces(ψi) =
traces(p0)× · · · × traces(pni). Execution traces of program
with Ψ are overapproximated as all possible interleavings of
thread traces traces(ψ1), . . . , traces(ψn).

Complexity of the algorithm is O(n(mk)3l2), where n is
the max number of threads, m is the max number operations in
a thread, k is the max number of traces for a single operation,
l is the max operation trace length.

For Cell example the complete set of operation traces is as
follows:
insert:
σi1 = ti1, t

i
2, t

i
3, t

i
5, t

i
6, t

i
7

σi2 = ti1, t
i
2, t

i
4, t

i
8

delete:
σd1 = td1, t

d
2, t

d
3

lookUp:
σl1 = tl1, t

l
2, t

l
3, t

l
5, t

l
6

σl2 = tl1, t
l
2, t

l
4, t

l
7

K := 0
For each thread ψi

For each operation pj ∈ ψi
For each operation trace σk ∈ traces(pj)

For each σ′ ∈ op′ : ψ(op′) 6= ψ(opj)
Find Dk(σ′) = {t ∈ σ | ∃t′ ∈ σ′ : (t′, t) ∈ D(Ψ)}
If Dk(σ′) 6= ∅, then

Let E(σ′) = {σ′}
∪ {traces(ôp) | ψ(ôp) 6= ψ(op′), ψ(opj)}.

Else let E(σ′) = ∅.
For each σ′ ∈ op′ : ψ(op′) 6= ψ(opj)

Mark transitions t ∈ σk: L(t) = {B,E, τ}.
Let LE =

⋃
σ̂∈E(σ′)Dk(σ̂).

If LE 6= ∅
Let LB = {t′ ∈ Dk(σ′) | t′ precedes tr}.
where tr is the most right end in LE .

Else let LB = ∅.
Transitions in LB we mark as B (starts),
LE – E(ends), the others – τ .

K(σk) is the number of continuous intervals
of {E, τ}, i.e. ends not separated by starts.

K := K +K(σk)

Fig. 4. CycleCount Algorithm

Suppose that a thread α executes operation pinsert, β exe-
cutes pdelete, γ executes plookUp. Then CycleCount(β, γ) =
0, because there is no cycles. CycleCount(α, γ) = 2, because
we have cycles with ends ti6, tl5. CycleCount(α, β, γ) = 3,
because we have cycles with ends ti5, ti6, tl5. Cycle with end tl5
(5) is shown in Fig. 3(a). Cycles (4,6) with end ti6 are shown
in Fig. 3(a), 3(b). Cycle

ti2(α) < td2(β) = td3(β) < tl1(γ) = tl5(γ) < ti5(α) = ti2(α)
(7)

is shown in Fig. 3(d). Here td3(β) < tl1(γ), because ν(td3(β)) =
op end and tl1(γ) = op begin.

VI. DISCUSSION

While formulating CycleCount algorithm in section V we
assumed that we have complete set of operation traces. One
way to get the traces in practice is to run a test suite. Moreover,
our experience in analysing multithreaded programs suggests
that in most cases complete set of traces can be generated
even by sequential executions. In the worst case it requires
minimal number of switches. For ensuring completeness the
existing tools measuring path coverage [2] can be used.

Note, that the number of context switches in execution is
bounded by maximal number. There are at most

∑

ψi∈Ψ

∑

pi
1,...,p

i
ni

Maxσ∈traces(pi
j
)(|σ| − 1),

context switches, i.e. not more than the sum of context
switches in the longest operation traces for each thread.
Besides, context switches can occur only between transitions
inside operation trace, i.e. |σ| − 1. Table 5 shows maximal



Threads CycleCount POR Maximum
β, γ 0 1 6
α, γ 2 3 9
α, β, γ 3 3 11

Fig. 5. Context Switch Bounds

bounds for Cell example. We can see, that in comparison with
maximal bounds CycleCount algorithm has an advantage.

Results of the algorithm CycleCount can be improved. We
notice three reasons why the algorithm gives crude estimates.
First, theorem 1 does not take into account the fact that several
cycles can be broken by one switch. For instance, two cycles
in Fig.3(a) can be broken by one context switch instead of
two.

Second, CycleCount algorithm does not detect contradictory
cycles, i.e. cycles which can not appear together in one trace,
but can appear in different ones. For example, while running
CycleCount(α, β, γ) cycle (7) does not appear together with
(4), because the same transition ti5 is both start of the cycle
(4), and end of (7) related with the same transition tl5.

Third, algorithm does not consider nonappearance of transi-
tions between the other ones. Such situation occur in acquiring
locks. Transitions from mutual exclusion intervals cannot
interfere with each other, i.e. at first the instructions from the
one interval will be executed then the rest ones.

VII. RELATED WORK & CONCLUSIONS

Novelty of the results of the paper is in estimation of upper
bound of context switches which provided to context-bounding
algorithm will guarantee linearizability of the program. Along
with context bounding algorithm there are heuristic search and
partial order reduction (POR) which reduce the number of
executions. In comparison with heuristic search our method
can guarantee linearizability. The same as in our estimations
the key notion in POR is independence. In this sense our
derivation of upper bound is a reduction of non linearizable
traces to non linearizable traces with at most k switches.

Table 5 shows the number of context switches in traces
found with POR search in the lucky case of a search order.
The benefit of CycleCount can be explained by the fact that
it knows operation traces in advance, hence reductions can be
calculated before search of actual program executions.

Our future work is to improve CycleCount algorithm and
implement it with one of model checking engines.
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APPENDIX

Theorem 2: If the number of holding cycles in a trace σ is
k then there exists a trace σ′ such that H(σ) = H(σ′) and
csw(σ′) ≤ k.

Proof.
Let β1, . . . , βn are operations in a trace σ.

β1 = t11 . . . t
1
q1

. . .
βn = tn1 . . . t

n
qn

A division Ξ is
β1 = β1

1 . . . β
p1
1

. . .
βn = β1

n . . . β
pn
n

where βli is a union of neighbouring transitions in the same
operation trace.

Given Ξ we can define partial order HB (βli ≺ βmj ) on it.
Definition 7: Partial order HB on Ξ is consistent if
1) ∀i ∀ l < m holds βli ≺ βmi
2) ∀ t1 < t2 in σ, t1 in βli , t2 in βmj holds βli ≺ βmj .
Lemma 1: If partial order HB is consistent on the division

Ξ then ∃σ′ such that H(σ) = H(σ′) and csw(σ′) ≤ (p1 −
1) + · · ·+ (pn − 1).
As σ′ it is sufficient to take any trace composed from βli , with
respect to partial order HB. The number of context switches
for βi is pi − 1. σ′ can be derived from σ by interchanging
transitions ti(αi) 6≤ tj(αj), because it preserves equivalence
of histories (Statement 1). From consistency of HB it follows



that transitions for which ti(αi) ≤ tj(αj) need not to be
interchanged.

Now for proving theorem we need to choose division Ξ
such that

∑n
i=1(pi − 1) ≤ k and to choose consistent partial

order HB on it.
Choosing division. For each βi. If there is no cycles then

βi = β1
i . Otherwise, suppose there is s holding cycles.

tk1 , tk2 , . . . , tks
are the most left ends of cycles in each holding

cycle (i.e. tkj is the most left end of the cycles in a holding
cycle j).

Suppose that tk1 , tk2 , . . . , tks appear in βi in the same order.
Chose division βi:
β1
i = [op begin, tk1)
β2
i = [tk1 , tk2)
β3
i = [tk2 , tk3)

. . .
βs+1
i = [tks , op end]
We define relation < on Ξ as follows. βli < βmj if one of

the following conditions holds
1) i = j, l < m
2) ∃ t1 in βli , t2 in βmj : t1 < t2.
We define HB (≺) on Ξ as a transitive closure of <.

Lets show that ≺ is consistent partial order. Consistency
immediately follows from definition of <. Lets show that ≺
is a partial order.

Proof by contradiction. Let exists βli , β
m
j such that βli ≺ βmj

and βmj ≺ βli .
Hence there exists chains

βli < βl1i1 < . . . < βmj
βmj < βm1

j1
< . . . < βli

or
βli < βl1i1 < . . . < βmj < βm1

j1
< . . . < βli

Hence there exists a sequence t1(βi) ≤ t2(βi1) ≤ . . . ≤
tw(βmj ) ≤ tw+1(βj1) ≤ . . . ≤ t′(βi). Two signes are strictly
less, because there should appear β̂ 6= βi.

Either t1 precedes t′ then let ta = t1, tb = t′ or t1 does
not precede t′. Then in one of the equivalences . . . < tb(β̂) =
. . . = ta(β̂) < . . ., ta precedes tb. Because otherwise, if in all
equivalencies tb precedes ta, then t1 precedes t′.
ta precedes tb then exists a cycle: ta(β̂) < . . . ≤ t′(βi) =

t1(βi) ≤ . . . < tb(β̂). This cycle can not be equals to any
cycle with the end which is not later than ta. Hence one of
the most left ends of cycles in holding cycle lies after ta and
not after tb. That contradicts to the chosen division. •


