SYRCoSE 2011

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the 5t Spring/Summer Young Researchers’ Colloquium on
Software Engineering

Y ekaterinburg, May 12-13, 2011

Yekaterinburg
2011

Proceedings of the 5 Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2011), May 12-13, 2011 — Yekaterinburg, Russia:

The issue contains the papers presented at the 5™ Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2011) held in Yekaterinburg, Russia on 12" and 13™ of May,
2011. Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include system programming; static verification and analysis of
programs; programming languages, methods and tools; testing of software and hardware systems;
automata theory; computer graphics and others.

Tpyabl 5-0ro BeceHHero/J1eTHero KOJJIOKBUYMa MOJIOJBIX HccIeAoBaTe el B 00J1acTH
nporpammHoii uH:keHepun (SYRCoSE 2011), 12-13 mas 2011 r. — ExarepunOypr, Poccust:

COOpHHK COAEPKUT CTAThH, NPEACTABICHHBIE HA 5-OM BECEHHEM/JIETHEM KOJUIOKBHYME MOJOMIBIX
uccieaoBareneii B 001acTu mporpaMMHON MH)XEHEepHH, poBoauMoM B ExatepunOypre 12-13 mas
2011 r. OTOop crareii MPOM3BOAWICS HA OCHOBE PEICH3MPOBAHHS MATEPHUATOB IMPOTPAMMHBIM
KoMuTeTOM. Ha KOJUIOKBHYM JOMyCKajdWCh KaK MOJHBIE CTaTbh, TaK W KpaTKUe COOOLICHHS,
OIMCHIBAIOIINE TEKYIINE HCCIICAOBAHMS.

[Iporpamma KOJIJIOKBUYMa OXBaThIBAaeT CIEAYIOIIME TEMbI: CHCTEMHOE MPOrpaMMUPOBAHUE;
cTaruyeckass BepuuKalus U aHAIW3 NOPOTpamMM; S3BIKA, METOAbBl W HHCTPYMEHTHI

MPOrPaMMHPOBAHHMS;, TECTHPOBAHHE MPOTPAMMHBIX U AamlapaTHBIX CUCTEM; TEOPHUS aBTOMATOB;
KOMIIbIOTEpHAas Tpaduka 1 Jpyrue.

ISBN 978-5-91474-017-4

© Astopsl, 2011

Contents

FOrEWOId. ..o e 5
COMMULEEES / RETETEES. .. vt e e 6
Guest Talk

Crowdsourcing Projects for Research, Education and Better Life
R YAVOFSKIY ..o e 8

Biomolecular Computing

tRNA Computing Units and Programming Languages
N, OdIBCOVA, V. POPOV. ... e e e 10

System Programming
Using Hardware-Assisted Virtualization to Protect Application Address Space Inside Untrusted
Environment

D STlaKov... ... o 17

Background Optimization in Full System Binary Translation
R.S0kolov, A. EFMOLOVICH. ..o e e 25

The ARTCP Header Structure, Computation and Processing in the Network Subsystem of Linux Kernel
A. SIVOV, V. SOKOIOV. ... e e e 31

Information Representation, Search and Reasoning

A New Double Sorting-Based Node Splitting Algorithm for R-Tree
A KOTOKOV. ..ot 36

Fuzzy Matching for Partial XML Merge
Vo F@AOIOV. . ..o e e e 42

High-level Data Access Based on Query Rewritings

E StEDAIINA.o e 45
Application of the Functional Programming Tools in the Tasks of Language and Interlanguage Structures
Representation

P. Ermakov, O. KOZRUNOVA.oooee e e e e e e, 48

Static Verification and Analysis of Programs

Static Verification Under The Hood: Implementation Details and Improvements of BLAST
P. Shved, V. Mutilin, M. Mandrykin.............cocooii i e 54

Detecting C Program Vulnerabilities
A. Ermakov, N. KuSRik........o oo e e e e e 61

Model Checking Approach to the Correctness Proof of Complex Systems
M. Alekseeva, E. DASHKOVA.ooo e e e e, 65

Programming Languages, Methods and Tools

Thorn Language: a Flexible Tool for Code Generation
Yo O UIOVSKY ..o e e 68

One Approach to Aspect-Oriented Programming Implementation for the C Programming Language
ELNOVIKOV .o e e e e s 74

Component-Based Software Engineering and Runtime Type Definition
B Y 177 o 7 o 82

Software Engineering Education

Educational Tests in “Programming” Academic Subject Development
O. Maksimenkova, V. POADelSKiY........ccoeeueinnine it 88

Automata Theory

The Parallel Composition of Timed Finite State Machines
O. Kondratyeva, M. GFOMOV.c...uine e ettt aee e 94

Separating Non-Deterministic Finite State Machines with Time-outs
R. Galimullin, N. ShaAbQIdiNG.c.oouoneii e 100

Testing of Software and Hardware Systems

Model Based Conformance Testing for Extensible Internet Protocols
N. Pakulin, A. TUZAEHKOcccovveuieeeeiiieeee e e e e eieeeeenneeeenennennennennennennennn 105

Developing Test Systems for Multi-Modules Hardware Designs
g O 37 7 1 o 111

Application-Specific Methods and Tools

Programming for Modular Reconfigurable Robots
A.GOFBENKO, V. POPOV. ..ottt et et e et e e ettt e e e e 117

Towards a Real-Time Simulation Environment on the Edge of Current Trends
E.Chemeritskiy, K. SAVenkov.............cooiuiiii e e 128

Computer Graphics and Vision

The Problem of Placement of Visual Landmarks
A. Gorbenko, M. MOrnev, V- POPDOV...........uiie ittt eeeanes 134

Hand Recognition in Live-Streaming Video

3D-Illusion Constructor
M. Rovkin, E. Yel'chugin, M. FilQtova.................ooiiiiiiii it 145

Foreword

Dear participants, we are glad to welcome you on the 5" Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE). This year we have the pleasure of holding
SYRCOoSE in Yekaterinburg, the main industrial and cultural center of the Urals Federal District.
The colloquium is hosted by the Ural State University (USU), one of the most prestigious
universities in Russia. The event is organized by Institute for System Programming of RAS
(ISPRAS) and Saint-Petersburg State University (SPSU) jointly with USU and SKB Kontur.

Program Committee has selected 24 papers that cover different topics of software engineering
and computer science. Each submitted paper has been reviewed independently by two or three
referees. Participants of SYRCoSE 2011 represent well-known universities, research institutes
and IT companies such as Institute of Informatics Problems of RAS (IPI RAN), Intel, ISPRAS,
MCST, Moscow State University, National Research Nuclear University “MEPhI”, State
University — Higher School of Economics, Tomsk State University, USU and Yaroslavl
Demidov State University.

We would like to thank all the participants of SYRCoSE 2011 and their advisors for interesting
papers. We are also very grateful to the PC members and the external reviewers for their hard
work on reviewing the papers and selecting the program. Our thanks go to the invited speakers,
Petr Skobelev (SEC "Knowledge Genesis") and Shihong Huang (Florida Atlantic University).
We would also like to thank our sponsors, Russian Foundation for Basic Research (grant 11-07-
06013-r) and Microsoft Research. Finally, our special thanks to Irina Voychitskaya (SKB
Kontur), Maria Rudnichenko (SKB Kontur) and Tatyana Perevalova (USU) for their invaluable
help in organizing the colloquium in Yekaterinburg.

Sincerely yours

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
May 2011

Committees

Program Committee Chairs

B Alexander K. Petrenko — Russia
Institute for System Programming of RAS

Program Committee

Habib Abdulrab — France

National Institute of Applied Sciences, INSA-Rouen

Sergey M. Avdoshin — Russia

Higher School of Economics

Eduard A. Babkin — Russia

Higher School of Economics

Victor P. Gergel — Russia
Lobachevsky State University of Nizhny Novgorod

Efim M. Grinkrug — Russia

Higher School of Economics

Maxim L. Gromov — Russia
Tomsk State University

Vladimir I. Hahanov — Ukraine
Kharkov National University of Radioelectronics

Vsevolod P. Kotlyarov — Russia
Saint-Petersburg State Polytechnic University

Oleg R. Kozyrev — Russia
Higher School of Economics

Alexander A. Letichevsky — Ukraine
Glushkov Institute of Cybernetics, NAS

Yury S. Lukach — Russia

Ural State University

a1 0 froonnr oo

Tiziana Margaria — Germany
University of Potsdam

Organizing Committee Chairs

B Alexander S. Kamkin — Russia

Institute for System Programming of RAS

Organizing Committee

B Yury S. Lukach — Russia

Ural State University

I Tatyana V. Perevalova
Ural State University

s Vladimir Yu. Popov — Russia

Ural State University

Andrey N. Terekhov — Russia
Saint-Petersburg State University

Igor V. Mashechkin — Russia
Moscow State University

Alexander S. Mikhaylov — Russia
National Research Nuclear University "MEPHI"

Valery A. Nepomniaschy — Russia
Ershov Institute of Informatics Systems

Ivan I. Piletski — Belorussia
Belarusian State University of Informatics and
Radioelectronics

Vladimir Yu. Popov — Russia
Ural State University

Ruslan L. Smelyansky — Russia
Moscow State University

Valeriy A. Sokolov — Russia
Yaroslavl Demidov State University

Vladimir V. Voevodin — Russia
Research Computing Center of Moscow State University

Mikhail V. Volkov — Russia

Ural State University

Rostislav E. Yavorsky — Russia
Microsoft

Nina V. Yevtushenko — Russia
Tomsk State University

Vladimir A. Zakharov — Russia
Moscow State University

Irina A. Voychitskaya
SKB Kontur

Maria A. Rudnichenko
SKB Kontur

Mikhail V. Volkov

Ural State University

Referees

Vladimir BASHKIN
Victor GERGEL

Efim GRINKRUG

Maxim GROMOV
Vladimir HAHANOV
Alexander KAMKIN
Vsevolod KOTLYAROV
Victor KULIAMIN
Natalia KUSHIK

Egor KUZMIN
Alexander LETICHEVSKY
Tiziana MARGARIA
Artem MELENTYEV
Alexander MIKHAYLOV

Valery NEPOMNIASCHY
Dmitry PAVLENKO
Alexander PETRENKO
Ivan PILETSKI

Vladimir POPOV
Svetlana PROKOPENKO
Alexey PROMSKY
Natalia SHABALDINA
Valery SOKOLOV
Maria VETROVA
Mikhail VOLKOV
Rostislav YAVORSKY
Nina YEVTUSHENKO
Vladimir ZAKHAROV

Crowdsourcing Projects for Research,
Education and Better Life

Extended abstract

Rostislav E. Yavorskiy

Vice President, Models and Algorithms
Witology, http://witology.com

Office 215, Building 3, Kapranova Per.
Moscow, 123242, Russia

Abstract. This paper provides a brief introduction into two open
source projects in the area of Computer Science and Software
Engineering in Russia

Crowdsourcing, open source projects, software engineering
education, computer science, DOM API testing, wild (fires
monitoring

L INTRODUCTION

According to Wikipedia [1] “Crowdsourcing is the act of
outsourcing tasks, traditionally performed by an employee or
contractor, to an undefined, large group of people or
community (a "crowd"), through an open call.” This paper
describes two initiatives of this format, where a wide
community of students and young researchers has been invited
to participate in solving a big and important problem. The both
projects are still active, so another goal of this paper is to
attract new activists to join.

II. DOM API TESTING FOR CONFORMANCE TO W3C
STANDARD

Document Object Model Application Programming
Interface (DOM API) standard specifies an interface for
accessing and manipulating documents programmatically in
Web browsers, see [2]. W3C group provides conformance tests
for DOM API; statistics on test case numbers is presented in
[5], see table 3. We just mention here that the standard
specifies 946 methods and attributes, and some modules are not
covered by the test suite at all.

A very rough estimate shows that deep and detailed
analysis and test development for a DOM element may require
up to one working week, so development of a full test suite
would require approximately 20 men-years.

The goal of our project is to involve wide community into
the work of creating the complete test suite, see [3].

A. Research

Creating test suites with a good coverage metrics is a
challenging research task. One may start with [4-5] and then
follow the references.

The work described in this paper is partially sponsored by Microsoft Rus
and Microsoft Research

B. Education

This project could be used as a good topic for course paper,
diploma or even PhD thesis by students of Computer Science
and Software Engineering departments of universities.

C. Better life

Taking into account the role of Internet in our life, there is
no need to say much on justifying the importance of robustness
and interoperability of Web browsers.

III. USING SATTELITE IMAGES FOR MONITORING OF WILD
FIRES

Wild fire is a regular phenomenon, which causes extensive
damage both to property and human life. Satellite images
provide a good tool for studying, analyzing, and predicting
wild fires. A huge amount of satellite data is available online,
see e.g. MODIS page [6].

Our project [7] is aimed at involving wide community of
students and researchers into the work of analyzing the satellite
images and developing tools and algorithms for better
monitoring and predicting wild fires.

A. Research
There are four rather independent research areas, related to
this project.

e Scientific Databases. See e.g. project on
“Environmental Scenario Search Engine” [8].

e Image Recognition. See Open CV project for more
[9-10].

o Scientific Data Management and Visualization.
See e.g. Scientific Data Set project [11].

e Domain specific research. For example, models
and critical factors for wild fires appearance and
spreading.

B. FEducation

Similarly, this project provides numerous interesting
examples to be used at the relevant courses in universities.

C.

Better life
The importance of this project is obvious.

REFERENCES

Wikipedia, The Free Encyclopedia, Crowdsourcing
http://en.wikipedia.org/wiki/Crowdsourcing
Document Object Model, http://www.w3.org/DOM/
DOM API Testing for conformance
http://domapitesting.codeplex.com

DOM API Contracts and Test Suite Development Using Code Contracts
and Pex. Research Report. Institute for System Programming, Russian
Academy of Sciences (ISP RAS) by order of Microsoft Research,
November 2009. See http://domapitesting.codeplex.com/documentation

against W3C standard,

Test Development for DOM Support in Internet Browsers. Research
report. Institute for System Programming, Russian Academy of Sciences

The work described in this paper is partially sponsored by Microsoft Rus

and Microsoft Research

[10]

[11]

(ISP RAS) by order of Microsoft Research, June 2010. See
http://domapitesting.codeplex.com/documentation

MODIS, Moderate Resolution Imaging Spectroradiometer,
http://modis.gsfc.nasa.gov/
Monitoring of Wild Fires Project (in Russian) http:/gis-

lab.info/projects/fires.html

Open-source project Environmental Scenario Search Engine,

http://esse.wdcb.ru/
. JlbicenkoB, Pacno3HaBaHue CropeBIIMX TEPPUTOPUIl C MOMOIIbIO

nepeBbeB pemenunit u OpenCV, http:/gis-lab.info/qa/burnedarea-
opencv.html
Open Source Computer Vision library,

http://opencv.willowgarage.com/wiki/
SDS: Scientific DataSet library and tools, http://sds.codeplex.com/

tRNA Computing Units and
Programming Languages

Natalya Odincova Vladimir Popov
Department of Mathematics and Department of Mathematics and
Mechanics Mechanics
Ural State University Ural State University
Ekaterinburg, Russia, 620083 Ekaterinburg, Russia, 620083
Email: odincova.antalya@gmail.com Email: Vladimir.Popov@usu.ru

Abstract—In this paper we consider some new computing units classical means, the ability of manipulating large collections
for DNA-based computers. Construction of such unit essentially of DNA strings. Performing one of the special operations
Egﬁqedut(i)r? p&?\ﬁz”'es of tRNA. Therefore, we call them as (RNA 4y 5 test tube means some simple manipulation of each of

puting ' the strings in the test tube. In that way each DNA string
corresponds to a piece of information, and all these pieces
can be modified in parallel. At current DNA manipulation

In the recent years several new ideas have been developmrhnology levels, DNA computing provides no advantage
to use non electronic natural phenomena for real, efficieoner electronic computers, for example, when encoding the
computation. In classical electronic-based computations tbemputing task with DNA molecule in Adlemans directed
information is stored and modified bitwise by electric antamiltonian path problem, if the n is equal to 100, the amount
electromagnetic means. It is typical for this kind of comef DNA required would be larger than the weight of the earth.
putations that the number of steps performed per time uiihere is not enough room for improvement on algorithm to
is huge but the number of processors running in parallel isake the number of DNA molecules practically small. At this
small. The main objective for the new approaches mentionsthge, some people began to worry about the directions of
above is not to speed up the number of steps per time ubiNA computing study. However, in other sub-fields of DNA
but to increase the degree of parallelism considerably. tomputing, great progress has been made. There are currently
1985 D. Deutsch [1] proposed computers using quantuiseveral research disciplines driving towards the creation and
physical effects to store and modify information. The quasise of DNA nanostructures for both biological and non-
probabilistic physical effect of quantum parallelism and mutuiological applications. These converging areas are:
dependences of between all bits (coherence effects) allow C . C

. . « the miniaturization of biosensors and biochips into the
to construct quantum algorithms that solve certain problems oo
A X nanometer scale regime;
faster than any known probabilistic algorithm. In [1] Quantum o : .
. . . . « the fabrication of nano-scale objects that can be placed in
Turing Machines are introduced as a theoretical model of such™ . . L .

. . : . intracellular locations for monitoring and modifying cell
a kind of computation. In [2] quantum machine algorithms for function:
the discrete logarithm and for integer factoring are given which ' . . .

X A . . the replacement of silicon devices with nano-scale
run in polynomial time. In 1994 different approaches came up . i

) . ; X molecular-based computational systems, and the appli-

that used biological properties of DNA strings to store and . . . X

o > : ; cation of biopolymers in the formation of novel nano-
modify information. The general idea is to use a large number . . : .)

.) . structured materials with unique optical and selective

of DNA strings as processors which compute in parallel. In transport properties
[3] P. Pudak introduced Genetic Turing Machines that are port prop '
probabilistic machines which can simulate the evolution of a DNA computing employs DNA molecule as a main resource
population of strings using two special operators controlling fulfill computing tasks. However, the concept of primary
the inheritance and the survival of strings. In this model dONA computing unit keeps obscure. It is recently realized
each of the randomly chosen paths one string is processit there are multiple forms of basic DNA computing units.
Also in 1994, L. Adleman [4] used biological experiment&fdleman uses short oligonucleotides to encode mathematical
with DNA strings to solve some particular instances of thproblems. The computing process is mainly performed in the
directed hamiltonian path problem which is considered to lherm of hybridization. Ligation and other molecular manipula-
intractable because of itSP-completeness. In [5] — [7] R. tion steps are used for output abstraction. The correct answer
Lipton showed how to extend this idea to solve any probleis hidden in a vast amount of different hybridization results.
and discussed the practical relevance of this approach. Rethemund proposed a Turing machinelike DNA computing
defined a model of biological computing that has, besides theit [8]. In [9] — [11] published another study in which

I. INTRODUCTION

10

an autonomous programmable DNA automaton is created.de firstly tried by cell molecular biology manipulations. So
particular, in [9] — [11] for DNA automaton used a doublesomein vivo DNA computing technology may be needed to
stranded DNA as input, endonuclease and DNA ligase dsvelop beforehand.

main hardware, transition molecules as software, thus creatindn this paper we consider some new DNA computing units.
a two-state molecular finite automaton with a two-symb@onstruction of such unit essentially based on properties of
input, eight transition rules and 765 syntactically distindRNA. Therefore, we call them as tRNA computing units.
programs. DNA self-assembly has become one of the most

important directions for DNA computing [12] — [19]. Because Il. tRNA COMPUTING UNITS

of its universal computing capability, DNA assembly provides Transfer RNA (tRNA) is RNA that transfers a specific active
another avenue for universal DNA computer developmer{mino acid to a growing polypeptide chain at the ribosomal
DNA computing by self-assembly is basically a tiling processijte of protein synthesis during translation. tRNA has’a
and the tile types can vary a lot. The tiles can be formegrminal site for amino acid attachment. This covalent linkage
with several singlestranded oligos, and each tile can hawecatalyzed by an aminoacyl tRNA synthetase. It also contains
different sticky DNA ends for a number of combinations withy three base region called the anticodon that can base pair
other same or different tiles. The tiling can be designed {§ the corresponding three base codon region on MRNA.
a twodimensional or three-dimensional way, and the scaigch type of tRNA molecule can be attached to only one
for tiling should also be able to control. DNA assemblyype of amino acid, but because the genetic code contains
can be completely programmed, though molecular biologyyltiple codons that specify the same amino acid, tRNA
experiments are still a bottle-neck for large scale assemhiyplecules bearing different anticodons may also carry the
In [19] authors brought a new landscape for this avenugame amino acid. An anticodon [28] is a unit made up of three
Combinatorial cellular automata also used in designing afyicleotides that correspond to the three bases of the codon on
tiling shapes. Besides, the natural affinity of DNA to bind withhe mRNA. Each tRNA contains a specific anticodon triplet
proteins, some types of small molecules, even metal atorggquence that can base-pair to one or more codons for an
makes it possible that assembled DNA can work as an inhergiiino acid. To provide a one-to-one correspondence between
or transient matrix for novel computing devices. In [20] — [23]RNA molecules and codons that specify amino acids, 61 types
published a study in ribozyme unit research area. Ribozymegis tRNA molecules would be required per cell. However,

a piece of nucleic acid fragment with unique three-dimensior\a,lany cells contain fewer than 61 types of tRNAs because
structure that has an enzymatic ability to cut specific complgre wobble base is capable of binding to several, though
mentary oligos as substrate. If another oligo binds with th@t necessarily all, of the codons that specify a particular
ribozyme and prevents it from forming enzymatic conformagmino acid. A minimum of 31 tRNA are required to translate,
tion, the ribozyme stays in an inactive form. In [20] — [23jnambiguously, all 61 sense codons of the standard genetic
founded ribozymes that can be easily manipulated as logigglde [29].

gates. Thus such ribozyme can mimic conventional electroniCThe main function of tRNA is to recognize a fragment
computing devices and theoretically develop universal DN§¢ single-stranded DNA molecule which consists of three
computing system. Ribozymes can work as automaton, thougllitleotides. As a result of such action is established a
for the time being ribozyme or deoxyribozyme automaton fsyrrespondence between the triplet of nucleotides of DNA
still in its infancy. Ribozymebased DNA computing unit maycleotides and a triple contact element of the tRNA molecule.
be extremely useful in designing logical computing devices |R vivo tRNA molecule used for the amino acids synthesis.
the future, for example, single-molecule logical gate. In [24}jowever, at leasin vitro using special enzymes, we can stop
[25] also trying to employ ribozyme-based DNA computinghe natural process of protein synthesis at the stage of reading
as a potential vehicle fan vivo DNA computing. Instead of nycleotide triplets of the DNA molecule and start the process
making ribozymes into logical gates or automata, in [24], [2%)f reading information from the tRNA molecules. As a result,
ribozymes used to build simple automata that may be easier§gs optain a new DNA molecule. In the classical model of
in vivousage. Membrane computing [26], [27] can be regard@dNA function we do not get anything interesting. In view of
as a unique biological computing system. A cell is the basine-to-one correspondence between triples of DNA and tRNA
unit for membrane computing system. This unit is not a DNfye simply obtain a copy or some subsequence of the original

computing unit. However, membrane system provides anoth§KA molecule. More preciselyin vitro we can produce any
sort of self-assembly tile, and each such unit can hold DNé¥ following operations. Let

in it and may be able to translocate DNA molecules between

each unit in the future, so we would like to treat such unit F[P](z) =y
as a special DNA computing unit. It might be also called cell
computing, a natural distributed architecture of a computi
unit where any other DNA computing unit processes might Be
embedded. Since no kind of artificial membrane computing z = z[1]z[1]z[2]2[2] . .. z[n]z[n]z[n + 1],
systems has been tested in the form of biochemical or physical

biochemical experiments, it is likely that the natural cells may y = z[1]2[2] ... z[n],

hereF[P](x) is a function with a parametd? of the variable
defined as follows:

11

z[il e PCP={UUU,UUC,UUA, all three phylogenetic domainarthaea bacterig eucarya
[33], [34]). The modifications are not introduced during tran-
UUG,UCU,UCC,UCA,UCG, scription, but are formed after the synthesis of the polynu-
UAU,UAC,UGU,UGC, UGG, cleotide chain, serving for an improvement of the specificity
and efficiency of tRNA biological functions. To date, more
CUU,CUC, CUA,CUG,CCU, than eighty modified residues have been discovered and their

CCC,CCA,CCG,CAU,CAC, chemical structures revealed [35]. Modified nucleotides are
located at 61 different positions in tRNAs, mainly in loop
CAA,CAG,CGU,CGC,CGA, regions. A large variety is present in the anticodon area,
CGG, AUU, AUC, AU A, AUG, especially in the first position of the anticodon (position 34),
and one bas&’ to the anticodon (position 37). Apart from
ACU,ACC, ACA, ACG, AAU, one exceptiondrchaeosineat position 15 in archael tRNAs
[36], all hypermodified residues are found in this region.
AAC, AA4, AAG, AGU, AGC, Minor modifications like methylated or thiolated derivatives
AGA, AGG,GUU,GUC,GUA, are usually situated outside the anticodon, with only one or two

kinds of modified nucleotides present at each position. Some
GUG,GCU,GCC, GCA,GCG, are common to almost all species, such as Dihydrouridine
GAU,GAC,GAA,GAG,GGU, in D loops and Ribothymine in T loops, whereas others are
n characteristic of specific tRNAs. Examples are found in the

GGC,GGA, GGG, hypermodified wybutosine residue (a guanosine derivative)

1<i<n, at position 37 in almost all eukaryotic tRNA (except
that from Bombyx moriand Drosophila melanogastgrand
z[j] e {A,U,C, G}, gueueosine (another complicated post-transcriptional modifi-
1<j<n+l. cation of guanosine) at the first anticodon position of certain

tRNAs specific for tyr, his, asn and asp from eubacteria
Note thatin vitro the length of each word([j] depends on and eukaryotes. In both domains, modification takes place
the specific experimental conditions and the presence in thisdifferent stages during the processing of precursor tRNA,
words subwords from depending strongly on the concentration of the substrate as
(UAA,UGA,UAGY). well as on both the amognt and the activity Qf tRNA-modifying
enzymes. Several studies have been carried out on precursor
In general case we can suppose that the length[fdfis an tRNA™". The biosynthesis ixXenopus laevis oocytésitiated
arbitrary numberin vivo by injection of the yeast tRNA" gene into either the nucles or
. " the cytoplasma revealed that most base modifications occur in
2] € {UAA, UGA, UAG}. a sequelztial fashion in the nucleus before splicing [37], [38].
So, we obtain some set of tRNA computing units each of In many cases, the third nucleotide of the contact element
which is given by some operatioR[P](z). We call them as of mutant tRNA is not functional. Non-functionality of third
classical tRNA computing units. nucleotide of the contact element is connected with various
Complete sets of tRNAs from one organism, includingnutations that lead to changes in the secondary and the tertiary
at least one isoacceptor species for each of the twemtyuctures of tRNA. It should be noted that these changes
amino acids, are known for several eubacteNygoplasma are stable. Note also that these mutations are quite common.
capricolum Bacillus subtilis Escherichia colj, yeast Sac- In particular, the synthesis of some vital proteins Hdémo
charomyces cerevisijeand chloroplasts Huglena gracilis Sapiensis only possible with the assistance of some mutant
Marchantia polymorphaNicotiana tabacumor mitochondria tRNA. The classical transformation
(Torulopsis glabra ratus ratu3. The number of genes for a
particular isoaccepting tRNA varies depending on the organ- XYZ - XYZ
ism. Although these genes might have the same primary stry¢: <o me such mutant tRNAs can be represented in form
ture, it is more common that isoacceptor tRNAs feature the
same anticodon but slightly differing sequences. In yeast, for XY - XYZ
example, the two tRN@th [31] and the two tRNAY:; [32] , i
are identical except two nucleotides. Compensatory mutatidA<c@S€ When a third nucleotide of tRNA contact element does
frequently occur in the case when the difference between thgt functional for the'orlglnal DNA and for some other tRNAs
isoacceptors is located in a stem. Again in yeast tRiAan ¢&n be represented in form
A-U base pair in the amino acid acceptor stem is exchanged XYZ — XY
for a G-C pair. The same replacement is found in yeast tRNA.
Transfer RNA is the most extensively modified nucleic aciith case when a third nucleotide of tRNA contact element
in the cell. Modified nucleotides are contained in tRNAs frordoes not functional for the new DNA [30]. So, we obtain the

12

following set of relations:
S={UUU =UU,
vuC =UUUUA=UUUUG =UU,
UCU =UC,UCC =UC,UCA=UC,
UCG=UC,UAU =UA,UAC =UA,
UGU =UG,UGC =UG,UGG = UG,
CUU =CU,CUC =CU,CUA = CU,
CUG =CU,CCU =CC,0cCcC =CC,
CCA=CC,CCG=CC,CAU =CA,
CAC =CA,CAA=CA,CAG = CA,
CGQU = (CG,CGC = CG,CGA = CG,
CGG = CG,AUU = AU, AUC = AU,
AUA = AU, AUG = AU, ACU = AC,
ACC = AC, ACA = AC, ACG = AC,
AAU = AA, AAC = AA, AAA = AA,
AAG = AA, AGU = AG, AGC = AG,
AGA = AG,AGG = AG,GUU = GU,
GUC =GU,GUA = GU,GUG = GU,
GCU = GC,GCC = GC,GCA = GC,
GCG =GC,GAU = GA,GAC = GA,
GAA =GA,GAG = GA,GGU = GG,
GGC = GG,GGA = GG,GGG = GG}

where
XYZ=XY
denotes the pair
XYZ — XY,
XY —- XY _Z.

We can produce any of following operations. Let
G[S, Pl(x) =y

where G[S, P](x) is a function with parameterS and P of
the variablex defined as follows:

empty word

So, we obtain some set of tRNA computing units each of
which is given by some operatio@[S, P](x). We call them
as mutational tRNA computing units.

The frequent occurence of non-canonical G-U base pairs
[39] is a noticeable feature of stem regions. Since their first
discovery in [40], other possible non-canonical pairs (for
example A-A, C-C, C-U, G-A, U-U, U-Y) have been detected
in the stems of various tRNAs [41]. G-U pairs, however, occur
with the highest frequency. As to stems, a frequently occuring
length can be attributed to loops as well. Anticodon and T
loops contain seven nucleotides, whereas D loops and variable
regions are areas of various lengths. An important discovery
regarding the primary structure was made in the early 1970s.
Certain positions in tRNAs are occupied by invariant or semi-
invariant nucleotides.

Insights concerning characteristic behaviour of natural
tRNA molecules were subsequently applied to the design
of artificial tRNA molecules [30]. Using the complete sets
of identity elements of some E. coli tRNAs as sequence
constraints in inverse folding, a large amount of thermodynam-
ically very stable sequences was obtained and subsequently
sorted out due to inefficient folding behaviour.

Genes of interest can be selectively metallized via the
incorporation of modified triphosphates [42]. These triphos-
phates bear functions that can be further derivatized with
aldehyde groups via the use of click chemistry. Treatment of
the aldehyde-labeled gene mixture with the Tollens reagent,
followed by a development process, results in the selective
metallization of the gene of interest in the presence of natural
DNA strands.

In [43] reported a simple solution based method for the
gold (Au) metallization of DNA resulting in a Au nanowire
network. Advantage of solution based approach is that it
allows the removal of excess gold (At) ions by extraction
with tetraoctylammonium bromide (TOAB) in order to avoid
non specific metallization. Further it has been shown that Au
metallized DNA obtained in aqueous phase can be transferred
to organic phase using hexadecyl aniline (HDA). Au metal-
lized DNA has potential application in nanoscale devices.

Also a number of small organic ribonucleases have been
synthesized with rigid polycationic structures containing an
aromatic framework with two residues of bis-quaternary salts
of 1,4-diazabicyclo[2.2.2]octane (DABCO) bearing various
substituents [44]. The compounds carrying positively charged
groups connected via rigid linker are expected to bend the
sugar-phosphate backbone and can stimulate the intramolecu-
lar phosphoester transfer reaction.

Since we can use artificial nucleotides and artificial tRNA
molecules, we can consider artificial tRNA computing units. In
this case we consider some alphabBednd the set of relations

Q={X\"1Z, - Xi"1Z,,
XoYy — XoYoZs,
X3Y37Z5 — X3Y3 |

Xi,Yi, Zi € 5,1 < i < 3},

13

We can define following operations. Let

HIQ(z) =y

where H[Q](x) is a function with a parameter® of the
variablez defined as follows:

y=yll]y[2]...y[n],
z,zfi] —2€@Q CQ
yli] =
empty word

We obtain the set of tRNA computing units each of which is
given by some operatiof/ [Q](x). We call them as artificial

tRNA computing units.

IIl. tRNA PROGRAMMING LANGUAGES

Let K > 0 andm > 1 be variables for natural numbers,

let a,b € {0,1}, let =z be a word variable and Iéf, T; and

T, be set variables. Lef(x) € {0,1}* be the contents of
the word variabler, and letI(7") C {0,1}* be the contents
of the set variablel’ in a given moment. We define the cut
operation\ by \av = v and\A = A whereA is the empty
word. Different types of DNA-computers use the following
instructions with set operations and conditions with set tests

[45].

T=T,UT,
I(Th) U I(Ty);

T = In(k),
{0,1}";
T = Tl : TQa

I(Th) - I(Tz);

T=\T,

{\z]z (T)};

T = Sw(Tl),
{y | Fvw(vyw € I(11))};

T=a- Tl,
{a} - 1(T1);

T:EQ(Tl 'm'a)v

{vaw | (V0w € I(T1) Vvlw € I(Th)) A|v] =m — 1},

14

T=DBs(Ty -m-a-b),
{vaw | v0w € I(Th) A v =m — 1}U
{vbw | viw € I(Th) A v =m — 1}

T = Bx(Ty -m-a),
I(T) N ({0, 13 a{0, 1});

T=Br(Ty -m-a-x),

{vI(z)w | vaw € I(T1) A |v| =m — 1};

T=DBI(Ty-m-a-b),

{vbw | vaw € I(Ty) A |v| = m — 1};

rzel,
I(z) € I(T);

Tl gT2a
I(Th) C I(T3).

We can use our computing units independently or add them
to this computing units. Depending on experimental conditions
using the same computing units we can obtain essentially
different programming languages. For example, if we allow
unrestricted appliance of operatiof$P|(z) and G[S, P](z),
then we can consider the following semigroup as a model of
computations:

(A, U,C,G | S).
Note that
UAA=UACA=UAC =UA,
UGA=UGGA =UGG = UG,
UAG =UACG =UAC =UA.
Therefore,
(A, U,C,G|S) =
{U) A? C7 G7

UU,UA,UC, UG,
AU, AA, AC, AG,
CU,CA,CC,CG,

GU,GA,GC,GG}.

From other hand, using restricted appliance of operations

IV. CONCLUSION

F[P](x) and G[S, P](x), we can easily obtain a semigroup |, this paper we consider some new computing units which

can be used in different programming languages for DNA-
Note that for tRNA programming languages we have onlysceaq computers.

set and string variables and constants. This is a characteristia s the main direction of further research we can mention

feature of all programming languages for DNA computing. Ighe rigorous formalization and classification of programming

the case of DNA computing, we have significant d'ﬁ'cumeﬁinguages based on tRNA computing units and the study of
with numerical operations and numbers themselves. But “dlfomputatmnal power of such programming languages.

with undecidable word problem.

ficult” does not mean “impossible”. For example, suppose that

we have a binary register

a10a20a304

following word:

GGA1GGA:GGA3GGAy
where G ai=0
A=
Cya;=1
Let
Go,11[51, P] : GGCx[1]z[2]x[3] — GGz[1]z[2]x[3],
Go,1,2[92, P] : GGz[1]z[2]z[3] — GGGz[l]z
Go.2,1[51, P] : z[1|GGCx[2]z[3] — z[1]GGx[2]x[3
Go,2,2[S2, P] : z[1]|GGz[2]x[3] — x[l]GGG:L’ 2]z[3
Go,3.1[51, P) : z[1]z[2]GGCz[3] —
Go,3.2[52, P] : z[1]2[2]GGx[3] —
Go,41[51, P] : z[1]z[2]2[3]|GGC — z[1]x
Go,4.2]52, P : z[1]z[2]2[3|GG — z[1]z[2]z[3
G1,1.1[53, P] : GGGx[1]z[2]z[3] — GGz[l]z
G1,12[84, P] : GGz[1]z[2]z[3] — GGCz[l]z
G121[S3, P : z[1|GGGx[2]x[3] — «x[1
G1,2,2[S4, P] : z[1]GGz[2]z[3] — z[1]|GGCx
G1,3.1[53, P : z[1]2[2]GGGz[3] — x[Jx 2]GGI 3],
G1,3.2[S4, P] : 2[1]2[2]GGx[3] —
G1,41[53, P] : z[1]z[2]2[3]|GGG — z[1]x
G1,4,2[S4, P : z[1]2[2]2[3|GG — z[1]z[2]z[3]GGC,
zli] € P = {GGG,GGC},
S1 = {GGC — GG}, 52 = {GG — GGG},
S3 = {GGG — GG}, Sy = {GG — GGC}.
Let

Bi j(z) = Gij2(Gija(z)).

ACKNOWLEDGMENT

The work was partially supported by Grant of President

of the Russian Federation MD-1687.2008.9 and Analytical

whereay, az, a3, as € {0, 1}. Assume that we want to definepepartmental Program "Developing the scientific potential of
some bit operations. We can emulate this binary register thgh school” 2.1.1/1775.

(1]

(2]

(3]
(4]
(5]

9]

REFERENCES

D. Deutsch.Quantum theory, the Church-Turing principle and the univer-
sal qguantum computeProceedings of the Royal Society London, 1985,
Vol. A400, 97-117.

P. W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring Proceedings of the 35th IEEE Symposium on Foundations
of Computer Science, 1994. pp.124-134.

P. Pudak. Complexity theory and genetid@roceedings of 9th Conference
on Structure in Complexity Theory, 1994. pp.183—-195.

L. M. Adleman. Molecular computation of solutions to combinatorial
problems Science, 1994, \ol. 266, 1021-1024.

R. J. Lipton.Speeding up computations via molecular biologgchnical
report, Princeton University, 1994.

R. J. Lipton.Using DNA to solve NP-complete problerfischnical report,
Princeton University, 1995.

R. J. Lipton.DNA solution of hard computational proble&cience, 1995,
Vol. 268, 542-545.

P. W. K. Rothemund.A DNA and restriction enzyme implementation
of Turing machines R.J.Lipton and E.B.Baum, editors. DNA Based
Computers: Proceedings of the DIMACS Workshop, Princeton University,
Providence, Rhode Island, 1996. pp.75-119.

Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro.
Programmable and autonomous computing machine made of biomole-
cules Nature, 2001, Vol. 414, 430-434.

[10] Y. Benenson, R. Adar, T. Paz-Elizur, E. Keinan, Z. Livneh, E. Shapiro.

DNA molecule provides a computing machine with both data and fuel
Proceedings of the National Academy of Sciences of the United States
of America, 2003, Vol. 100, 2191-2196.

[11] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapifm autonomous

molecular computer for logical control of gene expressiNature, 2004,
\ol. 429, 423-442.

[12] T. H. LaBen, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif,

N. C. SeemanThe Construction of DNA Triple Crossover Molecyles
Journal of the American Chemical Society, 2000, Vol. 122, 1848-1860.

[13] H.Li, S. H. Park, J. H. Reif, T. H. LaBean, H. YabNA-Templated Self-

Assembly of Protein and Nanoparticle Linear Arraysurnal of American
Chemistry Society, 2004, Vol. 126, 418-419.

[14] S. H. Park, H. Yan, J. H. Reif, T. H. LaBean, G. Finkelstdifectronic

nanostructures templated on self-assembled DNA scaffulgisotechnol-
ogy, 2004, \Vol. 15, 525-527.

[15] N. C. SeemanNucleic Acid Junctions and Lattice3ournal of Theoret-

ical Biology, 1982, \Vol. 99, 237-247.

[16] A. T. Winfree. The Geometry of Biological TimeSpringer-Verlag,

Berlin, 2000.

[17] H.Yan, T. H. LaBean, L. Feng, J. H. Reirected Nucleation Assembly

of Barcode Patterned DNA LatticeBroceedings of the National Academy
of Science of the United States of America, 2003, Vol. 100, 8103-8108.

[18] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBe®@NA-

Templated Self-Assembly of Protein Arrays and Highly Conductive
Nanowires Science, 2003, Vol. 301, 1882-1884.

[19] P. Yin, A. J. Turberfield, J. H. ReifDesign of an Autonomous DNA

It is easy to check that using; ; we can obtain arbitrary bit

operations.

15

Nanomechanical Device Capable of Universal Computation and Univer-
sal Translational Motion Tenth International Meeting on DNA Based
Computers. LNCS 3384, Springer-Verlag, New York, 2005. pp.426-444.

[20] M. N. Stojanovic, T. H. E. Mitchel, D. StefanoviDeoxyribozyme-based
Logic Gates Journal of American Chemistry Society, 2002, Vol. 124,
3555-3561.

[21] M. N. Stojanovic, P. de Prada, D. W. LandHomogeneous assays based
on deoxyribozyme catalysiSlucleic Acids Reserch, 2000, Vol. 28, 2915.

[22] M. N. Stojanovic, D. StefanovicA deoxyribozyme-based Molecular
Automaton Nature Biotechnology, 2003, Vol. 21, 1069.

[23] M. N. Stojanovic, D. StefanovicDeoxyribozyme-based Half-Adder
Journal of American Chemistry Society, 2003, Vol. 125, 6673.

[24] http://bdcc.kmip.net/htmls/dnacomputer/index.php

[25] http://bi.snu.ac.kr/biocomputers2004

[26] G. Paun. Membrane Computing: An IntroductiprSpringer-Verlag,
Berlin, 2002.

[27] G. Paun.Membrane computing: Main ideas, basic results, applications
Molecular Computational Models: Unconventional Approaches (M. Ghe-
orghe, ed.), Idea Group Publ., London, 2004. pp.1-31.

[28] G. Felsenfeld, G. CantoniUse of thermal denaturation studies to
investigate the base sequence of yeast serine sRN&eedings of the
National Academy of Science of the United States of America, 1964, Vol.
51, 818-826.

[29] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott,
S. L. Zipursky, J. DarnellMolecular Biology of the CellW.H. Freeman,
New York, 2004.

[30] M. D. Friede.Design of artificial tRNAsDissertation zur Erlangung des
akademischen Grades Doctor rerum naturalium, Vorgelegt der Formal-
und Naturwissenschaftlichen Faktitder Universit Wien, Wien, 2001.

[31] G. Keith and G. DirheimerEvidence for the existence of an expressed
minor variant tRNAphe in yegsBiochemical and Biophysical Research
Communications, 142:183-187, 1987.

[32] J. Weissenbach, I. Kiraly, and G. DirheimdPrimary structure of
tRNAthr 1a and b from brewer’s yead®tiochimie, 59:381-391, 1977.

[33] M. Sprinzl, C. Horn, M. Brown, A. loudovitch, and S. Steinberg.
Compilation of tRNA sequences and sequences of tRNA,genekeic
Acids Research, 26:148-153, 1998.

[34] C. R. Woese, O. Kandler, and M. L. Wheeli®@wards a natural system
of organisms: proposal for the domains archaea, bacteria and eucarya
Proceedings of the National Academy of Sciences of the United States
of America, 87:4576-4579, 1990.

[35] G. R. Bjork, J. M. Durand, T. G. Hagervall, R. Leipuviene, H. K. Lund-
gren, K. Nilsson, P. Chen, Q. Qian, and J. Urbonaviciiransfer RNA
modification: in on translational frameshifting and metabolisREBS
Letters, 452:47-51, 1999.

[36] C. G. Edmonds, P. F. Crain, R. Gupta, T. Hashizume, C. H. Hocart,
J. A. Kowalak, S. C. Pomerantz, K. O. Stetter, and J. A. McClodRegt-
transcriptional modification of tRNA in thermophilic archae (archeabac-
teria), Journal of Bacteriology, 173:3138-3148, 1991.

[37] D. A. Melton, E. M. de Robertis, and R. Cortegrder and intracellular
location of the events involved in the maturation of a spliced tRNA
Nature, 284:143-148, 1980.

[38] K. Nishikura and E. M. De RobertisNA processing in microinjected
xenopus oocytes. Sequential addition of base modifications in the spliced
transfer RNA Journal of Molecular Biology, 145:405-420, 1981.

[39] B. Masquida and E. WesthoOn the wobble G-U and related pajrs
RNA, 6:9-15, 2000.

[40] R. W. Holley. Structure of an alanine transfer ribonucleic acidAMA,
194:868-871, 1965.

[41] N. B. Leontis and E. WesthofConserved geometrical base-pairing
patterns in RNAQuarterly Review of Biophysics, 31:399-455, 1998.

[42] G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, and
T. Carell.Directed DNA MetallizationJournal of the American Chemical
Society, 128(5):1398-1399, 2006.

[43] A. S. Swami, N. Brun, and D. LangevirPhase Transfer of Gold
Metallized DNA Journal of Cluster Science, 20(2):281-290, 2009.

[44] E. A. Burakova and V. N. SilnikovMolecular Design of Atrtificial
Ribonucleases Using Electrostatic Interactidvucleosides, Nucleotides
and Nucleic Acids, 23(6-7):915-920, 2004.

[45] D. Roof3 and K. W. Wagne©n the Power of DNA-Computindnfor-
mation and Computation, 131(2)95-109, 1996.

16

Using Hardware-Assisted Virtualization
to Protect Application Address Space
Inside Untrusted Environment

Denis Silakov
Institute for System Programming
at the Russian Academy of Sciences
Moscow, Russian Federation
Email: silakov@ispras.ru

Abstract—In this paper we present a virtualization-based
approach of protecting execution of trusted applications inside
potentially compromised operating system. In out approach, we
do not isolate application from other processes in any way;
instead, we use hypervisor to control processes inside OS and to
prevent undesired actions with application resources. The only
requirement for our technique to work is presence of hardware
support for virtualization; no modifications in application or OS
are required.

Index Terms—Virtual Machine Monitor, Hypervisor, Security,
Protection

I. INTRODUCTION

In modern software world, an operating system is a key
component responsible for many security aspects of applica-
tion execution process. In particular, it should provide pos-
sibilities to manage access permissions of application files
and other resources, guarantee isolation of application address
space in memory and so on.

However, many widespread operating systems (such as
Linux or Windows) are known to be subjected to vulnerabili-
ties which can be used by malicious code to compromise the
whole system or particular application. As operating systems
evolves, vulnerabilities are detected and fixed. But at the
same time a lot of new features are added which potentially
introduce new vulnerabilities. Size of code which is executed
with highest privileges in modern OS is large. In particular,
many popular systems are based on monolithic kernel where
every device driver is a part of the kernel (that is, works in the
same address space with other kernel parts and other drivers).
It is common for drivers to contain issues. Vulnerability
research performed in 2005 has shown that device drivers were
responsible for about 85% of failures in Windows XP [1];
similar statistics was reported for Linux [2]. It is very likely
that the situation will not change in the near future, since size
of drivers grows faster than size of any other part of the kernel
[3].

Microkernel-based operating systems are claimed to be
more secure due to the fact that the size of code executed
in privileged mode is very small [4]. However, in such
systems interaction between micro kernel and drivers which

17

becomes quite expensive. If used on a desktop machine with
lots of peripheral devices, such systems often demonstrate
worse performance. In addition, there are a lot of applications
developed for widespread OSes with monolithic kernels. It
would be very expensive to port all these programs to a system
with completely new architecture. As a result, nowadays
microkernel-based systems are primarily used either in highly
tailored areas (e.g., QNX for embedded real-time systems) or
for educational purposes (e.g., Minix).

Thus, there is a need for application protection techniques
that will not require modifications of existing operating sys-
tems or applications, but at the same time will provide more
reliable and secure services than traditional approaches.

One of the possible techniques is to use hardware-assisted
virtualization. As implemented in modern Intel and AMD
processors, it allows to launch a program (called hypervisor)
that has full control over hardware and runs with higher
privileges than OS. Normally, hypervisor is responsible for
virtualization (e.g., creating and managing virtual machines),
but its functionality can be enhanced. In particular, it can
provide some security services. Hypervisor is usually much
more smaller than OS (for example, most hypervisors do not
have a large set of device drivers). As a result, hypervisor
potentially contains less vulnerabilities and usually considered
to be more secure than commodity operating systems. In
this paper, we suggest an approach for protecting application
address space using hypervisor.

The remainder of the paper is structured as follows: Section
2 observes existing virtualization-based approaches to pro-
tection of application resources. Section 3 describes general
architecture of our protection system and specific aspects of
protecting address space of applications of different kinds.
Section 4 describes implementation of our approach and
present performance measurement results. Finally, Section 5
summarizes the main ideas.

II. HYPERVISOR-BASED PROTECTION SYSTEMS

The idea of using hypervisor for different security tasks
has got much attention after Intel and AMD introduced their
first implementations of hardware-assisted virtualization in

years 2005-2006. Many approaches requires modifications of
applications, OS (e.g., [5] or [6]) or even hardware ([7], [8]).
Though some of these approaches seem to be quite effective,
their usage is rather limited.

A promising approach is Overshadow technology of mem-
ory protection suggested by researches from Stanford and
Princeton Universities, MIT and VMware, Inc ([9]). It does
not require modifications of OS or applications. Instead, it
encrypts process memory area of working processes. If OS
or other program try to access process memory, they only
see encrypted data. For trusted process itself, a “normal”
memory view is provided. Similar approach based on dynamic
encryption of application memory is presented in [10].

However, these approaches are primarily aimed at hiding
application data from third parties. In our work, we suggest
an approach that allows other processes to read memory of
a trusted process, but denies to modify it. Such assumption
is useful for cases when trusted application needs to pass
some data to other processes by means, for example, of shared
memory. That is, our approach protects execution process of a
trusted application, but does not hide its whole data from other
programs. But if necessary, our system can be easily modified
to completely deny access to application’s memory.

An advantage of Overshadow is that no modifications are
required in existing software (OS, applications) and hardware.
More precisely, there are no hardware-specific requirements
only if hypervisor used is able to perform virtualization
without hardware assistance. However, in this case protection
system architecture is bounded to architecture of particular
hypervisor. Moreover, such hypervisors for x86 platform are
rather complex and they are rather hard to implement (since
x86 architecture by itself is hard to virtualize due to de-
sign). Among effective implementations, we can mention only
VMware VMM (used in Overshadow) and VirtualBox [11].
Since such hypervisors are complex (and in addition, VMware
hypervisors are mostly closed source products), it is not easy
to modify them to implement additional functionality.

On the other hand, in the last several years Intel and
AMD have added virtualization support to their processors
and made it easier to create virtualization products [12]. These
possibilities are now utilized by such products as Kernel-based
Virtual Machine (KVM), Xen, VMware ESX and others. In
our approach we assume that target system provide hardware-
assisted virtualization. This puts some limitations on hardware
where our approach is applicable, but significantly simplifies
its implementation.

III. CONTROLLING CONSISTENCY OF A TRUSTED
PROCESS

In our threat model, we suppose that the operating system is
not reliable and contains vulnerabilities which can be exploited
by malware to gain high privileges. Such privileges would
allow attacker to control all processes running in the system
and perform malware injections in their files or directly in the
process code in the memory.

18

In our protection system, potentially compromised OS is
located inside virtual machine controlled by hypervisor, which
is a core part of the protection system. Hypervisor has higher
privileges than OS inside VM and can monitor and control
events inside VM.

In order to guarantee consistency of a trusted application,
hypervisor should guarantee the following:

o application files on disk (in particular, executables and
libraries) are not modified by malicious software; in this
paper, we only consider executable files and libraries that
form the application, ignoring the task of protection of
other files and resources that can be used by application
(e.g., protection of different data files);

address space of a running process is not modified in an
unallowed way by other processes running in OS.

Let us consider how these tasks are solved by suggested
protection system.

A. Checking Consistency of Executable Files and Libraries

When launching a trusted application, we should first ensure
that executable being launched is an expected one. In order
to do this, we should check that application executable file
(and shared libraries, if any) on disk was not modified by
malicious code. To make such check possible, every trusted
application in our system should provide hypervisor with a
registration data, generated inside trusted environment on the
basis of application files. This registration data is stored in
hypervisor and cannot be accessed by OS.

Registration data for application executable files and shared
libraries consists of SHA-1 hash codes. Such codes are gener-
ated for every memory page containing either instructions or
static data. Currently we assume that the page size is equal
to 4 kilobytes (a default value on most systems). However,
nowadays Linux provides support for larger pages [13], and
we plan to support such pages in future, as well.

B. Protecting Control Flow

In our system, the working virtual machine is provided
with a single-core virtual CPU, so OS inside this VM can
only use a pure time-sharing multitasking. There is no way
to run different processes on different CPU cores in parallel.
In particular, at any moment of time either CPU and other
resources are used by trusted code or they are used by
potentially malicious software. Thus, if we want to protect
trusted process, we should only ensure that the process address
space and other system resources that can influence process
execution (e.g., different system registers) were not modified
in a forbidden way while the trusted process was inactive.
When trusted process is active, all events in the system are
allowed. In particular, trusted process can modify its own code
segments in memory. Besides application code and static data
loaded at launch, we can control consistency of any data pages
loaded by during process execution. More particular, we track
states of all memory pages written by the process.

In order to implement such protection, we use hypervisor to
handle interruptions of trusted code execution. When a trusted

process is interrupted, hypervisor saves information about its
address space and other protected resources inside its own
memory. Only after that, control is passed to operating system.
When OS returns control to the trusted process, hypervisor
compares actual state of protected resources with the saved
one. If any discrepancy is detected, the protection system
reports an attack attempt and the process is not considered to
be trusted any more. From that moment, it will not be allowed
to use protected system resources (e.g., network connection).

One of the main components of the protection system is a
register integrity checker used to protect control flow of trusted
processes. The control flow is considered to be integral, if the
following requirements are met:

1) actual address of program entry point is equal to the
value specified in the registration data;

every time the control is passed from the OS kernel
to the trusted process, address of instruction invoked
in the process is either equal to the instruction where
the process was previously interrupted, or is equal to
a special signal handler (registered by the process in
advance).

2)

The first requirement is checked only when the process is
launched using a system call like exec(). More generally,
it should be checked when the process enters the trusted
mode, but in our work we do not consider situations when
the process can enter the trusted mode after the launch.
The second requirement is checked every time the control is
passed to the trusted process. When such an event occurs, the
hypervisor verifies instruction address, as well as values of
general purpose, segment and different system registers.

C. Protecting Address Space

Hypervisor controls integrity of all virtual memory pages
(containing either code or data) of the process. When a trusted
process accesses a memory page for the first time, this page
is marked as active. If the page accessed for the first time
contains program code or static data, then it is checked that
the page hash sum corresponds to the one specified in the
registration data. This allows to verify that the program code
and static data were not modified after registration data was
generated. Other pages are allowed to have random data when
they are accessed by trusted process for the first time. If in
the sequel trusted process accesses such a page, the hypervisor
checks that the page content was not modified since the last
time when it was accessed by the process.

In order to perform such integrity monitoring, hypervisor
uses a special control table of process active virtual pages
which we call Memory Integrity Table (MIT). For every virtual
page V, the MIT table contains either address of corresponding
physical page P (if V' is mapped to a physical memory) or
hash sum H if the page is not mapped.

At runtime, programs can detach memory pages from their
address space (e.g., by means of munmap() system call).
Hypervisor tracks such system calls and removes the active
mark from the detached pages.

19

Pages storing dynamic data inside address space of a trusted
process can be subjected to legal modifications by the process
itself, as well as by some system calls (e.g., read()). If an
active page of a trusted process is mapped to a physical page,
then write access to that page is allowed for the trusted process
only. When a trusted process tries to access a page for which
a hash sum is set in the MIT table, hypervisor checks integrity
of that page by calculating hash code for its current content
and comparing it with the expected value stored in the control
table.

Moreover, hypervisor allows only modifications that touch
memory areas explicitly specified in the system call parame-
ters. Modifications outside such explicitly specified areas are
prohibited. It is important to note that on Intel x86 architecture
it is possible to set access permissions on the page-level basis,
while processes may want to write data which is not aligned
to page size. In order to support protection of such data,
hypervisor used special trick based on the fact that for every
process one can specified address area writable for kernel with
per-byte precision.

Before transferring system call to OS kernel, the protection
system for every out parameter allocates a “shadow” memory
area inside virtual address space of the process and set registers
controlling passing of return values to point to that area. Thus,
output of every system call is redirected to memory area not
used by the process. When system call returns control to the
process, hypervisor copies its output to corresponding areas
inside process memory.

In order to maintain mappings in the MIT table and to
intercept page access attempts, hypervisor runs every trusted
process in a separate protection domain. Protection domain is a
set of memory pages with individual access permissions. This
set of pages for a particular protection domain is dynamically
altered by hypervisor when process requests more memory
or frees unnecessary pages. Every attempt to access a page
outside the protection domain, as well as access violation for
the page inside the domain, leads to exception which is caught
and handled by hypervisor.

Implementation of protection domains is based on the
Nested Page Tables (NPT) mechanism (NPT implementation
in Intel processors is called Extended Page Tables, the one
from AMD - Rapid Virtualization Indexing). NPT tables
are used to perform translation of pseudo-physical addresses
used inside VM to physical addresses of the real hardware.
When a process is launched in the trusted mode, hypervisor
creates an empty set of NPT tables for it. Every time when
OS kernel passes control to the trusted process, hypervisor
activates page tables corresponding to that process. This is
performed by means of the Virtual Machine Control Block
(VMCB) structure. When trusted process is interrupted and
control is passed back to the OS kernel, hypervisor switches
active nested pages once again and activates tables of untrusted
domain (a joint domain for OS kernel and other untrusted
processes).

When a process tries to access a page which is not yet
reflected in the NPT tables, or when access violation occurs, a

Nested Page Fault (#NPF) exception is thrown, VM is stopped
and control is passed to the hypervisor. Hypervisor maintains
NPT mapping only for active pages which are not swapped
out to the storage device and which were not modified by
third-party processes. This approach allows to determine if the
process accesses a page for the first time or it accesses pages
which were modified since the last access by this process or
loaded from swap.

When the #NPF exception is thrown, a pseudo-physical
address of page inside VM is reported, access to which led to
the exception. However, in order to get the expected hash sum
for the page from the control tables, hypervisor should also
know a virtual address, access to which finally led to #NPF.
In order to calculate virtual address, hypervisor disassembles
the current instruction of the trusted process (address of such
instruction is always stored in the IP register) and analyzes all
virtual addresses accessed by this instruction. Using page table
of the operating system, hypervisor calculates real addresses
corresponding to these virtual ones and detects which of them
corresponds to the pseudo-physical address access to which
led to the #NPF exception. With this virtual address, the
hypervisor is able to verify integrity of the page accessed by
the trusted process.

D. Protecting Dynamically Linked Applications

Address space protection approach described above easily
applies for statically linked programs. Such a program is
represented by a single executable file that does not import
any libraries from the OS, so we can know in advance
location of code and static data inside the application. How-
ever, nowadays developers often take an advantage of using
splitting functionality between separate libraries which are
combined together by the loader during program start up
or even loaded by request during program execution (such
functionality is provided in Linux by libdl library). Protection
of such programs (especially those that use libdl functionality)
introduces new challenges.

Dynamically linked application consists of a main exe-
cutable file and several libraries loaded by dynamic loader
during application launch. In Linux, for both executable files
and dynamic libraries ELF format is used. Every ELF file has a
set of DT_NEEDED entries which store names of libraries that
should be loaded with this file. When launching an executable,
dynamic loader processes DT_NEEDED entries of the file
itself, then DT_NEEDED entries of libraries loaded as file
dependencies and so on — such iterations are performed until
DT _NEEDED entries of all files from the loaded set are
satisfied by files from this set.

The set of DT_NEEDED entries can be extracted from the
ELF file by means of appropriate tools. However, the final set
of loaded libraries can be different for the same executable
in different Linux distributions, because internal dependencies
of libraries can differ. Moreover, in addition to dependencies
statically recorded in the ELF file structures which are resolved
during file launch, it is possible to load libraries at runtime by
means of functions provided by libdl library. In many cases,

20

it is almost impossible to automatically detect which libraries
will be loaded using such functionality, because the name of
the library to be loaded can be calculated at runtime.

Due to these facts, in our approach user should explicitly
list all the libraries that will be loaded during application work
in particular system. This set considered to be a set of trusted
files. If a library not included in this set will be loaded and
put to the application address space, this will be reported as
an attack attempt.

In addition to libraries, for every dynamically linked appli-
cation the Linux kernel exposes a shared object called Virtual
Dynamically-linked Shared Object (VDSO) which exports
symbols implementing virtual system calls [14]. Traditionally,
system calls in Linux on the x86 platform were implemented
using 0x80 software interrupt. With modern processors, faster
implementations are available that use SYSCALL or SY-
SENTER instructions for AMD and Intel processors respec-
tively. For every of these techniques, the Linux kernel has
a corresponding VDSO variant. Implementation of all these
three VDSO variants can be extracted from the Linux kernel
sources.

Thus, a memory image of a dynamically linked application
consists of the following components:

« cxecutable file (launched by user or by other process);
dynamic loader (usually — ld-linux.so);
set of libraries specified as ELF file dependencies and
loaded at application start;
set of libraries loaded at runtime using libdl functionality;
VDSO library.

Registration data of dynamically linked application should
contain information about all these components.

An important feature of dynamic libraries is that their
code is position-independent and can be located any area of
application’s address space. Address value specified in the ELF
file header in Linux running on x86 platform nowadays is just
a recommendation for the loader. In reality, dynamic loader
can place every file at other address, and such addresses can
vary in different systems or even in different instances of the
same application.

Note that since VDSO is a shared object, it can also be
located at any address inside process address space. Thus,
location of VDSO in process memory can be different for
different processes.

Finally, executable files can also contain position-
independent code. Executable files that consist of such code
only (Position-Independent Executables, PIE) are relatively
widespread in the Linux ecosystem.

Thus, every component of dynamically linked application
can be located at any virtual address inside application address
space. Since the memory is allocated and managed on the
per-page basis, correlation between actual address of every
component and the value specified in ELF header is expressed
by the following formula:

Actual_address = ELF_address + k x (page_size)

where £ is some integer number.

Thus, though location of different components of dynam-
ically linked application in virtual memory is not known in
advance, these locations can be easily calculated by hypervisor
during application start up. Location of libraries loaded using
libdl functions can be calculated at the moment when dlopen()
function is invoked. This allows to adopt registration data
for every particular launch of application. As we will discuss
later, the only thing hypervisor has to calculate is a difference
between real address and the value specified in the ELF header
(and thus reflected in the registration data) which is identified
by a single integer number k. It is important to note that since
library code is position independent, it is not subjected to any
modifications by loader.

Before passing control to entry point of dynamically linked
application, dynamic loader should link together all compo-
nents of application and set actual addresses of all imported
symbols. For the context protection system, it is important
to ensure that no malicious code interfere with this process,
replacing address of legal imported function with address of
malicious symbol. Let us proceed with details of dynamic
loader work process and see how protection system guarantees
consistency of function addresses.

During dynamic linking process, system loader first loads all
necessary files to memory and then initiates symbol resolution
process. For every binary symbol imported by some ELF
file (this file is called importer) the loader should locate
the file where the symbol is implemented (this file is called
exporter). Dynamic loader analyzes symbol tables of exporter
and importer and updates the Global Offset Table (GOT),
which is located at the data segment of the importer. The GOT
table contains an entry for every imported binary symbol (cor-
responding to a function o global variable). Symbol resolution
procedure is the same for libraries loaded during application
launch and the one loaded at runtime using libdl functionality.

Code segment of ELF file that imports some functions
contains Procedure Linkage Table (PLT) which contains a
stub symbol for every imported function. When an attempt is
performed to call some imported function, the control is passed
to the corresponding stub which takes unnecessary address
from the GOT table and passes control to that address. Thus,
a call to an imported function is an indirect call by address
recorded in the appropriate GOT table entry.

GOT and PLT tables used when a call to imported function
happens are located in the segments of that ELF file from
which the call is performed. Thus, they are taken into account
when file hash sum is calculated and monitored by the pro-
tection system during application work. The whole dynamic
linking process, including modification of the GOT table, is
performed by the dynamic loader which works in the user
space. The process requires no kernel-level activities and thus
cannot influence other applications in case of errors. This is
one of the advantages of using ELF format for executable files.

Thus, if dynamic loader is a trusted program, then all the
actions during dynamic linking are performed by trusted code.
Dynamic loader is much more smaller then the Linux kernel
and it does not vary significantly among different distributions

21

(in particular, it does not allow insertion of some third-party
software such as drivers in its code). Thus, we believe that it is
reasonable to consider dynamic loader to be a trusted process.
In the rest of the paper, we use the assumption that the dynamic
loader is a trusted program. Note that since dynamic loader is
included in the process image, hypervisor is able to compare
its content with registration data. Thus, the protection system
is able to check that the loader is the same as the one in the
system where the registration data was generated.

When launching a dynamically linked application, the Linux
kernel creates a virtual address space for the new process
and loads application executable file (which was actually
launched), dynamic loader and VDSO library there. All other
libraries are loaded using explicit calls to the mmap() system
call from the dynamic loader. This call returns a virtual address
where the library is located. Since hypervisor monitors all
system calls performed by application, it can track library
loading and build a mapping between library name (passed
as a parameter to the open() call, whose result is then passed
to mmap()) and library location in the process address space.
For every loaded library it is checked, if the library is included
in the list which was provided by user when generating
registration data. If so, then hypervisor is able to compare
hash sum of the loaded library with the expected value and
verify that this is, indeed, an expected file. If the loaded file
is not included in the list of trusted libraries, or if its hash
sum does not match the value expected, then the loaded code
reported to be untrusted. If the control is passed to such code,
then hypervisor will nullify application privileges, so it will
not be considered to be trusted any more.

OS kernel passes addresses of components loaded during
application launch to dynamic loader using ELF auxiliary
vectors [15]. During application launch, array of such vectors
is put at the process stack just after environment variables and
thus can be easily analyzed by hypervisor. Each vector is just
a pair of numbers (vector type and value).

In order to be able to protect application address space, we
should know values of vectors with the following types:

e AT PHDR - Base address of executable file;

o AT_ENTRY - Entry point of program ;

o AT_BASE - Base address of dynamic loader;

e AT_SYSINFO_EHDR - Base address of the VDSO li-

brary.

When application is launching, the control is first passed
to the entry point of the dynamic loader. The loader per-
forms dynamic linking of the executable file launched and
libraries loaded as its dependencies and then passes con-
trol to the address specified in the AT_ENTRY vector.
AT_SYSINFO_PHDR vector is used by libc library to perform
a system call.

Every component of dynamically linked application can be
loaded at (almost) random address which differs from the one
recorded in the file header. However, in any case the following
conditions are met:

o For every loaded component, hypervisor can obtain the

effective address where the component is located in

virtual memory before the control is passed to that
component or before that component is accessed by
someone else (e.g., by dynamic loader which should at
least read header of loaded file during dynamic linking
process). Thus, hypervisor can verify component integrity
before the component is used by other parts of trusted
application.

Every file is stored in the address space continuously,
so if a file is loaded at the address different from the
one specified in its header, hypervisor just have to shift
registration data for this file, without a need to recalculate
it.

Thus, hypervisor is still able to protect application address
space, but for every application component it should calculate
an effective address where the component is loaded. For
executable files, dynamic interpreter and VDSO library such
addresses can be obtained from AT_PHDR, AT_BASE and
AT_SYSINFO_EHDR vectors respectively. For other libraries,
the effective address is a result of the mmap() system call.

After calculation of real address value, hypervisor adjusts
registration data for the trusted process by updating the MIT
table which stores mapping between addresses of every page
of trusted process and hash codes. For every component, such
an update is performed as soon as component virtual address
becomes known. For shared libraries, this happens after return
from the mmap() system call (for libraries specified directly
as ELF file dependencies — during application start up, for
libraries loaded using dlopen() function — when loading a
library during application work). For other components the
update happens at the moment of application start up (more
particular — after return from the execv() system call).

Information about real location of application components
is obtained from the Linux kernel, which is untrusted in our
threat model. However, if kernel provides hypervisor with
wrong information (that is, real address values differ from
the one reported by kernel), this will be detected as soon as
some part of application will try to access a page with wrong
data. In this case, expected hash sum for the page will differ
from the observed one and the attack will be reported. Thus,
it is impossible for the kernel to substitute some part of the
application without being noticed.

It is important to note that similar to hypervisor, dynamic
loader during the linking process uses information obtained
from the kernel. Protection system should guarantee that the
loader uses the same data as the hypervisor itself — otherwise
the resulting application image in memory can differ from
hypervisor expectations. Thus, we should guarantee that hy-
pervisor and dynamic loader use the same values of auxiliary
vectors. But these vectors are located in the application stack
which is monitored by our protection system and whose
integrity is guaranteed. Thus, hypervisor is able to control
that the loader itself (1d-linux.so) and application components
(executable and libraries) are consistent and match registration
data.

Thus, protection of stack, code segment and process data
automatically guarantees protection of PLT and GOT tables,

22

as well as ELF auxiliary vectors.

In order to prevent execution of unauthorized code, hypervi-
sor uses one more feature of modern hardware architectures,
namely NX (No eXecute) bit. If a process tries to execute
instruction from a page marked with this bit, a page fault
exception is thrown. Hypervisor sets NX bit in the NPT for all
pages of a trusted process except those that contain executable
code authorized by means of registration data. If a trusted
process attempts to execute a code from a NX page, a page
fault exception is thrown. In case of page fault, hypervisor
checks error code and if the fault was caused by attempt of
launching some instruction, then the process is considered to
be compromised and protection system deprives this process
of privileged rights, so it is not trusted any more.

E. Protecting MultiThread Applications

In addition to dynamically linked programs, nowadays many
applications use multithread paradigm, when program consists
of several threads which work in parallel in the same address
space. In Linux, threads are created using clone() system call
with CLONE_V M flag.

All threads of the same process have the same page tables.
For such threads, hypervisor also uses the same nested page
tables and the control MIT table. It is important that in our
system a virtual machine where the trusted processes work
has only one CPU core available, so at any time point only
one thread can really execute CPU instructions. Thus, when
considering address space access, we can safely ignore the
fact that the process is divided on several threads. In a single-
core system, it does not matter if the access is performed
from mono-thread trusted process or from some thread of
multithread trusted process. In addition, absence of ‘“real”
parallelism allows us not to care about synchronization of
thread access to nested page tables or MITs.

However, every process thread in Linux can have its own
address space to store data unique to particular thread. This
storage (called thread local storage) is created automati-
cally by compiler for variables that have __thread specifier,
or can be created at runtime by means of functions like
set_thread_area().

Thread local storage is implemented completely on the
software layer by compiler, libc library and Linux kernel. For
every thread, a separate memory area is allocated to store
thread-specific data. Since all this memory areas are allocated
inside process address space (common for all threads), every
thread can potentially access a local storage of any other
thread.

Thread local storage is located in a separate segment man-
aged by the GS register which is set to different values for
different threads when thread-local data is accessed. In order
to control integrity of thread local data, the memory protection
system should monitor GS register value and corresponding
record in the segment table. These values can be monitored
in the same way as other resources and processor registers, so
protection of multithread applications fits well the approach
used in our protection system.

IV. IMPLEMENTATION

The approach suggested in this paper was implemented on
the basis of KVM (Kernel-based Virtual Machine) hypervisor
which is included in the Linux kernel. KVM itself is a kernel
module which adds hypervisor functionality to the Linux ker-
nel. KVM requires QEMU application to manage and emulate
different virtual machine resources and devices (keyboard,
network card, etc.). In our work, we use KVM version 88,
kernel 2.6.31.6 and QEMU 0.13.0. Virtual machines with
trusted applications are run under Fedora Linux 13 with the
same kernel (2.6.31.6). Currently our implementation supports
virtualization of 32-bit systems on AMD platform. For the
experiments described below, we have used AMD Phenom
9750 Quad-Core Processor which has four 2.4MHz cores.
The host machine had 4GB RAM, and virtual machine was
configured with 512MB RAM. It is important to note that it
is not necessary to load hypervisor when the machine starts;
we have investigated possibility of on-demand activation of
protection system [16]. Such on-demand activation (which
involves launching hypervisor from running OS, creation of
a virtual machine and placing the OS inside this machine) is
possible, though requires special hardware (Trusted Platform
Module, TPM).

To automate generation of registration data for trusted
processes, we provide a tool named ElfHash that processes
executable file which will be launched and its DT_NEEDED
dependencies. We suppose that the system where the regis-
tration data is generated provides trusted versions of libraries
used by dynamically linked application. On the basis of such
assumption, the ElfHash tool analyzes system libraries that
satisfy application dependencies and create registration data
for them. Alternatively, user can provide the tool with his
own versions of such libraries. In additional, user can specify
libraries not mentioned in file dependencies but that can be
loaded at runtime using libdl functionality. Finally, we provide
registration data for the dynamic loader itself. The data is
generated using VDSO implementation which is considered
to be trusted.

A. Attack Detection

In order to evaluate if the protection system works as
expected, we have emulated two kinds of attacks on trusted
processes: modification of application files on disk and mod-
ification of trusted code in memory. For our experiments, we
have used the SSH tool which was establishing connection
from the virtual machine to some remote host. Network
card was considered to be a protected system resource, so
only trusted applications were allowed to access it. Operating
system itself was not aware of network card.

When emulating attacks concerning application file modifi-
cations, we have investigated behavior of the protection system
in the following cases:

o SSH executable differs from the one registered in the
protection system;

23

o one of the libraries from ELF DT_NEEDED dependen-
cies differs from the one used to register SSH in the
protection system;

o one of the libraries loaded by SSH using dlopen() differs
from the one registered in the protection system.

In the first two cases, the protection system reported the
attack attempt during application startup. In the third situation,
attack attempt was reported at the moment of dlopen() call. In
all cases, access to network card was denied and connection
to remote host was not established.

In addition, we have checked situations when library is
loaded which is not present in registration data. The library
can either be loaded by the process itself or pre-loaded if user
sets LD_PRELOAD variable. In such situations, the protection
system also reported attack attempt, as expected.

To emulate attacks concerning modification of the code of
a running process, we have used techniques based on the
ptrace() system call. In particular, we have used the PreZ
tool [17] which attaches to running process and creates its own
thread inside it. This thread opens a port for TCP connections
and spawns a shell for every incoming connection. The shell
can then be used by remote party to perform different actions
on the machine with privileges of the infected process.

During our experiments, the protection system has success-
fully detected all code injection attempts and blocked access
to the network card for the SSH process.

B. Performance

In order to estimate delays introduced by the protection
system, we have compared performance of two applications
— Apache web server and SSH client — in the following cases:

« applications are launched on bare hardware;
applications are launched inside virtual machine without
protection systems;

applications are launched inside virtual machine with
protection system controlling their address space.

In order to measure Apache performance, we have used
the Flood load tester (a part of the Apache project). Number
of processes launched by Apache to serve the requests (that
is, number of trusted processes) was limited to ten. In case
of SSH, we have used the SCP utility to copy large (four
gigabytes) file through network. There was only one trusted
process in this experiment.

Since our protection system assumes that only one processor
core is assigned to virtual machine, in our experiments we
were using a single core in all cases. Measurement results
are presented at Fig.1. We have normalized the results and
assigned 100 units to performance on the bare hardware, so it
is easy to compare the measurements.

As one can see, in case of Apache performance loss is
almost unnoticeable, while for SSH it is much more higher.
This is probably caused by the fact that during the experiment
Apache was receiving simple requests and their processing
did not require much memory, while copying file with SSH
involved encryption of large amount of data which led to
significant usage of memory by trusted process. In addition,

152

124
101 104 2
100 100 [] Bare hardware
Usual VM
[] Protection system
Apache SCP
Fig. 1. Protection system performance

when dealing with large data transferring through network, a
significant delay is introduced by emulation software by itself.
Nevertheless, even for SSH performance loss is acceptable if
sender wants to protect the data from potentially compromised
OS.

V. CONCLUSION

In this paper, we have presented a novel approach for pro-
tecting applications running inside potentially compromised
operating system. The approach is based on using virtual ma-
chine monitor (hypervisor) which tracks all events inside OS
and prevents unallowed modifications of application resources.

Unlike other hypervisor-based protection techniques, our
approach does not lead to isolation of application from other
OS components. Hypervisor’s functionality is flexible and
can be adjusted to control usage of any particular hardware
resources, so only trusted applications have access to them.
For example, application of our protection system to control
usage of network connection is described in [18]. Finally, the
approach can be extended in order to protect all application
files, not only executables and libraries. This will require
interception of direct file input/output (using read()/write()
system calls) in addition to mmap() manipulations and storing
hash codes for all files used by application. We believe that it
is not hard to extend our approach in this way, though such
improvements can introduce significant performance drop.

The approach does not require any modifications in op-
erating system or applications, but relies on several aspects
of hardware-assisted virtualization implemented in Intel and
AMD x86 processors. In order to implement the approach,
there is no need to develop a hypervisor from scratch. In-
stead, one can extend existing products such as KVM or
Xen. Our KVM-based implementation has demonstrated that
performance overhead introduced by the protection system is
acceptable, so we believe that the approach is viable and can
be applied in those areas where information security is the
primary goal.

REFERENCES

[1] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” ACM Trans. Comput. Syst., vol. 23,
no. 1, pp. 77-110, 2005.

24

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

[18]

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical
study of operating system errors,” in SOSP, 2001, pp. 73-88.

G. Kroah-Hartman, “How linux supports more devices than any other
os, ever,” O’Reilly Media Interview, Oct. 2008. [Online]. Available: http:
//broadcast.oreilly.com/2008/10/how-linux-supports-more-device.html
A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make
operating systems reliable and secure?” Computer, vol. 39, pp. 44-51,
May 2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1137232.1137291

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” SIGOPS Oper.
Syst. Rev., vol. 37, pp. 193-206, October 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945464

R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: making
trust between applications and operating systems configurable,”
in Proceedings of the 7th symposium on Operating systems
design and implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 279-292. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1298455.1298482

J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in Proceedings of the 14th ACM
conference on Computer and communications security, ser. CCS *07.
New York, NY, USA: ACM, 2007, pp. 389—400. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315294

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,”
SIGARCH Comput. Archit. News, vol. 33, pp. 2-13, May 2005.
[Online]. Available: http://doi.acm.org/10.1145/1080695.1069971

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 2-13, March
2008. [Online]. Available: http://doi.acm.org/10.1145/1353535.1346284
J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ser. VEE "08. New York, NY, USA: ACM, 2008, pp. 71—
80. [Online]. Available: http://doi.acm.org/10.1145/1346256.1346267
Oracle vm virtualbox. [Online]. Available: http://www.oracle.com/us/
technologies/virtualization/oraclevim/061976.html

J. Fisher-Ogden. (2006) Hardware support for efficient virtual-
ization. [Online]. Available: http://www.cse.ucsd.edu/~jfisherogden/
hardwareVirt.pdf

R. Krishnakumar, “Hugetlb - large page support in the linux
kernel.” Linux Gazette, vol. 155, Feb. 2008. [Online]. Available:
http://linuxgazette.net/155/krishnakumar.html

J. Petersson, “What is linux-gate.so.1?” Aug. 2005. [Online]. Available:
http://www.trilithium.com/johan/2005/08/linux- gate/

M. Garg, “About elf auxiliary vectors.” 2006. [Online]. Available:
http://articles.manugarg.com/aboutelfauxiliaryvectors.html

D. Yefremov and P. Iakovenko, “An approach to on-demand
activation and deactivation of virtualization-based security systems,”
in Proceedings of the fourth Spring/Summer Young Researchers’
Colloguium on Software Engineering (SYRCoSE 2010), 2010, pp. 157-
161. [Online]. Available: http://syrcose.ispras.ru/2010/files/syrcose10_
submission_5.pdf

F. Loukos. (2010) Injecting code at a running process. [Online].
Available: http://fotis.loukos.me/blog/?p=145

I. Burdonov, A. Kosachev, and P. Iakovenko, ‘“Virtualization-based
separation of privilege: working with sensitive data in untrusted
environment,” in Proceedings of the Ist EuroSys Workshop on
Virtualization Technology for Dependable Systems, ser. VDTS ’09.
New York, NY, USA: ACM, 2009, pp. 1-6. [Online]. Available:
http://doi.acm.org/10.1145/1518684.1518685

Background Optimization in Full System Binary
Translation

Roman A. Sokolov
MCST CJSC
Moscow, Russia
Email: roman.a.sokolov@gmail.com

Abstract—Binary translation and dynamic optimization are
widely used to provide compatibility between legacy and promis-
ing upcoming architectures on the level of executable binary
codes. Dynamic optimization is one of the key contributors to
dynamic binary translation system performance. At the same
time it can be a major source of overhead, both in terms of
CPU cycles and whole system latency, as long as optimization
time is included in the execution time of the application under
translation. One of the solutions that allow to eliminate dynamic
optimization overhead is to perform optimization simultaneously
with the execution, in a separate thread. In the paper we present
implementation of this technique in full system dynamic binary
translator. For this purpose, an infrastructure for multithreaded
execution was implemented in binary translation system. This
allowed running dynamic optimization in a separate thread
independently of and concurrently with the main thread of
execution of binary codes under translation. Depending on the
computational resources available, this is achieved whether by
interleaving the two threads on a single processor core or by
moving optimization thread to an underutilized processor core.
In the first case the latency introduced to the system by a
computational intensive dynamic optimization is reduced. In the
second case overlapping of execution and optimization threads
also results in elimination of optimization time from the total
execution time of original binary codes.

I. INTRODUCTION

Technologies of binary translation and dynamic optimiza-
tion are widely used in modern software and hardware com-
puting systems [1]. In particular, dynamic binary translation
systems (DBTS) comprising the two serve as a solution to
provide compatibility between widely used legacy and promis-
ing upcoming architectures on the level of executable binary
codes. In the context of binary translation these architectures
are usually referred to as source and target, correspondingly.

DBTSs execute binary codes of source architecture on
top of instruction set (ISA) incompatible target architecture
hardware. They perform translation of executable codes incre-
mentally (as opposed to whole application static compilation)
interleaving it with execution of generated translated codes.
One of the key requirements that every DBTS has to meet
is that the performance of execution of source codes through
binary translation is to be comparable or even outperform the
performance of native execution (when executing them on top
of source architecture hardware).

Optimizing translator is usually employed to achieve higher
DBTS performance. It allows to generate highly efficient target

25

Alexander V. Ermolovich
Intel CJSC
Moscow, Russia
Email: karbo@pvk13.org

architecture codes fully utilizing all architectural features
introduced to support binary translation. Besides, dynamic
optimization can benefit from utilization of actual information
about executables behavior which static compilers usually
don’t possess.

At the same time dynamic optimization can imply sig-
nificant overhead as long as optimization time is included
in the execution time of application under translation. Total
optimization time can be significant but will not necessarily
be compensated by the translated codes speed-up if application
run time is too short.

Also, the operation of optimizing translator can worsen the
latency (i.e., increase pause time) of interactive application or
operating system under translation. By latency is meant the
time of response of computer system to external events such
as asynchronous hardware interrupts from attached I/O devices
and interfaces. This characteristic of a computer system is as
important for the end user, operation of hardware attached or
other computers across network as its overall performance.
Full system dynamic binary translators have to provide low
latency of operation as well. Binary translation systems of
this class target to implement all the semantics and behavior
model of source architecture and execute the entire hierar-
chy of system-level and application-level software including
BIOS and operating systems. They exclusively control all the
computer system hardware and operation. Throughout this
paper we will also refer this type of binary translation systems
as virtual machine level (or VM-level) binary translators (as
opposed to application-level binary translators).

One recognized technique to reduce dynamic optimization
overhead is to perform optimization simultaneously (con-
currently) with the execution of original binary codes by
utilizing unemployed computational resources or free cycles.
It was utilized in a number of dynamic binary translation and
optimization systems [2], [3], [4], [5], [6], [7], [8]. We will
refer this method as background optimization (as opposed to
consequent optimization, when optimizing translation inter-
rupts execution and utilizes processor time exclusively unless
it completes).

The paper describes implementation of background opti-
mization in a VM-level dynamic binary translation system.
This is achieved by separating of optimizing translation from
execution flow into an independent thread which can then con-

currently share available processing resources with execution
thread. Backgrounding is implemented whether by interleaving
the two threads in case of a single-core (single processor)
system or by moving optimization thread to an unemployed
processor core in case of a dual-core (dual processor) system.
In the first case the latency introduced to the system by
the “heavy” phase of optimizing translation is reduced. In
the second case, overlapping of execution and optimization
threads also eliminates the time spent in dynamic optimization
phase from the total run time of the original application under
translation.

The specific contributions of this work are as follows:

« implementation of multithreaded infrastructure in a VM-
level dynamic binary translation system;

single processor system targeted implementation of back-
ground optimization technique where processor time shar-
ing is implemented by interleaving optimizing translation
with execution of original binary codes;

dual processor system targeted implementation of back-
ground optimization technique where optimizing trans-
lation is being completely offloaded onto underutilized
processor core.

The solutions described in the paper were implemented
in the VM-level dynamic binary translation system Llntel,
which provides full system-level binary compatibility with
Intel IA-32 architecture on top of Elbrus architecture [9], [10]
hardware.

II. LINTEL

Elbrus is a VLIW (Very Long Instruction Word) micropro-
cessor architecture. It has several special features including
hardware support for full compatibility with IA-32 architecture
on the basis of transparent dynamic binary translation.

Llntel is a dynamic binary translation system developed for
high performance emulation of Intel IA-32 architecture sys-
tem through dynamic translation of source IA-32 instructions
into wide instructions of target Elbrus architecture (the two
architectures are ISA-incompatible). It provides full system-
level compatibility meaning that it is capable of translating
the entire hierarchy of source architecture software (including
BIOS, operating systems and applications) transparently for
the end user (Fig. 1). As is noted above, Llntel is a co-
designed system (developed along with the architecture, with
hardware assistance in mind) and heavily utilizes all the
features of architecture introduced to support efficient 1A-32
compatibility.

In its general structure Llntel is similar to many other binary
translation and optimization systems described before [11],
[12], [13] and is very close to Transmeta’s Code Morphing
Software [14], [15]. As any other VM-level binary translation
system, it has to solve the problem of efficient sharing of
computational resources between translation and execution of
original binary codes.

26

Elbrus CPU
(IA-32 incompatible)

VM-level dynamic binary translation
system Lintel

IA-32 BIOS, OS, drivers
and libraries

IA-32 applications

',— translated codes
and profiling
Optimizing region
translation

Fig. 1. VM-level dynamic binary translation system LIntel.
Adaptive
1A-32 binaries - — — — — — — — — — _ _ retranslation
N\

| ! vt

|

l‘> Interpretation Non-optimizing trace

| ili i >)

| and profiling translation T D G

| execution of

|

|

Fig. 2. Adaptive binary translation.

A. Adaptive binary translation

LlIntel follows adaptive, profile-directed model of translation
and execution of binary codes (Fig. 2). It includes four levels
of translation and optimization varying by the efficiency of the
resulting Elbrus code and the overhead implied, namely: inter-
preter, non-optimizing translator of traces and two optimizing
translators of regions. LIntel performs dynamic profiling to
identify hot regions of source code and to apply reasonable
level of optimization depending on executable codes behavior.
Translation cache is employed to store and reuse generated
translations throughout execution. Run-time support system
controls the overall binary translation and execution process.

When the system starts, interpreter is used to carefully
decode and execute [A-32 instructions sequentially, with at-
tention to memory access ordering and precise exception
handling. Non-optimizing translation is launched if execution
counter of a particular basic block exceeds specified threshold.

Non-optimizing translator builds a trace which is a seman-
tically accurate mapping of one or several contiguous basic
blocks (following one path of control) into the target code. The
building blocks for the trace are templates of the corresponding
IA-32 instructions, where template is a manually scheduled
sequence of Elbrus wide instructions. After code generation
and additional corrections like actual constants and address
values patching the trace is then stored into the translation

Cycles per one source | Translated code
instruction translation performance
Non-optimizing translation 1600 0.18
OO0 optimization 30000 0.58
O1 optimization 1000000 1.0

Fig. 3. Average translation overhead per one IA-32 instruction and the
performance of translated codes (normalized to Ol).

cache. Trace translator produces native code without complex
optimizations and focuses more on fast translation generation
rather than code efficiency. It improves start-up time signifi-
cantly as compared to interpretation. At the same time non-
optimizing translation is only reasonable for executable codes
with low repetition rate.

Traces are instrumented to profile hot code for OO-level
optimizing translation. The unit of optimizing translation is
a region. In contrast to traces, regions can combine basic
blocks from multiple paths of control providing better oppor-
tunities for optimization and speculative execution (which is
an important source of instruction level parallelism for VLIW
processors).

OO0-level translator is a fast region-based optimizer that
performs basic optimizations implying low computation cost,
including peephole, dead-code elimination, constant propaga-
tion, code motion, redundant load elimination, superblock if-
conversion and scheduling.

Strong Ol-level region-based optimizer is on the highest
level of the system. The power of this level is comparable
with high-level language optimizing compilers!. It applies
advanced optimizations such as software pipelining, global
scheduling, hyperblock if-conversion and many others, as well
as utilizes all the architectural features introduced to support
binary optimization and execution of optimized translations.

Region translations are stored in the translation cache as
well. Profiling of regions for Ol-level optimization is carried
out by OO-level translations.

Optimized translations not always result in performance
improvement. Unproven optimization time assumptions can
cause execution penalty. These include incorrect speculative
optimizations, memory mapped I/O access in optimized code
(where I/0O access is not guaranteed to be consistent due to
memory operations merge and reordering), etc. Correctness
of optimizations is controlled by the hardware at runtime.
Upon detecting a failure, retranslation of the region is launched
applying more conservative assumptions depending on failure
type.

Fig. 3 compares average translation cost of one IA-32 in-
struction and the performance of translated codes for different
levels of optimization. Adaptivity aims at choosing appropriate
level of optimization throughout the translation and execution
process to maintain overhead/performance balance.

Fig. 4 shows translation and execution time distribution for
SPEC2000 tests running under Linux (operating system is

'In fact, O0/O1 notation of Llntel’s binary optimizers corresponds to
conventional 02/03-0O4 optimization levels of language compilers.

27

Other B
Optimization (O0+O1) m—

Non-optimized code
00 code ——
O1 code &XXxx3

100%
90% %% oo oY S
< (XY RKS o2 %
O o%e% PO R KX KR XY 1KY R
80% 8 e 55 35S E:E: :é::: %% 5% RS R ?53:
B K 9500l 939 1554 R RS & KX IR 1]
70% P85 PRI AL [R5 RS R 183 K- Kesed]
R K %o 0% 1554 15381 8591 1533 keesd] K]
R K55 b B3 S5 1554 KRG 55 KR R R [
60% KXk B 588 KRR R K41
BRI 1KY [SoSotfl to%e! KK KX KR KX K5 kel [
R PR KK [R KRG KRR RS 18K RN K]
50% FBRY-KEI+ RIS S R B 18333 KBRS -e5d
B3R K | (0305 [l o%e% (X3 155 1R 1% K 1] ksl
KX K Qoo %% 1R 1R KRS KXH K R3] 1S
40% - BRY B 1 KB R8RS
XA XX K] 1 [PRXY PR TR KK B KKl
R K PAXY XS S 1R 1R KA RIS RRK] RS
R [RS d KK 15 RS KRS RS TS KR B3R Kesed]
30% |GG 4RI 1R 53 TR IR IR R BKI K]
RIX] R BRI RS S K5 K] RRH IRRI KR ke
B3 [RRS 0500l 039 (554 RS RS [KXK] IR K5
R3] 3 b R 1K, 1Y 14 KRS XX KRR K9] 1K)
20% BB 0305 #%0% 5 B R R R8RS’
R P& BN (RS [RI R TR IRKY S B KKK
10% [45 K5 S BB BRI B R
e oo I 0303 W %% a2) 1525 KR KK KRN [e P
0% i %% s %% 6% 1 XX
e I lo Lo Lo p p e I P> Lo o Lo ~r
o L, S T e Ty Yy
% 2 Yon %%, S5, %o, % T, Y, %, 4,
D gy D Y, By, S, G, G Ly
e <+ %5, ') (%4 (3
(]
Fig. 4. Profile of binary translation in case of consecutive dynamic
optimization.

being translated as well). While translated codes are executed
most of the tests’ runtime, optimizing translation overhead is
significant and equals to 7% on average.

B. Asynchronous interrupts handling

One of the run-time support system functions is to handle in-
coming external (aka asynchronous) interrupts. The method of
delayed interrupt handling allows to improve the performance
of binary translated code execution and interrupt handling
by specifying exactly where and when a pending interrupt
can be handled. When interrupt occurs, interrupt handler only
remembers this fact by setting corresponding bit in the proces-
sor state register and returns to execution. Interpreter checks
for pending interrupts before next instruction execution. Due
to efficiency reasons, non-optimized traces only include such
checks in the beginning of basic blocks. Optimizing translators
inject special instructions in particular places of a region code
(where execution context is guaranteed to be consistent) that
check for pending interrupts and force execution flow to leave
region and switch to interrupt handler if needed.

This method of pending interrupt checks arrangement sim-
plifies planning and scheduling of translated codes as there
is no need to care about correct execution termination and
context recovery at arbitrary moments of time. At the same
time it allows Llntel to respond reactively enough to external
events.

The bottleneck in this scenario is the presence of optimizing
translation phase. If an interrupt occurs when optimization is
in progress, it has to wait for optimization phase completion
to be handled (Fig. 5). Due to computational complexity of
optimizations employed, optimizing translation can consume
significant amount of processor time and as such, the delay of
response of the system to an external event can be noticeable
(see evaluation in Section III-B).

III. BACKGROUND OPTIMIZATION

To overcome the problems of performance overhead and
latency caused by optimizing translation, the method of back-

Start of optimization
|
|

| Interrupt |

End of optimization

! (Execution

Interrupt
delivery

Execution

New hot region

- . Interrupt delivery delay
acquired

(latency)

Fig. 5. Asynchronous interrupt delivery delay (latency) due to optimizing
translation.

ground optimization was employed in Llntel.

The concept of background optimization implies perform-
ing optimizing translation phase concurrently (or pseudo-
concurrently) with the main binary translation flow of ex-
ecution of original binary codes. Application-level binary
translators usually implement this by utilizing native operating
system’s multithreading interface and scheduling service to
perform optimization in a separate thread. VM-level binary
translation systems require internal implementation of multi-
threading to support background optimization.

In this section we describe implementation of background
optimization in the VM-level DBTS LlIntel. Two cases are
considered: in the first case LIntel operates on top of a single-
core target platform system; in the second case there are two
cores available for utilization.

SPEC2000 tests are used to demonstrate the effect of
background optimization implementation.

A. Execution and optimization threads

A multithreaded execution infrastructure was implemented
in LIntel, with optimizing translation capable of running inde-
pendently in a separate thread, which enabled execution and
optimization threads concurrency. Execution thread activity
includes the entire process of translation and execution of
original binary codes, except for optimizing translation (of
both OO0 and O1 levels), i.e.: interpretation, non-optimizing
translation, run-time support and execution itself. Optimizing
translator is run in a separate optimization thread when new
region of hot code is identified by the execution thread. When
optimization phase completes, generated translation of the
region is returned to the execution thread, which places it into
the translation cache.

During the region optimization phase corresponding orig-
inal codes are being executed either by interpretation or by
previously translated codes of lower levels of optimization.
Selection of new hot regions for optimization will not be
launched unless current optimization activity completes.

By the end of optimization, memory pages that contain
a source code of the region under optimization can get
invalidated (due to DMA, self-modification, etc.). As such,
before placing optimized translation of the region into the
translation cache, execution thread must check region’s source
code consistency and reject the region if verification fails.
This routine is assisted by the memory protection monitoring

28

Start of optimization Optimization End of optimization

Execution
Execution / f \ Execution
) Interrupt Interrupt
New hot region Interrupt Interrupt
acquired delivery delivery
Fig. 6. Asynchronous interrupt delivery in case of interleaved background

optimization.

. Interleaved
Consecutive
o (background)
optimization e
optimization
O1 phase mean time 1.54s 3s
O1 phase max time, To1 max 8.8s 29.5s
interrupt delivery mean time
. T 54 ps
with no optimization in progress
interrupt delivery max time
(with O1 phase in progress) 885 (To_max) 1.7ms

Fig. 7. Interrupt delivery time (CPU frequency = 300 MHz; thread time slice
= 50000 cycles). Ol-level optimization time is used as a reference as this
phase consumes a greater number of processor cycles per source instruction
as compared to O0-level optimization.

subsystem (introduced in the Elbrus hardware to support
binary translation [16]) which controls source and translated
(as well as translations-in-progress) codes coherency.
Separation of execution and optimization threads allows to
schedule them across available processing resources in the
same way as multitasking operating systems schedule pro-
cesses and threads. By now, two simple strategies of processor
time sharing were implemented in Llntel enabling optimiza-
tion backgrounding for single-core and dual-core systems.

B. Background optimization in a single-core system

In case of a single-core system background optimization
is implemented by interleaving of execution and optimization
threads. Throughout optimizing translation of a hot region
processor switches between the two threads. Scheduling is trig-
gered by interrupts from internal binary translation dedicated
timer “invisible” for executable codes under translation. Each
thread is assigned a fixed time slice. When execution thread is
active, incoming external interrupt has a chance to be handled
without having to wait for region optimization to complete
(Fig. 6). If there are no hot regions pending for optimization,
execution thread fully utilizes the processor core.

To demonstrate single-core background optimization ap-
proach, a simple strategy of processor time sharing was chosen
when both threads have equal priority, with equal time slices
assigned (meaning that optimization thread’s processor utiliza-
tion is 50%, in contrast to 100% utilization when optimizing
consequently). As seen from Fig. 7, interleaving of execution
and optimization improves interrupt delivery time significantly.

At the same time, as Fig. 8 demonstrates, this approach tend

4% T T T T T T T T T T T T T T

2% 2.8%
1.8 ‘
o i
2% 1%
-2.6%
0,
4% e — =
'6%1 =367 6.1%
-8%
-10%
-10.5%10.7%
-12%
-14%
-16% “15.5%
-18% 17:4%
e
b sl lp Lol Oy Op be Il Lo do Lo <
5%, %, 0, e 7 e Y
% O Lo o % Sty 0 Ty, o, e U, 0, 0,
0 % . @, *Oz,?. ey 5‘»@0 % '9\)0, 5,
S v
Fig. 8. Binary translation slow-down when interleaving optimization with

execution (as compared to consecutive optimization).

to degrade binary translation performance.

Degradation can be explained by the fact that hot region
optimization phase now lasts longer. As a result, optimized
translations injection into execution is being delayed, mean-
while source binary codes are being executed non-optimized
(or interpreted). Additional overhead comes with context
switching routines.

Basically, single-core background optimization implemen-
tation is not of high priority currently. At the same time
we believe that it is possible to improve its efficiency by
tuning various parameters like execution and optimization
threads’ time slices and profiling thresholds to achieve earlier
injection of optimized translations into execution process while
keeping whole system latency acceptable. Besides, 1A-32
“halt” instruction can be used as a hint to utilize free cycles
and yield processor to optimization thread before the end of
execution thread’s time slice. Extensive study of execution and
optimization threads’ processor time utilization was made in
[17].

C. Background optimization in a dual-core system

In a dual-core system LlIntel completely utilizes the second
(unemployed otherwise) processor core to perform dynamic
optimization in a background thread. In this case execution
thread exclusively utilizes its own core and only interrupts
execution to acquire next region for optimization and allocate
generated translation when optimization completes.

As Fig. 10 demonstrates, overlapping of execution and
optimization by moving optimization thread onto a separate
core not only eliminates the problem of latency, but also
increases overall binary translation system performance.

The resulting speed-up (6% on average) agrees good enough
with dynamic optimization overhead estimated for the case of
consecutive optimization (see Section II-A).

D. Discussion and future works

As noted above, selection of hot regions in execution thread
gets blocked unless optimization phase completes. However,

29

Core 2
- Optimizing translation
of region

Sy

Acquire new Allocate region translatio
hot region in translation cache
Core 1
- Execution

- Run-time support
- Interpreter and non-opt. translation

Fig. 9. Utilization of a separate processor core for dynamic optimization.
— T
14% 13.29
12%
10% 8:7%
" =—7.7% - 710
o —
o b 055% 5
4.5% 4.2%
4% 3.0%
o/ L. 1.19%
2 A’ TOA% 0.5%
0% ’—‘ | —
-2%
S S T S S S S S
o Oa lp lp Lol Sp On le I L dp. Lp Lo <
5%, 5, 0,0, B, R, Y Yy,
% On Yon o0 % SO 0 T, Qo “r U, o, % U,
» MG @&0 /éi‘ 0‘"{,} “% C}‘Go K (?‘}O' 49(){
(s}

Fig. 10. Binary translation speed-up when optimizing on a separate processor
core (as compared to consecutive optimization).

profile counters continue to grow, and by the end of optimiza-
tion there may be several nonoverlapping regions in the profile
graph with counters exceeding threshold. As counters are
checked during execution of corresponding translated codes,
next optimizing translation will be launched for the first region
executed. Not necessarily will this region be the hottest one.
As such, a problem of suboptimal hot region selection arises
which also needs to be addressed (profile graph traversal can
be quite time-consuming and is not an option).

The profile of binary translation for SPEC2000 tests (Fig.
4) suggests that current optimization workload is not enough
to fully utilize optimization thread affiliated processor core,
which will run idle most of the application run time. To im-
prove its utilization ratio, optimizing translator can be forced
to activate more often. This can be achieved by dynamically
decreasing of hot region profiling threshold depending on
current load of the core affiliated with optimizing translator.
When execution activity is naturally low, this core should be
halted due to energy efficiency reasons.

This is reasonable to ask why not utilize unemployed
processor core to execute source binary codes. In other words,
if there are more than one target architecture microprocessor
core in the system, source architecture system software (e.g.

operating system) could “’see” and utilize the same number
of cores. Current Elbrus architecture implementation (used in
this paper) does not satisfy IA-32 architecture requirements
concerning organization of multiprocessor systems. As a re-
sult, IA-32 multiprocessor support is not possible on top of
Elbrus hardware. But we hope to implement this scenario
in the future. Still, we believe that having processor cores
solely utilized for dynamic optimization is reasonable due to
a following:

o different classes of software (legacy software, software
for embedded systems, etc.), not always developed with
multiprocessing or multithreading in mind, can benefit
from multicore or multiprocessor systems when being
executed through binary translation with background op-
timization option;

¢ keeping in mind the tendency towards ever increasing
number of cores per chip, it seems reasonable to uti-
lize some cores to improve dynamic binary translation
system performance; not only optimizing translator can
consume this resources; other jobs that could also be
performed asynchronously include identification and se-
lection of code regions for optimization [18], software
code prefetching [19], persistent translated code storage
access [20] 2, etc.

Finally, we think that a promising direction for future
research and development is building a binary translation
infrastructure that could support unrestricted number of exe-
cution (in terms of source architecture virtual machine; so that
operating system under translation could ”see” more than one
processor core), optimization and other threads and schedule
them efficiently across the available computational resources
depending on their quantity, load and binary codes execution
behavior.

IV. CONCLUSION

The paper addresses the problem of optimization overhead
in dynamic binary translation systems and presents the appli-
cation of background optimization technique in full system
dynamic binary translator LIntel. Implementations for single-
core and dual-core systems are considered. In the first case
backgrounding is implemented by interleaving execution and
optimization, while in the second case dynamic optimization
is completely moved onto a separate processor core. In both
cases background optimization solves the problem of high
latency caused by dynamic optimization which is particularly
important for full system execution environment. Performing
optimization on a separate core also eliminates optimization
overhead from the application run time thus improving binary
translation system performance in general.

2 Asynchronous access to a persistent code storage (aka CodeBase) has
already been implemented in Llntel by the moment but is not covered
in this paper as we only consider the effect of background optimization
implementation.

30

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

REFERENCES

J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes. Morgan Kaufmann, 2005.

S. Campanoni, G. Agosta, and S. C. Reghizzi, “ILDJIT: a parallel
dynamic compiler,” in VLSI-SoC’08: Proceedings of the 16th IFIP/IEEE
International Conference on Very Large Scale Integration, 2008, pp. 13—
15.

C. J. Krintz, D. Grove, V. Sarkar, and B. Calder, “Reducing the
overhead of dynamic compilation,” Software: Practice and Experience,
vol. Volume 31 Issue 8, pp. 717-738, 2001.

J. Mars, “Satellite optimization: The offloading of software dynamic
optimization on multicore systems (poster),” in PLDI ’07: 2007 ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2007.

P. Unnikrishnan, M. Kandemir, and F. Li, “Reducing dynamic compila-
tion overhead by overlapping compilation and execution,” in Proceed-
ings of the 11th South Pacific Design Automation Conference (ASP-DAC
’06). Piscataway, NJ, USA: IEEE Press, January 2006, pp. 929-934.
M. J. Voss and R. Eigenmann, “A framework for remote dynamic
program optimization,” in Proceedings of the ACM SIGPLAN workshop
on Dynamic and adaptive compilation and optimization, 2000, pp. 32 —
40.

W. Zhang, B. Calder, and D. M. Tullsen, “An event-driven multithreaded
dynamic optimization framework,” in Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT °05). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 87-98.

H. Guan, B. Liu, T. Li, and A. Liang, “Multithreaded optimizing
technique for dynamic binary translator CrossBit,” Computer Science
and Software Engineering, International Conference on, vol. 5, pp. 945—
952, 2008.

B. Babayan, “E2k technology and implementation,” in Euro-Par '00:
Proceedings from the 6th International Euro-Par Conference on Parallel
Processing. London, UK: Springer-Verlag, 2000, pp. 18-21.

V. Volkonskiy, “Optimizing compilers for Elbrus-2000 (E2k) architec-
ture,” in 4th Workshop on EPIC Architectures and Compiler Technology,
2005.

L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and
Y. Zemach., “IA-32 Execution Layer: a two-phase dynamic translator
designed to support IA-32 applications on Itanium-based systems,” in
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 2003, p. 191.

A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B.
Yadavalli, and J. Yates, “FX!32: A profile-directed binary translator,”
IEEE Micro, vol. 18, no. 2, pp. 56-64, 1998.

M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,
“Dynamic and transparent binary translation,” Computer, vol. 33, no. 3,
pp- 54-59, 2000.

J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing Software:
Using speculation, recovery, and adaptive retranslation to address real-
life challenges,” in Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 2003.

A. Klaiber, “The technology behind Crusoe processors,” Transmeta
Corporation, Tech. Rep., January 2000.

A. V. Ermolovich, “Methods of hardware assisted dynamic binary trans-
lation systems performance improvement,” Ph.D. dissertation, Institute
of microproccessor computing systems, Moscow, 2003.

P. Kulkarni, M. Arnold, and M. Hind, “Dynamic compilation: the bene-
fits of early investing,” in VEE '07: Proceedings of the 3rd international
conference on Virtual execution environments. New York, NY, USA:
ACM, 2007, pp. 94-104.

J. Mars and M. L. Soffa, “MATS: Multicore adaptive trace selection,”
in Proceedings of the 3rd Workshop on Software Tools for MultiCore
Systems (STMCS 2008), April 2008.

J. Mars, D. Williams, D. Upton, S. Ghosh, and K. Hazelwood, “A reac-
tive unobtrusive prefetcher for multicore and manycore architectures,”
in Proceedings of the Workshop on Software and Hardware Challenges
of Manycore Platforms (SHCMP), June 2008.

A. V. Ermolovich, “CodeBase: persistent code storage for dynamic
binary translation system preformance improvement,” Information tech-
nologies, vol. 9, pp. 14-22, 2003.

The ARTCP header structure, computation and
processing in the network subsystem of Linux kernel.

Anatoliy Sivov

Yaroslavl State University
Yaroslavl, Russia
mmO5@mail.ru

Abstract—ARTCP is a transport level communication protocol
based on TCP. It uses temporal characteristics of data flow to
control it, that allows to split algorithms of congestion avoidance
and reliable delivery. The article discusses possible ARTCP
header structure and practical aspects of forming the header and
calculation of the header fields. It demonstrates the possibility of
transparent replacement of TCP with ARTCP due to flexible
ARTCP connection setup implementation and ARTCP packets
structure compatibility with TCP. The questions of precise time
dispatching of the received packets are discussed. The Linux
kernel interfaces for time measurement are described as well as
the clock source abstraction layer and its implementation.

Networking; transport protocol; ARTCP; time measurement;
Linux kernel.

I INTRODUCTION

TCP is the most widespread transport protocol with the
reliable data delivery today. It has become the industry
standard de facto. However, this protocol is not ideal. It has at
least two big disadvantages. The first of them is that its data
flow management algorithm results in periodic network
congestion by design. It leads to unnecessary packet loss and
latency increase. The second is inefficient bandwidth use in the
unreliable physical environment (i.e. wireless networks) where
BER can be reasonably high. This disadvantage comes from
TCP impossibility to distinguish packet loss due to congestion
and packet loss due to some transmission errors.

Adaptive Rate TCP (ARTCP) is a transport protocol with
the reliable data delivery that uses some TCP principles but
tends to solve these two TCP's disadvantages. ARTCP uses
temporal characteristics of data flow in its data flow
management algorithm. It allows ARTCP to determine
bandwidth efficiently without need in periodic network
congestion. The main feature of ARTCP is a logical separation
of error correction and data flow management. Due to this
separation ARTCP is able to use bandwidth more efficiently
than TCP in unreliable environment [1]. The ideas of ARTCP
and protocol's description can be found in [1] and [2].

This article is a research-in-progress report about ARTCP
implementation in Linux kernel. It considers the following
things: transparent replacement of TCP with ARTCP,
coexistence of TCP and ARTCP, ARTCP header structure and

31

V.A. Sokolov (research supervisor)

Yaroslavl State University
Yaroslavl, Russia

processing, and computation of ARTCP header fields values in
Linux kernel.

The Linux kernel is chosen as the target platform of
ARTCP implementation for several reasons:

e Linux is an open source system. It allows to use its
source code and modify it. So, Linux allows the most
flexible implementation process it could be what is
very important while implementing protocol that is
closely associated with the existing one. It makes
implementation to be much more easy and efficient
comparing with writing the module for operating
system with closed sources.

e Linux has very good network subsystem. When
implementing transport protocol it is very desirable to
have good implementation of underlying protocols as
well as networking implementation at whole. Linux
has advantages of very good networking stack with
well-implemented layers abstraction and object-
oriented socket concept. The other advantage is a TCP
implementation modularity.

e Linux is a popular, industry-choice operating system.
Linux is the most popular operating system in the
industry comparing with the other open source
operating systems. The wish to create an
implementation of ARTCP for OS widely used in the
industry influenced on the choice among variety of
open source operating systems.

e Linux can run on various hardware platforms. Linux
has support of many hardware platforms including
x86, 1264, x64, arm, avr, mips, ppc and so on. ARTCP
implementation written hardware-independently will
be supported on all of these platforms.

II. ARTCP anxpo TCP

It is very important to have TCP working on the system
which supports ARTCP. Taking into account that ARTCP is
considered as transparent replacement of TCP the
responsibility for this lies on ARTCP implementation. It is so
because applications (or overlying protocols such as HTTP)
does not know whether they establish TCP or ARTCP
connection unlike the situation when they use the other

transport protocols (UDP or something more exotic like
SCTP).

We have chosen to support TCP on ARTCP-featured
systems in two ways. At first, operating system administrator
must have a simple capability to choose whether to use TCP or
ARTCP. This problem is solved with addition of
tcp_enable_artcp kernel parameter with possible values 0 or 1
where 0 means that ARTCP is disabled (and TCP is used) and
1 means that ARTCP is enabled (and ARTCP is used if
possible for all connections). Like any other kernel parameter
this parameter is accessible in runtime with /proc/sys/ interface.
Its value can be changed with writing 0 or 1 to
/proc/sys/net/ipvd/tcp_enable_artcp file. Also its value can
be set in /etc/sysctl.conf file in the same way as any other
kernel parameter.

Secondly, ARTCP implementation must be able to fall back
to TCP if the other end of connection does not support
ARTCP. This capability allows to have ARTCP enabled in the
TCP world. It is very useful to be able to switch to TCP in the
kernel without any packet retransmission or disturbing
overlying protocol or an application that uses ARTCP/TCP
connection but imposes ARTCP packet structure and
connection setup to be TCP-compatible. This article suggests
ARTCP header structure and connection setup that are TCP-
compatible and makes it possible to fallback to TCP at any
time of connection. Also it represents implementation of
ARTCP header processing in Linux networking subsystem and
discusses the questions of ARTCP header fields values
calculation.

III. ARTCP HEADER STRUCTURE

As mentioned above ARTCP header structure must be
TCP-compatible. Let us consider TCP header and how it is
possible to extend it to fit ARTCP needs.

TABLE L. TCP HEADER

Bit | 03 | 47 | 815 16-31
0 Source port Destination port
32 Sequence number
64 Acknowledgment number

Data Rese
96 offse Flags Window size

¢ rved

128 Checksum Urgent data pointer
160 Options (optional field)

TCP has a native support to extend header called TCP
options. TCP options are considered in [3] and succeeding
RFCs and have the following format: first byte contains option
number, second byte contains option length (in bytes including
2 bytes for number and length fields) and 0 or more bytes
(specified in the length field) contains option value. There are
only two exception for this format. Option number 0 is one
byte long. It is used to mark the end of options list. The other
exception is an option number 1 which is used for padding to

32

align other options on 32-bit boundaries. TCP header allows up
to 40 bytes to be used for options list.

ARTCP requires only two extra fields for its functionality:
PS field and TI field. Each one of them can be represented as
32 bit number. PS (Packet Sequence) field holds unique packet
sequence number (modulo 2%, of course). According to [1] this
field must be presented in every ARTCP packet with payload
data. ARTCP receiver uses this field to determine whether the
packet received is the next packet in the stream comparing with
the previous received packet. So, the value of PS field in
ARTCP is to help receiver to distinguish the packet in order
sent first time from the packet in order sent again (due to some
packet loss). Indeed data presented in TCP header are enough
to distinguish segments in order from segments out of order
using the sequence number field. However, in terms of TCP
there is no difference between the segment sent first time and
the segment sent again (due to retransmission) because both of
them share the same sequence number and there is no any
indication of retransmitted segment in TCP.

The second field, TI (Time Interval) is used by ARTCP to
compute the value of stream's duty ratio. The paper [4]
suggests to carry the time interval measured between two
consecutive moments of ARTCP packets arrival. It is
considered more useful to carry time intervals in the TI field
instead of carrying duty factor what was suggested in [1].
ARTCEP receiver puts this field in every its acknowledgment
packet (packet that has ACK flag). It is necessary to use real
(“human”) time units for time interval resolution in TI that
must not depend on hardware used by sender or receiver (i.e.
these units must not be CPU ticks or something like that). The
paper [4] suggests to use microseconds for this purpose. Time
measurement with this resolution is possible on the most of
hardware used nowadays and has a sufficient precision for the
existing problem. TI field may be represented with 32 bit
number.

Both TI and PS can take the form of TCP options in
ARTCP header. In this case they must take at least 6 bytes (8
bytes to keep the 32 bit alignment) — 1 byte for option number,
1 byte for option length and 4 bytes for option value (and 2
bytes for alignment). For today implementation PS field may
use option number 253 and TI field may use option number
254. These option numbers are chosen in conformity with
RFC 4727 [5] to use in experiments. They must be changed
later in conformity with RFC 2780 [6]. The use of TCP options
numbers 253 and 254 is regulated in RFC 3692 [7].

Summing up, ARTCP header is a valid TCP header
extended with two TCP options called PS and TI. Every
ARTCP packet with payload data as well as packet with SYN
or FIN flag contains PS field with packet sequence number in
the header. This number is one more than the number of
previous segment transmitted by the sender (excluding case of
retransmission during connection setup). Namely, if the
segment with value N in the field PS was transmitted by sender
but was not delivered (or its acknowledgment was not received
by sender) then this segment is retransmitted (with possible
repacketization) but has value N+1 (modulo 2*%) in the PS
field. Every ARTCP packet with ACK flag must contain TI
field in its header. TI field must have 0 as value if this packet is

an acknowledgment for a packet that contains in PS field value
that differs from the wvalue of previous received packet
incremented by one modulo 2°2. Otherwise, field TI must
contain calculated value of the time interval. Both fields PS
and TI are written in the network order.

IV. ARTCP HEADER PROCESSING

ARTCP shares a lot of algorithms with TCP, also ARTCP
implementation must allow fallback to TCP if one of
connection ends does not support ARTCP. So it's decided to
use existing network subsystem of Linux kernel,
implementation of Ipv4/TCP stack in particular, to implement
ARTCP.

As described above, ARTCP header differs from TCP
header with presence of PS and TI fields only. These fields are
represented in the form of TCP options so that it is necessary to
modify the code that implements TCP options reading and
writing to implement reading and writing of ARTCP header.

To form TCP options to be sent in the header Linux kernel
uses struct tcp_out_options, the structure that contains the
fields with values of different TCP options supported by
network stack of Linux and bit field options to set flags that
indicates which options must be written to the header of the
current TCP packet. To implement writing of ARTCP header
the fields for TI and PS values were added to this structure,
also bit flags, that indicates the presence of the fields and are
used in options bit field, were created.

For this structure to be filled correctly the functions that
initializes the instance of this structure were modified. These
functions are tcp_syn_options, tcp synack options and
tep_established_options. They forms options for SYN
packets, SYN-ACK packets and the other packets,
respectively. The modified functions checks whether socket is
in the ARTCP mode and if so adds information about needed
PS or/and TTI field.

To write TCP options into network buffer that contains the
header tcp_options_write function is used. This function is
modified as well to write PS and TI fields to the header if it is
specified in the instance of the modified struct
tcp_out_options. All these modifications make it possible to
form ARTCP packets in the Linux network subsystem.

To parse the options of the TCP header in the packet
received Linux calls tcp_parse options function, which
analyzes the received data and forms the instance of struct
tcp_options_received by writing received values into it. To
support ARTCP this structure was extended with fields ps and
ti that contains values of fields PS and TI of the received
ARTCP packet and bit field artcp options that determines
which ARTCP fields were actually presented in the header (PS,
TI, both or none). Also tcp_parse_options function must be
modified to handle ARTCP fields and form the modified
structure.

To handle ARTCP packets properly it is necessary to
process received ARTCP fields depending on the connection
state and the presence/absence of payload data in the received
packet. In IPv4/TCP stack received SYN packet is processed in

33

tcp_v4_conn_request function. The modified code of this
function checks the kernel parameters set by administrator by
reading sysctl _tcp_enable artcp variable which has
information whether ARTCP is globally enabled in the system
or not. If ARTCP is enabled tcp_v4 conn_request checks the
presence of field PS in the received SYN packet and the
correctness of its value as well as the absence of field TI. If all
checks are passed then function puts socket in ARTCP mode
and initializes all resources needed by ARTCP connection.
Otherwise, the function puts socket in TCP mode.

If the socket has already sent SYN packet (and is in SYN-
SENT state) then the packets received with this socket are
handled with tcp_rcv_synsent_state process. The modified
code of this function checks the presence of PS and TI fields in
the header and correctness of their values when SYN-ACK
packet is received for socket in ARTCP mode. If checks are not
passed then the function puts the socket in TCP mode.
Otherwise, function initializes all resources needed by ARTCP
connection.

For established ARTCP connection all received packets are
handled with tep_rev_established function. The modified
code of this function processes ARTCP packets for the socket
in ARTCP mode. If the header of the received packet has no
needed fields PS (for packet that has payload data) or TI (for
packet that has ACK) or the header of the packet without
payload data has field PS then socket falls back to TCP. If
ACK packet received then the value of field TI is passed to
data flow management algorithm of ARTCP. For packet that
has payload data the function checks the value of field PS. If
this packet is the next (after previous received packet) packet
sent by the other end according to this field then it is necessary
to calculate the difference between the time of arrival of these
two packets to send it in the field TI of the acknowledgment
packet. Otherwise, the ACK packet will contain 0 in the field
TIL

V.

TI requires time measurement with microseconds
resolution what may be nontrivial problem. Linux kernel
guarantees the availability of so-called “system clock”
represented with jiffies interface. Jiffies can be considered as
read only global variable which is updated with HZ frequency.
HZ is a compile-time kernel parameter whose reasonable
range is from 100 to 1000 Hz [8]. So, it is guaranteed to have
an interface for time measurement with 1-10 milliseconds
resolution.

TmME MEASUREMENT FOR T1 FIELD IN LINUX

The availability of more precise techniques for time
intervals measurement is hardware-dependent. Let us consider
x86 architecture as an instance. All IMB-compatible PCs have
Programmable Interval Timer (PIT) known as chip Intel 8523
(or Intel 8524 and other analogues). This chip (or an analogue,
i.e. south bridge of the motherboard may have this
functionality) has three independent 16-bit counters called
channels. Channel 0 usually is used for clock interrupts
generation. Channel 1 assists in generating timing for DRAM
memory refreshes. And channel 2 commonly generates PC
speaker tones. PIT allows to achieve 1 ms time resolution.

The other clock source is Real Time Clock (RTC). RTCs
usually have an alternate source of power, so they can continue
to keep time while the primary source of power is off or
unavailable. RTC's functionality is provided with south bridge
in the modern motherboards. However, RTC allows time
measurement with 1 ms resolution.

The most modern x86 motherboards have Advanced
Programmable Interrupt Controller (APIC) and APIC timer as
a consequence. This timer's frequency equals CPU bus
frequency what allows time measurement with a high
resolution (about 10 nanoseconds). The other benefit is that in
contradistinction to PIT and RTC local APIC timer does not
require call to /O port. The most uniprocessor PCs above
Pentium 4 explicitly prohibits APIC by disabling it in BIOS.

Also systems, that have a support of Advanced
Configuration and Power Interface (ACPI), have so-called
Power Management timer (PM timer). Unlike APIC timer, it is
possible with PM timer to have a reliable time independently
on CPU speed changes due to active power management with
OS.

At the beginning of 2000s Intel and Microsoft corporations
has developed High Precision Event Timer (HPET) [9]. This
timer has a high frequency (not less than 10 MHz) and uses 64-
bit counter. Often it is a most preferable high-precision clock
source in the system.

In addition to peripheral timers x86 computers have on-
chip (on-CPU) 64-bit counter called Time Stamp Counter
(TSC). Comparing with the other counters this one has
advantages of less read latency and high resolution. The
frequency of this counter on different CPUs varies and can
equal CPU frequency or CPU bus frequency. There are two
major problems to use this counter as clock source. The first
one is that Time Stamp Counters may be not synchronized
between cores of SMP [10]. The second is that frequency of
TSC may be non-constant (due to power management or
processor frequency changes on idle and so on).

Intel's software developer's manual [11] describes in depth
the differences in TSC implementation on different Intel CPU
families. It also describes the way to recognize whether CPU
has TSC with invariant rate. Most AMD processors have TSC
that is unusable as a reliable clock source because of certain
circumstances.

The facilities for time interval measurement in x86
architecture listed above give an idea of the difficulty to solve
this problem more precisely for different processors. The
support of other hardware architectures (arm, mips and so on)
highly increases this difficulty. The other problem is a non-
triviality of time units translation from “machine” time units
used in the chosen device to “human” time units (for example,
microseconds needed by ARTCP). Reading the report [12]
shown in 2005 in Ottawa (Canada) at a symposium devoted to
Linux you can get an idea on the complexities associated with
the solution of this problem.

Fortunately, Linux kernel provides the means for solving
these problems. To have a possibility to use different hardware
counters and timers “clock source” concept is implemented in

34

Linux kernel. According to this concept, each hardware
architecture supported by Linux implements for each available
facility a “clock source” interface. It does it by initializing an
instance of struct clocksource interface and registering it in
operating system with call to either clocksoure register khz
or clocksource register_hz. Struct clocksource has field
rating that allows Linux to choose the best “clock source”
available for the specified hardware. Best “clock source”
corresponds to the registered instance of struct clocksource
with the biggest value of field rating. The values of this field
are logically interpreted in that way: 1-99 — unfit for real use
(only available for bootup and testing purposes), 100-199 —
base level usability (functional for real use, but not desired),
200-299 — good (a correct and usable clocksource), 300-399 —
desired (a reasonably fast and accurate clocksource), 400-499 —
perfect (the ideal clocksource, that is a must-use where
available).

Since the best “clock source” has been chosen Linux kernel
is able to read its counter values by calling the function passed
in field read of struct clocksource. This function returns the
value in abstract “machine” time units represented with cycle_t
data type. Linux kernel can use the values of field mult and
field shift of struct clocksource to translate this value to
nanoseconds.

Linux kernel provides various interfaces for indirect work
with “clock sources” and to retrieve the values of time in
“human” units. The most interesting of them are
getnstimeofday and getrawmonotonic functions. Both of
these functions return the value of time as an instance of struct
timespec. This structure consists of two fields: tv_sec that
carries seconds and tv_nsec that carries nanoseconds. The most
significant difference between these functions is that the former
unlike the second uses NTP correction to adjust value it
returns. The absence of this correction in getrawmonotonic
allows to use this function to compute time intervals where the
correspondence of the time set on the machine to the actual
time does not matter. Based on these considerations, ARTCP
implementation uses getrawmeonotonic interface to calculate
time intervals between two consecutive received ARTCP
packets with payload data.

The first time reading with getrawmonotonic happens in
artcp_init function in the process of ARTCP connection
initialization when either socket, that sent ARTCP packet with
ACK, receives ARTCP packet with SYN-ACK, or socket
receives ARTCP packet with SYN (and ARTCP is globally
enabled). Subsequent readings occur when ARTCP packets
with payload data are received. Moreover, if the value of the
field PS in the received packet is one greater (modulo 2°?), than
the value of the field PS in the previous received packet, then
the value for the field TI of the acknowledgment packet is
calculated with call to artep_ts_diff to_ti function. The
function artcp_ts diff to ti takes two struct timespec
arguments, that represent the time interval, and returns the
difference between these moments of time in microseconds.

Summarizing the material described in this article, we can
conclude that, having made the above changes in the source
code of Linux network subsystem, we get the implementation
of ARTCP packets processing (receiving, sending, calculation

of field values) that is completely independent from the
implementation details of data flow management function and
the other parts of ARTCP. Moreover, the implementation is
cross-platform (in the hardware) and uses the best available
hardware facility for time intervals calculation with the ability
to increase the resolution of the field TI up to nanoseconds. It is
also worth nothing that the implementation does not conflict
with the existing functionality of Linux network subsystem,
allowing the latter to use TCP connections simultaneously with
ARTCP and even switch ARTCP connections to TCP mode.

[11 I V. Alekseev, V. A. Sokolov, D.U. Chaly. Modeling and analysis of
Transport protocols for computer networks. Yaroslavl State University,
2004. (in Russian)

[2] L V. Alekseev, V. A. Sokolov Compensation Mechanism for Adaptive
Rate TCP. // 1-St International IEEE/Popov Seminar "Internet:
Technologies A and Services". P. 68-75, October 1999

[3] J.Postel. Transmission Control Protocol. // RFC 793 (STD7). 1981.

[4] 1. V. Alekseev, S. A. Merkulov, A. A. Sivov. “Aspects of practical
implementation of ARTCP in Linux kernel 2.6” // Modeling and
analysis of information systems. Volume 17, Ne2. Yaroslavl: Yaroslavl
state university, 2010. P. 144-149 (in Russian)

[5] B. Fenner. Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers. // RFC 4727. 2006.

[6] S. Bradner, V. Paxson. IANA Allocation Guidelines For Values In the
Internet Protocol and Related Headers. // RFC 2780. 2000.

[7] T. Narten. Assigning Experimental and Testing Numbers Considered
Useful. / RFC 3692. 2004.

[8] J. Corbet, A. Rubini, G. Kroah-Hartman. Linux Device Drivers. 3rd
edition. O'Reilly, 2005.

[91 IA-PC HPET (High Precision Event Timers) Specification. Rev. 1.0a.
Intel Corporation, 2004.

[10] AMD Technical Bulletin — TSC Dual-Core Issue & Ultility Fix.
Advanced Micro Devices, Inc. 2007.

[11] Intel® 64 and IA-32 Architectures Software Developer's Manual.
Volume 3A: System Programming Guide, Part 1. Intel Corporation.
January 2011.

[12] J. Stultz, N. Aravamudan, D. Hart. We Are Not Getting Any Younger: A
New Approach to Time and Timers. // Proceedings of the Linux
Symposium. Vol. 1. P. 219-232, July 2005.

35

A new double sorting-based node splitting
algorithm for R-tree

Alexander Korotkov
National Research Nuclear University MEPhI
31 Kashirskoe shosse
Moscow, Russian Federation
Email: aekorotkov@gmail.com

Abstract—A storing of spatial data and processing of spatial
queries are important tasks for modern databases. The execution
efficiency of spatial query depends on underlying index structure.
R-tree is a well-known spatial index structure. Currently there
exist various versions of R-tree, and one of the most common
variations between them is node splitting algorithm. The problem
of node splitting in one-dimensional R-tree may seem to be too
trivial to be considered separately. One-dimensional intervals can
be split on the base of their sorting. Some of the node splitting
algorithms for R-tree with two or more dimensions comprise
one-dimensional split as their part. However, under detailed con-
sideration, existing algorithms for one-dimensional split do not
perform ideally in some complicated cases. This paper introduces
a novel one-dimensional node splitting algorithm based on two
sortings that can handle such complicated cases better. Also this
paper introduces node splitting algorithm for R-tree with two or
more dimensions that is based on the one-dimensional algorithm
mentioned above. The tests show significantly better behavior of
the proposed algorithms in the case of highly overlapping data.

I. INTRODUCTION

Spatial data processing is an important task for modern
databases. Since the volume of information in databases
increases continuously, the database management systems
(DBMS) need spatial index structures in order to handle
spatial queries efficiently. The problem of spatial indexes is
that there is no ordering which reflects proximity of spatial
objects [5]. This is why B-tree [3] can not handle spatial object
efficiently. R-tree [7] is the most well-known index structure
for spatial data. R-tree is a height balanced tree like B-tree,
which hierarchically splits space into possibly overlapping
subspaces. Spatial objects in R-tree are approximated by
minimal bounding rectangles (MBRs), see figure 1. Leaf node
entry of R-tree contains MBR of spatial object and a reference
to the corresponding database object. An entry of non-leaf
node of R-tree contains reference to the child node and MBR
of all rectangles in child node. Since the rectangles of a same
node of R-tree can overlap, exact match query may lead to
multipath tree scan. This forms significant difference of R-tree
from such data structures as B-tree. The number of query paths
and, in turn, the number of node accesses of non-exact match
query also strongly depends on degree of rectangle overlap.
R-tree was originally designed for access to multidimensional
data, but it is also applied for one-dimensional intervals [10].

The quality of R-tree strongly depends on the node splitting
algorithm. The task of node splitting is to split entries of the

36

< Spatial k/w
§ Robject

/
G

Fig. 1. MBR illustration

overflowed node into two groups which will form two new
nodes. Node splitting algorithm substantially determines the
area and degree of overlap of the tree rectangles. In turn these
parameters determine the probability of multipath queries. The
following parameters can be used in order to estimate the
quality of a node splitting:

o The overlap of bounding rectangles. The smaller overlap

of entry rectangles leads to the smaller probability of
multipath queries.
The coverage of bounding rectangles. The coverage of a
split is a total area of bounding rectangles. In general
smaller coverage leads to the smaller probability of
multipath queries when query area is relatively large [1].
Storage utilization. As the measure of storage utilization,
a ratio between a numbers of entries in the smaller group
and the greater group can be used. Typically, constraint
is imposed on this parameter, i.e., the minimal number
of entries in the resulting node m is defined. Restriction
of this parameter is very reasonable, but this parameter
can also be an optimization target. The higher ratio leads
to the smaller tree balancing during construction. In turn,
this influences the tree quality.

The illustration of dillemma between less overlap and less
coverage is given on figure 2.

The paper is organized as follows. Section II describes
node splitting algorithms which currently exist. Section III
introduces double sorting-based one-dimensional node split-
ting algorithm and its generalization for multidimensional
case. Section IV provides the experimental comparison of the
proposed algorithm with other existing algorithms. Section V
is a conclusion.

Fig. 2. Tllustration of overlap vs. coverage dilemma

II. RELATED WORK

Originally Guttman in [7] introduced three node splitting
algorithms:

o Exponential algorithm. This algorithm searches for global
minimum of the area covered by rectangles by the enu-
merations of all possible splits. This method is too CPU
expensive, because it requires exponential time.
Quadratic algorithm. This algorithm consists of two steps.
At the first step, two seeds of two resulting groups are
selected. The seeds are selected as the rectangles that
have maximal difference between their MBR area and
their own area. At the second step, all other rectangles
sequentially join some of the groups. Each time the
rectangle for which the increase of MBR area due to its
joining to one of the groups is maximal joins the group
which MBR area increases less.

Linear algorithm. This algorithm is similar to quadratic
one, but it has two differences that make it linear. At
first, seeds are selected along the axis that allows avoiding
comparison of each pair of rectangles. The second is that
rectangles join the groups in arbitrary order.

In [6] Green’s algorithm was proposed. This algorithm is
similar to Guttman’s linear algorithm, but it uses sorting along
the chosen axis and splitting entries at halves between the
groups according to the sorting.

In [4] R*-tree splitting algorithm was proposed. This work
contains tree construction modifications as well as new node
splitting algorithm. The important feature of this work is using
rectangle margin as an optimization criterion of node splitting.
This algorithm is similar to Green’s algorithm, but has two
differences. At first, it chooses axis for splitting that minimizes
the sum of margins of MBR groups among all possible sorting-
based splits along this axis. At second, it does not split entries
at halves, but finds the minimal overlap between all splits
based on sorting along this axis. In [12] the comprehensive
perfomance analysis of R*-tree is presented. The optimization
of R*-tree for non-uniform data is presented in [9].

In [2] a new linear algorithm was proposed. This algorithm
makes splits of rectangles along axes based on the closeness

37

of rectangles to value boundaries of the axes. After that, the
choice is made among the splits by comparison of the overlaps
and distribution ratios.

Since applications of R-tree exist for one-dimensional case,
one-dimensional split for R-tree can be considered as a
separate problem. One of the negative aspects of R-tree
application to one-dimensional case is weak performance of
high-overlapping data, such as validity interval or transactional
time intervals [11]. This aspect can be partially eliminated by
introducing new node splitting algorithm for one-dimensional
case which deals better with highly overlapping data.

Guttman’s quadratic and linear algorithms can be easily
applied to one-dimensional case. For Guttman’s quadratic
algorithm there is no matter to use quadratic algorithm for
picking seeds, because most distant seeds can be found as
the intervals which contain the general lower and upper
bound, correspondingly. Green’s and R*-tree splitting algo-
rithms comprise one-dimensional split as their part. A new
linear algorithm also can be applied to one-dimensional case,
but we have only one axis for split and will not have to choose
among the axes.

III. PROPOSED ALGORITHM

A. Definitions

In one-dimensional splitting algorithm, the input entries
contain a set I of the intervals x;: I = {z;}. An interval
is the pair of the lower and the upper bounds: z; = (I;, u;).
The general lower bound is [= min{l;}, and the general
upper bound is u = max{u;}. At first, the consideration of
splits will be limited by the splits in which one group contains
general lower bound and another group contains general upper
bound. For this class of splits we will say that a pair (a,b)
is a splitting pair, if any interval from I is bounded by (I,a)

r (byu): Va(z € I = (z C (I,a)) A (z C (b,u)). In other
words, a and b are the upper and the lower bound of groups,
respectively, for some split of split class under consideration.
Let us note that sometimes the splits which are not contained
in this class of splits are reasonable. In the figure 3, a split
of this class is shown. In the figure 4, a split for the same
dataset is shown. In that split, one group stretches from the
general lower bound to the general upper bound while another
group has rather small area. This split can not be produced by
splitting pair.

We will say that the split pair (a,b) is a corner splitting
pair if (a € {u;}) A (b e {LPH)A(Vtt < a = Fz(z €

= (@ € (L)) A (z € (byuw))) VvV (VE(t > b = Jz(x €
I'=(x<Z (l,a)A(z & (t,u))))) In other words, a is one
of the upper interval bounds, b is one of the lower interval
bounds, and a can not be lower or b can not be higher if the
property of being splitting pair still remains. This assumption
regarding split seems reasonable since otherwise another split
would exist which overlap would be smaller and the minimal
number of entries in the group would not be smaller, i.e., there
would be a better split in terms of optimization target of this
algorithm.

Fig. 3. A split that can be produced by the splitting pair

Fig. 4. A split that can not be produced by the splitting pair

B. Algorithm

The algorithm EnumerateCornerSplitPairs(see Algorithm 2)
enumerates all corner splitting pairs. The algorithm is based
on using two sorted arrays: the first one contains the input
entries sorted by the lower bound and the second one contains
the input entries sorted by the upper bound. In the main loop
of this algorithm, iterations for both arrays are performed
simultaneously, so that the property of splitting pair is retained.
When a corner splitting pair is found, the ConsiderSplit(see
Algorithm 3) is invoked. ConsiderSplit takes the bounding
intervals of groups and maximal numbers of entries which
can be placed into groups as its input data. Maximal numbers
of entries that can be placed into groups are determined using
EnumerateCornerSplitPairs by the indexes in the sorted arrays
in which the values of splitting pairs are placed. ConsiderSplit
reveals the split with minimal overlap of group bounding
intervals, where the minimal number of entries in group is
greater than or equal to m (m is minimal number of entries
in group). When the split with zero overlap is possible,
ConsiderSplit chooses the split for which the distance between
group bounding intervals is maximal. This property is achieved
by allowing the overlap variable to be negative. Let us note that
if there are some entries which can be placed into both groups,
ConsiderSplit considers the split in which the distribution of
entries between groups is closest to the uniform one.

The algorithm DoubleSortSplit(see Algorithm 1) represents
the splitting algorithm in general. At first, it invokes Enumer-
ateCornerSplitPairs in order to find allowable corner splitting
pair with minimal overlap. Then it distributes entries which
can be distributed unambiguously. After that, the rest of entries
is sorted by centers of their interval, and they are distributed
in a way that makes distribution between groups the most
uniform. Since sorting is most time expensibe part of this
algorithm, it’s time complexity is O(n - log(n)) (n — number

38

of input entries).

Algorithm 1 DoubleSortSplit

Input: Overflowed node

Qutput: Two nodes, at least m entries in each
1: Invoke EnumerateSplitPairs in order to find the corner
splitting pair with minimal overlap.

: Distribute entries that can be placed in only one group
into groups.

: Sort the rest of entries by centers of their intervals.

. Distribute first m entries to the first group, and distribute
other entries to the second group in a way that makes
distribution between groups the most uniform.

C. Application to multidimensional case

The proposed algorithm can also be applied to multidimen-
sional case. Algorithm MultidimensionalDoubleSortSplit(see
Algorithm 4) represents such an application. At first, it enu-
merates corner splitting pair along all the axes, and selects the
corner splitting pair and the corresponding axis which have the
minimal overlap. At second, the entries which can be placed
unambiguously are placed. After that the rest of entries are
sorted by difference of group area incensement. Finally the
split is chosen which has minimal overlap of groups.

IV. PERFOMANCE TESTS
A. Experimental setup

All the tests were on run on Core 2 Duo 3 GHz computer
with 2 GB of memory with Ubuntu 10.10 32bit. For the im-
plementation of R-tree with various node splitting algorithms
GiST[8] framework in PostgreSQL DBMS was selected. GiST
generalizes various search trees including R-tree.

B. Datasets

Each dataset contains 10° randomly generated intervals. The
size of intervals conforms to Gaussian distribution with zero
mean and the variance that produces the required level of
interval overlapping. The level of interval overlapping varied
exponentially from 1 to 10%. The interval center distribution
is determined by the dataset type as follows.

o Uniform dataset. The centers of intervals conform to the
uniform distribution along interval [0;1);

Gaussian dataset. The centers of intervals conform to the
standard Gaussian distribution.

Uniform cluster dataset. At first, 500 cluster centers,
which conform to the uniform distribution along interval
[0; 1), were generated. After that, for each center 2000
interval centers were generated which offsets from the
center conform to the uniform distribution along the
interval [0;6 % 107%).

Gaussian cluster dataset. At first, 500 cluster centers,
which conform to the standard Gaussian distribution,
were generated. After that, for each center 2000 interval
centers were generated which offsets from the center

Algorithm 2 EnumerateCornerSplitPairs

Algorithm 3 ConsiderSplit

Input: Set of invervals
Output: Enumeration of all splits that can be produced with
corner splitting pairs by invoking ConsiderSplit
Sort intervals by lower bound, write the result to array a
Sort intervals by upper bound, write the result to array b
s1 < (a[0].1, b[0].u)
s2 < (a[0].1,b[n — 1].u)
1<=0
7<=0
{Iterate until finding a first split produced by the corner
splitting pair. }
while b[j].u = sl.u and j < n do
j<=g+1
end while
. considerSplit (s1, 7, 52,n — 1)

A o e

®

12: while : < n do

13: prev_s2_l < s2.0

14: next_sl_u <= sl.u

150 next_i <1

16: {Find next value of s1 upper bound and the correspond-
ing value of s2 lower bound which forms the corner
splitting pair with it.}

17: while next_i < n and next_s2_I = s2.l do

18: next_sl_u < max{next_sl_u,a[next_i].u}

19: next_1 < next_1+1

20: if next_i > n then

21: break

22: end if

23: next_s2_l < alnext_i].l

24: end while

25: if next_i > n and next_sl_u = sl.u then

26: break

27: end if

28: {All intermediate values of s2 lower bound form the
corner splitting pair with the previous value of s1 upper
bound. }

29: while j < n and b[j].u < next_sl_u do

30: if b[j].u > sl.u and b[j].u < next_sl_u then

31 sl.u <= blj]

32: considerSplit (s1,5 + 1,52, n — 1)

33: else

34: sl.u < b[j]

35: end if

36: jE=i+1

37: end while

38: {Passage to the next values of sl upper bound and s2
lower bound.}

39: sl.u < next_sl_u

40: s2.0 < next_s2_1

41: if next_i < n then

42: 1 <= next_1

43: considerSplit (s1, 7, $2,n — 1)

44: else

45: considerSplit (s1, 7, $2,n — 1)

46: break

47: end if

48: end while

39

Input: Bounding intervals sl and s2 of two groups, numbers
nl and n2 which represent the maximal numbers of entries
that can be placed into each group.

Output: Updated information regarding the optimal split cur-
rently found.

1: overlap < (sl.u — s2.1)/(s2.u — s1.1)
2: if n1 > m and n2 > m and overlap < best_overlap
then
best_overlapl < overlap
best_sl < sl
best_s2 < s2
best_nl < nl
best_ n2 < n2
: end if

® DN hAEW

Algorithm 4 MultidimensionalDoubleSortSplit

Input: Overflowed node

Output: Two nodes, at least m entries in each
1: Invoke EnumerateSplitPairs for each axis in order to
find allowable corner splitting pair with overall minimal
overlap.

: Distribute entries which can be unambiguously placed into
only one group in accordance with the corner splitting pair
previously found.

: Sort other entries by the difference of group area incense-
ment when adding the entry.

: Distribute the first k sorted entries to the first group,
and other entries — to the second group, so that the
minimal overlap between group MBRs over all possible k
is achieved.

conform to the Gaussian distribution with zero mean and
the variance of 6 % 10~%.

For two-dimensional case the datasets were similar. Rather
than scalar random values that were generated in the datasets
above, vectors of random values having the same distribution
that was used in one-dimensional case were generated. Thus
these datasets contained rectangles.

C. One-dimensional case

The tests have shown that all sorting-based splitting algo-
rithms perform on this datasets almost equally. This is why
only one sorting-based algorithm is represented here, namely,
the center sorting algorithm. The following node splitting
algorithms were included into tests for one-dimensional case.

o Guttman’s quadratic algorithm.

o Center sorting algorithm that searches for the split with
minimal level of overlap.

o The proposed double sorting-based algorithm.

In order to compare the efficiency of index structures produced
by various splitting algorithms, the numbers of node accesses
for query execution were measured. 100 small random inter-
vals having size 107> were generated for testing, and the

(a) Uniform dataset (b) Gaussian dataset

T T T T 1.6 T T T T
-
141 y 141 ya R
[1%
w w
@ 12f 42 12f i
I i
o o
o o
< 1k 4 < 1+ e
w w
S 3
Z 08} 4z 08f b
06l | 0.6 —
" " " " " " " " " "
10° 10! 102 10° 10* 10° 10! 10? 10° 10*
DATA OVERLAP DATA OVERLAP
(c) Uniform cluster dataset (d) Gaussian cluster dataset
14F T T T — T T T T
] -
/ 141} yas
.
o 12f 4@
] @ 12t / A
@ 7]
w w
o o
2 1r 12 af ,
w w
a [=}
g g 0.8
0.8} B :
0.6 1

L L L
10? 10? 10*

DATA OVERLAP

L L L L L
102 10° 10* 10° 10!

DATA OVERLAP

L L
10° 10!

‘ —=— Quadratic Guttman’s —e— Sort —— Double sorting ‘

Fig. 5. Comparison of the node access numbers for one-dimensional splitting

algorithms
(a) Uniform dataset (b) Gaussian dataset
T T T T T T T T
Laf g B am
- 7.’,l\.// L 14} = . - N
w w
= =
g 12f 4 E 12l i
a a
3 3
E El
E E
w o 1f 1w 1f 1
I Iy
o o
= =
08l o A - 081 > — A
1 1 1 1 . " " " . 1
10° 10! 102 10% 10* 10° 10! 102 10% 10*
DATA OVERLAP DATA OVERLAP
(c) Uniform cluster dataset (d) Gaussian cluster dataset
T T T T 6T T T T —
4l PR
W e e -
w W M e .- 4
= = =
s 15 12f g
3 3
E El
2 E
wo1f Jow1f g
I Iy
= =
osf W: 7 08 - T,
10° 10! 10? 10° 10* 10° 10! 10? 10° 10
DATA OVERLAP DATA OVERLAP
‘ —=— Quadratic Guttman’s —e— Sorting —— Double sorting ‘
Fig. 6. Comparison of tree building time for one-dimensional splitting
algorithms

number of node accesses required for finding intervals in
test datasets that overlap with them was measured. In the
figure 5, the average number of node accesses is shown. To
simplify the comparison, not absolute value of node access
numbers is presented, but rather the ratio of that value for
particular algorithm to the average value for all algorithms.
The measurements were performed for four datasets described
in the subsection above, and for various data overlap levels. In
the figure 6 the comparison of tree building times is presented.
The data is presented in the same manner as for the data
access: as a ratio of building time of particular algorithm to

40

(a) Uniform dataset (b) Gaussian dataset

T T T T T T
181 B
25 B
” . 1.6 b
w w
@ 2f 42 1af A
I i
o o
? o 12t |
w15} 4w
a a 1+ -
o e}
z z
11 4 0.8+ B
0.6 -
" " " " " " " " " "
10° 10! 10° 10° 101 10° 10! 10° 10° 10
DATA OVERLAP DATA OVERLAP
(c) Uniform cluster dataset (d) Gaussian cluster dataset
5F T T T = T T T
4t 4
) o 1.5r b
w w
173 173
A 18
o o
o o
< <
w 2 4w L a
a [=}
o s}
z z
1 4
— 0.5 B
0 b L L L Lo L L L L L
10° 10! 10° 10° 104 10° 10! 10° 10° 10
DATA OVERLAP DATA OVERLAP
‘ —=— Quadratic Guttman’s —e— New Linear —— Double sorting —— R*-tree ‘
Fig. 7. Comparison of the node access numbers for 2-dimensional splitting
algorithms
(a) Uniform dataset (b) Gaussian dataset
T T T T T T T T
s, = —a e S - -
s P " - N
L 15 48 L5 7
= F
(=] o
2 2
2 2
o o 1k B
w 1 4w
w w
o [
[[
05 1 051 1
" " " " " " " " " "
10° 10t 102 10% 10t 100 10! 102 103 104
DATA OVERLAP DATA OVERLAP
(c) Uniform cluster dataset (d) Gaussian cluster dataset
T T T T T T T T T T
. .
L - -t
415 4y 15F b
= F
o o
= =
2 2
@ @
w1l dw 1f —
w w
o [
[[=
ey S e S
05p, I I I I .| 051 I I I I I J
10° 10! 102 10° 10t 10° 10! 10% 10% 10"
DATA OVERLAP DATA OVERLAP
‘ —=—Quadratic Guttman’s —e— New Linear —— Double sorting —— R*-tree ‘
Fig. 8. Comparison of tree building time for 2-dimensional splitting
algorithms

the average building time.

We can see that the number of node accesses required for
searching in double sorting-based algorithm is almost never
greater than this number in other algorithms. With large data
overlap, there is significant superiority of double sorting-
based algorithm, up to 50%, in comparison with sorting
algorithm, and up to 2 times in comparison with Guttman’s
quadratic algorithm. We can see that tree construction time for
double sorting-based splitting algorithm is smaller than that for
Guttman’n quadratic algorithm, but is slightly greater than the
time for the sorting algorithm.

D. Two-dimensional case

The following node splitting algorithms were included into
tests for two-dimensional case:

o Guttman’s quadratic algorithm.

o New linear algorithm.

« Proposed double sorting-based algorithm.
o R*-tree splitting algorithm.

Numbers of node accesses for query execution and tree
building time were compared in a same manner as in the one-
dimensional case. In the figures7 node access numbers are
compared. In the figure 8§ tree building times are compared.
At first, we can see a weaker correlation between relative node
access numbers and the data overlapping. And that correlation
is decreased with increasing the number of dimensions. We
can see that double sorting-based algorithm shows superiority
in terms of node access numbers in most test cases. The tree
building time of double sorting-based algorithm is close to that
of R*-tree splitting algorithm.

V. CONCLUSION

In this paper, new double sorting-based node splitting al-
gorithm for R-tree was proposed. This algorithm was initially
developed for better handling of complicated cases in one-
dimensional split. The proposed splitting algorithm is based
on the notion of corner splitting pair and the algorithm of its
enumeration. After that, this splitting algorithm was applied
to multidimensional cases.

In one-dimensional case, the tests show superiority of the
proposed algorithm in terms of the number of node accesses
over Guttman’s quadratic and simple sorting-based algorithm.
The higher superiority was achieved with larger data overlap
due to ability of the proposed algorithm to better handle
complicated cases. In two-dimensional case, the tests show su-
periority in terms of number of node accesses over Guttman’s
quadratic, new linear and R*-tree splitting algorithms in most
test cases.

REFERENCES
[1] A. F. Al-Badarneh, Q. Yaseen, and I. Hmeidi. A new enhancement to
the r-tree node splitting. J. Information Science, 36(1):3-18, 2010.
C.-H. Ang and T. C. Tan. New linear node splitting algorithm for r-
trees. In Proceedings of the 5th International Symposium on Advances
in Spatial Databases, SSD ’97, pages 339-349, London, UK, 1997.
Springer-Verlag.
R. Bayer and E. McCreight. Organization and maintenance of large
ordered indices. In Proceedings of the 1970 ACM SIGFIDET (now SIG-
MOD) Workshop on Data Description, Access and Control, SIGFIDET
’70, pages 107-141, New York, NY, USA, 1970. ACM.
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an
efficient and robust access method for points and rectangles. SIGMOD
Rec., 19:322-331, May 1990.
V. Gaede and O. Gilinther. Multidimensional access methods.
Comput. Surv., 30:170-231, June 1998.
D. Greene. An implementation and performance analysis of spatial data
access methods. In Proceedings of the Fifth International Conference on
Data Engineering, pages 606615, Washington, DC, USA, 1989. IEEE
Computer Society.
A. Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 14:47-57, June 1984.

[2]

[3]

[5] ACM

[6]

[7]

41

[8]

[9]

[10]

[11]

[12]

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search
trees for database systems. In Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95, pages 562-573, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

K. Kanth, D. Agrawal, A. Singh, and A. E. Abbadi. Indexing non-
uniform spatial data. Database Engineering and Applications Sympo-
sium, International, 0:289, 1997.

C. P. Kolovson and M. Stonebraker. Segment indexes: Dynamic indexing
techniques for multi-dimensional interval data. In J. Clifford and
R. King, editors, SIGMOD Conference, pages 138-147. ACM Press,
1991.

B. Salzberg and V. J. Tsotras. Comparison of access methods for time-
evolving data. ACM Comput. Surv., 31:158-221, June 1999.

Y. Tao and D. Papadias. Performance analysis of r*-trees with arbitrary
node extents. Tran. Knowl. Data Eng. (TKDE, 16:6-653, 2004.

Fuzzy matching for partial XML merge

Vladimir Fedotov
ISP RAS
Moscow

Email: vil@ispras.ru

Abstract—In this paper we describe our experience in creating Il. PROBLEM DESCRIPTION

a tool capable to provide traceability of the requirements letween . . : .
different versions of the LSB and POSIX standards. We propos Despite being straightforward, this problem actually eepr

an approach for merging requirement markup without exact Sents a challenge to existing XML merging tools. Limited to
matching of the documents by means of arithmetic hashing and open source Java implementations, we were unable to find a
context similarity analysis. solution robust enough due to various reasons.

First of all, the given task requires zero faults merge, as a
fault leads to document corruption. In case of XML merge, a
fault is mismatching during the node mapping process, which

In the past several years XML made huge progress, mos?fi'ig easné/ occur be'_tween nodes with the ssm;z names orvallfles.
due to its extensions. 1SO finally standardized OpenXML an » econd, ('jt requwehs to tLace a rrg)atc K etween act(l;a Y
OpenDocument as document formats for office applicatio erent nodes, as the markup can break up a text node in

thus making possible long standing dream of simple and tob{¥° or more chunks. .
document exchange in a heterogeneous environment. Third, the solution should take into account the context

At present day there are hundreds of XML extensions [131‘ matching nodes. For example, valid requirement for one

. .) ocument isn’t valid for another document if it was moved to
applicable to a huge variety of tasks, from relational dasais D . N .
eprecated requirements” section.

to vector graphics. Among the most important - XHTML pro- Finally, the solution has to be stable enough to work in the

viding transition from HTML to XMLZ _Its |mportance relies ON Hroduction environment. Unfortunately, most of the disred
a huge amount of standards, specifications, recommendaan

and RFCs available in HTML and, with adoption of XHTML, 00ls were academic researches discontinued by their @utho
available to processing by means of XML-aware tools. [1l. RELATED WORK

Our present work is intended to provide requirement trace-Tree diffing and merging remains a very active field of
ability between different versions of POSIX and LSB stanesearch, presently due to popularity of the bio-inforosati
dards. Previous versions of these standards were convertetthere is a variety of different techniques applicable toyver
XHTML with requirements markup for the needs of OLVER{ifferent sets of problems. Very good review of the techeigu
[2] and other projects. available for XML was done by K. Komvoteas in [3].

Actual markup consists of one or more span tags wrappingBasically, an XML documents can be merged by direct
requirement-related text nodes. It is important to notee hecomparison of their nodes, traversed in the definite ordisr. D
that span can actually divide text node to several chunksivered conflicts fall into two categories: node insertiowl a
therefore creating a sub-tree in place of one node, thusngaknode deletion. Some algorithms also recognize moving and
impossible direct matching between marked and non-markagidating, while others simply represent them as a consecuti

|I. INTRODUCTION

documents. deletion and insertion. Ruling out these conflicts is adyual
called a "merge”.
<parent Unfortunately, such direct comparison will often provide
unrelated text _ bogus results because nodes may only differ by their context
 There are several approaches developed to compare node
The spice must flow! contexts.
 DiffX algorithm [4] uses fragment matching technique. Ac-
unrelated text cording to it, a node is considered a match if it has the ldrges
<lparent matching neighborhood then any other equal node. Weakness
Listing 1. Markup example of that approach is in corner cases — it is unable to provide

any ruling in case of equal nodes with equal fragments, thus
So our goal may be defined as follows: given marked dpaving us without guarantees of correct matching. Morgove
previous version of the document, trace requirements churhkere is no simple way to perform a reverse task — to trace a
in the next version of the document and, if that trace wasngle node by its context, in case we want to match actually
successful, merge requirement markup. different nodes.

42

A slightly different approach is proposed in [5]. So-called
"fingerprinting” is a way of storing node context in a vectdr o
MD5 hashes. A node is considered a match if its fingerprint
has the matching neighborhood within a given radius. As
opposed to DiffX, it is possible to trace a node by matching
its context, but such an approach will produce false results
case of matching several equal chunks with the same context,
like brackets or commas enclosing reference links, whittrof

occurs in documents.
Radically different is a three-way merge approach, which

makes use of three documents instead of two. Often used in
the revision control systems, three-way merge compares two
target documents while also considering a "base” docunhent.

practice, it is implemented as a diff between the document || | |
and the base, and then patching the documensith resulting !_.\.‘/.-(,) |
I 1 I 1

1

delta. .
In our case it could be implemented by considering the ! ©
original unmarked document as a base, diffing it with the Fig. 1. Labelling example

marked up document, and patching the target document with

resulting delta. Diffing the unmarked base with the marked

up document will produce the markup anchored to the actyabviding better matching for equal text chunks, as opposed
nodes, which can be traced much more effectively in ta [5].

target document. We are considering implementation of this

approach in the future versions of our tool. _ |label(x) — label(y)|
distance(x,y) = '

1)

min(interval (x), interval(y))
V. CONTEXT SIMILARITY

To address the issues described above we propose aBearing in mind that we are dealing with an XHTML
approach combining two different ways of evaluation of th@ocuments, it is safe to say that almost any axis in such
node equality: by using positional metric and by comparingocuments ends with a text node leaf. Therefore any ascendan
similarity of their text contents. nodes can be defined by the concatenation of the descendant

Each node has several attributes defining its position in thext node values.
document: position in the traversal sequence, positionn@mo Evaluating similarity between text contexts provides ws th
the siblings, depth, index among the identical siblings argimilarity metric, that can be used for searching of the prop
overall siblings count. The problem is that these attrisut@arent node, which later serves as a context for positional
should be properly weighted to be used in the positionalimetmetric. Similarity itself can be evaluated by applying Jacc
and approach to provide such weighting isn’t clear. Which iadex to the tokenized text contents (2).
more important for node equality: to have same depth or same
traversal position? What if the node match candidate have jaccard(A, B) = AN B 2)
exactly same siblings and depth, but is located in completel AU B|
different place in document? And if another match candidateBeing much faster than commonly used Levenshtein edit
is located in exactly same place, but has no matching séffingdistance [7], Jaccard index provides satisfactory reswitich

In our implementation arithmetic hash provides us witban be further improved by taking into account the fact that
cumulative positional metric. It uses general approachequrequirement text should be equal or included into reference
similar to arithmetic coding algorithm [6], but in complBte text. Therefore in our approach we use slightly modified

IV. ARITHMETIC HASHING

different way. similarity index (3).
Starting from the root, an interval is assigned to each node,
with a random number from that interval assigned as its label similarity(A, B) = AN B ()
Each interval is divided by the number of node descendants A
and each descendant is provided with a range within parent VI. GLUING IT TOGETHER

interval according to its position among sibling nodes (fip. While none of the metrics described above can be used ef-
While being extremely simple this hashing technique prdectively separately, being combined they provide suipgly

vides us with positional metric which can be easily evaldateobust results.

as a distance between the node labels (1). Its deliberataliem Similarity metric provides good results in case of compar-

biased towards matching of the nodes on the same axis, isain between nodes with diverse chunks of text, but fails if

being extremely sensitive to any changes in the siblingsrordext contexts are exactly the same, which occurs quite often

43

On the contrary, positional metric is ineffective in case of
comparison between trees with strong differences, butrheso
extremely effective for the small sub-trees.

Wrapping these metrics inside a stable sorting algorithm
achieves the desired result. Firstly nodes are being sorted
by their positional metric, then by their similarity metric
Therefore similarity metric has the priority over positén
one, but in the corner case of several nodes having the same
similarity index, they will be ruled out by their label distze,
as opposed to [4].

VIl. CONCLUSION

This paper presents a new approach to merge XML doc-
uments without exact matching of their nodes by using an
algorithm combining node matching, based on the positional
metric evaluated as label distance, with text similaritplgsis
based on the evaluation of modified Jaccard index between
reference and target text nodes.

Despite being work in progress, our approach is already
showing good results while merging different versions oBLS
and POSIX standards as well as RFCs and many others.

In the nearest future we consider implementing three-way
merge, based on our current approach and provide an open
source Java implementation.

REFERENCES

[1] http://en.wikipedia.org/wiki/Listof_XML _markup languages

[2] http://linuxtesting.org/project/olver

[3] K. Komvoteas, XML Diff and Patch Toql2003.

[4] R. Al-Ekram, A. Adma and O. BaysaljiffX: An Algorithm to Detect
Changes in Multi-Verion XML Document2005.

[5] S. Ronnau, G. Philipp and U.M. BorghofEfficient Change Control of
XML Documents2009.

[6] J.J. RissanerGGeneralized Kraft Inequality and Arithmetic Codintp76.

[7] V.I. LevenshteinBinary codes capable of correcting deletions, insertions,
and reversals 1966.

44

High-level Data Access Based on Query Rewritings

Ekaterina Stepalina
National Research University — Higher School of Economics
33/5 Kirpichnaya, st., Moscow, Russian Federation
estepalina@mail.ru

Abstract—This paper describes the ODBA problem solution
based on query rewriting techniques, introduces the DL-Lite
logics for knowledge representation and the query rewriting
algorithms for high-level data access. The RQR algorithm’s
optimization capabilities are considered.

Keywords- ODBA;description logic; DL-Lite; query answering,
query rewriting, OWL 2 QL

l. INTRODUCTION

A conceptual interface for accessing the data stored in
existing relational databases can be implemented via query
rewriting techniques. Built on these techniques, the interface
may be independent from DBMS and as well as from particular
DB schemes[6]. The development of such interface is an actual
problem of raising the abstraction level for working with data
and high-level integration of information systems. The
ontology representation format OWL 2 QL has been specially
designed to use actual database technology for query answering
via query rewriting. An efficient query rewriting algorithm
RQR[1] was introduced at the international OWLED-2009
workshop: it translates queries to ontologies into the queries to
ordinal databases. The data complexity of RQR is no higher
than P in the worst case. The additional advantage of the
algorithm is that it can be used for more expressive descriptive
logics — DL-Lite and higher. This paper describes the ODBA
problem, introduces DL-Lite logics and query rewriting
techniques, then analyses the RQR optimization capabilities.

II. ODBA PROBLEM

With conceptual modeling progress (OOP, UML) and
system sophistication the need of providing an information
system with a high-level interface for working with large
amounts of data is appeared. Such interface may be provided if
the knowledge domain is represented in an ontology
description form (knowledge base). The data access problem
though a high-level conceptual interface is called ontology-
based data access (ODBA) [1]. The solution must satisfy the
following requirements: 1) efficient query processing, which
must be ideally executed with the same speed as the SQL
queries over existing RDB, and 2) the query processing must
use all advantages of relational technologies already used to
store data.

I1l. ONTOLOGY-BASED KNOWLEDGE REPRESENTATION

Knowledge base, KB - is the knowledge domain
description saving the relationships’ semantics between
concepts. KB allows extracting data stored in a database

45

(ABox), taking into account the constraints expressed at a
higher conceptual level (TBox)[4]:

KB = TBox+ABox, or K = (T, A) (1)

Where TBox (T) — terminological box — the conceptual data
model, for instance, Entity-Relationship;

ABox (A) — assertional box — data set stored in a database.

An ontology can be called a particular instance of KB,
represented on a formal KB description language. Description
logic (DL) of a special expressivity power can be used as a
knowledge representation language. The expressivity power is
defined by the set of axioms allowed in TBox and ABox. On
the one side, the language should be as more expressive as
possible to completely describe the knowledge domain. On the
other side, the reasoning problems over KB must have an
acceptable computational complexity.

IV. SYNTAX AND AXIOMS OF THE DL-LITE FAMILY

The DL-Lite[1] language family is proposed for conceptual
modeling in addition to UML and ER. The DL-Lite syntax:

R:=PR| By)
B:=1]|Ax| =dgR, (3)
C::=B|_|C|C1I_|C2, (4)
_ _ (P ifR=R,

inv(R) = {Pk, ifR = B ®)

TBox is a finite set of C; = C,, R; E R, - concept and role
inclusion axioms.

ABox is a finite set of Ay(a;), ~Ax(a;), P(aj a;) and
—Pc(aj, a;) -assertions.

Where a;- object name, A — concept name, P — role name, g
— integer number.

Interpretation J (essentially, the particular instance of KB)
is a pair if non-empty domain and an interpretation function
(A7,7):a] € A7, Al € A’ and P} € A7 x A7 (6)

For each interpretation the unique name assumption (UNA)
status is also specified. UNA affects on the computational

complexity characteristics of J:
a] # aj,foralli # j (7, UNA)

Languages of different expressive power are produced by
restricting the set of allowed axioms. The main axioms:

() = {0 € &’ x &|(xy) € K}, ®)
=9,)
(= qR)’ = {x € A’|x{y € A7|(x,y) € R’ } > q}, (10)
(=07 1A\C, 11)
c;nc))’=cinc (12)
Where X means the cardinality of the following set.

Additional axioms reflect various relationships used in
conceptual modeling:

(= qR.C)Y ={x e A|R{y € C’|(x,y) € R” } = q} (13)

7 & Dis(Ry,R,) iffR] NR} = 9, (14)
7 & Asym(P,) iff B! n ()’ = 0, (15)
7 & Sym(By) iff B! = (B)’, (16)
7 & Irr(Py) iff (x,x) & P! forallx € A7, (17)
7 E Ref(By) iff (x,x) € P! forallx € 4, (18)

Where E is a satisfaction relation in KB.

The common denominators of DL-Lite logics are the
following — 1) it is not possible to assign particular roles only
to certain concepts, that means all roles can be applied to every
concept (3IR.C),C =T; 2) TBox axioms are only concept
inclusions and cannot represent any kind of disjunctive
information, for instance, that several concepts cover the whole
domain.

V. MAIN PROBLEMS OF WORKING WITH KNOWLEDGE
BASES

Given a KB K = (T,A) one may consider the following
fundamental reasoning problems [5]:

A. Satisfiability

Check whether a model of K exists.

B. Instance checking

Given an object a and a concept C, check whether K =
C(a), or, in other words, whether a’ € C’ for each 7 of K.

C. Query answering

Given a query q(X) and a tuple d of objects from A, check
whether K = q(3), or, in other words, whether g is an answer
to the q(X) query w.r.t. K.

The computational complexity of these problems depends
on a number of variable and fixed input parameters. The input
parameters are: the TBox size, |T|, the ABox size, |A|, the
K = (T,A)size, the query q(X)size — the number of query
parameters, |X| = N.

The combined and data (by the amount of data to be
processed) complexity are separately considered w.r.t.
reasoning problems. The data complexity is the most important
in ODBA problem context, so the TBox size is considered
fixed, and the query size is negligible w.r.t. the size of ABox.

46

VI. EFFICIENT QUERY ANSWERING IN DL-LITE KBs

The maximal expressive language for conceptual modeling,
for which the query answering complexity (data) will not
exceed P, is DL — Litellf [1]. If UNA is accepted, then query

answering in DL—Lite](lI:rFr)ll(HN) will have the least

computational complexity by the amount of data - AC°. This
feature causes a very important fact:

Given a knowledge base K = (T,A) satisfying DL —
Lite}(]Hofr)l with UNA and a conjunctive (with no disjunctions)
query q(X). Then q(X) and TBox can be rewritten into a union
of conjunctive SQL(q(X)) queries over ABox only, and the

answer for this new query will be sound and complete[3].

Based on this fact, query rewriting allows one to obtain a
knowledge base over a traditional database, as well as to work
with data at the conceptual level independently from a certain
database scheme, and effectively use all advantages provided
by modern relational DBMS.

VII. QUERY REWRITING ALGORITHMS FOR OWL 2 QL AND

HIGHER

For information systems working with large amounts of
data, mostly performing the query answering problems, the
W3C consortium’s proposed the OWL 2 QL standard. This
standard based on less expressive, than DL — Lite ., the
DL — Litell .. subset of axioms (another designation - DL —
Liteg). The complexity of all reasoning problems over
DL — Litell .. ontologies does not exceed polynomial. This
significant restriction’s been added because the equality or
inequality of objects in OWL is to be specified explicitly with
no UNA (or not UNA) implicit assumption. To keep the
reasoning problems’ complexity constant and UNA-
independent for ontologies built in compliance with the OWL 2
QL standard, it’s been decided not to include axioms, which
allow one to define function dependencies and numeral
restrictions over concepts. These axioms strongly affect the
reasoning complexity, which depends on the fact whether UNA
or not UNA is assumed in the ontology.

Query rewriting techniques and algorithms are intensively
developed for OWL 2 QL to provide mechanisms for high-
level conceptual query answering over existing databases.

Currently two algorithms have been designed and
implemented[2]: CGLLR and RQR.

The CGLLR algorithm for DL-Lite has been implemented
in several systems, such as QuOnto, Owlgres, ROWLKit. The
RQR algorithm for DL-Lite+ was introduced in 2009 and
implemented in REQUIEM. Both algorithms, CGLLR and
ROR, retrieve the same results of query rewriting. During the
rewriting process each algorithm produces a large number —
about several thousand - UCQ (unigue conjunctive query). This
results in complicated SQL queries with too many unions,
which can be impracticable to DBMS.

The algorithms have been tested on computers with equal
configuration. The testing data included 9 ontologies of the
DL — Liteg [2] expressivity level, corresponding to the OWL 2

QL profile and used in real applications, such as VICODI
project, LUBM, SANAP and other.

An active optimization work on these algorithms is
conducted in the following directions:

e Simplifying the initial query q(X) through query
subsumption check;

e Excluding UCQ, which have no corresponding OWL-
RBD mappings.

The experiments[2] showed that in some cases RQR with
subsumption checking generates less UCQ, than CGLLR.
Moreover, unlike CGLLR, the RQR algorithm can be used for
more expressive description logic languages, than DL-Lite.

In whole, RQR works more effectively than CGLLR,
supports large amounts of data, complex queries and qualified
existential restrictions (3). With subsumption checking applied
to initial queries both RQR and CGLLR generate an equal
number of UCQ. However, the subsumption check itself takes
time and practically equalizes the result efficiency of RQR and
CGLLR in the worst case.

VIII. FUTURE WORK

The experiment results demonstrate that RQR is more
preferable for query rewriting, than CGLLR[2].

For researching into practical usage aspects of these
algorithms, first of all, one should find out how much query
answering based on described query rewriting techniques is
efficient on real databases. The obvious obstacle for query
rewriting approach is the need of mapping a conceptual model
to a particular database for each database and for each unique
model. However, it is an additional abstraction layer

47

requirement, which is inevitable to raise the abstraction level of
data access interface.

In further experiments the testing data must include queries,
which are to be transformed into SQL queries to real databases
based on prerequisite mappings. One may suppose that the
query rewriting algorithm efficiency may also significantly
depend on a particular mapping representation. Currently, there
are no standards and examined formalisms to define such
mappings.

Further optimizations can be applied to RQR: forward and
backward subsumption check, query condensation and other.
Additional experiments with these optimizations are needed.
Besides, full features of OWL 2 QL (especially, data types)
must be supported in RQR, and a new series of experiments
will be required to get reliable results of checking the RQR

efficiency with the complete support for DL — Litey, .

[1] Artale, A.; Calvanese, D.; Kontchakov, R. and Zakharyaschev, M.
(2009) The DL-Lite family and relations. Journal of Artificial

Intelligence Research 36 (1), pp. 1-69. ISSN 1076-9757.

H.P’erez-Urbina, I.Horrocks, and B.Motik. Efficient Query Answering
for OWL 2. In Proceedings of the 8" International Semantic Web
Conference (ISWC2009), Chantilly, Virginia, USA, 2009.

H.P’erez-Urbina, B.Motik, and I.Horrocks. Tractable Query Answering
and Rewriting under Description Logic Constraints.
JournalofAppliedLogic, 2009.

F. Baader. Logic-Based Knowledge Representation. In M.J. Wooldridge
and M. Veloso, editors, Atrtificial Intelligence Today, Recent Trends and
Developments, number 1600 in Lecture Notes in Computer Science,
pages 13-41. Springer Verlag, 1999.

The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2002. ISBN 0521781760.
Edited by F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F.
Patel-Schneider.

Semantic Future by SWUG. [Online]:http://semanticfuture.net.

[2

31

(4]

(5]

(6]

http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521781760

APPLICATION OF THE FUNCTIONAL PROGRAMMING TOOLS IN THE TASKS
OF LANGUAGE AND INTERLANGUAGE STRUCTURES REPRESENTATION

Peter Ermakov
Institute for Informatics Problems,
The Russian Academy of Sciences
IPI RAN
Moscow, Russia
petcazay@gmail.com

Abstract. The paper considers issues of formal auktlin
the tasks of knowledge representation includingntiptition
of formal grammars by means of functional prograngni
languages. One of the possible applications of firenal
notation given is illustrated by the task of paehlhatural
texts analysis and comparison.

Keywords: functional programming tools, language
structures representation, parallel texts analysiand
comparison

I. Introduction

At present the problem of machine text analysiedtural
language is one of the key challenges in the fiefd
information technologies and research. For its tsmtuone
involves various interdisciplinary approaches andthuds.
This caused by the complex character of the rekedadt in
the direction: several disciplines are engaged, aigm
computer linguistics, artificial intelligence, andormal
mathematical methods.

Among linguistic resources that have been devel@zed
result of such research in the fields of naturaiglaage
analysis and knowledge acquisition are well-knovatteonic
dictionaries, syntactic parsers, language ontofogjenerators
of syntactic trees: WordNet, EuroWordNet, Ontoliagu
Russian dictionary RusLan, rakxxke Penn Treebank, Ragel,
Syntax Definition Formalism, Spirit Parser Framekyor
SYNTAX, Yacc, etc. This list is quite incompletdyough, it
only demostrates variety of approaches and instntene
involved in the procedures of natural language rapiEms
analysis and modelling.

Thus, automatization of a set of processes withia t
language (grammar analysis, syntactic and semantic
representations, etc.) and of its interaction witbman
activities (speech recognition, machine translatiparallel
texts comparative analysis, and so on) is oneeihto-date
relevant tasks for several disciplines and domains
simultaneously. [i, ii].

48

Olga Kozhunova
Institute for Informatics Problems,
The Russian Academy of Sciences
IPI RAN
Moscow, Russia
kozhunovka@mail.ru

But the level of sophistication of the existing emaches
to language structures and processes represensaiides up
with the growing demands to the language modelss Th
induces a search of new approaches to languagetsts
representation and hybridization of the well-fuantng old
methods.

As an example one can study the difficult and lamy of
universal grammar search to use it in natural laggu
representations which is dramatic for the optimaratof
machine translation systems, syntactic and semaetit
analysis, texts comparative analysis and presetegis and
relations acquisition, etc. One of the principalriders of the
approach to modelling of natural language unitsti@ns, and
mechanisms of their interaction by means of forgralmmars
was Noam Chomsky [iii]. Time passed, and many fedos of
his approach appeared. They started the aboveanedtiong
search. It led them to the gradual enumerationranigion of
the existing grammar types, then — to their congpian and
adaptation to possible applications, and finally +e
dissatisfaction from the formal representation tigey as a
result, and address to statistical methods thatajiesl in this
field up to the moment. But soon many experts imirth
independent research found out that statisticahaust don't
solve the problem of completeness and accuradyeoftural
language structures representation. For this regmtay more
and more specialists address to hybrid methods hvhie
untrivial in construction but more precise accogijnto the
applications needed. Besides, validation of their
implementation is to be carried out through all thages of
the language representations, its structures dsalys
comparison with the existing patterns, and so o |i

Thus, as it was mentioned above, formal grammams is
mathematical apparatus meant for the text analysis.most
interest form the perspective of the problem cosrsd attract
regular and context-free grammars [iii]. For eadhttem a
relevant analytical engine exists thanks to whidrsimg
might be conducted automatically, i.e. by means of
computational procedures. Each analytical engirssggses a
set of advantages and disadvantages. For instemice of the
disadvantages are complex structure, infeasibibfy the
universal engine design and need in its constahtilce
according to a specific application.

This involves many questions, particularly: is @spible to
build a universal mechanism of the natural langusigectures
representation using the existing formal methodsd an
techniques? Is there any probability of minimiziwgrk of
experts in the procedures of formal representatomsnatural
language structures comparison and their verific&ti

In an attempt to answer these and other questibiss t
paper suggests an approach which allows repregemétural
language grammars (as well as formal ones) in m foot
demanding an analytical engine design for textipgrand
analysis. Rejection of analytical engines use gille us an
opportunity to get rid of a set of technical probteassociated
with their complex implementation. For instance, ig
suggested to enhance formal grammars with the ifuradt
programming languages and their tools. One of thesiple
applications of the suggested formal representatisn
illustrated by an example of the comparison of ratu
language parallel texts.

I1. Formal Grammarsand Analytical Engines

Consider a selected at random formal grammar
G= (VT AV ,S,P), where V; is a finite set of terminals,

V, is afinite set of nonterminals, start symt#L1V,; andP

is a finte set of productions of a form

a - Bra,pO, OV,)Oaz 0 OvOV, :vOa.
According to Chomsky classification, formal gramsar

are divided into four types [iii]:

. unrestricted (type 0)

. context-sensitive (type 1)
. context-free (type 2)

. regular (type 3)

The first two types (type 0 and type 1) have noliapfion
due to their complexity, except for the contextstve
grammars which might be used when analyzing natural
languages texts excluding the task of compilatorkling.

The types 2 and 3 on the contrary have plenty obua
applications. For example, context-free grammases wsed
when describing computer languages syntax. Regular
grammars are applied for description of the unary
constructions: identifiers, strings, constants, eagder
languages, command processors, etc.

An analytical engine for regular grammars is finstate
automaton. Equivalence of the regular grammar anite f
state automaton is proved in the Kleene theoremviich
allows assuming the concepts of regular grammagylae
expression, and finite state automaton equivalent.

49

The field of application of regular grammars in thsks of
natural language structures recognition is ratimeitédd. This
is related to the uneasiness of finding a regutaression for
describing any of the formal languages, not to moematural
language and its structures. We'd like to note gmouthat
regular expressions is a very convenient tool foalyzing
short and highly formalized language constructions.

At present basic instruments of formal and natural
languages analysis are context-free grammars. Acaly
engine for context-free grammars is a one-sided
nondeterministic automaton with stack outer memabnythe
most trivial case of such automaton’s algorithm
implementation, it is characterized by an expormnti
complexity. But iterative upgrade of the algoritnmay lead us
to its polynomial time value depending on the léngf the
input set of symbols and necessary for its analyflis

Among the existing context-free languages one can
distinguish a class of deterministic context-fremduages,
which are interpreted by deterministic automatothvatack
outer memory. The principal feature of these laiggsds their
unambiguity: it is proved that one can always buid
unambiguous grammar for any deterministic contesg-f
language [vi, vii]. Since the languages are unaomug, they
are most useful when it comes to building compia{wi].

Moreover, among all the deterministic context-free
languages exist such classes of languages whiaw all
building a linear recognizer for them. This is tleEognizer
which time value related to the time for decisioaking
about a set of symbols belonging to a languageahkasear
dependency on the chain length [vi]. Syntactic trmsions
in the majority of the existing programming langaagnight
be classified as ones of the class mentioned. a$pect is
very important when developing up-to-date high-spee
compilers.

As a rule, the more complex from the mathematical
perspective an analytical engine is, the more ehglhg is its
technical implementation. Case with finite stateomata
(both with memory and without it) isn't an exceptiolt's
well-known that having formal grammar one can budd
automaton accepting it [vii, viii]. But this autotoa possesses
a set of disadvantages when it comes to its apjaitao
natural language grammars. For instance, rules abfiral
language include a plenty of features of naturalglege
structures which are attributive by their natureodessing of
such transformation rules implemented using findtrate
automaton may lead to the increase of the automstiates
and to growth of amount of the transformation rudsen
changing the states. Moreover, when implementiegathove
mentioned transformation rules one needs to ceepteblem-
oriented analytical engine to handle processinfp@finput set
of symbols of the natural language structures anapply
interpreting rules to them.

I11. Computational and Functional Grammars

In order to minimize above mentioned challenges the
authors suggest an approach which allows repreggrf
natural language grammar rules as functions in ematical

B or Y= f(X:XOAYOB. For

sense, that i A _,

making it more convenient and clear to handle m@tur
language grammar rules as mathematical functiaes s a
f

transformation which is written e A _, B) we suggest

to use such tools as n-tuples to keep necessaiputitte
characteristics (for example, gender, singulargdjuetc.).
Representation of the rules as functions also giaes
opportunity to use instruments of the functionaigramming
to build systems of grammar parsing and analysid an
interlingual transfer not loosing efforts to buiklich an
analytical engine as a finite state automaton.

Consider the approach in more detail.

Representation of grammar rules, or transformatides,
as mathematical functions has the following advgesain
comparison with formal grammar apparatus:

. Usage of functional programming tools to
build systems of transfer immediately;

. Possibility of higher-order function
applications.

It's worth noting that by concept “system of traarsfin
the paper we understand software implementationarmf
analytic engine for processing of transformatioxgressed as
functions.

We'll illustrate it by an example: consider a siepl
sentence in English «I can swim» and its trangfafinto
Russian 4 ymero mnaBarb».

Examine transformations expressed as mathematical
functions. For the example given we use syntax hef t
functional programming language Erlang:

(1)

trans(i)— 1,

trans(can)- mousb,

trans(Swim)— 1mbITh;

On applying the functional programming tools, oran c
split an input sentence into separate words (théshanism
isn’t given in detail in the paper). Having applidte above
given rules immediately, the following result miglie
obtained:

(2) s MOYP TUTBITH.

Such “translation” is quite unfit to the translatioaking
into account all the links between natural langustgectures.
However, we'd emphasize that to build such a systédm
transfer no additional tools were involved except fhe
system of rules. The whole mechanism of transfas w
provided with the functional programming language.

50

Application of higher-order functions gives an oppaity
to pass a function as a parameter to other furgtidinis
allows, for instance, handling the normalizatiore.(iputting
into normal form — for example, infinitive verb far noun in
singular, etc.) of any natural language structwfeie transfer.

Using n-tuples as a form of representation of ratur
language structures enables to generalize atwibuti
characteristics of words and use pattern alternstimf such
structures in prospect (see an example below). iGenan
example of a function which in a case with its angmnt a
noun in singular leaves it without any modificasout in a
case with it in plural, adds an “s” inflexion toetkend of the
word:

(3)

func({X, noun, singular}}— X,

func({X, noun, plural})— X ++ «s»;

Such function might be of use, say, when generagrgin
English.

That's why we'd like to consider such representafiarm
of natural language information as n-tuples in itlefs one
can see from the example above, this approach gives
opportunity of arrangement of attributive featurasd its
further use in transformations. Apart from thisingsn-tuples
for storage of attributive features of languageudtires
enables us to extract functions according to laggua
structures of various levels of abstraction (fostamce, a
word, a phrase, a sentence, etc). any of such daegu
structures has its own set of attributes, henceetilould be
functions which have words, phrases, and so onthes
arguments.

At first sight the above given approach to représtémn of
natural language grammar rules apparently geneeatesge
amount of transformations even for a narrow domiirs. the
case. But one should note that since system o$fearuilt
using functional programming tools cannot be comiEd a
finite state automaton, and, thus, doesn’'t have states and
rules of transformations between the states, satheunt of
transformations isn’'t dramatic. Absolute clearn@dsence of
the inner state) of the analytical engine givespportunity to
perform analysis and synthesis of transformatignarbexpert
in the field of computer linguistics in a convertiemde.

The second distinctive feature of the suggestedoagp is
quite technical one. It is essential to design emgplement a
relevant analytic engine for every information systwhich
tasks correlate with natural language structuredyais based
on mathematical apparatus of formal grammars. A&# said
above, this task is rather complex and laboriouswétser, in
the case of functional representation of grammégsras an
analytical machine the environment of the functiona
programming might be used (for instance, Erlangskdh)
[ix].

But here’s a more formal description of the sugegst
approach.

Firstly, introduce a concept “Computational and
Functional Grammar”. Consider a formal
grammaG = (VT AN ,S,P), where P

isa » B:o,pO(, OV,)Doz0O00vOV, :vOa.
Computational and Functional Grammar (CFG) is anfor
of notation of the above mentioned formal

grammaiG . = (T, f,A), where T is a finite set of

parametric n-tuples, f — transformation functibnT — T,

A — finite set of atoms.
By parametric n-tuple we mean an n-tuple elemefits o

which might be elements of the s¥fg, V;, A and special

symbol «_».
By atom we assume any unambiguously determined

identificator such thatAn (VN DVT): U. Atoms are

meant for setting attributive characteristics dunal language
words (gender, singular/plural, case, etc.). They specific
instrument for simplifying of natural language stures
analysis in particular.

We'd like to emphasize that atoms and atomic strast
are included into CFG description. Thus, all pdssib
attributive characteristics of language structesdefined in
the Grammar. That is, CFG is a formalism sufficidot
natural language structures analysis, and thene isecessity
for using any of other mathematical tools in aduiitfo it.

Function f in Computational and Functional Grammars is
defined in the table form similar with the BackuatM form
which is used for setting the rules in context-fge@mmars.

The symbol «_» is suggested to denote an n-tuplaesit
which value one may ignore when defining the tramsftion
function. Thus, illustrate the sense of the spesyahbol « »
by an example.

Consider a set of aton#s = {noun, verb, plural, singular,
ok, not ok and a function defined as follows:

4)

f({noun, _}) — {ok},

f({verb, _}) — {not ok};

Then f({noun, plural}) = {ok} and f({noun, singuldy =
{ok}, i.e. the function’s value will be {ok} regatdss of noun
is in singular or in plural.

To illustrate the difference in grammar rules
representations by example, we’ll consider a forgraimnmar
G = ({a, the, dog, cat, chased}, {<S>, <NP>, <VRN>,
<V>, <DET>}, <S>, P) where P:

©)

<S> ::= <NP> <VP>,

<NP> ::= <DET> <N>,

<VP> 1= <V> <NP>,

<DET> ::= a | the,

<N> ::= dog | cat,

<V> ::= chased

51

where

<S>, < NP>, <VP>,< DET >0V, and

a,the,dog,cat,chased]V; .

In case of functional representation the above ndefi
grammar will be expressed as follows:

Gee = ({< $(NP(VP (N)(V),(DET) ,a,thedogcatchase}i f,I])
where f:

(6)

f(<DET>) -> a,

f(<DET>) -> the,

f(<N>) -> dog,

f(<N>) -> cat,

f(<V>) -> chased,

f(KNP>) -> f(<DET>) ++ f(<N>),

f(<VP>) -> f(<V>) ++ f(<NP>),

f(<S>) -> f(<NP>) ++ f(<VP>);

Symbol «++» denotes an operation of concatenation.

One should pay attention that in the consideredngia
the set of atoms A is empty. This points to thd that such
grammar doesn't take into account attributive cbtardstics
of words and language constructions. One may atoethat
the set T in the example above is just a joint algt of
terminals and nonterminals of the initial grammar G

V. Task of parallel texts analysisand comparison

At the contemporary stage of design and developroent
natural language processing systems the main eispigas
merged towards creation of parallel texts (i.etdem several
languages equivalent by their contents and reptratem
forms) analysis techniques. It generates a set askst
concerned with their adequate interpretation aruliggtion,
above all, those are tasks of machine translatiod a
knowledge processing [X, Xi, Xii].

For that reason we demonstrate capabilities of the
functional programming tools when applied in thektaf
parallel text analysis and comparison, including thsk of
interlanguage structures transfer from one languate the
other [xiii]. As an example we consider texts o€ thatent
claims (in chemical technologies) in German and lighg
respectively:

(7)

. Claim in German: Verfahren zur Epoxidierung einer
organischen Verbindung mit wenigstens einer C C-
Doppelbindung mit Wasserstoffperoxid in Gegenwart
wenigstens einer katalytisch aktiven Verbindung und
wenigstens eines Ldsungsmittels, dadurch geketnmeic
dass ein Produktgemisch umfassend a-Hydroperoxyal&o
unter Einsatz wenigstens eines Reduktionsmittedsiziert
wird.

. Claim in English: A process for the epoxidation of
an organic compound having at least one C-C dobbled by
means of hydrogen peroxide in the presence of ast lene
catalytically active compound and at least one aoly
wherein a product mixture comprising [alpha]-
hydroperoxyalcohols is reduced using at least oeducing
agent.

When consistently comparing the claims given (for
instance, for the sake of confirmation of the paten
information and data mining in chemistry) the faling
transformations were detected:

(8)

(a) Verfahren zur Epoxidierung—» A process for the
epoxidation

N [verb, nom, neutr, sg] + Prep [zu+der, dat, confpm,
sg] + N [dat, fem, sg}— Art [indef, sg] + N [com, sg] + Prep
+ Art [def, 0] + N [com,sg]

(b) ein Produktgemisch> a product mixture

Art [indef, masc, nom, sg] + N [comp, nom, neuty s>
Art [indef, sg] + N [com, sg] + N [com,sq]

(c) dadurch gekennzeichnet wherein
Pron + Part [ll f, masc, sgl> Adv

The above given transformations are described bgnse
of primitive language markup and a set of gramntigibates.
Thus, in case (b) (example (8)) the transfer ofn@ar phrase
structure ein Produktgemischinto English one & product
mixture» is described as a modification of an article JAwith
attributes indef, masc, nom, sg (that is indefinite,
masculinum, nominative case) and a compound nodromN
the left part of the transformation into a phraseiciure in
English with an article and its attributemeef, sg and two
nouns in the right part of the transformation.

However, this technique of transformations notafiarthe

. iv
example above) possesses some disadvantages, nhamely

awkwardness of the rule itself and need to intérpreith the
help of specifically designed analytic engine.

But using functional programming tools (which ateet
instruments of language structures representatiotheé case
as well) may give one an opportunity to write dothe rule
(b) from the example (8), as follows:

(9)

(b) ein Produktgemisch» a product mixture

v({«ein»,art,indef,masc,nom,sg}y «a»,

v({«Productgemisch»,noun,comp,nom,neutr,sg}) —
«product mixture»;

fgerman-english(

{X1,art,indef,masc,nom,sg},

52

{X2,noun,comp,nom,neutr,sgh»
v({X1,art,indef,masc,nom,sg}) ++
v({X2,noun,comp,nom,neutr,sg});

V. Conclusion

In the paper a new approach to natural languagamgea
representation as functions in mathematical sense i
considered. Also opportunities of applying functibn
programming tools to building systems of transfee a
demonstrated. Practical application of the appraschiewed
from the perspective of parallel texts analysis eochparison
(texts from patent and scientific fields).

Further research within the approach and assoctatd
may be conducted in the following directions:

. Customizing of the existing representations of
the natural language grammars to functional form;
. Creation of problem-oriented system of

functional programming to make handling of natuaalguage
rules more convenient;

. Enhancement of functional programming
tools taking into account needs and tasks of coemput
linguistics.

. Koszepenko E.b. JIuHrBuctuueckoe MoaequpoOBaHUE IS
CHCTEM MAIIMHHOTO mNepeBoja W 00paboTku 3HaHuil //
Hudopmaruka u ee mpumeHenus, Nel, tom 1. —M.: Topyc,
2007. —C.54-65.
. Kozepenxko E.b. T'maronbHo-uMeHHBIE TpaHCchopMauu
OpH aHIO-PyCCKOM MamimHHOM — nepeBome [/
KommbrorepHass JMHTBUCTHKA UM HHTEJUIEKTYyaJlbHBIE
TexHojoruu: Tpymel MEXAYHApOAHOW KoH(epeHLUH
«JInanor 2007» /Tlox pen. JI.JI. Uomauna, H.W. Jlaydep,
A.C. Hapunwsnu, B.II. Ceneres. - M.. Usn-so PITY,
2007. —C. 286-294.

Chomsky N. SyntaatiStructures. — The Hague: Mouton,
1957.
. Jacobs, Roderick A. and Peter S. Rosenbaum.ising|
Transformational Grammar. Blaisdell, 1968.

Knuau C.K. Maremarndeckas joruka. -M.: nu3a-so Mup,
[1967]1973.

Jx. Xonkpodrt, P. MotBanwy, /. YnemaH. Beenenue B
TEOPHUIO aBTOMATOB, SI3BIKOB M BhUKCIeHuid = Introduction
to Automata Theory, Languages, and ComputatiotM-—
«Bunesame», 2002. —C. 528.
. A. B. I'magkuit, A. S1. JuxoBckuit, “Teopust popMaIbHBIX
rpammaruk” / WUtorn Hayku u TexH. Cep. Teop. BeposTH.
Mar. crar. Teop. kubepuet., 10. —M.: BUHUTU, 1972. —
C. 107-142.
. Kob6punckuit H.E., TpaxrenOpor b.A. Bsenenue B
TEOPHI0 KOHEYHBIX aBTOMaroB. — M.: T'oc. u3maresnbcTBO
¢u3.-mat. mureparypsl, 1962. — 40%.

Vi

Vi

viii

X http://erlang.org, http://haskell.org

¥ . Kosepenko E.B. TIpo6rneMa 5KBUBAIEHTHOCTH SA3BIKOBHIX
CTPYKTYP IIpHU NEPEBOAC U CEMAHTHYCCKOM BbIpaABHHUBAaHUU
napaienbHbIX TekcToB // KoMmmbproTepHast IMHIBUCTHKA U
MHTCJUICKTYaJIbHBIC TCXHOJIOTHM: prZ[BI Me)KILYHaPOZ[HOﬁ
koHpepenimu «/Juamor 2006» /Tlox pexn. JI.JI. Momauna,
H.. Jlaydep, A.C. Hapunssan, B.I1. Ceneres. - M.: U3n-
Bo PITY, 2006. -C.252-258.

Nivre J., Boguslavskil.,, lomdinL. Parcing the
SynTagRus Treebank of Russian \ Proceedings of the
International Conference COLING’2008, Manchestéf, U
~2008.

X' Macken L., Lefever E., Hoste V. Linguisticallgded
sub-sentential alignment for terminology extractfmm a
bilingual automotive corpus \ Proceedings of the
International Conference COLING’2008, Manchestéf, U
2008.

Koxynoa O.C. DBelsBieHHe HOMHHAIN30BaHHBIX
KOHCprKLII/Iﬁ B IMapauICJIbHBIX TEKCTaX IMaTCHTHBIX
MOKyMCHTOB Ha pPYCCKOM H© HEMENKOM si3bikax //
KOMHLIOTepHaSI JIMHTBUCTHUKA nu WHTEJIJICKTYAJIbHBIC
TexHoNmoruu: Tpymbl MEXIyHApOIHOH KOH(pEepeHINH
«JIuamor 2009» /Tlox pen. JI.JI. Nomauna, H.W. JTaydep,
A.C. Hapunbsuu, B.II. Ceneres. - M.: Uzn-so PITY,
2009. —C.185-191.

Xi

xiii

53

Static Verification “Under The Hood”:
Implementation Details and Improvements of
BLAST

Pavel Shved
Institute for System Programming, RAS
shved @ispras.ru

Abstract—BLAST is an open-source static verification tool used
in checking safety properties of C programs. Given a C program
with several assertions, which should not fail at runtime, BLAST
statically analyzes the program, and either returns a program
execution path that leads to violation of one of the assertions,
or proves that no assertion is violated. If BLAST fails to prove
inreachability of assertions, it may terminate with error, or loop
forever. The framework approach employed in BLAST is counter-
example guided abstraction refinement (CEGAR) empowered
with lazy abstraction.

The first record of BLAST dates from 2002. The tool had
been constantly improving until July 2008, mostly by its original
creators. Beginning in 2009, we continued working on it as a
part of Linux Driver Verification project.

In this article we overview the current status of BLAST: outline
the algorithms the CEGAR framework approach is implemented
on top of, describe the heuristics used and the technical details
of the implementation, and list the external components BLAST
relies on. Along with this description, we outline and evaluate
the improvements we made since its last release by the original
BLAST team, and share our view on the further improvement
of the tool.

Index Terms—Software verification, safety properties, reacha-
bility verification, static analysis.

I. INTRODUCTION

BLAST is an acronym of “Berkeley Lazy Abstraction Soft-
ware verification Tool”. It is a C program verification tool that
solves reachability problem. Given a C program, a name of
the main function (“entry point”) and a name of a label, it
reasons if there exists a program execution path that starts at
the entry point and reaches the label specified.

It analyzes the program with CounterExample-Guided Ab-
straction Refinement approach (for details, see [11]). The way
it implements CEGAR is known as “lazy abstraction” [12],
a novel approach at that time that aims to retain the part of
abstraction that should not change, instead of rebuilding ab-
straction from scratch after each counterexample analysis. This
approach gave the name to BLAST, and the article referenced
([12]) presented BLAST in its “Experimental Results” section;
moreover, this article does not contain any reference to another
source where BLAST was described or mentioned.

The task in subject is computationally impossible, as the
halting problem may be reduced to it. The tool therefore
does not guarantee its analysis will terminate. BLAST may
terminate in runtime if it detects that the program can’t be

Vadim Mutilin
Institute for System Programming, RAS
mutilin @ispras.ru

54

Mikhail Mandrykin
Moscow State University
misha.bear.1990@ gmail.com

analyzed by it, or provide an incorrect result: either “false
unsafe” (a program that does not violate the safety property
being checked, but is reported as “unsafe”) or “false safe” (an
“unsafe” program reported as “safe”). However, if the tool
reports an “unsafe”, it also prints the error trace: the path to
error location from the entry point, which may be followed
through by a human.

To build an open automated system for Linux device drivers
described in [13], we needed a verification tool, and that article
outlines BLAST as a tool “intended for academic research
in software verification”. The experiments demonstrated that
its potential may spread beyond mere academic application,
serving as a verification engine in an intensive driver checking
workflow, as well as provide a ground for research in the do-
main of static analysis. However, before its potential strength
became current a serious work has been done.

A good description of how the algorithms implemented in
BLAST work is in [6]. That article contains a step-by-step
explanation how a sample program is verified with BLAST,
but does not focus on its implementation details.

In this article we describe what BLAST is now, and outline
how we improved it since its last official release (version 2.6)
by the original team. “Vanilla” algorithms described elsewhere
(see [12] and [6]), we list the undocumented but worthwhile
improvements the authors of BLAST made in its imple-
mentation!; we focus, however, on listing our contribution,
and evaluate the impact of our improvements in the relevant
domains if possible.

A. Algorithms used in BLAST

The algorithms used in BLAST are briefly described as
“lazy abstraction CEGAR, with Cartesian predicate abstrac-
tion and LA+EUF Craig interpolation as predicate discovery
procedure”.

To be more specific, this means:

e CEGAR — counterexample-guided abstraction refine-
ment, a process of solving reachability problem by con-
structing a crude abstraction of all possible paths reached

I'The authors recommend to always configure BLAST to use these improve-
ments instead of “vanilla” algorithms by specifying “~craig 2 -predHd 77
in the command line of the tool.

Fig. 1. Assumption as a library call

void custom_assume (int condition)
{ 1if (!condition)
ENDLESS: goto ENDLESS;

from the entry point and iteratively refining this abstrac-
tion by analysis of plausible paths that lead to the error
location, until the abstraction contains no such paths—or
a reachable error location is found. For more info, see
[11];

lazy abstraction — an implementation of CEGAR char-
acterized by refining only those parts of abstraction that
should contribute to proving inreachability after a coun-
terexample analysis. Re-evaluation of other parts of ab-
straction is avoided as much as possible. For more info,
see [12];

control-flow graph (CFG) — lazy abstraction assumes
that the program is represented as a finite control-flow
graph, i.e. a labeled-transition system. The abstraction is
then a “reachability tree”: a prefix tree of all possible
paths in the CFG from the entry point, each node (loca-
tion) being marked with an abstract state. It’s named an
“Abstract Reachability Tree”, or simply “ART”.
Cartesian predicate abstraction — representation of
the abstract state of a location as a conjunction of zero or
more predicates previously discovered. Unlike Boolean
abstraction, Cartesian one restricts usual first-order
Boolean logic formula to conjunction operator only. For
more info, see [2];

Craig interpolation — a procedure of building a Craig
interpolant: given two Boolean formule with an un-
satisfiable conjunction, construct an over-approximation
of the first one that uses only terms from the second
one, keeping the conjunction of the approximation and
the second formula unsatisfiable. As of today, BLAST
uses this procedure to construct new predicates for its
Cartesian abstraction.

II. IMPLEMENTATION DETAILS
A. Generic information

Comprising components written in various languages,
BLAST has its core part written in OCaml, and it compiles
with OCaml 3.11 version. BLAST runs under Linux.

OCaml abstracts away memory operations, automated pro-
cessing of which took a considerable time, according to pro-
filing results. By tuning some documented options of OCaml
runtime, we decreased memory allocation overhead. Sample
programs demonstrated a 20% increase in the amount of
locations explored.

B. Program representation

As previously noted, the approach implemented in BLAST
requires the whole program to be represented as a finite

55

control-flow graph. It means that all functions should be
inlined, and no recursion is allowed. However, BLAST ap-
proaches this in a different way; it uses CIL [16] to build
per-function control-flow graphs. During the program analysis,
BLAST automatically jumps to the proper function unless it
is called via a function pointer. This approach provides more
flexibility, and allows to implement heuristics that concern
function calls. For instance, BLAST is capable to support
recursion with restricted depth. We also implemented a similar
bounding even for non-recursive calls, as we had noticed
that analysis does not need to traverse deeply in the call
graph to succeed in finding bugs. In Linux Driver Verification
project, this allowed us to use code generation tools that
automatically satisfy unresolved external calls to functions
specified throughout the whole kernel without a dramatic
analysis quality degradation.

The representation in such form ignores loop structure,
and unrolls them into a set of conditional jumps. The goto
operators are respected as well. This allows programs to
undergo serious transformations, and still be checkable by
BLAST. We needed a functionality to denote assumptions of
the form “from now on, a certain condition holds”?2. Instead
of trying to built this into BLAST as a special directive, we
devised a library function that solves this problem; it’s listed
on Figure 1. The function is a valid C as well as it does not
confuse BLAST with an unnatural endless loop.

As Linux Kernel sources leveraged the whole power of C
language and its GNU extensions, we integrated the latest CIL
version to BLAST (1.3.7 instead of 1.3.1), and made several
minor improvements to it. Now BLAST is capable to read and
process drivers of Linux Kernel of version 2.6.37 with just 2%
of modules leading to parse errors during the analysis.

C. Abstract Reachability Tree exploration

As noted above, lazy abstraction approach does not require
the abstract reachability tree to present in memory as a
separate data structure. Hence, in BLAST the abstraction is
stored in a custom data structure as a graph, and the abstract
postcondition computation happens at its leaf nodes (also
named the “frontier”). If set of possible program states in a
leaf is empty, it’s not traversed anymore. When a leaf contains
a plausible error location, the counterexample analysis begins,
and the reachability tree is then cut so that its only leaf is the
one specified by the error path analysis. When a leaf is covered
by another leaf which was already processed, the analysis
stops in favor of that already happening starting from the
covering leaf. It is implemented by storing “reached region”
that comprises all the locations reached so far.

The order the leaves are processed in is tunable. Presets in-
clude depth-first traversal, breadth-first traversal and bounded
depth-first search (traverse in depth-first manner up to depth
N, add the pending nodes to queue and get the next node from
the queue). The default method is BFS; possible reason is that

2This is useful to specify preconditions for initial data, which may rule out
false positives in certain situations.

it allows to find error locations faster, and the experimental
data described in [4] prove that BFS allows faster verification
than DFS.

Processing a leaf constitutes on determining its region (an
over-approximation of all possible program variable states on
this path) by incoming edge in the CFG and region in previous
location. More on this procedure in Section II-G.

D. Counterexample analysis

When a counterexample—a reachable error location, for
which the abstraction contains a non-empty set of program
states,—is found in the reachability tree, its analysis starts.
A sequence of operations that leads to this location from the
root node is fetched from the ART. Then, preconditions of all
nodes are taken, and static single assignment (SSA) conversion
is applied to the resultant formule. The formulae are stored in
a custom OCaml data structure.

Interestingly, a path formula is converted to SSA backwards:
i.e. the closer the nodes are to the root of the tree the greater
the indexes of their variables are. Therefore, different error
paths do not have a common prefix in their path formulz.
An optimization opportunity here would be to reverse the
indexes and parallelize ART exploration and path formule
construction. This might also help with alias analysis (see
Section II-I).

For the further analysis, the formule are converted from
custom format to one of formats suitable for external solvers
(special modules take care of that). Due to large size of the
formulae the conversion may take a lot of time. It was the
case for SMT solvers format. To overcome this, we focused
on this conversion, and made it nearly a thousand times faster,
which made the conversion overhead negligible compared to
the time to perform an actual formule analysis. This result
also demonstrates that tight integration with solver’s formula
representation format might not be necessary for a CEGAR-
based verification tool.

After proving that the formula is unsatisfiable (hence the
counterexample is spurious), predicate discovery procedure
starts. These two activities are described in the next two
sections.

E. Path feasibility checking

External solvers are to decide if the formula is satisfiable
(sat) or unsatisfiable (unsat). If error path formula is unsat-
isfiable, then the counterexample is spurious, and should be
analyzed, and the abstraction should be refined; otherwise,
there’s an error in the program. For first-order logic in Linear
Arithmetic and Uninterpreted Function Symbols theory, for-
mula satisfiability is a computationally hard problem. Thus,
careful choice of SAT solver is crucial for building a fast
verification tool.

In the BLAST as of 2008 Simplify solver was used; it is a
“stack-based” solver® (which makes it ideal for analyzing path

3 Allows to push/pop conjuncts of a formula and analyze the conjunction
of formul currently on stack; this could assist checking several formula that
share common parts for satisfiability.

56

formula concurrently with their generation), but it is a legacy
closed-source software with serious licensing limitations. After
resolving the performance issues in conversion to SMTIib
format (see sec II-D), we turned to experimenting with SMTlib
solvers, mainly with CVC3, as its LGPL license fits our aim
of building an open toolset for software verification.

We noticed that in BLAST it is possible for SAT solver
to report “unknown” instead of “unsat”, and these results are
indistinguishable for BLAST. Since proving satisfiability of
large formulais hard, and, at the same time, if a formula is
satisfiable, it’s more likely for the satisfying input to be found
really quick, the “unknown” result may server as “unsat” if
the solver is tuned properly. We tried CVC3, and discovered
that by default it runs in a “honest” mode where no unknown
results were possible, and it took CVC3 gigabytes of RAM
and several minutes to verify a typical formula appearing in
driver source code analysis.

It turned out that the main reason for such a low CVC3
performance on many typical BLAST queries was its use of
certain quantifier instantiation heuristics. By default, BLAST
path formula contain quantified axioms used to model mem-
ory with aim to rule out some false unsafes when pointer
operations are used. Default settings of CVC3 (used for
SMT-LIB benchmark) turned complete quantifier instantiation
heuristic, which made it try to instantiate every given axiom
with every suitable combination of ground terms occurring in
the formula. Also one axiom instance may itself contain new
ground terms that can be again used for instantiation. Since
the typical BLAST formula contains quantified axioms and a
lot of terms, the solver spent much time and memory on the
instantiations described above.

We used an option to disable complete instantiation heuristic
and put a smaller limit on the number of repeated instanti-
ations. This significantly decreased the number of resulting
instances and thus time and memory consumption. Then we
also disabled some other heuristics regarding quantifiers. It
didn’t cause any significant correctness degradation because
the axioms rarely helped the solver prove formula unsatisfia-
bility.

As of today, there is no reason to use Simplify anymore, as
CVC(C3, combined with our fixes to integrational components
of BLAST, outperforms it.

We also removed predicate normalization from BLAST*,
as we supposed that solvers should do it much faster. Our
experiments confirmed this.

F. Predicate discovery

Vanilla algorithm to discover predicates with Craig inter-
polation looks like this. A path formula is cut into conjuncts
(basic blocks are cut apart), and at each cut point the conjunc-
tion of all terms before and after formula may undergo Craig
interpolation. For LA+EUF theory Craig interpolants always
exist ([15]), and an interpolating prover is a tool to find them.

However, instead of running an interpolating prover at each
cut point, BLAST first determines “useful blocks”, a subset of

4Actually, we added an option to turn it off/on.

operations along the trace that contribute to unsatisfiability of
the formula: a minimum set of blocks conjunction of which is
unsat, while the rest of the formula is satisfiable. There may
be several non-overlapping sets of useful blocks for a trace.
Essentially, “useful blocks” are close to unsatisfiability core
of a path formula, with two differences:

« granularity of predicate selection is operator-wise, i. e.
a predicate for one assignment or conditional may only
participate as a whole, while only a part of it may belong
to unsatisfiability core’;

regions may participate in “useful blocks”. A region,
by construction, is an over-approximations of the path
formula to the location it is assigned to. So, instead
of analyzing the trace prior to a certain location, if
a conjunction of the region in this location (computed
by previous refinement procedures) and the part of the
formula past this location is unsat, then we treat the
region as if statement, and nominate it as a part of useful
block set.

The bits of formula extracted this way may themselves
become predicates for the abstraction (as in one of the steps
in SLAM tool [1]). However, BLAST goes further, and runs
the interpolating prover for each cut point between blocks in
each of the “useful block” sets, treating each set as a small
error trace. This way it only calls interpolating prover as many
times, as there are these useful blocks, and the formula for it
to handle are much smaller.

To determine these “useful blocks” BLAST joins predicates
in path formula one-by-one, beginning from the last, until their
conjunction becomes unsat. Then the latest block joined is
a useful one. The next useful block is found with the same
procedure, but the first useful block found is added to each
conjunction. The procedure repeats recursively until the set of
blocks found so far and the next useful block alone form an
unsatisfiable conjunction.

For stack-based solver, such as Simplify, joining predicates
one-by-one is straightforward. For SMT solvers all intermedi-
ate conjunctions were to be checked separately. We noticed,
however, that conjunction of all blocks from the end of the
trace up to i-th one is a monotonous function of ¢ (the more
blocks you join, the more likely their conjunction is unsat), and
binary search may be applied to find the next useful block. We
implemented the binary search for SMT solvers, and we also
implemented caching for the predicates converted to SMTIib
format. For a complex sample cxausb driver the number of
calls to SMT solver was decreased from 32630 to 831, thus
reducing the overall verification time of this sample by the
factor of 7.

Craig interpolants for each cut point in small “traces”
constructed from each of the useful block sets are calculated
and added to lists of potential predicates in the locations of
the real trace between the first and the last useful blocks, and
to the locations in their ART subtrees. The negations of the

3Tt is especially important for more complex formula: when alias analysis
(see Section II-I) or other techniques (such as [17]) are used.

57

interpolants are not added at this point, but they will be taken
into account during the refinement.

To perform the interpolation, an Apache-licensed CSIsat
prover [9] is used, which takes input in “FOCI” format.
It sometimes outputs interpolants with real arithmetic (for
instance, it may print “z < 0.1 - y” instead of “10x < y”); in
these cases, BLAST ignores its output and finds less predicates
hoping that the rest would be enough to prove the safety of a
program.

Each predicates is encoded as a Boolean variable, and each
region is stored as a BDD (binary decision diagram) over these
variables.

G. Abstraction refinement

After an error path was encountered and analyzed, the
analysis in the ART subtree of the node corresponding to the
“useful” block closest to the root is restarted, and the nodes
in it are removed from the queue (also known as “frontier”).

To calculate the region of a frontier node, the “abstract
postcondition” procedure described in [12] is used. For each
of the predicates discovered for this location it is tested if the
precondition of the operation along the incoming edge, given
the predicate is assumed, is implied by the calculated region
in the parent node. To check satisfiability of the formula built
this way the same SMT solver is used as in the trace analysis.

Since all the data required by such a refinement are local,
the exploration of the state space may be made concurrently.
We have not implemented this for BLAST, however, a research
in this direction yields promising results [14].

After predicate for a node is verified, the node should be
tested for coverage. For this, it constructs a BDD that denies
that the calculated region for this node implies the reached
one, and checks it for truthfulness via BDD, each predicate
from the Cartesian abstraction being represented as a distinct
BDD term. If this crude check fails, a more precise one with
use of the SAT solver is performed; it takes into account that
predicates share variables, and are not independent from one
another. If a node is not covered, its children are added to the
frontier, and the reached region for the location is updated.

H. Configurable verification

In BLAST it is possible to use lattice-based data-flow anal-
ysis to aid CEGAR. Lattices are known to over-approximate
the feasible program states, so they may be used to rule out
infeasible paths in combination with usual CEGAR analysis
to analyze the rest. BLAST contains several such lattices, and
only one of them (SymbolicStore) is a generic-purpose lattice
that fits all C programs; it is capable to store information
on concrete values of integers and structure fields as well as
perform shape analysis [5].

To utilize capabilities of lattice-based data-flow analysis,
BLAST extends the structure of node’s region beyond the
usual conjunction of interpolants. The region in BLAST is a
tuple of CEGAR’s predicate constraint, and of several lattice
elements, the set of lattices being configured by user. If any
of tuple elements is L (or false, for predicate regions), then

the further path exploration is not necessary, since one of the
means has proved it infeasible.

As for coverage checking, the lattice-aided verification con-
tained a severe issue: the stop?®™ operator was hardcoded;
it made BLAST nominate a single joined region as reached
instead of a set of regions. This cuts feasible program paths,
since SymbolicStore lattice regions are not a powerset do-
main [7] (while predicate regions are). Also, stop’®™ made
the number of false safes too big for a certain environment
model®, so we implemented stop**? which checks coverage
against a set of reached regions, and several versions of
merge operator: join at meet-points (merge-join), join at equal
predicates (merge-pred-join)’, and no join (merge-sep). After
experiments we chose stop®“? with merge-pred-join as our
default setting.

As a result, the runtime of BLAST with a SymbolicStore
lattice had a 50% increase, but the precision was improved
significantly: the amount of true unsafes increased by 20%
approximately.

This concept of combining different operators in the explo-
ration of state space of a single program in a configurable
way was then developed by one of the authors of BLAST in
the other tool, CPAchecker [8]. Our experience demonstrates
that while it’s not trivial to add more operators the BLAST
implementation is loosely-coupled, and it is only lack of
syntax and framework sugar what prevents a developer from
configuring such operators easily, but the changes one is
required to make are not dramatic.

L. Alias analysis

BLAST employs flow-insensitive may-alias analysis for
more precise reasoning about pointer assignments. As pointed
out in [5], the analysis is “home-brewed”, and we’ll describe
the algorithm here briefly.

The alias analysis starts when the first feasible error location
is found. Originally, BLAST performed this costly procedure
at the beginning of analysis of a program, but for programs
with unreachable error locations, or in cases when all error
paths are ruled out by lattice analysis (see Section II-H), but
we fixed this.

First, the whole program is analyzed, and the aliasing rela-
tion is calculated: if x may point to y at any point of program,
then “may-alias(x,y)” is true. The relation is not reflexive:
while x may be any identifier, y should refer to a concrete
memory location (stack- or statically-allocated memory, or a
location with a malloc () call). An over-approximation is
built by analyzing each assignment (if is assigned an address
of z then = may point to %), and closing it transitively (i. e. if
y is assigned to x, and y may-point to z then may-point to z).
This way, an over-approximation of an “ideal” may-aliasing
relation is built.

SEnvironment models are “main” functions generated based on templates
for Linux device drivers. For more see [13].

Predicate equality was tested via BDDs that stored them.

8Pointer operators are ignored at this point, only identifier names are
essential here.

58

Fig. 2. Verification of this program requires more lvalues than it contains

void mutex_lock (struct mutexx mtx)

{ assert (+*mtx == 0);

xmtx = 1; }
void mutex_unlock (struct mutex* mtx)
{ assert (*mtx == 1);

*mtx = 0; }

int main ()

{ struct mutexx m;
mutex_lock (m) ;
mutex_unlock (m) ;

Each expression is encoded as a bit-vector, and the relation
is stored in the a BDD. If x aliases g, and the expressions are
encoded as vectors X and () respectively, then true value for
bit-vector (X, Q) is inserted into BDD.

When the path formula is constructed, and an assignment
*xy=q appears in it, alias analysis comes into play. It queries
each lvalue (a non-constant expression that denotes a concrete
value in the writable memory) encountered in the program if
y may-alias its base identifier. For each lvalue x it may alias,
the following expression is added to the formula in addition
to the usual predicate:

(D

where *x,4 is the previous instance of expression *x in
the SSA form. The expression means “if y really points to
the same place x does, then the value of xx also becomes q.
Otherwise, this assignment does not change the value of xz”.

The lvalues iterated should not be constrained by those en-
countered in the program. For instance, consider the following
program on Figure 2. To verify it, we need to consider xm as
an lvalue, while the program does not contain it. BLAST has
a functionality to close the set of lvalues of a program under
dereference and taking a field (for structures) operations up
to a specified number of dereferences. The depth of such a
closure is required to be at least one for the program shown
above, but it already prohibitively increase the number of
iterations over lvalues, beyond the sensible time limits.

Some may-aliases are also must-aliases. For instance, CIL
frontend generates additional variables for assignments to
complex lvalues that involve multiple dereferences and field
takings. These variables are known to alias only one single
variable, and the expressions like (1) generated for them will
not contain any disjunctions, and unconditionally assign the
value to the must-alias.

We tried to decrease such a number of iterations over lvalues
by withdrawing must-aliases from the set of lvalues, then
by adding all “const” values to the set of must aliases (to
withdraw even more), but we could not make the iterations
fast enough. This improved the speed of alias analysis alone

((y = 2) = (xx = @) A((y # 2) = (x2 = *T014))

by factor of hundreds, but even this wasn’t fast enough. Using
faster data structures might help, but we think that a qualitative
research boost should precede fast verification of pointer-
abundant programs.

J. Interaction with user

Ul was aimed to satisfy a user that looks at the console
output: plain text printing of debug information, analysis work,
statistics and reports mingled together. We did not change this
much, but tuned the output of error trace and verdicts to fit
automatic processing of it. Now the external tools may read
the verdict, and the error trace with additional information.
This is especially useful when the exploration is cut due to
function call depth limit a user specified, because it would be
unclear from the trace that the limit was enforced rather than
the function is not found.

K. Infrastructure

We added regression tests based on situations that occur
during Linux device drivers analysis. They contain both ex-
pected and current results, for tracking improvements as well
as degradations.

External SAT solvers are connected through a special layer,
that allows parallel execution of queries to the external tools.
For instance, CVC3 is known to have a lag between it outputs
an answer and finished the work (perhaps, due to complicated
resource deallocation), but the layer between BLAST and a
solver does not make BLAST wait and reap the process. Ditto
for interpolating prover.

BLAST contains a lot of dead code. Only a narrow set
of options is supported: some configurations do not work
at all, and terminate with an exception unconditionally. We
did not try to eliminate it; one of the reasons is that it
contains surprises: for example, we were going to implement
the closure under dereferences we described in Section II-I on
our own, but we suddenly found the working code for this
commented out.

1) External components summary: Default shipment of
BLAST includes:

« CUDD package — utilities for binary decision diagrams.
Implemented in C, distributed under MIT-like license.
CVC3 solver [3] — proves (in)satisfiability of various
formule. Implemented in C++, licensed under LGPL.
Communicates to BLAST via SMTIib competition for-
mat.

CSIsat interpolating prover [9] — computes Craig inter-
polants for LA+EUF. Implemented in OCaml, licensed
under Apache. Communicates via FOCI-like interface
(which is supported, for instance, by MathSAT [10]
interpolating prover as well).

CIL C frontend — converts C program into syntax
tree stored as OCaml structures. Implemented in OCaml,
licensed under Apache.

59

L. Known limitations

BLAST does not support assignments of structures as a
whole; does not support function calls by pointer (although
some dead code on this matter is included); ignores inline
assembly; does not provide automatic deduction of properties
involving reasoning about lists and other complex pointer-
based structures; does not support arrays, treats each array
field as a separate identifier, and can not associate a[i]
and a[j] if ¢ = j (and j being the variables); can not
reason about pointer inequalities; does not have a fast aliasing
solution; ignores short logic in conditional statements; does
not cope with interpolants with real numbers; lacks automatic
modularization, and always analyzes the program as a whole.

III. EVALUATION

To evaluate our improvements, we compared how the latest
BLAST version form the original developers and our version
performs on Linux device drivers from media/ folder of
2.6.37 kernel, and with a simple rule that checks if the mutex
locking is correct. Each launch of BLAST was limited with
15 minutes of CPU time and 1 Gb of memory. To make the
older BLAST work with our newest tools, we merged several
integrational fixes to it, and we had to merge the latest CIL
frontend as well, as the default frontend in the older BLAST
can process zero drivers. The results of the comparison are in
the Table 1.

The results demonstrate that the new version of BLAST
is capable to find three times more errors’ (and the newer
version found all the five errors found by the older one), and
total speed was improved by the factor of 5, given that the
precision of BLAST has increased (see Section II-H). The
number of drivers that were reported as neither safe nor unsafe
is two times less than those of the original version. With newer
version, only 30 drivers exceeded resource limits (only two of
them timing out), while the older version ran out of allowed
resources in 52 cases, and it means that 22 out of 52 the most
complex samples were successfully verified under the same
constraints.

In the media folder the new frontend has eliminated all
the parsing errors; however, a more exuberant evaluation of
the newer BLAST demonstrates that as much as 1.1% drivers
are still not parsed by BLAST in 2.6.37 kernel. Compared to
the original BLAST that can process zero Linux kernel drivers
without special patches applied to their source code, this is
quite an improvement.

IV. CONCLUSION

Having started from BLAST 2.6 of 2008, we implemented
a lot of fixes to BLAST, which improved its productivity on
industrial code base (Linux device drivers) by a factor of
more than five (as the evaluation in Section III demonstrates),
making it, at the same time, more precise and capable to
find more errors, as well as more tolerant to the C code it

9The correctness rule was intentionally weak, so most of these errors are
not kernel bugs, but they are valid if approached as mere assertion violations
in C programs.

TABLE I
EVALUATION OF THE ORIGINAL AND THE CURRENT VERSIONS OF BLAST

BLAST version | Total | Failures | SAFE | UNSAFE | Total time | Timed out | Memory limit | Other failures
Original 389 110 274 5 11.5 hours 36 16 58
Current 389 57 317 15 2.1 hours 2 28 27

parses. The precision improvement is not just ad-hoc, caused
by optimized resource consumption: the algorithms themselves
were improved as well.

During our experiments, we succeeded in utilizing a generic
SMT solver, and demonstrated that formulae conversion from
an internal verification tool’s format to SMTIlib competition
format for programs as large as Linux device drivers takes
negligible time compared to other activities.

We learned also that BLAST is extensible enough to imple-
ment more powerful verification algorithms, albeit it is not a
straightforward task for a developer. Thus, the weaknesses of
BLAST may be overcome, and it’s too early for BLAST to
be considered obsolete.

REFERENCES

T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver
verification with under 4 false alarms. In Conference on Formal Methods
in Computer Aided Design, FMCAD 2010, Lugano, CH, 2010.

T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. Proc. TACAS, page
268-283, 2001.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19" International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298-302. Springer-Verlag, July 2007. Berlin,
Germany.

D. Beyer, A. Cimatti, A. Griggio, M.E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Formal Methods
in Computer-Aided Design, 2009. FMCAD 2009, pages 25-32, nov.
2009.

D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape analysis. Proc.
CAV, LNCS, 4144:532-546, 2006.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast: Applications to software engineering.
Int. J. Softw. Tools Technol. Transf., 9(5):505-525, 2007.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

60

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Con-
figurable software verification: concretizing the convergence of model
checking and program analysis. In Proceedings of the 19th international
conference on Computer aided verification, CAV’07, pages 504-518,
Berlin, Heidelberg, 2007. Springer-Verlag.

Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for con-
figurable software verification. Technical report, School of Computing
Science, Simon Fraser University, 2009.

Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSlsat: Interpola-
tion for LA+EUF. In CAV, pages 304-308, 2008.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The mathsat 4smt solver. In CAV,
pages 299-303, 2008.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. Proc. CAV, LNCS, 1855:154-169, 2000.
Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Lazy
abstraction. In Symposium on Principles of Programming Languages,
pages 58—70. ACM Press, 2002.

Alexey Khoroshilov, Vadim Mutilin, Vladislav Shcherbina, Oleg Strikov,
Sergei Vinogradov, and Vladimir Zakharov. How to cook an automated
system for Linux driver verification. In 2nd Spring Young Researchers’
Colloquium on Software Engineering, volume 2 of SYRCoSE 2008,
pages 11-14, 2008.

Nuno P. Lopes and Andrey Rybalchenko. Distributed and predictable
software model checking. In Proceedings of the 12th international
conference on Verification, model checking, and abstract interpretation,
VMCATI'11, pages 340-355, Berlin, Heidelberg, 2011. Springer-Verlag.
K.L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
pages 101-121, 2005.

George C. Necula, Scott Mcpeak, Shree P. Rahul, and Westley Weimer.
Cil: Intermediate language and tools for analysis and transformation of
¢ programs. In In International Conference on Compiler Construction,
pages 213-228, 2002.

Pavel Shved. On reasoning about finite sets in software model checking.
In 4th Spring Young Researchers’ Colloquium on Software Engineering,
SYRCOoSE 2010, pages 17-26, 2010.

Detecting C Program Vulnerabilitiés

Anton Ermakov,

Natalia Kushik

dept. of Information Technologies
Tomsk State University
Tomsk, Russsia
antonermak@inbox.ru, kushiknatalya@yahoo.com

Abstract—C/C++ language is widely used for developing tools
in various applications, in particular, software tools for critical
systems are often written in C language. Thereforehe security
of such software should be thoroughly tested, i.ethe absence of
vulnerabilities has to be confirmed. When detectingC program
vulnerabilities static source code analysis can based. In this
paper, we present a short survey of existing softwa tools for
such analysis and show that for some kinds of C ced
vulnerabilities this analysis is insufficient. Thus we briefly
present an approach forSPIN based approach for vulnerability
detection which may be useful in some cases.

Index Terms—C programming language, software
vulnerability, static/dynamic detection method

I. INTRODUCTION
HE

becomes important as the complexity of softwardstoo X ; .
in C/C++ programmin'BStr”Ct'onv =g, and in general, the maximal value for tytpe

increases and programs written
language are often used in many critical systerhs. Security
of such software should be thoroughly tested, e ,absence
of vulnerabilities has to be confirmed. There ave different
approaches for vulnerability testing: static andnaipic
methods. In this paper, we present a short surfexisting
tools based on static vulnerability detection mdtand show
that for detecting some vulnerabilities, for exaepl buffer

overflow vulnerability, SPIN[1] based approach may be more®

appropriate.

The structure of the paper is as follows. Sectiocohtains
preliminaries. Section Il is devoted to static eahalyzers: a
short survey of existing tools for static vulnetipidetection
is presented in this Section. Section 1V discuss®BINbased
approach for vulnerability detection while Sectioxd
concludes the paper.

Il. PRELIMINARIES

A programvulnerability is a property of the program that

allows a user to disturb confidentiality, integritand/or
availability of this software. Given a set of vulabilities
(features) of a C program, if the program has nohéese

! This work is partly supported by RFBR-NSC graintL0-08-92003

61

features then the program is said toshéew.r.t. the given set
of vulnerabilities; otherwise, the programussafew.r.t. this
set of vulnerabilities. Vulnerability detection rhetls can be
classified as static and dynamic methods [2]. Whtatic
detecting methods are applied the source code atyzad
without running the program while dynamic detection
methods require the program of interest to be drelcu

Given a C program, in this paper, when illustratimg
approaches, we consider the following types of ibtess
vulnerabilities: type overflow, type conversion dilew, array
overflow (incorrect array index), string overflonhigh can be
considered as different types of a buffer overflainerability
and double free vulnerability. All these types afnerabilities
are specified in details in [3]. Type overflow ocgun a C
code when a variable is defined as a variable of typeand
the valuee of this variable when executing the code can

problem of computer-aided software testingexceed the maximal value for typdt can occur when a given

expressiore is assigned to a variablei.e., the C code has an
might be different for different platforms and ogating
systems. An array overflow takes place when a pogner
deals with an array that hassize a items while using a
variablea([i] for i >=size a. When analyzing student software
tools implementing well-known array algorithms suel
different sorts and/or search of minimal/maximalagritem,
we noticed that many those programs are unsafé. \wpe
verflow and array overflow (incorrect array index)
vulnerabilities. In order to estimate whether érigptstatic
methods can detect type overflow and array overflow
vulnerabilities we consider three student impleratobs of
array algorithms and run existing tools for detattdf such
vulnerabilities. In the next section, we presershart survey
of existing tools for static code analysis and rthwitputs for
several vulnerable student programs. We then shatvsome
of such vulnerabilities can be detected usBBIN based
approach.

Ill. STATIC CODE ANALYZERS

When estimating the security of student impleméonst of
array algorithms we considered the following tasks:
calculating the average value of integer array $tetime bubble
sort, the insertion sort. C implementations of éhpsograms
are specified in the Table 1 which is divided irtoee

sections. Table 1.1 contains a C implementatiocatfulating
the average value of integer array items (Progryrable
1.2 contains a C implementation of the bubble @rogram
2) while Table 1.3 contains a C implementation bé t
insertion sort (Program 3). Program 1 has a typerftow
vulnerability in the line
sred+=ali];

There is no check in Program 1sifed variable value does
not exceed the maximal value of the typgsigned shortin
this paper, the maximal value equals 65536 and easigned

short variable occupies two memory bytes. Programs 23and

have an array overflow vulnerability, since arrageéxes of

arraysa and arr are not checked whether they exceed th

number of array items.

int main(){
unsigned short n=0, a[10];
printf("Enter size of array,
please:");
scanf("%d",&n);
for (int i=0; i<n; i++)
{printf("%d. ",i);
Program 1 — ey "
C imple%]entation of ?canf(%d" &alil);
calculating the average . e
value of integer array un5|_gn(_efl s.hort. gred—O,
. for (int i=0; i<n; i++)
items {
sred+=ali];
}
sred/=n;
printf("Sred:%d",sred);
system("pause”); return sred;

Table 1.1 C implementation of array algorithms
(Program 1)

int main()

{

unsigned short j=0,i=0,n, a[10];

cout<<"Enter integer, please:";

cin>>n;

for (i=0; i<n; i++)

{
cout<<i<<" ="
cin>>a[i;

}

unsigned short temp;

bool t = true;

while (t==true)

{

Program 2 —
C implementation
of the bubble sort

t = false;

for (j=0;j<n-1; j++)

{
if (afj]>afj+1])
{

temp=a[j];

afj]=afj+1];

afj+1]=temp;
t=true;

62

}
}
}
for (i=0;i<n; i++)
{
cout<<i<<"="<<ali]J<<endl;
}
system("pause”);returnil;

Table 1.2 C implementation of array algorithms
(Program 2)

%elow we describe the outputs of several static@®eode
analyzers that have been run against C implementatn the
Table 1.

A. ITS4 is a static code analyzer that has been
developed in USA by th€igital company in 1992 [4]. The
ITS4 is a tool for static detection vulnerabilities @/C++
programs. The tool can be executed under Windowsnorx
operating systems.

int main()
{
unsigned short length, key,
arr[10];
int i=0, j=0, tmp=0;
cout<<"length:";
cin>>length;
for (i=0; i<length; i++)
{
cout<<i<<" =";
cin>>arr|i];

Program 3 —
C implementation
of the insertion sort

for (|:O, i< Iength, i++)
{
tmp = arrfi];
for (j=i-1;j>=0 && arr[j]>tmp;j-
)

arr[j+1] = arr[j];
arrfj+1] = tmp;
}

for (i=0;i<length; i++)

cout<<i<<"="<<arr[i]<<endl;

system("pause"); return 1;

Table 1.3 C implementation of array algorithms
(Program 3)

When analyzing a given C code th€S4 relies on its
database of potentially dangerous C functions &titere is a
call for such dangerous function in the given colide|TS4
returns a corresponding report with some recomnienmda
about proposes (preferable changes) in the codelTB#tool
is a free software tool that can be easily downdalaffom
web-site [4]. We executedlS4 against Programs 1, 2, 3
(Tables 1.1, 1.2, 1.3) and thiES4 has detected two calls for

dangerous functions. Those awmzanf) and printf(), in
particular, thdTS4has reported thatcanf) is a function of a
high risk for a buffer overflow vulnerability.

F. There are other static code analyzers that can be

used for vulnerability detection in C programs. leaample,
Cqual [10], developed by Dan Wilkerson in 200Eshelon

B. Flawfinder is also a static C/C++ code analyzer thaAK-VS [11] developed in Russi&locwork Truepath [12]

has been developed by David A. Wheeler in May, 2[H)4
Flawfinder“scans” a given code and similar to &4 has a
list of potentially dangerous instructions of a eodiven a
code, selected dangerous instructions (if any}faea ordered
according to the risks. Therlawfinder report for a
programmer points out the calls for dangerous fonstand
proposes a way for changing the code. Howevertferabove

developed bKlocwork company andoverity Static Analysis
[13] developed byoveritycompany in USAMOPS[14] and
BOON [15] are tools for static detection vulnerabiltieNe
could not execute these tools due to some reasmtsas a
high price, lack of documentation, absence of destrating
version etc. However, according to their descripgipl0-15],
all these tools are developed for static detectioh

Programs 1, 2, 3 tHelawfinder report has only one dangerousvulnerabilities and many of them allow static asaynot only

function — systen) and the recommendatiortry using a
library call that implements the same functionaliif
available'.

C. Graudit is a tool that can also help to staticallysearch for

detect several C code vulnerabilities [6]. In ortterun this
tool it is necessary to call utilitsrep underUnix operating
system. As usual, there can be several optionstbhown this
utility but in the simplest case only the pathctip file has to
be specified. As a result, a colorful report wilpgar where
for a given C program, some dangerous instructamesblue
colored. One can also manually add more instrustioto the
database of dangerous functions. For each programalle 1
the Graudit colored functionsscanf), printf() and stream
input/output operatorsin andcout

D. CppCheck 1.46is a tool with the original name
C++checkthat has been developed DBgniel Marjaméakiand
Cppcheck teanfrom 2007 until 2010 [7]. The&CppCheck
utility is specialized for memory leakage vulnetfitieis. As it

for C/C++ code but also for Java or C# programs.
According to the above short survey of static code
analyzers, one can conclude that most existingstawily

descriptions do not detect type overflow and inectrarray
index vulnerabilities. The latter means that fomsokinds of
software vulnerabilities static detection is nobegh, that is
the reason why in the next section we presented bvierview
of an approach for dynamic detection vulnerab#ifig].

IV. SPINBASED APPROACH FOR DETECTING VULNERABILITIES

Most existing tools providing dynamic detection
vulnerabilities are based on randomly generatedtidpta for
a given program. Thus, it is difficult to guarantdme fault
coverage for such security testing. There alsot esqiecial
tools for distributed programs testing, for examptelgrind
[16] that is designed for multithreaded progransting. We

is mentioned in [7]CppCheckhas detected 21 errors in thenote that this tool does not support buffer ovevfldetection

Linux Core and many other errors in free softwafbe
Cppcheckis also a free software tool under the conditiohs
the GNU GeneralPublic License We have run th€ppcheck
against above Programs 1, 2, 3 and the output gpesto
errors found” has been returned.

E. AEGIS is another tool for static detectionbased on SPIN model

vulnerabilities in C/C++ programs [8]. Th®EGIS has been
developing in Digitek Labs since 2008. This laboratis
strongly
University, Russia. One of the advantages of thid ts that
the AEGIS supports vulnerability detection for several file
simultaneously if they are united in one projedte REGIS
detects vulnerabilities that can often occur in @gpams,
such as memory leakage, incorrect pointers, incoragray
indexes, uninitialized variables, the use of potdiyt
dangerous functions etc. In order to staticallyedetthese

connected with Saint-Petersburg Polytechn

technique but it is able to control synchronizatiogtween
threads.

There are other model checking techniques which
widely used for vulnerability detection. Workinggtether with
our French colleagues we proposed a detection itpodn
checker [f] and have partially
presented the obtained results in the technicartgf]. In
this case, a vulnerability is described as a ptgpbiat has to
be verified. However, SPIN accepts a program written in

;’ROMELA language and thus, the first question isvho

translate a C code into PROMELA instructions when
verifying a property of interest. If the programvisinerable,
i.e., possesses a “bad” feature, th&FIN produces a
counterexample that corresponds to the values trnal
variables or of input data of the program. We ntiat,

vulnerabilities theAEGIS derives the abstract model of theaccording to SPIN documentation features mightecisied

program for verification. The free usage of the lgzex is
available via the official Digitek Labs web-site].[Before
running this tool it is necessary to make somesfiamations
of a given C code for further compiling. For examph the
AEGIS it is prohibited to analyze a code where two orenC
instructions are located in the same program [ife. have
correspondingly changed the above Programs 1aadhave

as temporal logic formulas or Buchi automata [1I].the
former case, we propose how to inject such data the
program in order to show a programmer which parthef
code is vulnerable. The proposed technique someh&es
into account both static and dynamic vulnerabitistection,
since PROMELA model is verified statically while
counterexample is injected into the program throitghrun-

run theAEGIS For Program 1 of average value calculating thgme In [3], some discussions can be found howanslate C

AEGIS detected an incorrect array index for the araay
while for Programs 2 and 3 of array sorts tAEGIS
mentioned only the call of unsafe functisyster().

63

instructions into PROMELA instructions and how the

2 The work was done together with French scientificup of Prof. Ana
Cavalli (TELECOM & Management Sud Paris)

dangerous functions and despite of their

are

injection procedure can be implemented. In PROMELAletection. The obtained preliminary results cleathpw that
language verified properties are described as timserand SPIN based detection techniques could be useful when
such assertions have to be constructed for each tfp analyzing the C code safety. In this paper, wendiddiscuss
vulnerabilities. Unfortunately the translation merhed by vulnerability detection techniques based on othesdeh
MODEX tool [18] cannot be applied directly and singe are checkers; such a comparison is a part of our fuend.
in the process of developing new automatic tools siach
translation, some C codes were manually convertdd i REFERENCES
PROMELA codes and corresponding assertions weredadd[1] G. Holzmann. Spin Model Checker. Primer and RefezeManual.
; ; g Addison Wesley, 2003.
We have applied a proposed technique to the ab &ms [21 Willy Jimenez, Amel Mammar, and Ana R. Cavalli. Saire
1, 2, 3 and SPIN produced counterexamples for fathem. Vulnerabilities, Prevention and Detection Methods Review, SEC-
We injected data according to these counterexamfidesd MDA workshop.— Enschede, The Netherlands, June2@@9.
out that the programs return wrong results and nore [3] Technical report of the joint FCP Russian-Frenchang Ne
AR 02.514.12.4002, Step 4.

message about “bad” input data has appeared,SF._ﬂN_hgs [4] Cigital [Electronic resource] — http://www.cigitedm/its4/
detected type overflow and array overflow vulneliibs in [5] Flawfinder home page [Electronic resource] -
the above programs. For example, for Program 1 @ http//www.dwheeler.com/flawfinder _

terexample produced I8SPIN has the value 10005 for Just Another Hacker [Electronic resource] -
coun _p p A http://www.justanotherhacker.com/projects/grauditvdload.html
each array item value, the returned result whemingnthe [7] Sound Forge [Electronic resource] -
program was 3451 while the right value should b8050, . httpi//Skourgeft)r?&neﬂapps/medifiwilili/Cchheck[/‘ejd o
. . o 8] Digitek Labs [Electronic resource] — http://www.deklabs.ru/aegis
I.e., this C code has a type overflow vulnerahility [9] Digitek Labs [Electronic resource] - http://aegis-

For Program BSPIN produced a counterexample as well as™ demo.digiteklabs.ru/s2a.webserver/

for the array dimension as for array item valuetHis case [10] Department of computer science. University of Mang [Electronic
when detecting array overflow vulnerability the,, . fesourcel —http:/fwww.cs.umd.edu/~jfoster/cqual

. 11] Soft Line [Electronic resource] - http://soft.sofd.ru/NPO-
counterexample was = 11 when each array item equals 1 Echelon/eshelon-ak-vs/
too. When detecting type overflow vulnerabilit$PIN [12] Klocwork [Electronic resource] -
produced the value 70035 that was then assigneddoarray |, gtg\’/é/r‘gvt;vw'k'ocwork"[:glrgéﬁ’rrggi‘éas’ '”S'gh”k'?gs‘f‘gl’m"gpath/ ~
item. After applying these input data to Prograrm@rrect http://www.coverity.com/products/static-analysisht
result has been obtained when running the C progvhifle no [14] Electrical engineering and computer sciences [Eeat resource] —
error occurred. According to the incorrect reshifittcan easily http-/Aww.cs.berkeley.edu/~daw/mops/

15] Electrical engineering and computer sciences [Ededt resource] —
be checked, one can conclude t8RINhas detected type and ™! http:,,Wwwlcfberkele%,.edU,Ndaweboon, []

array overflow in Program 2. For Program 3 (TableSPIN [16] Valgrind [Electronic resource] — http://valgrindgdinfo/tools.html
has produced the same counterexammpke 11 for an array [17] SPIN [Electronic resou_rce]—http://spinroot.com/
L [18] Modex [Electronic resource] - http://cm.bell-

overflow while in the counterexample for a type idhmv labs. com/cm/cs/what/modexfindex.htmi
vulnerability, each array item was assigned to 8004

In order to compareSPIN based vulnerability detection
technique with other tools providing dynamic vukgtity
detection we have run th®emcheckutility of Valgrind
software [15] against Programs 1, 2 Memchecks designed
to detect memory leakages in C/C++ programs andriect
use of uninitialized values. Valgrind allows a prammer to
assign desirable values to input variables and &y of a
virtual machine thévlemchechutility checks whether memory
leakage occurs during the program execution. Wee hran
Memcheckagainst Programs 1, 2, 3 with counterexamples
produced bySPIN and neither type overflow nor array
overflow vulnerability has been mentioned.

Based on the obtained experimental results, we can
conclude thaBPINbased detection techniques could be useful
when analyzing the C code safety.

V. CONCLUSIONS

In this paper, we have presented a short surveaxisting
tools providing vulnerability detection in C/C++ ggrams.
Several tools have been executed against student
implementations of array algorithms. The experirakrgsults
clearly show that for some kinds of C code vulndites
static analysis can be insufficient and we havesgrted a
brief overview of aSPINbased approach for vulnerability

64

Model checking approach to the correctness proof
of complex systems

Marina Alekseeva
P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia
Email: marya_87 @mail.ru

Abstract—Very often the question of efficiency in terms of
execution time memory usage, or power consumption of the
dedicated hardware/software systems is of utmost interest that
is why different variants of algorithms are developed. In many
situations the original algorithm is modified to improve its effi-
ciency in terms like power consumption or memory consumption
which were not in the focus of the original algorithm. For all this
modifications it is crucial that functionality and correctness of
the original algorithm is preserved [1].

A lot of systems increasingly applying embedded software
solutions to gain flexibility and cost-efficiency. One of the various
approaches toward the correctness of systems is a formal veri-
fication technique which allows to verify the desirable behavior
properties of a given system. This technique nowadays is well
known as model checking. Model is expected to satisfy desirable
properties.

Verification is the analysis of properties of all admissible
program results through formal evidence for the presence of
required properties. The basic idea of verifying the program is
to formally prove the correspondence between the programming
language and the specification of the problem.

Program and specification describe the same problem using
different languages. Specification languages are purely declar-
ative, human-centered. Imperative programming languages are
more focused on executing on the computing device. Therefore
less natural for men.

Likewise, this technique is an excellent debugging instrument.
From the standpoint of programming technology verification
enables to obtain a better strategy for debugging programs.

Index Terms—verification, automata-based programming,
complex systems.

I. INTRODUCTION

Correctness of Information and Communication Technology
(ICT) systems [2] is the background for their safety. Errors
could be catastrophic. The fatal defects in the control software
are very dangerous and the number of defects grows exponen-
tially with the number of interacting system components. Day
after day ICT systems are becoming more complex.

ICT systems are universal and their reliability is the main
point in the system design process. The key instrument for
design process is verification techniques (fig.1). The features
which are verified could be taken from specification. They are
usually the main properties of the systems. They should be
correct which means react adequate for any command. The
accurate modelling of systems often leads to the discovery of
incompleteness, ambiguities, and inconsistencies in informal
system specifications.

P.

Ekaterina Dashkova
G. Demidov Yaroslavl State University

150000 Yaroslavl, Sovetskaya 14, Russia

65

Email: dea.yar@mail.ru

Such problems are usually discovered at later stage of the
design. The system models are accompanied by algorithms
that systematically explore all states of the system model. This
provides the basis for a whole range of verification techniques
as model checking.

Ca

-

aystem T
ecification
_—-""F-'

Vertfication ‘

G‘-_-u_afs,' _i'otm-:?_:_) {Tﬁo bugs fou

nd

Fig. 1. The process of verification

II. MAIN PART
A. Model-checking

Model checking [3] is one of various verification techniques.
It explores all possible system states in a rude manner.

The system model is usually automatically generated from a
model description that is specified in some appropriate dialect
of programming or hardware description languages.

The property specification prescribes how the system be-
haves. All relevant system states are checked whether they
satisfy the desirable property or not (fig.2).

Models of systems describe the behavior of systems in an
accurate and unambiguous way. They are mostly expressed
using finite-state automaton, consisting of a finite set of states
and a set of transitions. In order to improve the quality of the

model, a simulation prior to the model checking can take place.
Simulation can be used effectively to get rid of the simpler
category of modelling errors. Eliminating these simple errors
before any form of thorough checking takes place may reduce
the costly and time-consuming verification effort.

Model checking has been successfully applied to several
ICT systems.

M

_1_5-1-'-:-1:1.-31-'33.' it

Cpecéﬁ catton

‘I‘r‘I-:::-del Checking

Fig. 2. The process of model-checking

B. Automata-based programming.

Automata-based programming can be used in several types
of programming systems [4]:

e transforming systems (compilers, archivators). Finite au-
tomaton in programming traditionally used in design of com-
pilers. In this situation automaton is understood as some
calculating feature which has an input line and output line.

e reactive systems (telecommunication systems and systems
of control and managing of physical devices). In this case
the automata-based programming solves the problem of logic
programming. Automaton is a device that has several parallel
input lines (often binary), on which in real time the signals
from the environment are coming. Processing such kind of sig-
nals, automaton is forming values for several parallel outputs.

So, the usefulness of the automata-based approach can be
characterized with the combination of the words “complex
behavior”. For such kind of systems it is very important that
automata-based approach separates the description of logic
of behavior and semantics. This feature makes automaton
description of complex behavior clear and understandable.

Transition systems are often used in computer science
(semantical models for a broad range of high-level formalisms
for concurrent systems, such as process algebras, Petri Nets,
statecharts). They are a fundamental model for modelling soft-
ware and hardware systems.

66

Transition system is defined as 7.S. TS is a tuple (S, Act,—,
I, AP, L) where

e S is a set of states,

e Act is a set of actions,

e —C S x Act x S is a transition relation,

e I C S is a set of initial states,

e AP is a set of atomic propositions, and

e L :S — 247 is a labeling function.

TS is called finite if S, Act, and AP are finite.

Consider the following example (fig.3). The transition sys-
tem in fig.3 is a schematic design of an automaton. The au-
tomaton can either deliver tea or coffee. States are represented
by ovals and transitions by labeled edges. Initial states are
arrow without source.

The state space is

S = {pay, select, tea,cof fee}.

The set of initial states consists of only one state, i.e., [=
{pay}.

The action insert coin denotes the insertion of a coin,
while the automaton actions get tea and get coffee denote the
delivery of tea and coffee. Transitions of which the action
label is not of further interest here are all denoted by the
distinguished action symbol 7. We have:

Act = {insert_coin, get_tea, get_cof fee, T}.

Automaton is represented by two locations pay (start) and
select. Notes that after the insertion of a coin, the automaton
nondeterministically choose to provide either coffee or tea.

—(pay)

get_tea f"‘*——-"'\ get_coffee
insert_c%x
/
/ \
i g il
|'(- -“\ 'l’d_ -\'""- T .'l' 1“‘-
tes ,*T—i.select ———=icoffee)
o R L i
Fig. 3. A simple transition system

III. RESULTS

Authors had an experience of applying the model checking
method. Their diploma paper was devoted to the verification
of the WTP (Wireless Transaction Protocol). The simple
transactions were built with the help of CPN Tools and NS2
Simulator. Two types of instruments were explored.

A. System modeling. NS2.

Simulation is widely-used in system modeling for appli-
cations ranging from engineering research, business analysis,
manufacturing planning, and biological science experimenta-
tion. Network Simulator (Version 2), widely known as NS2,
is an event driven simulation tool which is very useful in

studying the dynamic nature of communication networks.
NS2 provides users with a way of specifying such network
protocols and simulating their behaviors. NS2 suggest two
steps of work. The first step is constructing a model with the
help of programming on C++, and finally the use of the Object-
oriented Tool Command Language (OTcl) for analysis of the
model and simulating the network conditions. It allows us to
include our C++ programming code to the NS2 environment.
We decided that NS2 is the most convenient tool for modeling
the network behavior.

B. Proposed model.

The Wireless Transaction Protocol is responsible for re-
liable message delivery. Maximum Transfer Unit (MTU) is
a maximum size of a packet in networks. If we have a
message that is bigger than MTU then WTP fragmentizes this
message. Flow control in cases of fragmented messages, is
performed by sending fragments in groups. Every group of
packets requires only one acknowledgement of the group. The
last packet of each group contains a special flag. This flag
indicates the end of the group and receiver knows when to
send an acknowledgment. Size of each group depends on the
link characteristics and the device memory. It is necessary
to avoid extra packet retransmission and data loss. Receiver
sends a negative acknowledgement (NAK) if the end-of-group
packet is received whilst intermediate packets are missing.
This operation is repeated until the entire group is received and
a positive acknowledgment is sent. If timeout occurs, only the
last packet of the group is retransmitted, and sender knows
what packets have been lost. Wireless Transaction Protocol
tries to minimize the number of unnecessary retransmissions.

In our model we have three parameters:

e . is the time interval between consecutive packets of the
group which are sent from the sender SENDER to the receiver
RECEIVER.

e ¢, is the interval between consecutive packets of the group
which are received by the RECEIVER.

e P, as the number of packets in the group.

In our model there are two types of acknowledgments (ACK
is a positive and NAK - negative acknowledgment).

When receiver sends an acknowledgment it transfers ¢, with
the help of it. Sender calculates special ratio. Depending on
the result of this ratio sender has several situations for analysis
and further actions.

e Perfect network conditions.

e Parameters can be modified by increasing F,,,, decreasing
ts and timeout.

e There is no enough data for our algorithm to make a
decision how to modify parameters (conditions of a network
correspond to the established parameters).

e The network is congested, parameters can be modified by
decreasing P,,,, increasing t; and timeout.

IV. CONCLUSION

Theory of programming even in the 1968 openly accepted
the crisis of software development. The main symptom of

67

this crisis is disability of the developers to provide the main
feature of the software: its correctness. Theoreticians and
practitioners of software underline that the crisis of methods of
the development of software shows mainly during the design
of the systems with complex behavior and automata-based
approach can deal with this problem. That is why it is the
answer for the most up-to date problems of the software
development industry. The predictions show [4] that the area of
applying automata-based programming will be expanded and
this technology will be developed. A new models, notations
and instruments will appear in the foreseeable future.

ACKNOWLEDGMENT

The following scientific advisers supported us by using
(sometimes very) preliminary versions of this article: Valery
A. Sokolov (Yaroslavl, Russia), Dmitry U. Chaly (Yaroslavl,
Russia), Egor V. Kuzmin (Yaroslavl, Russia).

The authors would also like to thank the dean of Yaroslavl
Demidov State University Computer Science Department P.G.
Parfenov for interest and support of this project and the
head of scientific-educational center “Center of Innovation
Programming” Professor V.A. Sokolov for helpful advices.
This work would be developed and extended in the future.

REFERENCES

Anikeev M., Madlener F., Schlosser A., Huss S.A., Walter C., ”Automated
Correctness Proof of Algorithm Variants in Elliptic Curve Cryptography”
Modeling and Analysis of Information Systems, pp. 7-16, 2010.

Baier Christel, Katoen Joost-Pieter. ’Principles of Model Checking,” The
MIT Press, Cambridge, Massachusetts, London, England, 2008.

Egor V. Kuzmin, "Introduction to the theory of mathematical processes
and structures,” Yaroslavl Demidov State University, Yaroslavl, Russia,
2001.

N.I. Polikarpova, A.A. Shalyto, ”Automata-based programming” Saint-
Petersburg State University of Informatic Technologies, Mechanics and
Optic, Saint-Petersburg, Russia, 2009.

[1

—

2

—

(3]

[4

—

Thorn language: a flexible tool for code generation

Yuri Okulovsky

Ural State University
Yekaterinburg, Lenina str. 51
Email: yuri.okulovsky@gmail.com

Abstract—This paper presents a new approach to domain- code generators, which produce specific software from UML
specific languages creation. Instead of defining both langge diagrams or other description of data [7]. Code generatisto
syntax and semantics for each case, the same general-pureds ¢,yer areas that are less common than database handling or

markup language Thorn is used. The original model of trans- idaets | t Th t h | soluti f
lation associates commands inside a Thorn document with pro widgets layout. 1hey are not, however, a general solution o

grams written in some script language. When the compiler negs the stereotyped code problem. There is no general approach
to execute a command, it launches a corresponding program, behind these tools, and so they cannot be reused to produce
passes data from the document to the program, and uses ancode for other patterns.

output value of the program as the result of the command. We Domain-specific languages (DSL, [14]) are an attempt to

describe an approach to code generation based on Thorn, and | d tion t In the DSL
compare the approach to other known code generation methods apply code generation 1o even narrower areas. In the

We give various examples of Thorn-based code generators. approach, a new small language is created for every specific
Index Terms—code generation, domain-specific languages, au- code pattern. The language is applicable only in its domigin:
tomated programming, language-oriented approach is not general purpose language, and may even not be Turing-

complete. DSL are widely used in program engineering.
The obvious way to create DSL is to define its grammar,
Every programmer likes writing elegant code, implementingpen write or generate a parser and implement a transla-
sophisticated algorithms and developing original arciitee. tion scheme on certain program language. Language analysis
Real software, however, often consists of stereotyped arefjuires substantial additional competence of a programme
uncreative code: business logic control, layout of widgetand therefore sets an “entry threshold” that limits the code
interaction with database, automata dispatch tables,Tée. generation availability. In many cases, it is simplier just
more features a software product has, the larger amounttofwrite a templated code manually than to design a new
stereotyped code it contains. This leads to the staff expanslanguage. There also exist several tools for DSL creation,
and project management issues. In addition, a compreleenshe most prominent being Visual Studio DSL Tools [4] or
testing of stereotyped code is required. The natural desitetBrains Meta-Programming system [6]. These tools have
emerges to eliminate these inconviniences. immense capabilities and allow creation of very complex
In fact, all the history of programming languages is a histormodels and languages. However, studying these tools is even
of attempts to decrease the percentage of stereotyped codwe complex than writing DSL compiler manually.
and to improve its structure. Simple arithmetical operstio Our concern is to decrease a complexity of DSL creation
in Assembler require several lines of code. More modeemd therefore improve a code generation availability. Watwa
languages like C allow writing the same operations in onte make code generation so simple that its usage would be
line. Memory management in C demands special attentiaeasonable even in simpliest cases. We explore a different
leading to lots of stereotyped code and numerous memapproach to domain-specific languages. By our observations
leaks. These issues was resolved with garbage collectiondimmain-specifidanguageis not required in many cases. We
Java and C#. The most recent developements in programmingy use the same general-purpose markup language (like
languages simplify significantly collection managemend arXML) in different domains to describe a desired program code
interaction with databases (LINQ [13]), widgets layout (WP However, domain-specifisemanticsis still needed, because
[13]), or contracts control (Eifell [10]). However, softrea the way the description is to be processed changes with each
products often have unique patterns in addition to wellvkmo domain. We propose a new way to create code generators: a
ones. These patterns are typically not supported by laregsuadanguage with separted semantics. The language only defines
The promising approach to described problems is cotiew we should markup the data with commands, and does not
generation: writing programs that write programs [8], [Bfie specify what the commands mean. The logic of commands is
simpliest case is a tool that allows description of the @ekirwritten in arbitrary programming language for each domain.
code in text or graphic format, and then produces the code. FoOur approach to code generators resembles the Common
example, Microsoft Visual Studio contains a special wizar@ate Interface (CGI) approach to web applications. CGI does
for visual creation of widgets and forms [2]. Another exaenplnot require invention of a special language for each web
is production of parsers from grammars [9]. There are masite, like the DSL approach. It does not make us write

I. INTRODUCTION

68

individual programs that analyze HTTP packages. Insteadrs of a command is fixed, their names may be omitted:
CGI parses packages itself and adopts environment vasiablé abl e[1 cent er] . Secondly, we may define the nesting
and standard input to carry information from the packagef commands. We knowitr command is always inside
Then CGI launches an arbitrary program, which processes theabl e, and\ t d is inside\t r. Therefore, curly brackets
request, accepts an output of the program and sends it backntay also be omitted. The resulting code is shown in Listing 3.
the user over the network. In spite of thorough research, we
have not found this model to be implemented in any knowkisting 3 Compact Thorn code for a table.
programming language or tool. \table[1 center]

Our approach to code generation was implemented in Thorn\tr \td all \td al2
— a new programming language with separated semantics\tr \td a2l \td a22
designed especially for code generation. It is an Open soure
product under GPL v3 licence. Thorn is a fully operable soft-

ware product, tested for more than four years, with sucmlssqt should be mentioned that due to curly brackets ommiting,

practice in code generation. . . : ,
In the first section, we describe Thorn language: the s ntT>r<lorn grammar is ambiguous. Depending on commands
' guage. y finitions, the string cnd1 \ cnd2 may be interpreted as

of Thorn document, the way to create a new command a Lo

detail_s of the way commands are executed. In section 2 \{éﬁfg?:rft\pcar:gs{tr}e}es?r \emd1{}\ cmi2{}, which implies

\O/I\?szrlbe a rglatll\\/llilylslgnple code g:enerat_or fgr HT(';AL and rhe order of parameters’ names, the rules of nesting and the
ordprocessing [_] ocume_nts. n sectloq we escrll?ggic of commands are defined in command files. The set of

the Thom programming technique for creation of cc_)mple ch files (library) must be loaded by Thorn before document

generators — functional generators. We also describe t\(/:V(?mpilation starts. The example bf abl e command file is

examples of functional generators. The first generatorexdsyv shown in Listing 4

bibliographic data from Thorn to BibTeX, HTML, Wordpro- '

cessingML and some other formats. The second genera}fj’é’ting 4 Declaration of\t abl € command.

described in section 4, is rather a programming framewo#f(eypborder al i gn: Bl ocks=entry:

that consists of Thorn libraries and C# auxiliary assemnsblie #Par ent s=bod£/' Type’=PerI CEr ee=yei<,'

Parsing of input stream is provided by pushdown automaton.

Il. THORN ESSENTIALS
Thorn document is a tree of nested commands. The exampfel Rl NG=" <t abl e bor der =$PARAM bor der }

of Thorn syntax is shown in Listing 1. We may compare al i gn=$PARAM al i gn} >
the Thorn document with the corresponding HTML document $TEXT{ent ry}
which is shown in Listing 2. </tabl e>";

Listing 1 Thorn code for a table. The command description starts with service section, which

\tabl e[border=1 align=center] { is marked with# symbol (lines 1-2 in Listing 4). The service
\tr | section specifies the default order of two parametsos,der
\td {all} \td {al2} and al i gn. Their names may be omitted, as in Listing 3.
} The command description also specifies the name of text
\tr { entry to use inside the program. Other parameters specify
\td {a21} \td {a22} the command, which can contalirt abl e, the language the
} command logic is programmed in, the fact that we may omit
} curly brackets fott abl e command.

After the service section is completed, the program in Perl
is written. This program fillsSSSTRI NG variable, which is an
Listing 2 HTML code for a table. output of the program. It uses special hasB@ARAM and
%I'EXT, which store text variables from the input document.
Aside from special variables, the program is arbitrary:aihc
manipulate files, use modules, etc. The program is executed
not by Thorn, but by the Perl compiler. When Thorn acquires
all the information about the command abl e (in Listings
1 and 3, these are values '1’ andent er’ and the result
of execution of twotr commands), it launches the Perl
compiler with ’processor’ program, and stores information
about command and its parameters to STDIN. The processor

Thorn document is more compact than HTML. Its sizeeads the information from STDIN, executes the command
may be further decreased. Firstly, if the order of parameede byeval function, and prints the result to STDOUT.

<t abl e border=1 align=center>
<tr>
<td> all </td> <td> al2 </td>
</[tr><tr>
<td> a2l </td> <td> a22 </td>
</tr>
</t abl e>

69

Thorn compiler reads STDOUT, removes the command fromComparison to XML and XSL approach. In certain

the document and places the result in corresponding placedegree, Thorn follows XML/XSLT approach to HTML/CSS
Commands may return an error message, which will lgeneration. In this approach, data is written in an XML docu-

passed to the user. Commands may interact by global varient. The document is then converted into HTML with XSLT.

ables, stored if4LOBAL hash. Processor obtaif6LOBAL It is even possible to use XSL to convert XML document into

hash from Thorn compiler and sends it back each time. Macrdsva source code [3].

are also available: the result of a macro command will be We argue that Thorn is more comfortable for code gen-

processed by Thorn again. eration than XML/XSLT technology. The key difference is
Currently, there are three ways to execute the Thorn com-possibility to use an arbitrary language for commands’
mand: logic. That simplifies generators greatly. Note how natural
« Use Perl commands: and readable listing 5 looks, especially in comparison with

« Make the new type of command and write a plugin thatSLT schemata in [3]. We may develop different commands
executes this type. This includes addition of new script different languages, therefore choosing the most fitting
languages in Thorn; language. In addition, we may create new command types and

« Reference Thorn.dll in a .NET project, associate a corfherefore patterns for commands’ logic, as it will be shown
mand name with a class that implements correspondeglow.
interface, and launch Thorn compiler from the project. It is possible to develop an XML compiler that acts exactly

Commands can be documented in Thorn language. A cofif: Thorn compiler: parses tags and processes them _with Perl.
ment section is placed before a command section With The reason why we have developed a new language is that we

marker. It contains a commentary in Thorn language with sp¥@nted to minimize manual typing and therefore make Thorn
cial commands lika desc (general description) key[i] More co_mf(_)rtable for code_ generation. Still, Thorn apphoac
or bl ock[i] (i-th parameter or text block description), etc!® compilation can be applied to other languages.
Let us give an example of basic code generation of C# code COmMparison to DSL approach Thorn language itself is not
Consider a commantlevent in Listing 5. This command domain-specific, since its semantics is not defined. However
Thorn with selected set of libraries can be considered as a

Listing 5 Command for generation of events. domain-specific Ianguage. Therefor_e, Thorn can bg viewed
#Type=Per; Keys=Type, Nane;, Bl ocks=Corment; 25 @ _tooI for DSL creation. We bellev_e that Thorn is muc_h
$t ype=$PARAM Type} Event Handl er ; simplier than other such tools. There is no need to describe
$name=$PARAM Nane} Event Si ze; tokens,.wrlte down language grammar, etc. To create largguag
$ar gs=SPARAM Type} Event Ar gs: semantics we only need to write simple Perl programs, and

demands for these programs to be Thorn commands are
$STRI NG, =" not burdensome. Summarizing, Thorn has a very low “entry
/11 <summary> threshold" and can be used for fast creation of small DSL for
/11 $TEXT{ Comment } a project, hence making code generation more available.

Thorn can be also used as a back-end for a compiler.
Commands of Thorn form a tree, therefore a parse tree of
a front-end compiler can be stored as a Thorn document and
then interpreted with appropriate library.

/1<l summary>
public event $type $nane;

/1] <summar y>Rai ses $nane</ summary>

protected virtual void On$nanme($args e) { I1l. CODE GENERATION FOR MARKUP LANGUAGES

if ($nane!=null) $nanme(this,e);) .)) ,
} () () In this section, we consider generation of documents writte

in markup languages [11]. We have developed a library for

producing an HTML code from Thorn description. It supports
will transform the following Thorn code: all HTML tags. It defines nesting of tags so curly brackets are
rarely used. It specifies orders of most popular paramefers o
tags. In addition, if a parameter name starts witlsymbol
into a declaration of event and corresponding invocatighSomeSt yl e), it will be placed instyl e attribute as
method. SoneSt yl e=Sonet hi ng. All these improvements make

Several simple libraries for generation of C# code havihorn files very small and readable in comparison with

been developed. Commands in these libraries can genegeaerated HTML.
properties (with custom access modifiers and optional in-All commands for HTML tags perform the same logic. The
vocation of event), events, enumeration®i t ch operators name of a command is translated into a tag, all attributes are
(in case they are large and nested) and other templates Ifsted after this tag with their names, the only text block is
fast C# programming. We can use commands from differeplaced inside a tag, etc. Hence, we actually do not need to
libraries in the same document. It corresponds to mergidg caprogram the command logic in Perl, as in Listing 4. Instead,
generator applications, but does not require any sped@tef we develop new command types. In command declaration,

\ event [Mouse MouseMove] { Conment }

70

we write Type=HTM_Pai r edTag instead ofType=Per|. In each record, some fields are specified. Instead of progucin
Commands of this type are executed by the Thorn compilentput, Thorn commands fill a relation in global variables. |
itself, without launching the Perl compiler. It improvesrpe many cases, a generator that translates a relation désaript
formance greatly, since the major time of Thorn work lies imto source code can be represented as a following function
passing parameters between the compilers. (which we call functional generator):

The second library is a library for producing Wordprocess- .
ingML [1]. WordprocessingML is an XML dialect for text p(4) = 91{ jzlgﬁl%’ T ?Eﬁm; }’
processors. This standard is supported by Microsoft Word, gL 2AA)s e J20Em) s
Open Office Word Processor and other text processors. Output Y

P P 4 gl Fa(A), s falAm)).

in WordprocessingML format allows using all features of
text processors. However, WordprocessingML files are ndere k. produces the source code. In an object-oriented pro-
easy to type. The first reason is XML being redundant. Ttggam, % typically produces one class. Functiops, ..., g,
second reason is that WordprocessingML reflects the logic moduce parts of code, for example, methods inside the.class
a word processor, but not of a human. For example, iterRginctionsfi, ..., f, produce parts of methods, correspond-
of multi-level lists are not really nested within each otheing to one record in the relationd,,..., A,, are records
as in HTML or TeX. Instead, each item is a paragraph, ard the relation. Usuallyg; are concatenation functions, i.e.
its level is determined by a style. Bold and italic words arg;(x1,...,z,) = 1-...-z,, Where- denotes the concatenation
not embedded in a plain text. Instead, the plain text endweration. Also,: can usually be represented as
then a text with bold style starts and ends, and then plain
continues. There are many other similar inconveniences.
have developed the Thorn library, which allows to write Thorwhereq; are string constants.
documents in a habitual way (very much likeXJ and then A simple way of representing relations in global variables
to transform them into WordprocessingML. Not all featurés qs chosen. A value of fieldFi el d in a record with num-
WordprocessingML are currently supported. ber N in a relationRel ati on is stored in global variable

A special extension for both these libraries (and potégtialRe| at i on#N#Fi el d. This representation is supported by a
for any library that produces text documents) is createds Thew type of Thorn commands, as with HTML commands. We
extension allows to create not only a document, but alsohave also developed a Perl module that provides user-fiiend
program that produces this document. Consider the codeway to access relation in global variables. A set of methods

t
%Ilax%--wxn):a()'xl'al'xQ'a3'---'an'xn'an+1a

Listing 6. to implement functional generators in Thorn and Perl isechll
Fungi (functional generator interface).

Listing 6 A document with a variable inside. Based on Fungi, we have developed BibThorn, an analogy

\ docunent \htm \body to BibTeX. BibTeX is a flexible and widespread technology
for storing bibliographic data. However, TeX can generaig o

\'p Variable equals a small set of formats. TeX cannot produce HTML files to

\vari abl e[nane=Var type=Int defaul t =5] place bibliography on a web site, or a plain text to include in
a scientific report. Using Fungi, we may describe bibliogsap
as a relation. A simplified example is placed in Listing 7.

Commands docunent and\ vari abl e are defined in
two libraries: Iib.program_mer gnd Iib.makerup.lln lib.nealp, Listing 7 A bibliography information on Thorn.
\ docunent does nothing, it only returns its entry. Thq bibli o h
. R gr aphy
command var i abl e returns default value (5’ in Listing 6). \i t enf book]
Therefore, the maker-up sees an example of a document, \ :
) . . aut hor John Smith
which will be created by a program. In lib.programmer, these \title M/ book
commands are defined differently. Commandari abl e
is transformed into a marker, which separates the text ir\t%ri nt
variable and invariable parts. Commandocunent assem-
bles parts and produces methods, which take all variables as
arguments, and store a resulting document in a stream. Thereommand\ i t em adds a new record in a relation. Com-
are two versions of lib.programmer: PHP version for webssitenands\ aut hor and\ti t | e fill corresponding fields. The
and C# version for offline software. logic of \ aut hor command could be encoded on Perl as in
Listing 8.
Module db. pmis a Fungi implementation for Perl. Is
When a code generator becomes more complicated, pdews easy access to relations in global variables. Sioch s
rameters of each command become numerous and harccammands are required for authors, title, publisher androth
remember. We need to divide one command into several. Thiedds, their logic is stereotyped. Commakaut hor may
can be done by using relations. The relation is a set of recortherefore be described as in Listing 9.

IV. FUNCTIONAL GENERATORS

71

Listing 8 Perl implementation ofaut hor Command\ f i el d specifies the type of the field and its

#Bl ocks=Aut hor ; Fr ee=yes; name. Command desc specifies the commentary for this

#Par ent s=i t em Type=Per| ; field in the generated code. It also specifies the caption for

require ’db. pm; this field in graphic user interfaces.

$db=db- >new(\ %GLOBAL) ; Command\ i o specifies an object that transforms a field

$db- >Set Fi el dl nCur r ent Row into a string and parses it from string. In C#, primitive tgpe
(" Aut hors", $TEXT{ Aut hor }); (i nt, doubl e, etc.) can be written and parsed from a string

by .NET means. Unfortunately, many types do not support
parsing and writing in human-readable forms. The way to

Listing 9 Fungi implementation ofaut hor specify how exactly the object should be converted is often
#Bl ocks=Aut hor ; Fr ee=yes; entangled and inconvinient. There is also no way to read
#Par ent s=i t em Type=Fungi Setter; and write nul | value. Therefore, we introduc&ypel O

classes for input and output objects. For example, methods
Typel O Int. Wite and Typel O I nt. Par se convert

i nt value into a string and vice versdypel O. I nt is

a predefined object of nt | O class. Many formats for the
same type may exist: for exampldoubl e can be pro-

__ _ _ __cessed withTypel O Doubl e, Typel O. Doubl e. Money
Listing 10 Using Fungi in Perl command to create a bibliogg, Typel O. Doubl e. Per cent . Many Typel Oclasses are

Command\ pri nt actually prints the bibliography. The
prototype of thé pri nt command is shown in Listing 10.

raphy. developed, including those for classes that are not usually
#Typ_e:Per I converted to string (like colors, pens and brushes). Intaxddi
require 'db. pm; eachTypel OobjectX has propertieX. Nul | abl e that may
sub Makeltem { process null anck. | nAr r ay that may process arrays.

=@ ; Command\ gui specifies a type of graphic user interface.

$STRING ="$h{Aut hor}. $h{Nane}\n"; Several types are availabl@ext Box option allows input

} of an arbitrary string with following conversion into a valu
$db=db- >new(\ %E_OBAL) ; with specifiedTypel Oobject.Li st Box means selecting one
$db- >RunOver (\ &vakel ten) ; value from a list. In this cas&,val ues command allows to

specify items of the list, which is arbitradyEnumar abl e
object. Note that it is impossible to specify an object as an
Cila‘ttribute in C#.

Finally, \ check command describes the business logic of
this field. The logic can be described by Thorn commands
(\err, for example). It is also possible to place pure C# code
into \ check command with predefined variables(a new
value of the field) and i st (a list that stores errors). This

Thornado is a framework that allows fast creation of bustode will be placed in corresponding location of a generated
ness software [12]. The main aim of Thornado is assistanseurce code. Business logic for one field is to be insertad int
in input and output of data. It contains a code generator foorresponding property. Business logic for the whole daits
data description, and a .NET library with useful templatebe placed into a methoGheckConsi st ancy. The method
Listing 11 demonstrates a description of one field. is called before input-output procedure begins and afteadt

been completed.
Listing 11 Description of one field in the extended system for Thornado can generate a class with required fields and

RunOver method looks through records, copies ea
record into a hash, launchéfékel t emmethod and passes
the hash to the method.

V. THORNADO FRAMEWORK

data description. business logic. Each field of generated class is associated w
\field[string Email] Fi el dI nf o object.Fi el dI nf o contains all the information
\desc E-mmil address we specify in Thorn file: caption for a field, a type of
\io TypelQ String graphic user interface, etc. Thorn can gener&®er ovi der ,
\gui Text which stores a collection oFi el dl nf o objects and can
\ check manipulate fields of generated class. Other classes perform
\err. Wy=="" various operations by usinigOPr ovi der : input and output
-- Address nust be entered into INI- and XML-files, interconnection with ADO.NET,
\err.Wv. Lengt h<5 generating of graphic user interface widgets, etc. Theeefo
-- Address is too short we can generate a substantial part of an application fronrTho
if (!v.Contains(’ @)) description.
list.Add("Address is not valid"); | OProvi der performs some sort of reflection. It is

more convenient than traditional C# reflection. Names of

72

Fi el dl nf o objects are C# variables and are checked in
compile time, unlike string values that are used in reflectio

Fi el dI nf o objects carry all additional information in their
fields, and there is no need to read attributes to access them.
Finally, it is impossible to write in attributes neither the
arbitrary business logic nor the references to other ctaasd
objects.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented Thorn language, studied its
differences from other approaches to DSL creation and de-
scribed its basic programming techniques. Thorn is a fully
operable software product, available under GPL v3 licence.
Its area of usage is creation of small code generators for
simple code patterns. Due to its simplicity, Thorn seemseto b
more preferable than other tools for DSL creation, or manual
writting DSL compilers.

We consider following ways to improve our product:

« *nix version of Thorn

o Plug-ins for Microsoft Visual Studio, Eclipse and other
popular integrated development environments

« More languages will be supported "from the box” for
command development

« BibThorn will be extended and integrated witATEX
editors

« Thornado framework will be further developed

REFERENCES

[1] Standard ecma-376. http://www.ecma-internatiomglmublications/
standards/Ecma-376.htm.

[2] Windows forms designer. http://msdn.microsoft.com/e
us/library/e06hs424(VS.80).aspx.

[3] E. M. Burke. Java and XSLTO’Reilly, 2001.

[4] S. Cook, G. Jones, S. Kent, and A. C. WillRomain-Specific Devel-
opment with Visual Studio DSL ToolsAddison-Wesley Professional,
2007.

[5] K. Czarnecki and U. EiseneckeiGenerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley Professional, June 2000.

[6] S. Dmitriev. Language oriented programming: The next
programming paradigm. http://www.jetbrains.com/mpsé&io
LanguageOriented Programming.pdf, 2004.

[7] K. Fertalj and M. Brcic. A source code generator based om u
specification.International journal on computers and communications
2(1), 2008.

[8] J. Harrington.Code Generation in ActionManning, 2003.

[9] J. Levine.Flex and Bison. Text processing too3'Reilly Media, 2009.

[10] B. Meyer. Object-Oriented Software Construction, Second Edition
Prentice Hall, 1997.

[11] Y. Okulovsky and D. Deyev. System of generation of doeuis in
html, mht and wordprocessingml formats (russiaBulletin of Saint
Petersburg State University of Information Technologlechanics and
Optics: Mechatronics, Technologies and Computer-aidesigie (70),
2010.

[12] Y. Okulovsky, D. Deyeyv, V. Popov, and V. Chasovskikh.déegeneration
system thornado and its application to creation of busisefisvare
(russian). Bulletin of Saint Petersburg State University of Inforroati
Technologies, Mechanics and Opti¢87), 2008.

[13] A. Troelsen.Pro C# 2010 and the .NET 4 PlatfornAPress, 2010.

[14] A. van Deursen, P. Klint, and J. Visser. Domain-spedditguages: An
annotated bibliographySIGPLAN Notices35(6):26—36, 2000.

73

One Approach to Aspect-Oriented Programming
Implementation for the C programming language

Eugene Novikov

Institute for System Programming
Russian Academy of Sciences
Moscow, Russian Federation
Email: joker@ispras.ru

Abstract—The given paper introduces an approach for aspect-
oriented programming implementation developing intended for
the C programming language. Key features of C and a common
C program build process are considered and it’s shown how they
influence on a supposed C AOP implementation. The last is
described in details and after all its practical application is
demonstrated. It’s shown that the supposed C AOP
implementation works well enough although it possesses some
shortcomings. Some improvements required to overcome the
given shortcomings are discussed.

Keywords-aspect-oriented programming; join point; pointcut;
advice; aspect; weaving; the C programming language;
implementation

1. INTRODUCTION

Aspect-Oriented Programming (AOP) is a rather fresh
programming paradigm that is intended to increase program
modularity by means of cross-cutting concerns separation.
Generally speaking cross-cutting concerns mean functionality
or features that cannot be easily decomposed from so-called
core concerns. The last in depend on a programming paradigm
used is implemented as corresponding functions, classes and
modules while cross-cutting concerns scatter through them and
tangle a program source code. The typical example of cross-
cutting concerns is logging. Also some more complex fields
like errors handling, some sort of testing, security, and database
operations can be treated as cross-cutting concerns. AOP
provides programmers with opportunity to extract cross-cutting
concerns into separate modules called aspects. To understand
better let us consider other major AOP conceptions since
they’ll be widely used at the rest of the given paper.

The basic AOP conception is a join point. In general join
points are those elements of the programming language
semantics which the aspects coordinate with [1]. The given
paper takes a join point to be a program construction connected
with its context. The typical example of a join point is a
function/method call because of such a construction can be
found almost in any programming language. But generally
speaking join points depend on and even in some degree are
determined by a programming language used. A pointcut is a
set of join points satisfying a given condition. For instance, all
memory allocating function (like malloc, calloc and so on)
calls may be treated as a pointcut. Next AOP conception is an
advice. An advice consists of a pointcut and a body. The last

74

represents some actions to be executed in matching between a
join point corresponding to a given pointcut and a program
construction related with some context. Moreover an advice
contains information on whether these actions should be
executed before, instead of (around) or after a matched
program point execution. Usually an advice body is written in a
given programming language although some special AOP
constructions (e.g. a matched entity name) may be also
available. An aspect already mentioned above is a separate
module that consists of a number of advices implementing
some part of cross-cutting concerns. More exactly an aspect
also can contain some other constructions, e.g. named pointcuts
that is pointcuts associated with identifiers for following usage.
At last, the process of aspects with main program integration is
referred to as weaving. Weaving can be done at any stage of a
program processing (at compile time, at post compile time, up
to run time) that is exhibited by different approaches.

An AOP implementation depends on a programming
language used as was said. Generally an AOP implementation
represents a programming language superset required to write
aspects and some tool(s) to weave aspects with programs. Let
us consider the most advance and popular AOP implementation
Aspect] [2] intended for the Java programming language. Note
that even though the goal of this paper is the C programming
language, nevertheless Aspect] is well suited because of C and
Java programming languages have many similar constructions
and almost all AOP implementations are more or less based on
Aspect] ideas.

// An aspect consisting of a named pointcut
// and an advice.
aspect Logging {
// A named pointcut that matches a join
// points set of method calls.
pointcut move():
call (void FigureElement.setXY (int,int)) |
call (void Point.setX(int))
call (void Point.setY(int));
// An advice performing some actions before
// execution of a matched by the given named
// pointcut program point.
before(): move() {
System.out.println ("about to move");
}
}

Figure 1. Example of an Aspect] aspect for a graphical system logging

In using an Aspect] extension for Java a logging
functionality for a graphical system can be extracted into an
aspect showed in Fig. 1 [3]. In whole this means that before
execution of each called method from the specified ones the
given log message will be printed to a screen. The Aspect]
weaver deals with Java program bytecode and after its work
such the object code is obtained. This weaver is implemented
as a part of a special compiler. The given example shows that
an AOP implementation really strongly depends on a
programming language and a program build process. Indeed
there are more than 20 different AOP implementations just for
the Java programming language. So the main goal, to separate
cross-cutting concerns from the core ones for a given
programming language, can be reached in the different ways.

The rest of the paper is structured as follows. Section II
considers features of the C programming language and a
typical build process of programs written in the given
language. On the basis of these features and demands of the
Linux driver verification project (it’s considered there)
requirements to an AOP implementation for the C
programming language are collected. Section III describes
related work and shows how different approaches meet the
requirements pointed out in Section II. A suggested approach
of an AOP implementation for the C programming language is
introduced in Section IV. Section V estimates an application of
the suggested approach. Section VI summarizes the work done
and considers future work directions.

II. REQUIREMENTS TO AN AOP IMPLEMENTATION FOR THE

C PROGRAMMING LANGUAGE

Let us consider a typical workflow in building of a common
C program and estimate how AOP conceptions may be related
with different C constructions. It’s worth while noticing that
during the given consideration we won’t restrict a C AOP
implementation to represent just AOP constructions similar to
the Aspect] ones as it’s done by the most of AOP
implementations. On the contrary we will try to describe an
AOP implementation specific for the C programming language.
Generally speaking it’s assumed that such the implementation
won’t have any fundamental limitations for C cross-cutting
concerns separation.

Fig. 2 illustrates 3 stages of a common C program build
process, preprocessing, compilation and linking. Note that
rectangles having dash line borders represent third-party
components used by a program considered.

A. Preprocessing

At the first stage a preprocessor in depend on passed
preprocessor options includes necessary header files (both
program’s hl.h, h2.h, h3.h, ... and libraries’ libl.h, lib2.h,
lib3.h, ...) into a program source code files al.c, a2.c, a3.c, ...
and expand macros there. More exactly it’s the two main
actions performed by a preprocessor but the rest ones aren’t
touched in the given paper. Both header files including and
macro expansion may be related with AOP conceptions in the
following way. Each file included to a given program source
code file and even that source code file itself can be treated as a
corresponding join point. Therefore the including process can

75

be modified by adding needed instructions before, after or
instead of a given file. For instance, this helps to add some
auxiliary preprocessor directives, function prototypes and so
on. Macro expansion also can be altered in the similar way. So
instead of (or before, or after) a substituted code we may put
our own code that may deal with macro arguments as well as
perform some required actions. Preprocessing is the essential C
feature because of there is just few programming languages
through all that supports it.

A program source code and header files of libraries:

hl.h h2.h h3.h

A A A

al.c a2.c a3.c
I T S
' Lblh y ! Hb2h ; ! Lb3h ! |
Lo ! Lo ! Lo ! Lo !

preprocessing

A preprocessed program source code:

a.i ad.i

Object files of a program and libraries:

al.i

al.o

An executable file (or a library):

a.out

Figure 2. Common C program build process

B. Compilation

Then at the second stage a compiler parses a preprocessed
program source code files al.i, a2.i, a3.i, ... and produces
corresponding object files al.o, a2.0, a3.o0, ... Compilation
may be affected by some build options. Traditionally AOP
conceptions are developed for constructions of the given stage.
For instance, AOP conceptions are related with
function/method definitions and calls, type/class declarations
and variable and field manipulations. Here is indeed the large
area for AOP to be involved. As for the given work it’s
suggested that there should be implemented at least support for
such join points as a function definition and call, a type
declaration, a local and global variable, field and function

parameter set and get. The most of current AOP
implementations support just the given or even a smaller set of
join points (see Section III). Moreover C is a programming
language having pointers and a lot of operations with them.
The most popular operations like a pointer dereference and
vice versa a taking of a variable/field/parameter address and a
taking of an array element should be supported as
corresponding join points. Also it’s required that for each
mentioned join point some actions written as advice bodies can
be performed before, instead of and after a corresponding
program construction execution. Of course it isn’t a complete
list of different program join points, e.g. loop and specific
condition statements as well as a lot of different expressions
weren’t described. But indeed they also may be taken into
account sooner or later.

Both the first and the second stages weaving should
produce a correct source code or/and a corresponding compiler
internal representation. For example, advice bodies should be
substituted and be compliable as well as a given program
source code. Also for these stages a considered construction
scope (either some file or some function) plays a significant
role because of some action like a function call may be
performed either in one file or in another one, in one function
or in another one. It is important to notice that among advice
body instructions there may be some specific AOP instructions.
In the given paper they are referred to as body patterns. For
instance, there may be such body patterns as:

e a matched construction name and type (for a function
call and definition, for a variable declaration, etc.);

* matched construction argument names and types (for a
function call and definition);

e a matched construction size (for entities having an
array type or strings);

e and even a matched construction itself (e.g. to have
ability to call a matched function from inside a
corresponding advice body).

C. Linking

Linking performed at the third stage by a linker with
corresponding build options assembles given program object
files al.o, a2.0, a3.0, ... together with libraries object files
libl.o, lib2.0, lib3.0, After all an executable file or a library
al.out is obtained. It’s worth while mentioning that C program
object files to be linked shouldn’t contain the same defined
symbols such as function definitions having the same names.
So if some shared functions and global variables are required to
separate cross-cutting concerns they should be contained just in
one object file. For instance, this may help to use different
counters or flags, i.e. to save a shared context or state, and to
efficiently execute the same code by means of special auxiliary
functions (one can see an example in Section V). Interaction of
AOP directly with object files and a running program is beyond
of the given paper.

So the common C program build process, the most of key C
constructions and their influence on an AOP implementation
were considered. But the goal of the given paper isn’t to

76

introduce some AOP implementation for the C programming
language but is to suppose the one that can be used for real
programs. To the author’s knowledge unfortunately the most of
C AOP implementations are used just for artificial simple
examples and isn’t widely used in practice (there is some
discussion about the given issue in Section III). So the AOP
implementation concerned at this paper was strongly affected
by the Linux driver verification (LDV) project [4][5]. The goal
of that project is to provide an industrial quality toolset that
allows to use different static code analysis tools to verify
whether drivers satisfy correctness rules or not. The appropriate
way to formalize these correctness rules in the manner being
independent on a static verifier used and than to instrument a
driver source code to be checked is to use AOP. Therefore this
constrains some extra circumstances on a C AOP
implementation:

e Support of the C programming language with all GNU
extensions as an input language (it’s a standard
language for drivers writing) as well as all support of
standard and GNU build options.

e Offering of a well set of AOP constructions
corresponding to the C programming language. This is
required since correctness rules refer to different C

constructions used in different contexts. But
nevertheless aspects development should be rather
easy.

e An output should be also a correct program in C
equivalent to the original one except it may be
extended with corresponding cross-cutting concerns.
This is required by the following application of static
code analysis tools.

e An AOP implementation should be quite easy
maintained and extended with new features. This
comes because of new correctness rules are constantly
appearing, so an extra AOP constructions support is
required.

Note that nevertheless the most of these requirements are
suitable for any program written in the C programming
language (may be with allowance that this is done on the Linux
platform). So a supposed C AOP implementation appears to be
used both in the LDV project and in developing of a rather
random C program. Moreover the requirement for an output to
be a C program is useful for an AOP implementation
debugging, because of by means of this output one can easily
observe how a given AOP implementation behaves.

I1I.

AOP for the C programming language that is the goal of the
given paper is considerably less developed in comparison with
the one for Java. At present the most interesting C AOP
implementation is ACC (AspeCt-oriented C) [6]. Fig. 3 shows
that its superset for C likes the one for Java made in Aspect]
[7]. That aspect means that after function foo2 is called its
result will be printed to a screen. ACC weaving differs from
the one of Aspect]. For a given preprocessed C file ACC
produces a corresponding C file extended with cross-cutting
concerns. Despite of ACC supports a rather large set of AOP

RELATED WORK

constructions it cannot deal with preprocessor ones since it
takes already preprocessed source code. Also it is intended just
for one file processing and there isn’t ability to specify some
shared variables and auxiliary functions. ACC has its own
closed C parser that fails to process some GNU extensions.
Maintenance of ACC by its developers isn’t active and due to
its core component is closed it isn’t so easy to deal with it.

// An advice printing a message after a
// given function call is performed.
after (int res): call(int foo2(int))
result (res) {
printf (¥ after call foo2, return %d\n”, res);

}

&&

Figure 3. Example of an ACC aspect

InterAspect is a more recent AOP implementation intended
for the C programming language [8]. It was developed almost
at that time when the given work was done. This tool is
interesting because of it’s based on GCC plugins [9], so it is
most likely to support all GNU extensions. Unfortunately the
InterAspect tool after all produces an object code (in fact this is
done by GCC itself) like Aspect] so it cannot be directly used
for static verification. At present the given tool supports rather
limited number of AOP constructions and preprocessor
constructions aren’t supported as well as state variables and
auxiliary functions. Instead of a C superset it provides a special
C AOP library allowing to write aspects like an usual C
program. But as one can see in Fig. 4 it seems to be even a
more complex task to write such an aspect. In fact there only a
joint point for malloc function call is defined. The tool was
actively developed recently. However its development was
stopped at the end of 2010. Nevertheless its progress should be
tracked and correlated with the suggested approach.

static void instrument_malloc_calls() {
/* Construct a pointcut that matches calls
void *malloc (unsigned int). */
struct aop_pointcut *pc =
aop_match_function_call();

aop_filter call pc by name(pc,

aop_filter_call pc by param_ type (pc,
aop_t_all unsigned());

aop_filter_ call pc by return_type (pc,
aop_t_all pointer());

/* Visit every statement in the pointcut.

aop_join_on(pc, malloc_callback, NULL);

}

to:

"malloc");
OI

*/

Figure 4. Example of a part of an InterAspect aspect

Another good approach is SLIC (Specification Language
for Interface Checking (of C)) [10]. To the author’s knowledge
it’s the only C AOP implementation that is widely used in
practice. However it has just one field of application, it’s used
during a process of static verification of Microsoft Windows
operation system drivers. SLIC allows to use state variables
and has a simple syntax for aspect writing. A SLIC
specification is indeed some kind of an aspect. The example of
a SLIC specification is demonstrated in Fig. 5. This artificial
specification states that it is an error to have more than four
zeroes in a queue. A SLIC preprocessor weaves driver source

7

code with a specification and after all produces equivalent C
program to be checked by means of a static verifier. A
shortcoming of the given approach is that there just few join
points are implemented (in fact just a function call and
definition). Also the given project is completely closed.

state { int zero _cnt = 0; }
put.entry {
if ($1 == 0) {
if (zero_cnt == 4)
abort "Queue has 4 zeroes!";
else
zero_cnt = zero_cnt + 1;
}
}
get.exit {
if (S$return == 0)
zero_cnt = zero_cnt - 1;
}

Figure 5. Example of a SLIC specification

A lot of other AOP implementations for C like C4,
Aspicere2, Xweaver project, WeaveC and so on posses a less
number of useful features than the ones described above, so
they aren’t considered in this paper. Also AOP tools dealing
with C++ even though they may be adapted in some way for
the C programming language aren’t introduced because of
usually they produce output in C++ while C is required by
static code analysis tools.

IV. OVERVIEW OF SUGGESTED C AOP IMPLEMENTATION
ARCHITECTURE

A suggested approach tends to implement all the
requirements described in Section II in the most complete way.
So after thorough investigation it was decided to base it on the
LLVM compiler infrastructure [11]. In turn this infrastructure
is built on top of GCC, it has so-called LLVM GCC Front End
binding GCC with LLVM tools. So the LLVM compiler
infrastructure inherits a GCC parsing of both C constructions
and GNU extensions and supports all GCC build options
almost as InterAspect described above. The suggested C AOP
implementation is built on top of a GCC parser itself. Because
of GCC includes preprocessing the given C AOP
implementation can deal with both preprocessing and
compilation join points. Next the LLVM tools include its own
linker and a C backend tool. The first allows to link several
object files of the whole program together, so some set of
source code files can be woven instead of an alone file. The C
backend tool is used to produce a C source code file to be
verified by a static code analysis tool. To write aspect files it
was decided to use a superset of C like Aspect], ACC and
SLIC do. Section V contains an example of such an aspect that
is used in practice. Below the overall architecture of the
suggested C AOP implementation is considered in more
details. It’s shown how program source code files, libraries’
header files and aspect file are used and modified to weave
cross-cutting concerns with a program.

Different constructions matching and weaving are
performed through 4 stages by means of LDV GCC Front End
invocation on each stage. Then linking and a C source code file
generation are done. First of all it’s necessary to mention that

there are usually 2 aspect files. The first is intended for
weaving with all program source code files. The second aspect
file is required to define auxiliary function definitions and
global variable declarations shared between all other source
code files. The second aspect file is applied just to one program
source code file of those forming a final executable file or a
library. To make the further description more general * is used
instead of corresponding names. For instance a first aspect file
is denoted as *.aspect, and a second as *.aspect.common.

A. Aspect preprocessing

At the first stage comments of both C and C++ styles are
eliminated from both aspect files. So *aspect.nc and
*.aspect.common.nc (where nc means “no comment’) are
obtained. Then at every stage such the modified aspect files are
parsed by means of a special parser (that is later referred to as
aspect parser) implemented as a patch for LLVM GCC Front
End. In an aspect file parsing lexical, syntax and semantic
correctness is checked. Advice bodies are looked through just
to determine body patterns. In case of some error an exact
place and an error type are reported. If a given aspect file is
correct it’s translated into own internal representation used
during matching and weaving later.

At the first stage required modifications are done for a
program source code file processed, *.c. Either before or after
or instead of it some additional source code is inserted. This is
done to process further these modifications as soon as possible,
i.e. even by means of a preprocessor because of they may
contain some preprocessor directives. By analogy with a
preprocessor a file obtained after this stage is called *.c.p (p
means “preprocessed”’) and the given stage is named aspect
preprocessing. At the moment there isn’t weaving for included
files but it can be implemented in the similar way.

B. Macro weaving

At the second stage during the standard preprocessing of a
*c.p file performed by LLVM GCC Front End using
corresponding build options (e.g. to find all included files)
macro matching and weaving are performed. So this stage is
referred to as macro weaving. When a corresponding to a given
pointcut macro directive is matched a macro body is extended
in a way required by an advice. After all there is a *.c.p.mw
(mw means “macro woven”) file that is the both aspect
preprocessed and preprocessed one.

C. Advice weaving

The third and the fourth stages correspond to the
compilation phase. Here is important to notice that we don’t
restrict an advice body source code with C constructions usage
and we don’t parse it by ourselves. Instead, advice bodies are
substituted to a given source code file as unique auxiliary
function bodies on advice pointcut matching. And then the
LLVM GCC Front End powerful parser processes them. So at
the third stage auxiliary functions required to implement advice
body actions are created in depend on join points matching and
advice requirements. Also to perform parsing of type
declaration extensions as well as to allow using of given
extensions in auxiliary functions type declarations weaving is
done at the third stage. At this stage the LLVM GCC Front End

C parser deals with a preprocessed file *.c.p.mw and produces
step by step its intermediate representation in the form of the
GCC internal representation, called later as a parsing tree. Also
parsed entities (in fact, type declarations and function bodies)
are looked through to find matches with pointcuts defined in a
given aspect file. It’s kept where matched entities are placed (to
insert either auxiliary function prototypes or to extend
corresponding type declarations later), what exact types and
names are matched to replace body patterns used in
corresponding advice bodies. After all required type
declaration extensions as well as auxiliary function definitions
with substituted body patterns and their prototypes are directly
inserted into corresponding places of an initial source code file
*c.p.mw and a *.c.p.mw.aw (aw means “advice woven”) file is
obtained. The stage is called advice weaving.

D. Compilation

After that at the fourth final stage the inserted source code
is checked for correctness and translated into a parsing tree as
well as an initial source code. Also at the third stage matching
and weaving are performed in parsing. Here function
definitions and function body expressions are modified directly
at the level of the parsing tree and some relations with auxiliary
functions are established if it’s necessary. After the parsing is
completed LLVM GCC Front End behaves in its standard
mode and obtains an object file as well as a compiler does.

All four stages described above are summarized in Table 1.
The table shows how input data is modified and used and what
output is obtained in depend on a given stage.

TABLE L DATAFLOW OF MATCHING AND WEAVING STAGES
Stage *.aspect *c Build options
Aspect Comments Include join point Aren’t used
preprocessing elimination weaving (*.c.p)
(*.aspect.nc)
and parsing
Macro Parsing Macro weaving and Preprocessor
weaving preprocessing options are
(*.c.p.mw) used
Advice Parsing Auxiliary functions and | Compiler
weaving declarations direct options are
including (*.c.p.mw.aw) | used
Compilation Parsing Function definitions and | Compiler
bodies weaving, options are
compilation used

78

E. Linking and C source code file generation

Further required object files are linked together by means
of the LLVM linker tool. As it was already mentioned for a
resultant file just one object file woven with both aspect files is
taken. For an assembled object file the LLVM C backend tool
produces a C source code file that can be processed by a static
verifier. Although the last action is optional. For example,
instead of this there is ability to produce an executable file for a
given program that is intended for some architecture supported
by the LLVM compiler infrastructure.

V. APPLICATION OF SUGGESTED C AOP IMPLEMENTATION

The suggested AOP implementation for the C programming
language is already included into a LDV project toolset. It’s

used to formalize few correctness rules and in driver source
code instrumentation intended for a further verification by
means of static code analysis tools.

Fig. 6 shows an example of aspect files used in verification
of the “Locking a mutex twice or unlocking without prior
locking” correctness rule. Note that these aspect files are
simplified in comparison with the actually used ones since
some extra lock functions aren’t presented. Syntax is most
likely to be rather intuitively clear. It’s worth while noticing
that there are 2 join points as for macro mutex_lock and for
function mutex_lock. This is required because of Linux kernel
can define either a macro or a function in depend on its
configuration. Function mutex_unlock is always declared as
extern, so it doesn’t require instrumentation since it can be
explicitly defined. Global variable ldv_mutex is an example of
shared state variables while Idv_mutex_lock is an auxiliary
shared function. Function ldv_check_final_state is executed at
the end of checking to ensure that nothing is locked then.

model0032a-blast.aspect

before: file ("Sthis") {

#include <linux/kernel.h>

#include <linux/mutex.h>

extern void I1dv_mutex_lock(struct mutex *lock);

}

around: define (mutex_lock(lock)) {

1dv_mutex_lock(lock)

}

before: call(extern void mutex_lock(struct
mutex *)) {

1dv_mutex_lock($Sargl);

}

model0032a-blast.aspect. common

after: file ("Sthis") {

#include <linux/kernel.h>

#include <linux/mutex.h>

#include "engine-blast.h"

int 1dv_mutex = 1;

void I1dv_mutex_lock(struct mutex *lock) {
ldv_assert (1dv_mutex == 1);
1dv_mutex = 2;

}

void mutex_unlock(struct mutex *lock) {
ldv_assert (1dv_mutex == 2);
ldv_mutex = 1;

}

void 1dv_check_ final_state(void) {
ldv_assert (1dv_mutex == 1);

}

}

Figure 6. Example of aspect files of the supposed C AOP implementation

To estimate quality of the proposed C AOP implementation
2 experiments were performed. The first one used a specially
prepared Linux kernel configuration and corresponding kernel
function implementations (like mutex_unlock showed in Fig. 6)
while the second one used aspect files like presented in Fig. 6
and following instrumentation. Later the first experiment is
called plain and the second one is called aspect. During
experiments all drivers of Linux kernel 2.6.31.6 [12] that can
be represented as kernel modules (there are 2160 such the
drivers) were examined against the correctness rule about
mutex lock/unlock described above with help of BLAST static

79

code analysis tool [13]. The most interesting results
demonstrating verdict changes between plain and aspect
approaches are shown in Table II (a first verdict belongs to the
plain experiment, and the second one belongs to the aspect
one). Safe verdict means that a given driver satisfied the given
correctness rule, unsafe is the reverse one, unknown verdict
means that a static verifier used failed to check a given driver
(e.g. because of time or memory shortage or due to some
parsing error).

TABLE IL COMPARISON OF THE SUGGESTED C AOP IMPLEMENTATION
WITH ANOTHER APPROACH
Safe — Safe — Unsafe — Unknown Unknown
Unsafe Unknown Unknown — Safe — Unsafe
4 95 18 82 3

As one can see from Table II the supposed C AOP
implementation behaves rather well because of the number of
“bad” transitions (i.e. from safe/unsafe to unknown) almost
equals to the number of “good” transitions. There are 95 + 18 =
113 “bad” transitions and 82 + 3 = 85 “good” ones. Their
difference is just 28, that is less then 1.3% of the total number
of kernel modules.

In fact it requires more memory for a generated file
verification to be performed in the aspect experiment in
comparison with the plain one. So, 62 modules were not
checked because of memory shortage. Also in the aspect
experiment some produced by LLVM C backend C
constructions are rather complex for the static verifier used (31
modules were not checked due to the given reason). Although
the plain experiment showed that even more drivers confuse a
BLAST C parser because of complex constructions coming
from initial driver source code as is. There are 68 such
modules. The rest transitions from/to unknown verdict are
concerned with either some bugs in the supposed C AOP
implementation (20 modules for the aspect experiment) or
time/memory shortage in the plain experiment (17 modules).
Unfortunately, all additionally found unsafes (7 modules for
which safe or unknown verdict was exchanged with unsafe
one) are false positives because of either generated C file
shortcomings (like generation of big unsigned integer numbers
instead of negative ones that is demonstrated later) or
incomplete correctness rule implementation and some static
verifier lacks.

But nevertheless the most significant shortcoming of the
supposed C AOP implementation consists in a generated code
itself. Fig. 7 illustrates an example of how a driver source code
is modified after the given implementation invocation. As it
was already mentioned sometimes this prevent a static verifier
from check performing due to complex constructions
generated. As Fig. 7 shows there is a lot of variables having
prefix blast_must. This is a special workaround made as a
corresponding LLVM C backend patch. It is required to
designate so-called must-aliases, that is the aliases that alias
only one known memory location (all artificial temporary
variables are must-aliases). The suggested approach application
leads to more memory requirement for a testing to be executed.
Such the generated source code scares users trying to see on it,
for example, in analyzing unsafes or in debugging the given C
AOP implementation. In fact the LLVM compiler

infrastructure used is responsible for this shortcoming. First of
all it deals with a GCC internal representation called GIMPLE
that already rather differs from a source code pure
representation. Next it is intended for machine independent
source code generation. So one can see large positive numbers
instead of small negative ones in Fig. 7.

drivers/pci/hotplug/fakephp.c (preprocessed)
if (strict_strtoul (buf, 0, &val) < 0)
return -22;
(val)
pci_rescan bus(slot->dev->bus) ;

if

fakephp.ko.linked.cbe.c
blast_must_tmp__ 85 =
blast_must_tmp__ 86 =
strict_strtoul (blast_must_tmp__ 85,
(&11lvm_cbe_val));
if ((((signed int
((signed int)0u)))
goto 1llvm_cbe_bb;
else
goto llvm_cbe_bbl;
1lvm_cbe_bb:
*(&1llvm_cbe_tmp__73) =
18446744073709551594ull;
goto llvm_cbe_bb5;
1lvm_cbe_bbl:
blast_must_tmp_ 87 = *(&llvm_cbe_val);
blast_must_tmp_ 88 = *(&llvm_cbe_slot);
blast_must_tmp_ 89 = *((&blast_must_tmp__ 88—
>fieldl));
if ((blast_must_tmp__ 87
goto llvm_cbe_bb2;
else
goto llvm_cbe_bb3;
1lvm_cbe_bb2:
blast_must_tmp_ 90 =
>fieldl));
blast_must_tmp__ 91 =
pci_rescan_bus(blast_must_tmp_ 90);
1lvm_cbe_bb3:

*(&1llvm_cbe_buf_addr) ;
Ou,

)blast_must_tmp__ 86) <

Oull))

*((&blast_must_tmp__ 89—

Figure 7. Comarison of a driver source code with the generated one

Another big shortcoming is connected with the fact that
LLVM GCC Front End is based on the rather old GCC
compiler (of 4.2.1 version, nowadays 4.5.2 is a stable release)
while the modern Linux kernel drivers already posses such new
constructions that aren’t processed with it. So different
workarounds are required to overcome this.

After all let us imagine how different approaches
introduced in Section III could meet aspect files presented in
Fig. 6, driver source code instrumentation, following static
analysis and obtained verification results examination. First of
all none of them supports the join point concerned with the
preprocessor construction define (mutex_lock (lock)).
Then, step by step, ACC fails to parse driver source code
because of unsupported fresh GNU extensions to the C
programming language and that tool cannot be adjusted
because of it uses a closed parser. InterAspect deals with
GIMPLE representation of source code and, if we had some C
backend tool for GCC, InterAspect would produce
instrumented source code too dissimilar to the original one
almost as well as LLVM C backend. Both ACC and

80

InterAspect doesn’t support state variables and functions like
ldv_mutex and 1dv_mutex_Ilock correspondingly. Most
likely that we could verify the given model by means of SLIC,
except the preprocessor issue, but in fact this is one of the
simplest model from the LDV project. Other models require
more complex join points and advice bodies, so what can we
do if SLIC supports just function calls and definitions and it is
the closed project.

VL

This paper describes an approach of how to implement
aspect-oriented programming in the way specific for the C
programming language. It considers features and shortcomings
of current implementations. After all a new implementation
that tends to cover all major features of the C programming
language as well as to take into account those features that
come from the C programs build process is considered. It’s
shown how the given C AOP implementation behaves to reach
the required intention.

For the supposed C AOP implementation its real
application for the Linux driver verification process is
demonstrated. An example of real aspect files implementing a
correctness rule associated with the mutex lock/unlock problem
is given. Also the supposed approach is compared with another
one that doesn’t use AOP. It’s shown that the given C AOP
implementation is rather good except a generated source code
is too complex for further analysis and it’s quite unlike the
original one. Mental comparison with another AOP
approaches, such as ACC, InterAspect and SLIC, is done.
Finally it becomes clear that the given approaches can not meet
all requirements imposed on the suggested C AOP
implementation by a number of reasons.

CONCLUSION

The current development of the supposed approach of the
AOP implementation for the C programming language tends to
overcome the restrictions specified above. To keep all
advantages of the supposed approach as well as to eliminate the
given shortcomings it was decided to develop our own C
backend tool intended directly for GCC itself. It’s assumed that
it’ll be built on top of stable GCC “from svn” that is it’ll parse
all modern constructions and GNU language extensions. Also
the given C backend tool should work at the low-level GCC
internal representation even before GIMPLE. Thus far a
produced source code will most likely to be very similar to the
original one. We believe that this will allow to combine
abilities of both the supposed C AOP implementation and
powerful GCC compiler to process C source code and to use
AOP.

One can obtain the current AOP implementation for the C
programming language from a LDV development site [14].
There it can be found as a part of rule-instrumentor. It’s planed
that an updated C AOP implementation will also be there soon.

REFERENCES

[1] Definitions of key AOP concepts.

http://www.aosd.net/wiki/index.php?title=Main_Page
[2] Aspect]: an aspect-oriented extension to the Java programming
language. http://www.eclipse.org/aspectj/

[3] An Aspect] example.

[4]

(3]

(6]

(7]

(8]

http://eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

A. Khoroshilov, V. Mutilin, V. Shcherbina, O. Strikov, S. Vinogradov,
and V. Zakharov, “How to cook an automated system for Linux driver
verication,” 2nd Spring Young Researchers' Colloquium on Software
Engineering, vol. 2, pp. 10-14, 2008.

A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov,
“Establishing Linux driver verification process,” Perspectives of
Systems Informatics, vol. 5947 of Lecture Notes in Computer Science,
pp. 165-176, 2010.

M. Gong, C. Zhang, and H.-A. Jacobsen, “AspeCt-oriented C,”
Technology Showcase, CASCON 2007, Markahm, Ontario, 2007.

W. Gong and H.-A. Jacobsen, “AspeCt-oriented C Language Spefication
Version 0.8,” University of Toronto, 2008.

J. Seyster, K. Dixit, X. Huang, R. Grosul, K. Havelund, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Aspect-Oriented Instrumentation with

81

[9]
[10]

[11]
[12]
[13]

[14]

GCC,” Procedings of the First International Conference on Runtime
Verification, pp. 405-420, 2010.

GCC plugins. http://gce.gnu.org/wiki/plugins
T. Ball and S.K. Rajamani, “SLIC: a Specification Language for

Interface Checking (of C),” Technical Report MSR-TR-2001-21,
Microsoft Research, 2002.

The LLVM Compiler Infrastructure. http://llvm.org/
Linux kernel 2.6.31.6. http://www.kernel.org/

D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker Blast: Applications to software engineering,” Int. J.
Softw. Tools Technol. Transf. 9(5), pp. 505-525, 2007.

The LDV project. http://forge.ispras.ru/projects/ldv

Component-Based Software Engineering and
Runtime Type Definition

A. R. Shakurov
Business Informatics Department,
Higher School of Economics,

Moscow,

Russia

amir-shak@yandex.ru

Abstract—The component-based approach to software
engineering, its current implementations and theirlimitations
are discussed. A new extended architecture for sugdystems is
presented. Its main architectural concepts and priniples are
considered.

Index Terms—Runtime environment, software architecture,
software engineering, software reusability

I. INTRODUCTION

Despite the many advantages of the component agproa
its currently existing implementations have a numbégé
substantial limitations. The most difficult goal &xhieve
here is probably to find a way of designing compuséhat
will provide the necessary functionality withoutcerding
it The necessary functionality is determined by
requirements, and these are bound to change véthapise
of time. There’re three options to consider. Fafkall, it is
possible to introduce software with somewhat wider

LIMITATIONS OF COMPONENFBASED TECHNOLOGIES

SOFTWARE ENGINEERshave always pinned their hopes orcapabilities, so that it would still be adequate ewh

the idea ofreusable codd8]. In their urge towards
eliminating code duplication, simplifying code mi@inance,
making it less error-prone and streamlining theeflgyment

requirements change. This approach, however, desnand
remarkable architectural design skills and foretsagghd has
the risk of bloating the program under developnmeaking

process programmers have gone a long way from j@unsuitable for system with limited memory resms.
completely unstructured code through procedures amgbcond of all, one can adapt the software witrcthese of
program libraries to object-oriented technologiesd a time. This would result in the most appropriatenas! as

application frameworks. Taking the code reuse mw®astep
further, the component-based software enginee@hd14]
is a very promising approach to software develogmen
The term “component instance” usually refers to a
program entity holding data and offering some fiowzlity
that are hidden by a well-defined interface (cD][111]).

The concept of interface, however, varies from ongw.-rate,

technology to another: a number of “propertiestrilatites,

the most expensive software. The third option is to
introduce a component framework that would allovpliace
modification of component’s functionality withoutepping
over the bounds of the component model.

Let as consider an example. ZigBee specificatids] [1
offers a suite of high level communication protacdbr
low-cost, low-power-consumption wireless
personal-area networks. It is implemented, foranse, by

member variables etc.) [13], a number of membe&fommunicational parts of microelectromechanicaltesys

functions/methods (as in most object-oriented m@ogning

languages) or even an entity whose nature mayfbeuteof

scope of the component technology itself [1]. Thecpss of
combining components into a working system is atersd
to be relatively simple (e.g. [2]). Nevertheledsstprocess
is implemented differently in various technologies.

in wireless sensor networks. At the same time, the
specification is subject to frequent changes. Thaskes
manufacturers renew and release sensor firmwarehusha
difficult process due to the lack of high-level d®pment
tools for such systems.

ZigBee specification introduces network and appiica

In order to propose an optimal way for organizingayers (in addition to the PHY and MAC layers definby

component interaction, that would introduce a gbatance
between flexibility and ease of use, let us corigisensider
main aspects of component-based models and techeslo
and their limitations (detailed comparative anayss
beyond the scope of this work, see in [12] and)[14]

82

the IEEE standard 802.15.4 [5]) to the protocotlstd he
topmost application layer (which is subject to freqt
changes) is comprised of a number of componengBeg
device objects, their management procedures, aiolic
objects. Requirements to these components arehaoged

at the same time (application objects, for example
provided by the manufacturer and thus aren’t mashdne
the ZigBee alliance). Nevertheless, every new seled the
specification implies a new release of the whalenfiare. It

adjusting a component’s instance.

To summarize, a new component system capable of
introducing new data types by either modifying 8xip
ones or creating them from scratch using a number o

would be more cost-efficient to modify only thosepredefined low-level components is needed in orter

components specification for that have changed raakle

create flexible (adaptable to changing requiremearid

the system reconfigure to make use of their ingsnccontexts of use) software for systems with limitegources.

without rewriting a binary firmware image to dewdte
memory.

To add, remove or modify certain functionality of a

component’s instance means to introduce a new coeamip
because it is the component that defines functitynaf its
instances. That is, we're essentially dealing i task of
defining a new type of data.This can be done either by
deducing new type from existing one or creatindgréim
scratch using a number of predefined low-level congmts.
We believe it's this operation that must be avaddabt
runtime in order to ensure software flexibility.

This problem can be tackled in a humber of bypasgsw
such as source code, bytecode or binary co
generation/transformation, runtime compiler caltstaking
advantage of programming language’s ability to rfyods
low-level runtime data structures (Java Reflectiming a
graphic example). These, however, aren’'t alwaysion.
Reflection mechanisms are primarily meant to bed use
build IDEs, source code analysis tools and GUI glhesi
applications. Using them indiscriminately to buikhy
garden-variety software lays exceedingly high claim
developer and is therefore error-prone. Furthermorany
programming languages don’t support reflectionliatfand
embedded systems often
modification frameworks. Therefore an alternatiyestem
capable of building new types from user-configure
instances without stepping over the bounds of it&leh is
needed.

To conclude the section, let us look at anothempkm
example. We're designing a GUI application and veatto
change a button’s label (the button has already
functionality attached to the application). The e is
supposed to be permanent: the button won't be redaah
runtime. Although obvious, the necessary procedisre
implemented in various frameworks with a distregdiaw:
the variable property is left variable for the fifee of the
component’s instance regardless of developer' shiiaes.
In other words, the fact that the button’s texttismeant to

lack compilers and coggy

To achieve the goal of designing such a systemhave
analyzed advantages and limitations of existingect)j
oriented programming languages and component
technologies. This has allowed us to infer the quieciples
of the suggested component model described in &x n
section.

The model is based on a general object-orienteal aied
is extended by other technologies’ traits when ssae/
since the need to define data types at runtime snake
%signtime and runtime essentially indistinguiskabl
Omitting a detailed consideration of specific temlogies
here (see [12] and [14] for such review), we aregdo
summarize the core principles that underlie the ehod
question.

The two primary characteristics of any developrreamd
execution environment are the principles and meshanof
data organization and control flow management. Lgpk
for those characteristics in the object-orientecgiggm, one
will find the hierarchical data organization principle and
the concept of methodas the means of control flow
nagement. And while the first characteristic gives a
well-balanced solution for managing ever growing
‘éomplexity of software systems, we find the second to
be too complex and cumbersome. We believe thatehg
concept of object method (see [3] e.g.) isn't séafor
adopting it in a component model, because of its
overwhelming versatility: a method can have vagabl
Kumber of parameters and (in certain languages)riret
values, or it can have none of those; arguments bman
passed by either value or reference; methods can be
overloaded and overridden (in which case a conglitaet
of resolution rules takes the stage). The list dam
continued. The concept of method, therefore, ddesn’
provide intended ease of use (though it does haufterare
complexity well).

CORE PRINCIPLES

be mutable at runtime (should this be the designer' | contrast, the concept pfoperty introduced in some

intention) cannot be expressed by a developer.

The designtime work with an instance of a compone
and the runtime work with it are basically two difént
contexts of its use. However, these cannot be &dpyarated
by existing frameworks (see [13] e.g.), because ltae to
start (execute) a component (i.e. instantiatenitprider to
either configure it or take advantage of its fumcdlity.
This is the source of the troubles one encountgienw

83

frameworks (C#, JavaBeans) is more suitable toneeds.
Athe property-based interaction model is simple fomchal
because of the limited number of aspects descriltieg
“property” concept: its type and applicable operasi
(usually reading and writing). However, to beconpeedect
rival (to efficiently implement callback routine,orf
example) the concept needs to be extended withittting
operation (described in following section).

To summarize, we have adopted the principle ofalue change event) whereas in Java Beans a pyogstt
hierarchical data organization and the propertycephas have multiple event types associated with it.
the means of organizing execution flow to create a
component model with a runtime data type definition

capability. We will now proceed to describe the elod B. Container

A container is an execution environment that allows the
following operations to be performed in its cont@xtithin
IV. THE MODEL it”):

. . . * instantiate any components,
The model we're going to discuss has its prototype Y P

implemented in the Java programming language. Thwere .

let us start with describing the model from therisspoint

of view. .
While working with the application, a user inteaetith

three categories of objects, viz. components, compis’

instances and containers (which are used as baotime

and new type definition environments).

change values of properties of instances created at
the previous step,

bind instances’ properties to each other.

Apart from that, a container can be used to create
components. Its contents are considered to betatppe of
an implementation part of a future component. Teats a
new component, one has to complete this informatiah
interface specification and connect these two gagsther.
Above that, a user is able to edit metadata ofaitsts
constituting future implementation. All this can aehieved
with the following operations:
restricting access to instances’ properties,

A. Components and instances

An instance of a component is an aggregate of aada
behavior hidden behind anterface, the latter being the
only way to interact with this kind of entity. Waall refer
to the hidden part of an instance asiitplementation, as .
opposed to the interface.

Like objects in object-oriented paradigm have @ass
instances have components that describe the wag #ieds
of instances are created and function. Every igstdras a
single component associated with it and this aasioci is
immutable during the lifetime of an instance. Every
component can be instantiated without providing any
additional information. This means that primitisgoés of ~ The “sharing connection” between two instances’
data (numerical, boolean, string etc.) aren’t dbtua properties makes those instances share memory cell

» adding properties (with specified metadata: name,
access permissions etc) to the interface part ef th
component,

addingsharing connectionsbetween a property of
an instance that is a part of the implementaticsh an
a property of the interface.

components. These are usually called value-typeks tan
instantiate them one has to provide at least aevafuthe
instance to create.

In addition to contextless instantiation, comporeaitow
instantiation in a certain context (e.g. as par ebmposite
instance, see below).

Interface

Let us focus on an interface of a component’s imcstalt
is comprised of a number of properties each of whg
characterized by:

« name (used to identify a property),

« value type,

(therefore changing the value of one property imé@diately
reflected on the value of the other property). Tdehavior
requires a custom memory model, which we’'ll focus o
later.

Once the user has provided all the necessary data t
container, he can create a new component that will
correspond to the prototype currently in the co@ain the
sense that all of its future instances shall ha&e dame
structure.

While a user is working with a container, the Iatte
gathers all the necessary information about future
component. It is to be noted that some of thisrimftion
can be deduced from the runtime structure of ingtarhe
user have created. For example, bindings betwestarioes’

e access permissions; any property may be accessipi@perties are analyzed only when a new type ingoei

for reading, writing and binding.

Read/write operations need no explanatiBmding S
property of a particular instance @ property of another
instance ensures that whenever the valugisfchanged the
new value will be written td. The binding operation, as it
was mentioned earlier, is needed to efficiently lanpent
callback routine and is similar to that of the Jd&@ans
model, except that there’s only one event type fery

84

created. Other pieces of information, however, ttd®

stored within the runtime structure. For exampéstnicting

access to a property of an instance won't actualbdify

that instance because that implies changing meta(at

data type) of an existing instance and there’s emsa in
doing that. In other words, not every user actiam be
directly reflected on the runtime structure of amtes, and
it's container who makes the process of editinghbddta
and metadata transparent to a user.

It wouldn't be possible to define new types at et
however, if it wasn't for a specially designed izl
structure of components, which will be discussedtha
following section.

C. Internal structure

Let us focus on the internal architecture of thetqype
application we've developed that provides the presiy
described functionality. As it was mentioned abottes
application is implemented Java, but it can be lgasi
rewritten in any other strongly-typed object-oriht
programming language.

All the instances in the system implement commo

subscribe to the variable value change event.

Data types

We've already mentioned that the system supports
primitive value-types which are a kind of instargpes.
Another kind of instance types is components, hatd're
two different kinds of them. The first one @mpiled
components These are components whose implementation
is not analyzed by the system in any way. This [isrthe
system to handle various components implementet wsi
third-party means (e.g. java bean components).

The second kind of components isomposite
components.These are components implemented by means
Bf the system itself. The implementation part @banposite

Instance interface that provides methods to acCeSSomponent is a structure of other components.

instance’s type and properties. Similarly, all thges
implement theType interface that provides methods to
instantiate the type and also extends the Instaneeface.
Therefore, any type (and any component which igd &f
type) is an instance whose data are metadata diesgits
future instances. There is als@gpeType type, which is a
type of any type (including itself).

Let us consider the following scenario. A user mkefi a
new component with no bindable properties. Thamthele
event-listener infrastructure (that supports bigdin

Since it is a composite component that is built never
user defines a new type, this kind of component®fis
greatest interest.

Composite components

We are going to focus on the structure of metadiatieed
in composite components. Since these metadatantdater
the structure of data in corresponding instancess, vl
discuss that structure incidentally.

Composite type (like any other type) describesriate

functionality) becomes redundant and should not bg,q implementation parts of its instances (FigyreThese

included in corresponding instances. This kind ekepl
context adjustment is crucial when dealing with time
type definition and we pay great attention to it.

To implement the smart adjustment described, we'v
introduced indirect access to instances’ properfiegy're
accessed via speciBropertyGetter, PropertySetter and
PropertyBinder objects. If there're no bindable properties

in a component then its instances end up having the

PropertyBinder object uninitialized. And if thereas least
one bindable property, then the binder object belicreated
(but it still won't be granting access to unbindabl
properties, of course).

Memory model

As it was mentioned above, the custom memory misdel
required in order to consistently handle bindind aharing
connections between properties.

The memory model introduces traditional kinds o
“memory cells” (viz. constants and variables) that stort
instances as their values. The value can be readiracase
of a variable) written. The memory cell can alswéhao
value (it is said to be null in this case). Finallgemory
cells are strongly typed, which means that evelyktews
its type and an attempt to store an instance ofnatiching
type in it produces an error.

There’s also an unconventional kind of variable -
listenable variables. As the name suggests, libtena
variables (in addition to having all the featurdsregular
variables) allow special objects (called listeners)

85

parts are interconnected via mechanism describledvbe

CompositeType

interface |implementation
1
ICompositeType

InterfacePart|

1
|CompositeTypeImlementationPart

Figure 1. Composite type.

An interface of an instance is a set of its prapsrtso the
metadata stored in the interface part of a compoasna
set of property descriptors (Figure 2) each of Wwhic
specifies:

e property value type,
access permissions,
default value (optional).

| CompositeTypeInterfacePart |
1

0..
PropertyDescriptor

alueType : Type
efaultValue : Instance

*

Q<

1
Permissions

Boolean
Boolean
Boolean

readable :
writable :
bindable :

Figure 2. Interface part of a composite type.

Finally, implementation part of a composite type is e The property is shared. In this case not the value
metadata that describe a structure of instance$ wit of the property, but the property itself is
interconnected properties that will result fromtamgiation changed: instead of creating a new memory cell
the type. These metadata are represented in thwviiad for storing the value, an existing (provided from
way (Figure 3). elsewhere) cell is used by the instance.

CompositeTypeImlementationPart The last option is used to provide an instance {tga
subcomponentNames : Map<String, Integer> instantiation context) with references to its paiastance’s
1 eventGraph| 1 properties, thus creating sharing connections batwbese
0..* properties. These connections glue interface and
SubcomponentDescriptor implementation parts of a composite instance tageth
valueType : Type

1

Composite component instantiation

0..* To demonstrate described structure at work, legois
[SubcomponentPropertyContextAdjustment through the process of composite type instantiatibime
J, 1 following algorithm implements the process.
[DefaltvalueModifier 1) Memory cells for storing values of properties are
1 1 EventR%'u;; established. (one .for every property descriptor). If
PermissionsModifier || —————— thgrg’s an mstantlatlon con'text, a reference fm a
denyReading : Boolean existing cell is used. Otherwise a new memoryisell
denyWriting : Boolean |leventsource created, its kind (constant, variable or listenable
denyBinding : Boolean|| 1 variable) being determined by respective access
SubcomponentPropertyQualifier permissions, and is initialized with either default

Figure 3. Implementation part of a composite type.

subcomponentId : Integer value (if any) or a new instance of the correspogdi

subcomponentPropertyName : String type.

2) Instances constituting the implementational part of
the future component are created. This involves

To every connection between two instances that eyaluating their instantiation contexts. Every

constitute an implfementation of the future componen property descriptor is merged with corresponding
corresponds an object of the EventRoute class fblits subcomponent property context adjustment object
two objects of the SubcomponentPropertyQualifieassl giving a new set of adjusted access permissions and
(for the beginning and the ending of the connegtidiese default value.
objects simply specify a source and a destinatibrao 3) Binding connections (i.e. event routes) are
property change event: they hold respective compshe established.
IDs and their property names. _ _ 4) Proxy objects for accessing new instance’s progerti
For every instance that is a part of an implemeortabf are created (property getters, setters and binders)
the future component there’s a descriptor, an algéclass These objects receive references to relevant
SubcomponentDescriptor. This object specifies: properties only (e.g. a setter object only holds
* Instance type, references to writable properties) and if therevare
« for every property of the instance, context any, the object is not created at all.

adjustment of that property to its use as a part of After all the steps have taken place, a new olijectass
another instance’s implementation. ThisCompositelnstance is constructed. The constructr i
adjustment defines modified default value (prrovided with the type (an object of the Composjed

any) of the property (the DefaultvValueModifier class) and proxy objects. This results in a newame of
class) as well as restricts access to ihe component.

(PermissionsModifier). The described internal structure of composite camepts

A default value of a property can be modified imuanber ensures great flexibility. Since data types aréneeff by the
of different ways. (runtime) structure of regular (java) objects (apased to
* “Void” maodification, the value is left intact. compiled binary or bytecode), it gives us an opyity to

Explicitly specified value (the object of the easily manipulate that structure at runtime thestng new
DefaultValueModifier class holds this value). types.

Value is another instance that's present in the

same context (implementation of the same

instance). In this case the modifier object holds V. RESTRICTIONS AND FUTURE WORK DIRECTIONS

the name of that instance. Let us discuss certain limitations to the described

86

solution. First of all, flexibility comes at a pecThe ability
to reconfigure software results in overhead comtmnal [y

costs. This means that the proposed model should be

adopted only when implementing systems that eittare 2]
no severe restrictions on computational resourcetomot
require very high performance. Aforementioned
microelectromechanical sensors offer a graphicsneia
while having limited memory capacity, they carry no[S]
considerable performance limitations (they usustly idle [4]
for hours between sending a signal and going idlk&irg.
This is why the availability of remote reconfigticat means (5]
takes precedence over elevated performance here.

Second of all, while the property-based interactisn
simple and quite flexible, it has its limitationgo. For [6]
example, implementing intricate algorithms this way [7]
possible though burdensome, making a traditional
imperative-scripting style far more suitable choibeother (8]
words, the described solution should be adoptednwhiag]
there’re a great number of objects (instances) wvdth
relatively simple interaction. In addition, it's gsible to
incorporate complex logic via compiled componetitsugh
this still requires implementing it in a third-patanguage.

The described system being only a prototype, ot fi
and foremost goal is to turn it into a completatdee-reach
production-quality platform. This requires both kiwag the

[10]

REFERENCES

Bruneton, E., Coupaye, T., Stefani, J.Bhe Fractal Component
Model specification. Version 2.0-3The ObjectWeb Consortium,
2004.

Costa Seco, J., Silva, R., Piriquito, M., “Compade Component-
Based Programming Language with Dynamic Reconfigurg
Computer Science and Information Syst€domSIS Consortium,
Novi Sad, Serbia, 2008, pp. 63-86.

Gosling, J., Joy, B., Steele, Ghe Java™ Language Specification.
3 ed, Addison Wesley, 2005.

Heineman, G.T., Councill W.T.Component-Based Software
Engineering: Putting the Pieces TogetheAddison-Wesley
Professional, 2001.

IEEE Std 802.15.4-2003 — Wireless Medium Accesst@b(MAC)
and Physical layer (PHY) for Low-Rate Wireless Beed Area
Networks (WPANS).

ISO/IEC 14772-1:1997 — Virtual Reality Modeling lguage
(VRML).

ISO/IEC 14772-2:2004 — Virtual Reality Modeling lgumage
(VRML).

Krueger, C.W., “Software reuseACM Comput. Surv. Vol. 2CM,
New York, 1992, pp. 131-183.

Mcliroy, M.D., “Mass produced software componentslaur P.,
Randell B., “Software Engineering, Report on a ewafce
sponsored by the NATO Science Committee, Garm{ehmany,
7th to 11th October 1968” Scientific Affairs Division, NATO,
Brussels, 1969, pp. 138-155.

Object Management Groughe Common Object Request Broker:
Architecture and Specification. Version 3.1. Part 8omponents
OMG document formal/2008-01-08, 2008.

[11] Redmond, F.E.DCOM: Microsoft Distributed Component Object

Model IDG Books Worldwide, Inc., Foster City, 1997.

component model and improving development tools tid2] Stiemerling, O.,Component-Based TailorabilityBonn University,

make use of it. This also implies optimization teagantee
acceptable performance.

As for the practical applications, we're plannimgrnhake
use of the platform in question to introduce softwva
solutions for 2D (GUI development) and 3D (VRML [6]
[7] implementation) design, reconfigurable wirelessisors
firmware and possibly for some other purposes.

VI. CONCLUSION

We have described the main ideas and the coreiplesc
of internal organization of the new component dsttture
with extended capabilities. The ease of manipujatinth
data and metadata structure of software is not éo b
underestimated. We believe that formalized, simypdt
powerful component model with runtime data type
definition capability will allow creating most cagtirable
software that will be able to evolve and adapt hanging
requirements easily.

87

[14] Szyperski,

[15] ZigBee Alliance, ZigBee

Bonn, 2000.

[13] Sun Microsystems InclThe JavaBeans™ API specification. Version

1.01-A Sun Microsystems Inc., 1997.

C. Component Software: Beyond Object-Oriented
Programming 2nd ed, Addison-Wesley Professional, Boston, 2002
Specification, ZigBee Document
053474r17, 2007.

Educational tests in “Programming” academic
subject development

Maksimenkova Olga

National Research University Higher School of
Economics
Moscow, Russia
e-mail: omaksimenkova@hse.ru

Abstract—Educational tests are quite popular as a type of
learning outcomes checking in public education and in
commercial education nowadays. This work is devoted to test
for students, who study programming in Universities.
Educational tests in “Programming” academic subject
development and statistical analysis principles are described
and accumulated here.

Keywords: software engineering education,educational tests,
tests, programming academic subject

INTRODUCTION

Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering recommends such
courses as “Computer Science”, ‘“Programming basics”,
“Programming” etc. to be taught to train an undergraduate
in Software Engineering. Nowadays in Russia syllabuses
of subjects, which are widely connected with programming
(for example, ‘“Programming” or “Information
Technologies”, etc.), obligatory contain a part about one or
another programming language. The most popular
programming languages: C++, C# and Java are taught all
over the Universities.

The problem of checking theoretical knowledge of
syntax and semantic of a programming language and
practical skills is significant and quite complicated. Well-
prepared educational test can help in resolving all these
problems by checking all of them. It should be said that
educational testing is widely applied practically in
specialists’ certification by such firms as Microsoft, Cisco,
1C etc.

This work is devoted to common questions of
educational tests statistical analysis and development for
students, who study programming in Universities. The
research which is described in this work is based on tests in
C# programming language which are given to the students
who study programming within the academic subject
“Programming” which is contained in the discipline of the
Software Engineering.

ESTIMATING OF LEARNING OUTCOMES

Desire learning outcomes of a process of learning are
formulated by the academic staff, preferably involving
student representatives in the process, on the basis of input
of internal and external stakeholders. Competences are
obtained or developed during the process of learning by the
student.

Learning outcomes are statements of what a learner is
expected to know, understand and/or be able to
demonstrate after completion of learning.

88

Vadim Podbelskiy

National Research University Higher School of
Economics
Moscow, Russia
e-mail: vpodbelskiy@hse.ru

Competences represent a dynamic combination of
knowledge, understanding, skills and abilities. Fostering
competences is the object of educational programmes.
Competences will be formed in various course units and
assessed at different stages [9].

Tests, which are used to estimate students training level
in a current academic discipline, are criterion-referenced
(or should be such). Their goal is to reveal an examinee’s
level of required knowledge, abilities and skills. Thus, the
main goal of testing is establishing minimum number of
points, achievement of which is enough to give a student a
good mark.

A level of dynamic constituent parts of competence
measurement is a difficult to create an algorithm and
ambiguous in checking works problem. It needs to describe
conceptual models, which are different to present.

Nowadays three dimensions model is certified and
widespread.

First part of this model is a content, which is provides a
content validity of a tool set, or to be more precise its
compliance with educational programmes. Second part of
the model are the process requirements — a type of test
questions in a general case. Third part of the model is a
level of a cognitive activity [5].

COMMON PRINCIPLES OF TEST’S CONTENT SELECTION

Recommendations in educational tests in programming
development are given in this work. Collected common
principles of tests in programming creation are based and
correlated with common principles of content selection.

Content selection common principles provide high
content validity support. Content validity is the estimate of
how much a measure represents every single element of a
construct [6, 12, 5].

1. Representativeness principle. This
establishes a procedure of test content
selection to provide optimum completeness
and correctness of test content proportions.

2. Significance principle. This orders to put on
the test the most significant content items,
which are connected with the key topic of the
course. The key topic extraction needs
course content to be structured before its
putting on the test.

3. System principle. This means that content
items are put in order, and are connected
with each other with a special hierarchy and
a common knowledge structure. Following
this principle test may be used not only to
check educational achievements but to
estimate knowledge structure of students’
quality as well.

TYPES OF TEST QUESTIONS

Before describing tests in programming structure and
separating questions types, which allowed estimating
learning outcomes, we will give a brief test questions
review. To make further narration more convenient we’ll
use symbols.

Test questions are divided into several types. Using
different kinds of questions in a test can improve its quality
and make it more flexible.

Question types:

1. Multiple choice questions (MCQs) — student
should choose one from a list possible
answers.

2. Multiple response questions (MRQs) —
student should choose one or more from a
list possible answers, one or more (even all)
options can be the keys.

3. Text/Numerical question (Short answer
questions — SAQ) — student should input text,
numbers or both into a special empty text
field.

4. Matching questions involve linking items in
one list to items in a second list.

5. True/False questions require a student to
assess whether a statement is true or not.

6. Author’s type of questions [5, 6].
7. etc. [2,5,6]
Traditionally a MCQ or a MRQ consists of:
e astem — question text;
e options — the choices are given after the stem.

The correct answer (or answers for MRQs) in the
options list is called “the key”. The incorrect (but
verisimilar) answers in the options list are called
“distracters” [2].

Example 1. MRQ question

System class String static methods which are
returned a string are:

1) Join ()
2) Equals()
3) Copy()

4) CompareOrdinal ()
5) Intern()

Example 2. MCQ question

89

Compilation and running of this code:

int dif;
char chl = ‘A’;
char ch2 = ‘c¢’;

dif=Char.ToUpper (ch2) .CompareTo (chl) ;
Console.Write(dif);
will output:

1)
2)
3)

Example 3. SAQ question

Compilation and running of this code:
int a = 7;
int 1 = 0;
while (a == 7)
{
if (i < 4)
Console.Write (i++);
else
Console.Write (++1i);
break;
}
will output:

TEST IN PROGRAMMING COMMON STRUCTURE

Test consists of a number of questions (test problems).
Besides dividing test questions into listed classical
question types it is desirable to use another one
classification. Each test problem consists of question’s
body which can contain whole programs or code
fragments.

Types and features of the test problems

A-type: Questions for checking a programming
language syntax and semantic theoretical knowledge. This
type of questions is represented by both the MCQs and
MRQs. Questions of this type do not contain code of whole
programs of all-in-one blocks of code.

B-type: Applied questions for checking practical skills;
functionality skills analysis, and development programs
according to a given functionality skills. This type of
questions is represented by MCQs, MRQs or (the better
one) SAQs. Questions of this type may contain program’s
code or all-in-one blocks of code.

B-type question’s features

e Program functionality or all-in-one code block
functionality analysis. Test problem is designed as
MCAQ. Student is asked to resolve what the code
that is given in a stem execution result is. Source
data are defined by the program or by a user. In
the last case their values should be given in a
stem. If a syntax error is intentionally added to the
code the option is given (Example 2, 3).

e Analysis if a program meets requirement
functionality. Test problem is designed as MCQ
or MRQ. Student is provided with the whole
description of a program or a code block purpose,
which is given with gaps. One or more options

should provide requirement functionality if they
are put in the gaps.

e Causes of departure from predefined behavior
analysis. Test problem is designed as MCQ or
MRQ. Stem contains a program (block of code)
purpose description, a whole program or all-in-
one code block and a result of its execution.
Student finds out presence of deviation of the
program’s result from the predefinition. Student
detects how far result of a program deviates from
the predefinition one of defines changings which
make program meeting requirement functionality.

Test questions which are connected with syntax errors
in a program’s code should be designed as MCQs or
MRQs with concrete clear options. This means that the
given options shouldn’t contain compiler’s messages.

Questions like “Which message will be generated by a
compiler as a result of compilation?” are also
unacceptable.

Quantity of A- and B-type questions in a structure of a
test should be balanced and can’t be changed by a test-
developer of in a concrete test. Topic’s contents
distribution by question’s types is free and is defined by a
test-developer.

Test decoration requirements
Test, for example, can be prepared as separate MS
Word file and contain 30 - 40 items.

Questions should be formed as a table, left column for
a number of question and keys. Key for a short-answer
question is indicated as a value, for MCQs and MRQs
numbers of right options are enumerated (see Table 1).

Each stem of MCQ or MRQ is followed by five
options. For MRQs even all of the options can be keys.

A stem and the options shouldn’t be more than 24 text-
strings long.

TABLE 1. TEST QUESTIONS DECORATION (FRAGMENT)

9 In the given code block which determines if a string
length and digits sum in it are equal
35 string str = Console.ReadLine() ;

int sum = 0;

for(int i = 0; i < str.Length - 1; i++)

if(str[i] > ‘0’ - 1 && str[i] < ‘9’ + 1)
sum += str[i] - O;
Console.WriteLine (sum == str.Length);

programmer made mistakes:

1) only 1..8 digits summs up

2) a string char is addressed by index
3) digits codes are summed up

4) variable sum is called in for

5) the last char of string isn’t analyzed

10 Mark commands after adding which into the following
code block execution will output 6

1345 using System;
class Program
{
static void Main()
{
// TODO add your code here

}

1) Console.WriteLine (12 >> 1);

2) Console.WriteLine(2 & 4);

3) Console.WriteLine(5 ~ 3);

4) cConsole.WriteLine(6 | 4);

5) Console.WriteLine(7 >> 1 << 1);

90

11 Compilation and running of this code

1:0:True | string sl = "Cat", s2 = "cat", s3 = "Cat";
Console.Write(sl.CompareTo (s2)+":");
Console.Write(sl.CompareTo (s3)) ;
Console.Write(":" + (sl == s3));

will output:

Tests which are developed according
specification are suitable to be used in two cases:

to given

e Paper-and-pencil testing (blanks);
e Computer testing.

The time to complete a test (ex. 30 - 40 questions) is
limited (ex. from 40 to 60 minutes). Results are assigned
using a binary scale (dichotomous appraisal plan).

SAQs of B-type can be redesigned into MCQs or
MRQs for the computer testing needs.

THE RESEARCH

A group of 88 first-year students of Software
engineering department was given an exam in a test-form
after a first semester of the “Programming” academic
subject. Test’s questions were designed according to the
structure was given above. Test consisted of 30 questions;
time was limited by 30 minutes. This test we will call in
short “the test” here and below. The test was given in a
computer-based form.

Examinee’s results were put in a table — response
matrix. We used a dichotomous scale, for the items.
Response matrix was used as a base in calculating primary
scores and in visualizing the distribution of scores in a
diagram (Fig. 1).

4 i

) I

RELLLLLLEED DS ST Y
1 3 5 7 9 1 13 15 17 19 21 23 25

Figure 1
The mean is the average of all of the scores on the test.
For the current test it was calculated as:
1%
N

where x; are the individual scores, N — a number of
examinees.

X =

There is a downfall in the middle of a diagram, near
the mean (X = 10, 47). This means that we have got a
bimodal deviation curve. Besides that we can draw a
conclusion that all the examinees are divided into two
level-groups. It seems to be quite reasonable because of
peculiarity of the academic subject “Programming”. It is
learnt by the first-year undergraduates, former
schoolchildren, whose base knowledge in programming is
quite different. Some of them are lyceums-graduates and

well-trained in IT and programming, the others finished
secondary schools and haven’t got much special
knowledge [3].

Item analysis statistics

The item difficulty (or item difficulty index) (p-value)
is a measure of the proportion of examinees who answered
the item correctly. The difficulty of an item j is calculated
as:

N;

pj=ﬁ

where N,— number of examinees with a score 1 on item
j, and N — number of examinees [10].

TABLE 2. ITEM DIFFICULTY (FRAGMENT)

Item

11 12 13 14 15 16 17
number

pj 0,736 0,31 0,057 0,483 0,598 0,552 0,391

The middle p-value for our test is 0,353, minimum
value is p;; = 0,057, maximum p;;=0,736. The test hasn’t
got very difficult and very easy items. On the whole, the
test is corresponded to the examinees’ level.

The item discrimination index is a measure of how well
an item is able to distinguish between examinees who are
knowledgeable and who are not [10]. High values of this
index correspond to good items and low — to bad ones. The
item discrimination index for item j is calculated as:

no_n
D= ———
J Nb NW

where n}-’— number of examinees from the best group

with a score 1 on item j, nj’— number of examinees from
the worst group with a score 1 on item j, N° — number of
examinees in the best group, N — number of examinees in
the worst group.

In short, item discrimination indexes which are
calculated for the test show that it works quite well for this
scope of students. All of item discrimination indexes are
positive, so better examinees did test better then worse
examinees. Items 9, 10, 13, 28, 30 have D;<0,19. Items 1
and 22 have 0,19 < D; < 0,3. These items should be
reviewed or altered.

The point-biserial correlation is the correlation between
right (wrong) scores that students receive on a given item
and the total scores that the examinees receive when
summing up their scores across the remaining items [11].
The point-biserial correlation index is calculates as:

(1l — 1) [p;
Tpbjs = /q]-

Ox

where p)— the average total score for those students
who answered item j correctly, u, — the average total score
for the whole group of examinees, g, — the standard
deviation of the total score for the whole group of
examinees, p; — the difficulty index for item j, ¢; =1 — p;
[12].

The point-biserial correlation indexes for the all test’s
items are positive (Table 2). High negative value means
that examinees who scores well on the test have a lower
probability of answering this item correctly.

91

TABLE 3.THE POINT-BISERIAL CORRELATION

Item 1 2 3 4 5 6
number

Fobjs 0,405 0,286 0,223 0,34 0,269 0,585

Item 7 8 9 10 11 12
number

Pobjs 0,448 0,333 0,038 0,225 0,263 0,473

Item 13 14 15 16 17 18
number

Fpbs 0,383 0,549 0,409 0,385 0,575 0,366

Item 19 20 21 22 23 24
number

Fpbs 0,596 0,572 0,619 0,324 0,456 0,526

Item 25 26 27 28 29 30
number

Fobis 0,572 0,562 0,374 0,29 0,539 0,282

The retest for the same examinees on this test is
impossible. Thus the split-half method or the KR-20 may
be used in estimating reliability of the test.

The KR-20 (Kuder-Richardson 20) was developed to
handle only dichotomously scored items [12]. So far as we
used dichotomous scale for the items of the test we apply
the KR-20:

. N 1 _Z?{ﬂqu]‘
KR-20 = 77 D,

where N — number of test items, p; — the difficulty
index for item j, g; = 1 — p;, D, — the total test variance.

For the test rxz.20 = 0,826.

Using the standard deviation of the total score (o,=
5,38) and the reliability of the test we can calculate o5 —
standard error of measurement (SEM) to estimate how
close to the true score the obtained score is [12].

Op = Oy 1-— TkrR—20" 2,242

Prediction interval with the 5% level is:
(xi - ZUE, X + ZO'E) = (Xl' - 4,4‘84‘, X + 4,484)

According to the test theory and practice such
reliability is quite acceptable and the test can be considered
professional enough.

THE RESULTS SCALING

It will be recalled that the main goal of testing is
establishing minimum number of points, achievement of
which is enough to give a student a good mark.

The lifetime of study programs of the modern academic
subjects is quite short. Besides that, groups of examined
students are small. Usually they count one or two students’
groups (25-30 persons in each), four-five groups are
infrequent occurrence. Thus, there is impossible to get
regulations which widely demonstrate a test quality and
global scores of examinees, because of absence a huge
representative sampling of examinees in the University.

It is also almost impossible to organize a peer review of
all the tests, because a number of lecturers who are familiar
with a content of each current test is limited and this kind
of activity isn’t traditionally contained into their
syllabuses. The same troubles take place in setting a
minimum number of points using a posteriori examination
of a test and the results of it.

So, in spite of requirement of criterion-referenced type
of interpretation of the test, we have to resort to norm-
referenced type of interpretation. This gives a chance to
determine an examinee’s relative position within the
specified group, to rank examinees according to their
scores and to estimate indirectly difficulty of a test.

Reverting to the test, we used two approaches to
interpret individual scores of the examinees.

First of all, we reduced individual scores to a standard
Z-score. A mark of an examinee is calculated as:

7o (X,— T nux)
JA’

i

where x; — an individual score, — the average total
score for the whole group of examinees, — the standard
deviation of the total score for the whole group of
examinees.

z-values lies between -3 and +3, so they can’t be
directly use as marks in the ten-point score [3]. To
transformation from z-values to ten-point values we use the
following ratio:

B. = 10Xt' (Zum.r - Zmi'rl)
B (Z{ = Zrm’n)

where x; — an individual score, Z; — a mark in z-score,
Z e — Maximum mark in z-score, Z,,;,, — minimum mark in
Z-Score.

For the test Z,,;,,=-1,95, Z,,.. = 2,89.

The threshold value for the ten-point score is 3,5.
Marks less than this value are unsatisfactory, marks from
3,5 to 4,5 are satisfactory, from 4,5 to 7,5 are good, more
than 7,5 — excellent [3].

To compare ten-point score with the traditional scores,
we made a transformation from z-values to t-score:

Ten-point score
T-score / 10

— Pass mark
Figure 2. Total scores
T;=50+10Z;

Limit values of t-score marks are 30,54 and 78,89. To
make comparison easier results of calculating is put into a
graph which is given on Figure 2. T-score values on Figure
2 were decreased in ten times.

CONCLUSION

Computer testing in “Programming” and “Algorithmic
languages” is an effective method of impartial assessment

92

of student’s achievement at the different stages of
educational process. Testing is reasonable in preliminary
examination to find out groups of students whose further
education needs additional consultations or adaptation
courses. Testing can provide self-control in learning
academic disciplines which are connected with
programming. Testing is effective as intermediate test-
check and very useful then using as a part of total test-
check, exam for example.

It should be noted that some factors prevent from
regular and multi-faced usage of computer testing in
institutions of higher education.

e Test development is a high work content
activity, which isn’t taken in consideration in
lecturers’ syllabuses.

e Occurring everywhere absence of licensing
computer testing software with a special
functionality to collect individual scores of
examinees and items.

e Neediness of tests’ approbation. Primary
contingent of examinees is absent (tests are
prepared to small groups of students; they
can’t be approved before their application).
There are no administrative facilities to attract
experts to analyze tests’ questions and to
interpret results.

Recommendations in development of educational tests
in programming which are given in this work can be used
as based ones in different universities where disciplines
which are connected with algorithmic languages and
programming are taught.

REFERENCES

[1] H. Gulliksen, “Theory of mental tests”, New York: John Willey &
Sons, Inc., 1950.

[2] C. McKenna, J. Bull, “Designing effective objective test
questions: an intoructory workshop”, CAA Centre, June 1999

[3] V.V.Podbelskiy, O.V. Maksimenkova. “Programming as a part of
the Software Engineering education” // Proceedings of the 4-th
Spring/Summer Young Researchers' Colloquium on Software
Engineering (SYRCoSE 2010), 2010. 165 — 168 pp.

[4] T. Dawson, “Basic concepts in classical test theory: relating
variance partitioning in substantive analyses to the same process
in measurement analyses”, URL:
http://www.eric.ed.gov/PDFS/ED406443 .pdf

[5] B.W. 3BonnukoB, M.B. Yensiikoa. CoOBpeMEHHbIE CpECTBa
OLICHUBAHUS Pe3yNIbTaTOB 00ydeHus. — M.: V3narensckuii neHTp
«Axagemusi», 2009. — 224 c.

[6] B.M. 3BonuukoB, M.b. Yensbimkoa. KoHTponp kauecTBa
0o0y4eHHs MpU aTTECTAlMH: KOMIICTEHTHOCTHBIA MOAXOM. — M.:
Yuusepcurerckas kuura; Jloroc, 2010. — 272 c.

[71 Sun Haiyang “An application of Classical test theory and
Manyfacet Rasch measurement in analyzing the reability of an
English test for non-English major graduates”, Chinese Journal of
applied linguistics (Bimonthly). China, vol. 33, pp. 87 — 102,
April 2010.

[8] T.II. Xnomoma, T.JI. HlamomnukoBa, M.JI. PomanoBa, A.P.
VYurakoB. MatemaTHueckue MOAEIH JHAAKTHYECKOTO mpomuecca //
Hayuno-teopernueckuii xypHan «Yuensle 3anucku». — 2010 —
Ne2.c. 107 -112.

[91 J. Gonzalez, R. Wagenaar, “Universities’ contribution to the
Bologna Process. An introduction”, Spain: Publicaciones de la
Universidad de Deusto, 2008.

[10] URL: http://www.proftesting.com/test_topics/pdfs/steps_9.pdf

[11] S. Varma “Preliminary item statistics using point-biserial

correlation and P-values”, URL:
http://www.eddata.com/resources/publications/EDS_Point_Biseria
L.pdf

[12] P.V. Engelhardt “An Itroduction to Classical Test Theory as
Applied to Conceptual Multiple-choice Tests”

93

To The Parallel Composition of Timed Finite State
Machines

Olga Kondratyeva, Maxim Gromov
Radiophysics Faculty
Tomsk State University
Tomsk, Russia
kondratyeva.olga.vic@gmail.com, gromov(@sibmail.com

Abstract—This paper deals with the problem of the parallel
composition construction for two Timed Finite State Machines
(TFSMs). As a key to the solution of this problem we use parallel
composition of common Finite State Machines (FSMs). We
transform given TFSMs to FSMs and prove theorem, that
obtained FSMs correctly describe behaviour of the given TFSMs.
Then we build parallel composition of these FSMs, which being
transformed back to TFSM, gives desired parallel composition of
the given TFSMs

Keywords-Finite State Machine; Timed Finite State Machine;
parallel composition

1. INTRODUCTION

The Timed Finite State Machine (TFSM) is a model based
on well-known Finite State Machine (FSM), which allows
explicit description of a time aspects of system behaviour. For
example, reaction of a system can be different depending on
the time moment an input action is applied to it. In the last few
years the interest to the various problems of TFSM has
increased. The main lines of researches covered by the post
papers are the analysis problems: relations between
TFSMs [1,2] and test generation methods against those
relations [3, 4].

In our paper we consider a problem of synthesis, namely
the problem of parallel composition construction of two
TFSMs. This procedure gives an instrument to build complex
systems from simple ones, each described by a TFSM. Also,
the approach we used in this paper to describe a parallel
composition construction procedure opens the way for solving
various problems of TFSMs.

IL.

In this section we give some notions and definitions, which
we shall use all over the paper.

PRELIMINARIES

A. Language

An alphabet is a finite non-empty set of symbols and as
usual, given an alphabet X, we denote X the set of all finite
sequences (words) of symbols from X including the empty
word €. The number of symbols in a sequence we shall call
length of this sequence; by definition, length of the empty
word is zero. A subset L — X is a language over alphabet X.

This paper is partially supported by Russian Foundation for Basic
Research (Grant 10-08-92003-HHC _a)

94

Let language L be defined over alphabet Y and Xbe a
non-empty subset of Y. The X-restriction Ly of the language
L is derived by deleting from each sequence of L each symbol
of the set Y\X. When the language L is defined over alphabet
X, and Y is some alphabet that is disjoint with X, consider the
mapping @: X — 2““Y" such, that o(x) = {oxp:a, p e Y'}.
This mapping can be extended over sequences from X as
follows. Let v be a sequence from X~ and x be a symbol from
X, then ¢(e)=Y and ¢(xy)=o(x)-@(y), where the sign “”
stands for concatenation of sequences. We shall call the
language Loy = {@(y) : y € L} the Y-expansion of language L.

B. Finite automata

There exists a special set of languages which can be
described by the use of finite automata; those are regular
languages, which are closed under union, concatenation,
complementation, intersection and also under restriction and
expansion.

A finite automaton (FA) is a 5-tuple S= (S, 4, s, s, O),
where S is a non-empty finite set of states with the
designated initial state sy, 4 is a finite alphabet of actions,
0s < Sx A xS is a transition relation, and Q < S is a set of
final (accepting) states. If (s, a, 57) € ds, then we say, that
automaton S in the state s; takes action a, and changes its
state to the state s,; the state s, is called an a-successor of
the state s; and we denote by sucs(s;, a) the set of all
a-successors of the state s;. Function sucs can be extended
over sequences from 4" as follows:

sucg(sy, Pa) = {sucs(sz, a) : s, € sucg(s;,)}
By the definition sucs(s;, €) = s;.

Finite automaton S is called deterministic if for each pair
(s1, a) € S xA there is at most one state s, € S such that
(s1, a, 53) € Os, 1.e. |sucs(s;, a)] <1, otherwise, the finite
automaton is non-deterministic.

Finite automaton S is called complete if for each pair
(s1, @) € S x A4 there is at least one state s, € .S such that (sy, a,
5,) € O, i.e. |sucs(sy, a)| = 1, otherwise, the finite automaton
is partial.

Let us consider a word p € A”. Automaton S recognizes
or accepts P if there exists an accepting state ¢ € O such that
q is a B-successor of the initial state, i.e. ¢ € sucs(so, p). The

set Lg of all sequences, which are accepted by S, is the
language accepted by the automaton or simply the language
of the automaton S. The language of a finite automaton is a
regular language [5].

C. Finite State Machines

To describe behaviour of a system, which transforms
sequences over one (input) alphabet into sequences over
another (output) alphabet, special kind of automata, called
Finite State Machine, is usually used [6].

A finite state machine (FSM) is a S-tuple
S={(S, I 0O, sy, sy, where S is a non-empty finite set of
states with initial state s¢, / and O are disjoint finite input
and output alphabets, As< S xI x O xS is the transition
relation. If (s, i, 0, 52) € Ag, then we say, that the FSM S in
the state s; gets the input action i, produces the output action
o and changes its state to s,; the state s, is called an
i/lo-successor of the state s;. The set of all i/o-successors of
the state s, is denoted sucs(sy, i, 0), while

sucs(sy, i) = {s, € S§: 3 0 € O such that s, € sucs(si, i, 0)}
is the set of all i-successors of the state s;.

Functions sucs(sy, i, 0) and sucs(sy, i) can be extended to
the sequences a € I and § € O, where lengths of o and
are equal, as follows:

sucs(sy, o, Po) = {sucs(ss, i, 0): 52 € sucs(sy, o, B)}
and

sucs(sy, o) = {sucs(sy, i): g € sucs(sy, ou)}.
By the definition sucs(s, €) = sucs(si, €, €) = s1.

FSM S is deterministic if for each pair (s, i) € S x [there
is at most one pair (o0, s;) € S x O such that (s, 7, 0, 57) € Ag,
i.e. |sucs(sy, i)| < 1, otherwise, FSM S is non-deterministic.

FSM S is complete if for each pair (sy, i) € S x I there is at
least one pair (o, 53) € S x O such that (s, i, 0, 5;) € Ag, i.€.
|sucs(sy, i) = 1, otherwise, FSM S is partial.

FSM S is observable if for each triple
(s1, i, 0) € S x I x O there is at most one state s, € S such that
(s1, 1, 0, 8) € A, 1.€. |sucs(sy, i, 0)] < 1, otherwise, FSM S is
non-observable.

A sequence o= (i1, 01)(is, 02)...(in, 0,) € [x O)" s
called a trace of given FSM S if the set of o/f-successors,
where o = i)i;...i, and = 010,...0,, of the initial state of S is
non-empty, i.e. sucs(so, o, p) # . The set of all traces of the
FSM is the language Ls of the FSM S. Further, talking about
traces of an FSM, we assume that a sequence ¢ and the
corresponding pair o/ are equivalent notions.

Given FSM S = (S, I, O, s, As), the automaton Au#(S) is a
S-tuple (SU S x1D), IV O, s, 05, Sy, where for each
transition (si, [, 0, 53) in Ag there are two transitions
(s1, i, (s1, 1)), and ((s1, ©), 0, 5) in &s. Since the language L™
of the automaton Au#(S) is the language of the FSM [7] it

95

holds that L¢ < (I0)", where IO is concatenation of
alphabets / and O.

D. Timed Finite State Machines

A timed finite state machine (TFSM) is a 6-tuple
S={(S, L, O, sy, ks, As), where the 5-tuple (S, I, O, 5o, As) is
an FSM and Ag: S > S x (N U {o0}) is a time-out function.
If As(s1) = (52, n), then the TFSM S in the state s; will wait
an input action for n time units (ticks), and if none arrives it
will move to the state s, (possibly the same as s1), without
producing any output. If Ag(s;) = (s, ®), then we require
s, =5 and the TFSM can stay in the state s, infinitely long,
waiting for an input. Definitions of a deterministic,
complete and observable TFSM are based on the
corresponding definitions for underlying FSM.

A special timed or clock variable can be associated with
a TFSM; this variable counts time ticks passed from the
moment when the last transition has been executed and is
reset to 0 after each transition (input-output or time-out). In
this paper, for the sake of simplicity, we assume that the
output is produced immediately after a machine gets an
input, i.e., we do not consider delays when executing
transitions.

A pair (i, t) € I x (N U {0}) is a timed input meaning that
the input i is submitted to the TFSM ¢ ticks later than the

previous output has been produced. A sequence of inputs is
a timed input sequence.

We also define a special function timeg [1] as follows:
1. timeg(s, t) = s for all t eNU{0} if Ag(s) = (s,).

2. timeg(sy, t) = sy for all ¢ < T and Ag(sy) = (s2, 7).

3. timeg(sy, t) = s, for t = T and Ag(s1) = (s, 7).

4. for t > T and Ag(s;) = (s2, T) define recursively
times(si, t) = times(s,, t — T), i.¢. there is a sequence s1, 55,...
s such that for each j = 1...k—1 it holds Ag(s)) = (s;+1, T))
and T] + T2+ .ot Tk.] <t< T] + T2+ ...t Tk—l + Tka then
times(s, t) = Sy.

The function sucg is defined similar to that defined for
an FSM and is extended to timed inputs as follows:
sucs(s, (i, t), 0) = sucs(times(s, t), i, 0).

A sequence
6 = (i1, t, 01)(i2s by 0)...(in, by, 0,) € [I x (NU{0}) x O]

is called a functional trace of a TFSM S, if the following
holds sucs(so, a,) # &, where o = (i1, t)(ia, t2)...(in, t,) and
B =0,0,...0,. The set Ly of all functional traces of the TFSM
S is the f~language of the TFSM S. Here we again assume,
that the pair o/f and the sequence o are the equivalent
notions, when speaking about f-language of a TFSM.

E. Egquivalence of automata, FSMs and TFSMs

Two finite automata S and P with languages Lg and Lp
are said to be equivalent if Lg= Lp.

Two FSMs S and P with languages Lg and Lp are said to
be equivalent if Lg= Lp.

Two TFSMs S and P with f-languages Lg and Lp are said
to be equivalent if Lg= Lp.

I1I.

In this paper we propose definition of parallel composition
for two TFSMs. This definition relies on the definition of FSM
parallel composition and the latter is defined in terms of
parallel composition of corresponding automata. For that
reason we also describe the conversion procedure [8] of a
TFSM into an FSM, which then is used for the parallel
composition construction. We also prove, that built FSM
correctly reflects the language of a given TFSM.

PARALLEL COMPOSITION

A. Parallel composition of languages

Given pairwise disjoint alphabets X, Y, Z, languages L,
over X U Y and L, over Y U Z, the parallel composition of
languages L, and L, is the language

L= [(L])ﬂz M (Lz)ﬂx] Uxuz

defined over XU Z and denoted L, Ox_z L, or just L; 0L,
when the union X' U Zis clear from context.

B. Parallel composition of automata

Given two finite automata S = (S, /U U, sy, o5, Os) and
P=(P, Uuv O, py, dp, Op), the automaton
C=(C,1VO0,cydc, Qc) is a parallel composition of
automata S and P, denoted C=SOP, iff Lc=Ls0 Lp. To
obtain composition of automata define expansion and
restriction over automata as follows.

Given disjoint alphabets / and O and an automaton
S={(S, I, so, 65, Os). O-expansion of S is an automaton
Sno=(S, TV O, 59, 05 U us, Os), where pscSx0xS
contains all triples (s, o, s), such that o € O and s € S, i.e. to
expand an automaton we add loops marked with all symbols
of alphabet O for each state.

Given disjoint alphabets / and O and an automaton
S = (S, IVO, sy, b5, Os). I-restriction of S is an automaton
S =S, Iu{t}, s, us, Os), where for each transition
(s1, a, 53) € 0g we add transition (s;, @, s;) into pg in case
a € I, while we add transition (s;, T, s;) into pg in case
a € O, i.e. to restrict an automaton we replace all symbols
of alphabet O by special symbol t. An automaton without
t-moves can be derived by the determinization procedure [9].

Now, the procedure of parallel composition construction of
two given automata S and P can be described by the formula:

C =[S0 Prluwo

C. Parallel composition of FSMs

Following [7], we define the parallel composition of two
FSMs (Fig. 1) based on their corresponding automata.
However, the language of the parallel composition of two
automata is not necessary an FSM language. For this reason,

96

the obtained language should be intersected with the language
(I0)’, where I and O are external input and output alphabets of
composition, to ensure that each input is followed by some
output.

Given FSMs S=(S, 1,0V, U Oy, 59, As) and
P=(P,LuU, VU O, py rp), the parallel composition
C= S0P is derived in the following way. We first derive
corresponding automata Aut(S) and Aut(P) and the parallel
composition Aut(S) O Aut(P). The obtained automaton then
is intersected with the automaton that accepts the language
({0) and is transformed to the FSM C coupling inputs with
the following outputs. FSM C=(C, I, O, cy, Ac) is the
parallel composition of S and P, where /=1, UL and
0= 01 Y 02.

Iy

L0,

L

—»

Figure 1 — Parallel composition of FSMs S and P.

It is proven [7], that parallel composition describes
following interaction of composed FSMs S and P (Figure 1).
The system starts it work, when both S and P are in their
initial states, i.e. composition C= S ¢ P is in its initial state.
External environment applies input action either on channel /;
or I, but only one at a time, and then waits for an external
output reaction of the system through the one of the output
channels O; or O,. The component FSM, which just have got
an input action, processes this input and produces either an
external output (and so external environment can apply its
next input action), or an internal output action that is internal
input action for another component FSM. In the latter case, the
second component FSM processes a submitted internal input
and produces either an external output or an internal output
applied to the first component FSM. The dialog between
component FSMs continues until one of them produces an
external output. When an external output is produced the
system is ready to accept the next external input. Here we
notice that there can be an external input initiating an infinite
dialog between component FSMs. Such infinite cycles of
internal actions are called livelocks. However, in practical
situations, except of some special cases, input sequences
inducing livelocks are usually forbidden.

D. Correspondence between Timed Finite State Machine and
Finite State Machine

Before we propose how to construct the parallel
composition of timed finite state machines, we introduce the
transformation procedure of a TFSM into an FSM and back,
and then prove, that obtained FSM correctly describes
f-language of the TFSM.

Given TFSM S={(S, I, O, s¢, As, As), we can build an
FSM with similar set of functional traces by adding
designated input 1 ¢ I and output N ¢ O [8]. Corresponding

FSM A= (SU S, T U{1}, O U{N}, 55, A5) can be built by

adding 7— 1 copies for each state s € S with defined a finite
time-out 7> 1. There is a chain of transitions between these
copies marked with special input-output symbol 1/N. All
other transitions are preserved for each copy. Formally,
constructing of Ag can be done by the use of the following
rules:

1. S, contains all such states (s, £), t=1, ..., T— 1 where
seSand Ag(s)=(s', T), 1 < T<oo0.

2. For each s € S and (s, £) € S, and for each i/o, i € I,
o € O, there are transitions (s, i, s', 0), ({s, 1), i, §', 0) € Xé
iff there is a transition (s, i, s', 0) € Ags.

3. For each s € S such that Ag(s)= (s, ©) there is a
transition (s, 1, s, N) € Xé.

4. For each s € S such that Ag(s) = (s', T), T= 1, there is
a transition (s, 1, s', N) € Xé .

5. For each s € § such that Ag(s)=(s',7), 1 <T<on,
there are transitions (s, 1, (s, 1), N) € Xé; foreachj=1, ...,

T — 2 there are transitions ({s,), 1, {s,j + 1), N) € Xé and
(s, T—1), 1,5, N) € AS.

We use S, to denote S U S, I, to denote / U{1} and O, to
denote O U{N}.

By construction, when a given TFSM S has n states, a

corresponding FSM Ag has Y n(s) states, where n(s) =1 for
seS
As(s) = (s, ©) and n(s) = T for As(s) = (s', T).

Consider an example in Figure 2. State ¢ of TFSM has
timeout 2 and therefore, we add one copy of (g, 1) (denoted
“q1”) which is 1/N-successor of the state g while its
1/N-successor is s. The sets of successors of ¢ and (g, 1) for
all other I/O pairs coincide.

97

Figure 2 — TFSM S (top figure) and corresponding FSM
As (bottom figure)

An FSM Ag={(S4, 14, Oy, o, 7@) such that there are no

transitions marked with 1/o or i/N where o # N and i # 1 can
be transformed to TFSM S =(S, I, O, sy, As, As) using the
following rules:

1. As(s) = (s, 0) iff (s, 1, 5, N) € Ay

2. Define Ag(s) = (s, T) for all such s that there is a
chain of transitions
/N 5 UN]/N"ST_] /N s.sr €S,
T>1 and for each i/o e Ix Oand 1 <j < T—1 it holds that

sucﬁ (sj, i, 0)= sucﬁ (s, i, 0), but for some i/fo € Ix O it

*/ST s

holds that sucﬁ (s, i, 0)# sucﬁ (sp, i, 0).

3. Foreach s € Sy, i eland 0 € O, if (s, i, s', 0)€ Xé
then (s, i, s', 0) € Ag.

Notice that transformation from a given TFSM to an
FSM according to the above rules is unique whereas the
back transformation from an FSM to a TFSM could be made
in different ways; however all such TFSMs are pairwise
equivalent, i.e. their f-languages are the same (see the
Corollary 2 to Proposition 1).

The following statements establish the relationship
between a TFSM and the corresponding FSM built by the
above rules.

Proposition 1. FSM Ag has a trace I/N ... 1/N i/o; ...
| ——)
4
1/N ... 1/N iff TFSM S has a functional trace
S ——)

tm
<i1, f])/O]... <lm, tm>/0m~

Proof. According to the rules of constructing Ag, for each
two states s; and (s, j) and each i € [and o € O, the set of
i/o-successors of (s1,j) coincides with the set of
i/o-successors of state s; in S. Thus if there exists such s,

IO

that (s, 7, 52, 0) € As, then there is a transition s, %sz in
both machines S and Ay and there is a transition

i/o

(s], j>—>s2 in As. Therefore, it is enough to show that Ag

is moving from state s, to some state g € S U S, under the
sequence 1/N ... I/N with ¢ > 0, and the set of i/o-successors of
| ——)

t
q in Ag coincides with the set of i/o-successors of the state
times(sy, t) in S.
If Ag(s1) = (s1, ®), then timeg(s;, t) = s; holds for each
value of #; therefore, there is a transition (s, 1, 51, N) € X?

and Ag remains at state s; under the sequencel/N ... I/N .
| ———)
t

Consider now Ag(s))=(sp, 7). If ¢<T, then

times(sy, t) = s; and the sequence 1/N ... /N moves Ag from
| ———)
t

s1 to {sy, t). The set of i/o-successors of (s, £y in Ag coincides
with the set of i/o-successors of s; in S. If > T, then
times(sy, t) = times(times(sy, T), t — T) = times(sy, t— T). By
construction, the sequence 1/N ... /N moves Ag from s; to
T
s, and the sequence 1/N ...TI/N is applied to Ay at state sy,
P
i.e., this case is inductively reduced to the previous case
t<T.0

Corollary 1. TFSMs S and P are equivalent iff
corresponding FSMs Ag and Ap are equivalent.

Corollary 2. If TFSMs S and P both are built by the
above procedure from an FSMs Ag then S and P are
equivalent.

Proposition 2. TFSM S is deterministic (complete or
observable) iff the corresponding FSM Ag is deterministic
(complete or observable).

Proof. The property to be deterministic, observable and
complete is specified by the cardinality of sets of i/o- and
i-successors. FSM Ag has one and only one transition with
pair 1/N at each state, that is why properties of FSM Ag to be

deterministic, observable and complete depend on
transitions with other I/O pairs.
By construction it holds that

sucﬁ (s, O, i,0)= sucﬁ (s, i, 0) = sucs(s, i, o) for each state
s, As(s)=(s',T), and for any value of ¢<T. Hence
| sucﬁ s, O, i,0)| = | sucﬁ (s, i, 0)| = |sucs(s, i, 0)| and

|SMC§ (<S, t)a l)| = |SMC§ (S, l)| = |SMCS(S, l)| U

E. Parallel composition of TFSMs
Parallel composition of two TFSMs S and P is a TFSM
C = S 0 P obtained from the FSM Ag ¢ Ap.

Let us illustrate our approach by constructing the parallel
composition of TFSMs.

A o S O,
A
_ L ul Tr
h 4

Iz Q 0,

Figure 3 - Parallel composition of TFSMs as a parallel
composition of corresponding FSMs

The parallel composition of FSMs that corresponds to
the parallel composition of TFSMs is shown in Figure 3. In
this case, port 1 is a common port for both machines as it
corresponds to a counter of ticks and this accepts the
designated input 1 that is an input for both component FSMs
and can be considered as an input that synchronizes time

behaviour of component FSMs. The designated output N is
observed, when there are no outputs at ports O; and O, (it is
observed at both of the ports). Each component FSM has its
own time variable, which increments every moment when
component gets the designated input 1, and since this signal
is applied via a common port for both components the
global time is used, and thus, we can say that it
synchronizes the behaviour of component FSMs.

As an example, consider the composition of TFSM S in
Fig. 2 and P in Fig. 4 where corresponding FSMs are shown
as bottom figures. Consider symbols a and o to be external
input and output respectively, x and b are internal symbols.

x/b.2

OO

1

Figure 4 — TFSM P (top figure) and corresponding FSM
Ap (bottom figure)

To derive the parallel composition of FSMs, we firstly
construct the related automata which are shown in Figure 5.
Double lines denote accepting states.

Figure 5 — Automata Aut(As) (top figure) and
Aut(Ap) (bottom figure)

The second step is to derive the intersection of expended
automata that is shown in Figure 6. This intersection should
be restricted onto external alphabet (/ U{1} VWO U{N}) and
this restriction intersected with an automaton that accepts the
language [({ W{1})(O U{N})]* and it is shown in Figure 7.

Figure 6 — Intersection of Aut(As) and Aut(Ap)

a.l

o, N

Figure 7 — an automaton accepting language
[{a, 1}{o, N}]

We then derive a corresponding FSM coupling inputs and
the following outputs (Figure 8) and transform this FSM to a
corresponding TFSM (Figure 9) that is the parallel
composition of TFSMs S and P.

Figure 8 — Composition of S and P (FSM)

The state (g1, &) is copy of the states (¢, /) and (g, g1), so
there is a time-out equals 2 in the states (g, #) and (g, gl).

99

Furthermore, the states (¢, #) and (g, gl) are (f~)equivalent
likewise the states (s, g) and (s, /). That is why we keep only
two states in TFSM, shown in Figure 9.

P alo, 1
2

Figure 9 — Composition of S and P (TFSM)

IV. CONCLUSION AND FUTURE WORK

The propositions 1 and 2 with corollaries give an approach
for solving different problems of TFSMs: first, the
corresponding FSMs should be constructed, then appropriate
methods of FSM theory can be applied to solve the problem of
interest and, finally, the result should be converted back to a
TFSM. In this paper we used this approach to define, but more
importantly, to construct parallel composition of given TFSMs.
However, there is a weak point in the presented work. We have
not given a proof of the fact, that such a way to construct
parallel composition gives a TFSM which describes a system,
combined from two TFSMs, operating in the slow environment
setting, as it is done for FSM parallel composition [7]. But
Propositions 1 and 2 give confidence, that such a proof can be
obtained.

Another direction of research with proposed approach,
which we want to designate, is solving the TFSM equations.
This line of researches is not covered enough in works on
timed finite state machines and we believe that known methods
for solving the FSM equations can be adapted to TFSMs easily
enough.

REFERENCES

M. I'pomos, H. EpTymenko, “CuHTE3 pa3iMYalolUX SKCIEPUMEHTOB
hivt BPEMEHHBIX aBTOMAToOB,” IIporpammupoBanue, Ne 4,
Mocksa: MAUK, 2010, c. 1-11.

M. Gromov, K. El-Fakih, N. Shabaldina and N. Yevtushenko,
“Distinguishing non-deterministic timed finite state machines,” in
FMOODS/FORTE-2009, LNCS, vol. 5522, Berlin: Springer, pp. 137—
151,2009.

M. G. Merayo, M. Nunez and I. Rodrigez, “Formal testing from timed
finite state machines,” in Computer Networks, vol. 52(2), 2008,
pp. 432-460.

K. El-Fakih, N. Yevtushenko and H. Fouchal, “Testing finite state
machines with guaranteed fault coverage,” in TESTCOM/FATES-2009,
LNCS vol. 5826, Berlin: Springer, pp. 66—80, 2009.

A. V. Aho and J. D. Ulman, “The theory of parsing, translation and
compiling: Parsing,” New Jersey:Prentice-Hall, 1002 p., 1973.

A. Gill, “Introduction to the theory of finite-state machines,” New-
York:McGraw-Hill, 207 p., 1962.

Cruupiia H. B. CuHTe3 TecroB Juii HpPOBEPKH B3aUMOJCHCTBUS
JIUCKPETHBIX YIPABJIAIOIINX CUCTEM METOAaMH TEOPUU aBTOMATOB:
Jlvccepranuus Ha COMCKaHUE YYEHOW CTENEHU KaHJl. TEXHUYECKUX HayK.
— Tomck, 2005. — 158 c.

M. Kurymun, H. EBtymenko, W.Imutpuen, “CuHTE3 TECTOB C
rapaHTUPOBAHHOM IIOJHOTOH Ul BPEMEHHBIX aBTOMAaTOB,” M3BecTus
Tomckoro nonauTexHudeckoro yHupepcurtera, T.316, Ne5, Tomck:
M3narensctBo TITV, ¢. 104—110, 2010.

9] J. Tretmans, “Test geniration with inputs, outputs and repetitive

quiescence,” Software—Concepts and Tools, vol. 17(3), pp. 103-120,
1996

Separating Non-Determinisic Finite State Machines
with Time-Outs

Rustam Galimullin,

Natalia Shabaldina

Radiophysics department
Tomsk State University
Tomsk, Russia
nihilkhaos@gmail.conNataliaMailBox@mail.ru

Abstract— In this paper we consider one of the classicalnite

state machine (FSM) model modifications - FSM withtime-outs

(or timed FSM). In this model in addition to the odinary

transitions under inputs there are transitions unde time-outs

when no input is applying. The behavior of many modm

systems includes time-outs, for example, mobile phes, etc. In
the past few years some work have been carried oah studying
different relations between timed FSMs. Non-separality

relation is very attractive for non-deterministic dassical FSMs
and FSMs with time-outs course for this relation wedon't need
«all weather conditions» while testing. In this papr we present
and compare two approaches for building a separatip sequence
for two separable FSMs with time-outs. One of thenis using a
conversion to classical FSMs, while another one islealing

directly with timed FSMs.

Keywords - finite state mashines with time-outs, non-
deterministic finite state machines, non-separability relation, timed
input sequence, separating sequence

. INTRODUCTION

Most of the modern discrete systems, suchdiggal
circuits, telecommunication protocols, logical gametc., can
be described as Finite State Machines (FSM). Tiiey eof
FSM receives one of the enabled inputs and rennsutput.
On condition it is necessary to take into accoimetaspects
of discrete system, time function is interposed[1HSMs
with introduced time function are called FSMs wiittme-outs
or timed FSM (TFSM). Provided that input is beirgntled
uniquely, TFSM is namedeterministic, otherwise —non-
deterministic. To distinguish correct and invalid TFSMs
distinguishing sequences are generated. They dairaustive
search of all TFSM'’s reactions to the input seqeene. it is
necessary to input every sequence from test soitegh times
to observe all outputs of the system. Practicallémgntation
of this assumption is almost impossible, and itestly used
to check non-separability relation[5,6]. FSMs agpaable[5],
if there is an input sequence (called separatingesece), such
that the sets of output sequences to this sequdoesn'’t
intersect. In this paper two different approachasHuilding
separating sequence for FSMs with time-outs argestgd.

100

I PRELIMINARIES

Formally, Finite State Machine (FSM) is a quintuple
S=(S 1,0, s, Ag), whereSis a finite nonempty set of states
with initial states,, | and O — finite non-intersecting sets of
inputs and outputs\s 0 Sx | x Sx O — transition relation. If
for each pair ¢ i) Z7SxI there is at least one paio,(s) /7
OxSsuch thatg i, 0, S) /7 A5, FSM is calledcomlete FSM
with time-outs is a sextuples =(S, I, O, s, As, Ag), WhereS
is a finite nonempty set of states with initialtsts, | andO —
finite non-intersecting sets of inputs and outputs,
AsOSxIxSx0 transition relation and
As S » Sx (N O{w}) —time-outs function, that defines
time-out for every state. The time reset operatiesets the
value of the TFSM’s clock to zero at the executmfnthe
transition. If TFSM, being in certain stasg doesn'’t receive
input for a certain timésuch thatg, t, s,) 0 Ag, it transfers to
the states,. FSM is calledobservable if for each triple &, i,
0) 0 SxIxO there is not more, than one statesuch thatg, i,
0, ') [JAs FSM could be considered as FSM with time-outs
where for each state 0 S Ags) = (s,). Timed input is a
pair<,t>0 | x Z,

Similar to [3], in order to extend transition retat to

timed inputs we add a functiotimes Sx Zg - S that

allows to determine TFSM’s state when the clockugals
equal tot based on the current state. Let's consider the
sequence of time-outsg(s) = (S, Th), AdS) = (S T2), ---s
Ag(Sy1) = (Sp, Tp) such thall; + T + ... + T <t, butTy + T +
... + Tp>1t. In this casdimey(s, t) = Sp4. If Ag(S) = (S,), then
timeg(s, t) = s for eacht. For each timed inpuf, ty we add a
transition 6, (i,t),s,0) to As if and only if
(timeg(s, t),1, S, 0) O As

Sequence of timed inputs is calliahed input sequence
Pair a/f, wherea = <i4, t;>,..., <iy, &>, f = 04,...,Q IS called
timed input/output (1/0) sequence (or timed trace) if Ag
defines a sequence of transitiorss, Kiy,t;>, 0, S1), (S1
<iz 1>, 0 $2)...s (S(k) St Ok Si)-

As usual, the TFSM is connectedif for each states
there exists a timed trace that can take the madnom the
initial state to state.

States is called(i,t) -successorof states, if there
exists oJO such that § (i,t),s,0)0As The set of all
(i, ty-successors of statewill be denoted byug(s, (i, t)), in
case of = 0 we denote it asug(s, i).

An example of TFSM that describes mp3-player bitrav
is given below:

il/()]

-/ 0

Figure 1. The TFSM that descsib®3-player
behavior

The machine consists of the following states:

Play — the music is playing, player isn't in energy-isav
mode (display’s on);

Play\Energy Saving the music is playing, but player is in
energy-saving mode (display’s off);

Pause- the music is stopped, display’s on;

Hold — the music isn’t playing, player’s off (hold mgde

Inputs and outputs:

iy — player’s controller is used;

i, — play/pause button;

i — hold button;

o — display’s on;

o — display’s off.
Let us observe TFSM's behavior on timed input seqee =
<i;,5><,,3><1,4>. In that case the output sequencg 0,
07 0o.
ATFSMS =<S I, O, 5, As> is asubmachineof TFSMP =
<P, I, O, po.Ap > if SO P, 55 = ppand each timed transitios, (
<i,t>,0,9) of Sis a timed transition o?.

Ill. INTERSECTION OF TWO TIMEOFSMS

IntersectionS N P of two TFSMsS =(S, I, O, S, As, Ag)
andP = (P, I, O, po, Ap, Ap) is the most connected sub-TFSM
of Q= (Q, I, O, @, Ag, Ag), whereQ = SxK xPxK, K =
{0, ..., B, k = minmax4g(s), 5. max4p(p), y), initial state —
quadruple %, 0, po, 0). Transition relatiomq and time-outs
function4q are defined according to the following rules[3]:

1. Transition relationlg contains quadruple §(k, p,

k), i, o, (s, 0, p, 0)], if and only if
(s, i, 8,9 0 Asand(p, i, p',9 O Ap.

101

2. Time function is defined adq((s, k, p, k)) =
[(s’ k1, p’ K2), K, k=min(Ag(s),n - ki, Ap(P).n - ko).

State €, ki, p, k) = Qd9)s 0,86(p),p, 0), if
Ags) N = or Ap(p)in=0 or Qs(9)n -
k) = @e(P)in-k). If (ALS)in-Ki), (@r(P)in-

ko) 0 Z, and Qg(9),n - k1) < (Ap(p).n - ko), then state
(s, ki',p, k) = (Ad9)s 0,p, ko +K). If (Ag(S)in -
k1), (Ap(P)in - ko) O Zs and Qg(S),n - k1) > Qp(p) N -
ko), then stateq, k;', p', k') = (S, ky + k, Ap(p), p, 0).

Algorithm 1: Constructing an intersection of two
TFSMs
Input: TFSMs
P=(P, 1,0, po, A, Ap)
Output: TFSMQ = (Q, I, O, @, Ag, Ag), Q=Sn P
Step 1:add initial state)= (so, 0, po, 0) intoQ.
Step 2: while set of states of TFSM has non-considered
states, consider next in turn non-considered datstep 3.
Otherwise End.
Step 3:for each input find stateq'=(s', 0, p', 0) that isi-
successor of statg If the setQ doesn'’t includeq' — addq’
into the setQ, add transition K, k, p, k), i, 0, (s, 0, p', 0]
intoAq if (s, i, s;0) OAsand(p, i, p',9 O 4p.
Step 4:if there is a finite delay for stag = (s, k, p, k),
then:
k=min(4s(s) ,\yn—k, 4p(P) N — k)
If (AN = © OF Bp(P) (N (ep = OF Ay -
ki) = (Be(P). N - k2)), theng'= (4s(s), O, 4r(p), 0);
Else

S=(S 1,0, s, A, Ag) and

if (AS): N - K1) < @p(P). n - ko),
thenq':= (Ag(9),s 0,p, ko +K);
if (A9), - ko) > @e(p). - ko),
thenq' := (s, ki + K, Ap(p).p, 0);
Extend functiondq: 4o(q) = (', K);
If the setQ doesn’t includey', then addy' into Q. Step 2
The intersection of two TFSMs andpP (Figures 2,3) is
presented in Figure 4.

/0 _
/3 /2

i2/2

i/3:3

Figure 2. TFSMS

/0,3 e
i/0

Figure 3. TFS\WP

i2/3 If there exists g, (qty O Qyg;, such that

(Ag(@)):(ND{ep = o0, define minimum time-out and set

of successorsR for the set Qi = {(qu to),
(8,0,C,0)

(4,0,D,0)

(O, t2),... 40, tr)}as follows:
T:= min{Tu _tu} » Tu = (Ag(Au) (N D (e

I<usr

R o={a'), (o, t),... ("t} a =timeg(qu,
t,+ T) and eithett,' = 0 if (Ty =0 Or T, =t,+ T), Ort,
=t +TiFT,>t,+T.

Add Rto Qy+1 and add triple@j, T, R) to the seEdge.

Step 3: If the tree was terminated according to the Rule 1,
then construct the sequence of edg€¥o(d, Qljl),

(Qljl 1921 szz)’ .“,(Q(k_l)]—kfl 'gkl ijk) SuCh that
(Q(|—1)j|_1 .0, Q i) O Edgefor eachl O {1, ...,k} and g O

(8,0,D,0)

(B,2,D,0) {I'0 N}
Collect the separating sequerce <ij, t;> ... <ip, t>:
j=0;
Figure 4. TFSMS n P T:=0;
r:=o;
IV. SEPARATING SEQUENCE FOR TW3 FSMs Wh':?g(j S :() execute:
. . .] ’
We suggest algorithm for constructing a separasieguence Then, =g, t :=T;,r:=r+1,T,:=0;
for two TFSMs. ElseT,:=T, +g; ;
Algorithm 2: Constructing a separating sequence ofwo ji=j+;
TFSMs m=r;
Input: Complete observable TFSM$=(S I, O, S, As, Ag) i :=i-sep, t, =T,
andpP ={P, |, O, po, Ap, Ap) If all branches of the tree were terminated acewydd
Output: separating sequence ®andP (if exists) the Rule 2, then TFSMsandP are unseparable.

Step 1: construct the intersection 6fandP with the help of End.

Algorithm 1. If TFSMS N P is completeS andP couldn’t be The truncated tree for TFSMsandp is presented in Figure 5:
separatedend.

Step 2: Derive a truncated successor treesaf P. The (4,0,C.0) I

root of the tree is the paiqo, 0), other nodes — sets of the ‘ :
pairs(q, t), whereq is the state of N P. / * \
ki =0; T =

Edge =0, Pt
Qvo: = {{do, OF; | (B,0,C0) | | (A4,0,G0) | | (4,0,0,0) |
Qx: = {Qxo}- R Y

S

Until M 2
(Rule 1: for the séy; O Q, j =0, there is an inplitsep 'lt \
such that each statg(q, t) O Qkj, has nd-sepsuccessorsin =~ < X/

-""{(A.G,C.n)"‘"-.- (B0,D0) |

TFSMsNP 0 Vo o\ .
or |\(A ,U! C)O) ,[(B,ZQD‘)O) I[‘(Byﬂi (!0) '."Ill'-,__.. (B, 0, Dgo)} J' (B, “, C.'O)} l;-
Rule 2: for each seQyj 0 Qx there exists £ / / NN N R A
Qam O Qa, a< k, such thatQkJ D Qam) e, n Ih ! e
For each inpui construct the set of successdfs = [A4,0:60) | [(4,0:C,0) |
Y suqz(qu,i) x{0} , addM to Q,.; and add triple \
0, - .
(ij,J i, M) to the seEdge Figure 5. Truncated successor tres of P

So, the separating sequence is <i;, 0><,, 2>.

102

Algorithm 2 is the modification of the algorithmofn [6],
of deriving a separating sequence for two untim8iis. The
modifications are associated with time-outs, beedhs only
way to reach some states is to wait for a whileusTtn
Algorithm 2 each node of the tree is not the settafes of the
intersection, but the set of pairs <state, timeot. the set in
the node we determine the minimal delay and the ofet
successors under this delay is derived in the seme as
when deriving the intersection. We need the edgksléd by
delay because for the timed FSMs the separatingeseeg is
timed input sequence, so we need to wait some liefere
applying another input.

Rule 2 is inherited from [6] and in this case wen'ta
separate given timed FSMs.

Since Rule 1 is also inherited from algorithm [Ghd
transitions under time-outs are derived accordmg¢he rules
that specify the common behavior of timed systethg
sequence o =<, t> ... <, t,> derived according to
Algorithm 2 will be a separating sequence for tvimed
separable FSMs.

It is known [6], that for given two complete sefdadea
untimed FSMsS and P, |S| = n and P|= m, the length of a
shortest separating sequencesaindP is at most 2™, and
this estimation is reachable. Since untimed FSk particular
case of timed FSM the estimation will be the same.

V. CORRELATION BETWEENFSMS AND TFSMs

To transform TFSM =(S, I, O, S, As, Ag) into FSM 4s
with the same behavior [3] we add to TFSM a speiciplit
1 O | and a special outputN O O. FSM
As =(SO S, 1 O{1}, O O{N}, s, Xé) is constructed by

addingT — 1 copies of each stasd] S with finite time delay
T, T> 1. Formally,Asis constructed in the following way:

1) For eachs S Ags) = (S, T), 1 <T < o, the set§
contains each statg, t),t =1, ..., T— 1.

2) For eachsO S (s, t) O § and for each pair/o, i O
I, o0 O, ((st),i,s,000 A%, if and only if
(si,s,0) 0As

3) For eachs S such thatAg(s) = (s, «) there is a
transition 6, 1,s, N) in As.

4) For eachs0 Ssuch thatA(s) = (s, T), T = 1 there
is a transitiong, 1,s’, N) in As.

5) For eachs Ssuch thatAg(s) = (s, T), 1 <T < oo,

there are transitionss,(1,¢s, 1), N), ({(s, j), 1,{s, |
+ D,N),j=1, .. T- 2, and transition{§, T —
1), 1,s, N) in As.
Hence, on condition, that timed FSMincludesn states and
maximal delay iST . As can include up ta(T . States. Be

more precise, number of statesdinis > N(9), n(s) = 1, if
S
Ag(S) = (8,), andn(s) =T, if Ags) = (S, T).

Thus, in order to derive a separating sequencewor
TFSMs, we transformed TFSMs into FSMs. Intersectidn

103

two FSMs could be constructed with the help of Aitpn 1

without taking into account time-outs. To constrtrcincated
successor tree we use Algorithm 2 without time-¢6isand
then collect the sequence (if exists) with the hefipstep 3
(Algorithm 2). One can assure that the separatgance for
As and Ar (Figures 6 and 7) will be the same, ie.;F <,

0><iy, 2>.

i /0

in/3 g2

1/N

Figure 6. FSMAs

i/0,3
/0

Figure 7. FSMAp

CONCLUSIONS

In this paper we suggested two approachesepmrate
TFSMs. The idea of the first approach is that westaict an
intersection of two TFSMs and then find separatiaguence.
The main advantage of this approach is comparatielicity
due to small amount of states in intersection. @isatage —
weak theoretical basis of complete test suitesvetgoin for

TFSMs. The second approach is based on “TFSM to"FSM

transformation. As a result of this transformatise have
enormous increasing of states in intersection. Thissway is
hardly applicable to TFSMs with great time delayut
theoretical basis for complete test suites dewvais much
more stronger for classical FSMs. In the futureresgilanning

to compare program implementations of these twoagmies [3] M. Zhigulin, S.Maag, A.Cavalli, N.Yevtushenko. F3dased test

; . ; o derivation strategies for systems with time-outs P¥esented to
in order to find out the range of applicabilityedch one. QSIC'2011.

REFERENCES [4] M _Gromov, D. P(_)pov, N. Yevtus_henko. Deriving teettes_ for timed
Finite State Machines // Proceedings of IEEE EastMDesign & Test
Symposium 08, Kharkov: SPD FL Stepanov V.V., 200839-343.
[1] R. Alur, C. Courcoubetis, M. Yannakakis. Distinduigy tests for [5] Starke, P.: Abstract automata, American Elsevie#13 (1972).

nondeterministic and probabilistic machines // STIBC NewYork: [6] N. Spitsyna, K. El-Fakih, N. Yevtushenko Studyiriwe tSeparability
ACM, 1995. P.363-372. Relation between Finite State Machines // Softiiasgting, Verification

[2] M. G. Merayo. Formal Testing from Timed Finite $taflachines / // and Reliability. —-2007. — Vol. 17(4). - P. 227-241.
Computer Networks. — 2008. — Vol. 522. — P. 432-460.

104

Model Based Conformance Testing for Extensible
Internet Protocols

Nikolay Pakulin
ISP RAS
npak @ispras.ru

Abstract—Many contemporary Internet protocols are extensi-
ble. Extensions may introduce new functionality, alter the format
of protocol messages, affect basic functionality or even modify
the protocol modus operandi. Model based testing of extensible
protocols faces a number of problems, the most challenging one
is that extensions altering basic functionality require changes
in the protocol model. It is highly desirable to have a flexible
protocol’s model which would let test developers to extend the
model without rewriting existing parts of the model. The article
presents the method for model based conformance testing for
extensible Internet protocols which satisfies this requirement.
Each extension is specified in a separate unit, the method presents
facility to combine those units into entire model for testing
the protocol’s implementations. The method uses Java language
to formalize the requirements. As an example of the method
application article presents test suite development for a number
of SMTP extensions.

Index Terms—model based testing, conformance testing, ex-
tensible protocols.

I. INTRODUCTION

A lot of protocols for different applications are functioning
in the contemporary Internet. Many protocols were developed
more than a decade ago. Often while developing a protocol
specification it is not easy to foresee all variants of protocol’s
usage in the future. Protocol application reveals new tasks,
makes new demands for the utilizing protocol. The simplest
way to update the protocol for new tasks is to develop and
publish a new version of the protocol’s standard. However
for popular protocols this solution may results in necessity
of frequent publications of standards’ revisions. The high
frequency of protocol updates requires much effort for redac-
tion and agreement of the standard’s text; it is fraught with
injection of indeliberate mistakes and may violate the protocol
stability. Also it may hamper the developers of protocols
implementations.

To solve the problem of frequent renewal of the protocol
specifications nowadays protocol designers follow the pattern
that one might call as “extensible protocol”. The pattern
implies that new protocol features emerging after publication
of the protocol standard are specified in separate documents
as “extensions”. That is, the description structure of extensible
protocols consists of the following parts:

« the basic protocol functionality which must be supported
by all implementations is specified in a fixed number of

Anastasia Tugaenko
ISP RAS
tugaeko @ispras.ru

RFC! documents, and

« new functions (extensions) are specified in separate RFC
documents. For consistent work of extensions with the
basic standards developers publish the special RFCs
describing general extensions methods.

The history of SMTP protocol [1], [2], [3] illustrates this
pattern. Since its inception in 1982 the SMTP protocol went
very well with its tasks on sending messages between hosts
in computer networks. But the protocol restrictions became
apparent in 1990-ies. Then SMTP developers decided to
improve some SMTP protocol functions instead of replacing
the standard with a new one. It was considered to keep the
basic SMTP specifications “as is” and specify new functions
in new RFCs. To accomplish this goal in 1995 the RFC 1869
“SMTP Service Extensions” [4] was published. The document
specified the method for extending SMTP capabilities.

The SMTP extension mechanism proved to be successful,
and the SMTP community agreed to integrate it into the main
SMTP specification. In 2001 the revision RFC 2821 [2] was
published, it includes the specification of basic functionality
and also the specification of extensions mechanisms. Since
then all new features, even the fundamental ones — security and
authentication, are published in separate documents, leaving
SMTP specification intact. The SMTP specification in effect,
RFC 5321 [3], contains editorial and clarification changes to
RFC 2821 and maintains the extensible architecture of the
protocol.

In general protocol extensions may be classified as follows:

o extensions specifying new functionality (e.g., new com-
mands, new types of messages and responses);

« extensions altering the format of protocol messages;

o extensions altering the basic protocol functionality or
operations of other extensions;

« extensions altering modus operandi of the protocol.

The classification of the extensions provided above shows,
that extensions shouldn’t be considered as independent — they
may affect each other or the basic protocol. This observation
leads to a conclusion that a model of an extensible protocol
is not a plain composition of the basic protocol model and
models of extensions. Modeling of extensible protocols re-
quires a specialized composition that takes into consideration

'RFC - Request for Comments — the normative document for the Internet
standards

105

dependencies between extensions.

Another important aspect of protocol extensibility is op-
tional support of extensions in various implementations. Im-
plementors are not obliged to support all published extensions;
as a result, implementations of the same protocol might
provide different sets of protocol extensions. This observation
and the fact that extensions may change the basic protocol’s
functionality hampers testing of extensible protocols. To test
extensible protocols test developer must know the exact set of
extensions supported by Implementation Under Test (IUT, also
we will call it “target implementation”) and take into account
the profile of those extensions to assign the right verdict
concerning IUT conformance to the protocol specification.

As a consequence, model based testing (MBT) of extensible
protocols faces a number of problems. First of all, the protocol
model must be coherent with the IUT, i.e. the model must
reflect the extensions, provided by the IUT, and leave all
other extensions beyond the scope. Furthermore, the model
must take into account that extensions may alter basic protocol
functionality. Obviously, it is unwise to develop independent
models for each thinkable set of protocol extensions. A more
realistic scenario is to construct models of the protocol and its
extensions separately and to combine them into the model of
IUT depending on the actual extensions profile of that IUT. To
implement this scenario the test development method should
provide facilities for modular specification development, and
facilities to combine the specification modules either statically
or dynamically to match the list of supported extensions of
arbitrary IUT. Despite the challenge with modular specification
of extensible protocol it is highly desirable to have modular
test specification, when test actions for extensions are specified
in separate units and the actual test is composed from test
specifications of extensions provided in IUT.

The article presents the method for model based confor-
mance testing for extensible Internet protocols. Within the
proposed method basic protocol functions and extensions are
modeled as state machines with common state. Each state
machine is specified in a separate unit, the whole model
of IUT is composed from basic protocol specification and
extensions before test execution starts. Authors has developed
a composition facility that makes possible modular specifica-
tion of extensions that introduce new functions, alter protocol
specification and, to some extent, extensions that modify
protocol message format. The proposed method does not allow
specification of extensions that change modus operandi of a
protocol (such as PIPELINING extension of SMTP [5]). The
method supports modular development of test actions. Test is
treated as a finite state machine and the method implies specifi-
cation of test transitions for extensions separately. The method
provides a facility that combines test specifications of different
extensions into a single test state machine dynamically before
test execution.

The paper is structures as follows. Section II presents
existing approaches to model-based conformance testing and
discusses their applicability to testing of extensible protocols.
Section III describes our previous work on model based testing

of electronic mail protocols. Section IV presents a new model
based method for testing protocols with extensions. Section V
consists of two parts, the first part describes SMTP protocol
and a few extensions, and the second part presents an example
of new method application — the development of a test suite
prototype for SMTP protocol with extensions. Section VI
discusses the applicability of a presented method. Section VII
presents results of the work and describes directions for future
work. And Section VIII is a conclusion.

II. RELATED WORKS

Internet protocols contain multitude of states, those states
may be divided into groups with similar behavior inside
each group. Manual test suite development for such kind
of protocols seems very laborious and redundant because of
similar checks in similar states. Tools for automated testing
which allow re-use of a protocol model for verdict assignment
become more frequent in use for developing test suites for
Internet protocols.

In general, it is convenient to use tools possessing the
following properties for testing Internet protocols:

o formal relation between requirements and tests;

o automated verdict assignment about the correctness of
IUT behavior.

o automated tests generation depending on IUT responses;

Testing of protocol’s extensions brings in supplementary
requirements:

o the ability to easily change a protocol’s model. Some
extensions add new commands, new response codes, new
states thereby changing the protocol’s model. To develop
test suites for protocols extensions test developer must
have an opportunity to choose the right model: either
basic or modified by a number of supported extensions;

« the ability to develop specifications and tests as separate
units, one unit per extension, basic specification should
be specified in separate units. This requirement is dictated
by the fact that extensions are optional and not all
implementations must support all extensions.

The majority of listed above requirements are satisfied by
application of the model based approach and tools.

We don’t consider the JUnit [7] and TTCN-3 [8] as they are
not model based, the test suites written with these tools contain
a lot of redundant code, test sequences must be constructed
manually and all the verifications also must be specified
manually. The whole process of test suite development for
extensible protocols with these tools is very laborious because
of a greater part of the basic test suite (test suite for testing
the basic protocol’s functionality) must be changed.

The UPPAAL [9] is a popular tool suite for model checking
of real-time systems. It provides checking of models with
hundreds of states, has some facilities to detect deadlocks.
But testing of Internet protocols deals with black-box state
machines, so test developers need a tool for automated test
suites generator, and the UPPAAL doesn’t provide such gen-
erator.

106

Tools NModel [10] and SpecExplorer [11] may be suc-
cessfully used for developing test suites for simple small-
scale protocols but they require development of considerable
supplementary libraries to test large-scale protocols and ex-
tensions. Toolkit Conformiq Qtronic [12] doesn;t provide tests
generation, as a result it generates TTCN-3 scripts.

III. PREVIOUS WORK

In works [13], [14] the method for automated testing of
e-mail protocols was presented. That method uses Java spec-
ification extension JavaTESK [15]. We used that method to
develop test suites for basic functionality of implementations
of mail protocols SMTP, POP3 and IMAP4 [14]. Developed
test suites were applied to implementations and detected a
number of noncompliances in well-known open-source mail
servers.

But that method isn’t suited for conformance testing of
extensible protocols since it does not support modular models
and tests and implied adaptation of the protocol model and
test for each extension.

IV. METHOD FOR EXTENSIBLE PROTOCOLS TESTING

This section presents a method for model-based confor-
mance testing of extensible Internet protocols’ implementa-
tions. The primary target of the method is to provide test
developers facilities for modular modeling and test specifi-
cation. As stated in the introduction, protocol extensions are
not independent. On the contrary, protocol extensions may
affect each other; furthermore, extensions may even alter the
basic functionality of the protocol. These observations lead to
a conclusion, that a model of an extensible protocol can not
be presented as a plain composition of separate models.

The method consists of two parts:

1) All the extensions are specified in separate units, in
general one unit represents one extension. The structure
of the model state is specified in the separate classes
and all test units use this global shared state. Every unit
may change the current state according to extension’s
specification. Basic functionality is also specified in
one or several units (e.g. connect and disconnect may
be specified in one unit and transaction commands —
in the different unit). To model implementations with
extensions the structure of general shared state may
be changed by the following actions: addition of new
symbols of the states introduced by the extensions; spec-
ifying new actions; specifying or changing precondition
for actions from different states.

2) All test state machines for extensions are specified
separately in different units. Whole test is constructed
as a composition of test state machines for extensions
supported by TUT. Note that this is not a true “compo-
sition” because of general test utilizes the shared state.
Abstract test description for each extension is specified
in a separate unit.

Application of this method defines the following actions
to test extensible protocols. For adding new extension test

developers add specification and test units into the project. If
an extension adds new command then this command should be
added to the commands (actions) register. Also the availability
of this command in the set of states should be added to the
states register. If extension changes the basic functionality then
test developers should rebind old aspect with new specification
unit. The comprehensive test is constructed as a composition
of units specifying the extensions supported by the IUT.

The proposed method contains the following main aspects:

o simplification of the development and maintenance of
model and tests for protocol’s implementations. Specifi-
cations and tests for the protocol’s extensions are defined
in separated modules. This allows easily changing the
protocol models for new protocol’s extensions;

« construction of specification for IUT in accordance with
set of extensions supported by target implementation;

o construction of general test as a composition of test
modules for extensions supported by the target imple-
mentation.

The method utilizes the library for model based automated
testing [16]. The protocol’s model presented as a finite state
machine. The implementation’s requirements presented in
contract specification notation: for each operation pre and
postconditions are defined, precondition restricts the opera-
tion’s availability in different states, postcondition specifies
the required behavior. Also the library grants the following
useful tools:

o test sequence iterator. The test sequence generates au-
tomatically from test model and contract specifications.
Test model is presented as a finite state machine, each
impact to the IUT contains precondition which specifies
the acceptability of this impact in the current state;

o automated coverage calculation. States and transitions
may be labeled with marks and branches, in this case
they will be represented in the test report. Such labels
allow defining the formal relation between requirements
and tests;

o automated verdict assignment concerning the implemen-
tation under test behavior.

The presented method contains the following steps:

1) Creation of requirements catalogue for basic specifica-
tion of the protocol. This catalogue contains only re-
quirements from basic protocol specification and doesn’t
include the requirements from extensions’.

2) Creation of requirements catalogues for protocol ex-
tensions. These catalogues contain requirements from
extensions specifications.

3) Designing of the extensible model for the basic specifi-
cation. The extensibility of the model will be necessarily
in the next steps;

4) Designing of units for extensions’ specification. Gener-
ally, one unit represents one extension. These units may
be easily included into protocol’s model developed in
the previous step;

5) Designing of formal specification for basic protocol and

107

extensions. The basic functionality specification is de-
veloped as self-sufficient. The extensions’ specifications
are developed as separate units which may be added into
the basic specification.

6) Formalization of requirements. At this step the require-
ments of basic specification and the requirements of
extensions are formalized as pre and postconditions.

7) Developing of test scenarios for basic functionality.

8) Developing of units with test scenarios for protocol
extensions.

9) Constructing of the comprehensive test for the target im-

plementation. This test includes the scenarios for basic

functionality and the scenarios for extensions supported
by implementation under test.

Execution of test suites and analyzing the results. Test

suite improvement when necessary.

10)

Not all steps in the method are mandatory. Also note that
this method may be used not only for extensible protocols and
for extensions, it may be easily utilized for testing other kinds
of Internet protocols. If in the last step not all requirements
are covered by the constructed test than steps 6-10 may be
repeated as many times as needed.

V. METHOD CASE STUDY

This section presents the method case study on testing
the extensible Simple Mail Transfer Protocol (SMTP). First
subsection contains the description of SMTP protocol and its’
extensions; second subsection presents the description of test
suite development.

A. SMTP Protocol Extensions

Protocol SMTP is a text based protocol of the upper layer
of the TCP/IP stack. The protocol consists of two parties: a
client and a server. After establishing a connection the client
issues commands to the server and the server executes them
and returns responses to the client. The response depends on
success of the command execution.

Simple mail transfer protocol is used to send messages. This
protocol has a following feature: each physical server could
operate as both SMTP server and SMTP client. Being a server
it accepts incoming emails and then became a client to forward
these received messages to the next hops. To forward messages
between various domains SMTP uses its own overlay network
over TCP/IP. When an SMTP implementation being a server
identifies itself as the final destination of the message it
stops forwarding the message and places it into internal
implementation-specific storage. To retrieve emails from the
storage end-users utilize other protocols: POP3 (Post-Office
Protocol, version 3 [17]) or IMAP4 (Internet Mail Access
Protocol version 4 [18]).

SMTP protocol is extensible. To identify what extensions
are supported by a server implementation a client should issue
the EHLO command. To this command the server replies with
multiline response, lines provides information about supported
extensions. Response lines include extension-specific keyword
and also may contain any supplementary information.

The basic protocol model consists of the following states:
DISCONNECTED, CONNECTED, AFTER_HELLO (after is-
suing EHLO or HELO commands), AFTER_MAIL_FROM
(after issuing MAIL command), AFTER _RCPT_TO (af-
ter issuing RCPT command), AFTER_DATA (after issuing
DATA command), AFTER_DOT (after issuing the sequence
(CRLF).(CRLF) in the AFTER_DATA state). With respect
to specification states AFTER_EHLO and AFTER_DOT are
the same, we divide them in model to test implementations to
conform to this requirement.

Lets consider a few examples of SMTP extensions and
categorize them according to extensions classification pro-
posed in Introduction I. The DSN extension described in RFC
3461 [19] specifies the Delivery Status Notifications (DSN).
For example, the client may specify that DSN should be
generated under certain conditions (e.g. when the mail has
reached the recipient) and sent to the initial client. To use
this option initial client should add new parameters in the
transaction commands. This extension is of type 1 — bringing
in new functionality.

The AUTH extension specified in RFC 4954 [20] adding
new state to the protocol model. If an implementation supports
this extension then the basic set of commands would not be
enough to send a message: server may require client’s authen-
tication. This extension also introduces new command AUTH,
new parameters for MAIL command and new response codes.
For example, a server may response to the transaction com-
mands with new code 530. In this case such response means
that authentication is required. The STARTTLS extension
described in RFC 3207 [21] specifies the TLS usage which
helps SMTP agents to protect all or few interactions from
interceptions and attacks. This extension also adds new state
into the protocol model, specifies new command STARTTLS
and new response codes. If a server supports this extension
the transaction commands are not allowed before the command
STARTTLS. These extensions are of type 3 — altering the basic
protocol’s functionality.

The PIPELINING extension specified in RFC 2920 [5]
provides a facility to group several commands to send them
in one transfer operation. If a server supports this extension it
may response to the group of commands as a whole instead
of sending responses to separate commands. This extension
changes the protocol’s structure and is of type 4 — altering the
protocol’s modus operandi.

Protocol SMTP has a long history. Nowadays the basic
specification [3] includes the mechanisms of extensions and
provides different optional parameters in basic commands.
So protocol SMTP has no extensions of type 2 (extensions
altering the format of protocol’s messages), all extensions
which provides new parameters are fitted into the extensible
messages format.

B. Test Suite Development for SMTP Protocol Implementa-
tions with Extensions

The authors have developed a prototype of test suite for
SMTP protocol using the presented method. For basic specifi-

108

cation we used the requirements catalogue from the previous
works [14]. Also we made new requirements catalogues for
two extensions: the AUTH extension [20] and the DSN [19]
extension which cover two types of extensions (new function-
ality and altering basic functionality). For these extensions we
develop new separate units with specifications (one unit for
one extension) and new separate units with tests (one unit for
one extension as well) .

The structure of the protocol model is organized as follows.
We have a set of states and a set of actions. We define two
maps from states to actions (we name them allowed and
denied) which define policy which commands are allowed
or denied in particular states. If an extension adds a new
command we add this command to the actions set and define
allowed/denied policy for this action. If an extension adds
a new state we add this state to the states set and extend
allowed/denied policy of the protocol commands for this state.
Note, the pair state-action may be undefined in both allowed
and denied maps. In this case we can provide two types
of testing: the conformance testing, in which we consider
undefined pair as denied; and the robustness testing when
undefined pair is considered as allowed. In the latter case we
try to send the command from pair in the state from this pair
and looks whether the target implementation is down.

For testing the AUTH extension we defined a new state
AFTER_AUTH and updated the allowed/denied policies for
transaction commands (MAIL FROM, RCPT TO and DATA).
If the implementation supports the AUTH extension the trans-
action commands may be issued only in authorized states. Also
we added new command AUTH and the parameter AUTH for
MAIL FROM command — the AUTH extension provides two
authentications mechanisms. Then we updated maps allowed
and denied to contain the information about allowed and
denied transitions.

For testing the DSN extension we used methods for MAIL
and RCPT commands with optional parameters. Since this
extension adds only new parameters we didn’t change the
protocol model.

We defined a configuration file with a list of extensions
supported by IUT. Then we used tool [16] to construct the
whole model of IUT (from units specified above) and generate
a test suite. Generated test allow detecting the following types
of noncompliances:

o missing required commands;

« protocol rules violation, such as accepting commands in

illegal states;

o wrong reply codes to the protocol commands.

VI. DISCUSSION

Presented method is applicable for synchronous message
based protocols. In such protocols clients send commands to
the servers and servers executes them and returns the responses
to each command. Responses contain the code which defines
the success of the command execution.

Protocol model consists of few parts: basic part which
represents the model of the basic protocol’s specification and

supplementary parts for protocol’s extensions. Novelty of this
method is the ability to easy altering the protocol’s model and
adding new tests.

The method was assayed by the development of test
suites for SMTP protocol implementations with extensions.
The SMTP extensions may add or alter the protocol’s basic
functionality, bring in new states, new commands and new
response codes. The prototype of test suite for testing SMTP
implementations with extensions shows the applicability of the
method for testing extensible Internet protocols.

VII. RESULTS AND FUTURE WORK

The particular method for testing extensible Internet proto-
cols is presented. The development is in progress, currently
we have a method for testing a few types of extensible proto-
cols. Protocol’s extensions which we can test with developed
method possess the following characteristics: they may add
new commands, new responses, new model states but they
must not alter the protocol’s structure (modus operandi) and
also they must not bring in new encodings of symbols of
sending messages.

Using this method we have developed the prototype of
test suite for testing SMTP implementations with a number
of extensions. The current version of method isn’t applica-
ble for all types of extensions. For example, the extension
PIPELINING [5] for protocol SMTP changes the structure
of the protocol. If this extension is supported implementation
from message-based became stream-based and requires other
testing methods.

Most Internet protocols possess a command for identify-
ing the list of supported extensions. The current version of
presented method utilizes a configuration file to construct
the modified model of IUT. In future versions we plan to
add a feature of dynamic composing of the model and test
state machine depending on implementation responses to the
capabilities command.

After the tests has been executed test developers got a
test trace. This trace contains the log of test execution, so
it contains important information on what is wrong with
implementation under test. Separately of this method we have
a report generator, generated reports presents the test trace
demonstrably but not obviously. Currently test developers
should manually find the places in the test which shows
the noncompliances with the specification. To operate with
obtained information more easily we plan to improve the
report generator.

VIII. CONCLUSION

The paper presents a method for automated model-based
conformance testing of implementations of extensible Internet
protocols. The modeling approach uses state machines to
express functional specifications as a formal definition of
textual requirements elicited from normative sources. Test is
a traversal of some simplified (compared to the model) state
machine; the sequence of test stimulus is generated depending
on IUT responses.

109

The main idea of the method is modular approach to test
suite development: both functional specifications (models) and
test specifications of basic protocol functionality and each ex-
tension are developed in separate units. Models of extensions
are expressed as state machines over common extensible set;
the method provides facilities to combine such partial models
into a complete state machine, depending on the exact set of
extensions supported by a specific IUT. Test is constructed as
composition of test state machines of the extensions supported
by the specific IUT.

The characteristic feature of the proposed method is the
choice of notations for models and test specification. We use
programming language Java, pure, without any extensions
(such as Java Modeling Language, JML [6]), while model
composition is partially defined in XML. The selection of
Java as the primary notation gives the full power of Java
expressiveness, rich toolkits for model and test development
and, potentially, has more chances to attract attention of
industry since the method does not require experts in formal
description languages.

Using this method the prototype of test suite for testing
SMTP protocols with some extensions was developed. Test
suite covers the following types of protocol’s extensibility:
adding new functionality and altering the basic protocol’s
functionality. The extensions which are altering the protocol’s
modus operandi have not been tested yet. The development
of new method is ongoing project and extending this tool to
test the extensions altering the protocol’s modus operandi is
one of the tasks to decide. Also we plan to improve the report
generator and to extend the method and tool for testing more
types of Internet protocols’ extensions.

ACKNOWLEDGMENT

The authors would like to thank Victor Kuliamin for kindly
provided Java library for automated model based testing.

REFERENCES

[1] IETF RFC 821. Jonathan B. Postel. Simple Mail Transfer Protocol. 1982.

[2] IETF RFC 2821. J. Klensin. Simple Mail Transfer Protocol. 2001.

[3] IETF RFEC 1869. J. Klensin. Simple Mail Transfer Protocol. 2008.

[4] IETF RFC 1869. J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker.
SMTP Service Extensions. 1995.

[5] IETF RFC 2920. N. Freed. SMTP Service Extension for Command
Pipelining. 2000.

[6] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond Assertions: Advanced Specification and Verification with JML
and ESC/Java2. In Formal Methods for Components and Objects (FMCO)
2005, Revised Lectures, pages 342-363. Volume 4111 of Lecture Notes
in Computer Science, Springer Verlag, 2006.

[7] Unit testing framework, http://www.junit.org.

[8] ETSIES 201 873-1 V3.1.1. Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. Sophia-Antipolis, France: ETSI (2009).

[9] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal 4.0. http://www.uppaal.com/

[10] Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software
Testing and Analysis with C#. Cambridge University Press, Cambridge
(2008).

[11] http://research.microsoft.com/pubs/77383/bookChapterOnSE.pdf
http://research.microsoft.com/en-us/projects/specexplorer/

[12] End-to-End Testing Automation in TTCN-3 environment using Con-
formiq Qtronic and Elvior MessageMagic. 2009.

110

[13] A. Tugaenko, N. Pakulin. Test suite development for conformance
testing of email protocols. // Proceedings of Spring/Summer Young
Researchers’ Colloquium on Software Engineering, pp. 87-91, Nizhniy
Novgorod (2010).

[14] N. Pakulin, A. Tugaenko. Specification Based Conformance Testing for
Email Protocols. // Proceedings of ISoLA 2010, pp.371-382. Heraclion,
Greece, 2010.

[15] JavaTESK: getting started. Moscow, 2008.

[16] V. Kuliamin. Component architecture of model-based testing environ-
ment. Programming and Computer Software, 36(5):289-305, 2010.

[17] IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol — Version
3. 1996.

[18] IETF RFC 3501. M. Crispin. Internet Message Access Protocol — version
4rev1. 2003.

[19] IETF RFC 3461. K. Moore. Simple Mail Transfer Protocol (SMTP)
Service Extension for Delivery Status Notifications (DSNs). 2003.

[20] IETF REC 4954. R. Siemborski, A. Melnikov. SMTP Service Extension
for Authentication. 2007.

[21] IETF RFC 3207. P. Hoffman. SMTP Service Extension for Secure SMTP
over Transport Layer Security. 2002.

Developing test systems for multi-modules
hardware designs

Mikhail Chupilko
Institute for System Programming of RAS
Moscow, Russia
chupilko@ispras.ru

Abstract—The paper proposes the approach of creating test
systems for complex hardware designs. The designs can be
subdivided into modules and verified separately. The proposed
architecture of separated verification systems and the way to
combine them into a complex test system are based on
simulation-based verification of hardware designs. The
components of test systems are connected in a TLM-like way that
allows to use high-level model of commutation based on messages
and thereby to simplify merging of several test systems into a test
system for the complex component.

Keywords-complex hardware designs; simulation-based

verification;combination of test systems

l. INTRODUCTION

The importance of hardware verification has been urgent
for many years. There are several techniques to conduct it but
there is still not unified solution. Hardware designs are
developed by means of languages of hardware behavior
description (hardware description languages, HDLs, e.g.,
Verilog [1]). Even relatively simple modules (i.e., parts of
complex designs or very simple designs) can hardly be checked
by means of a code inspection, to say nothing of complicated
designs. Therefore, the verification, i.e. checking of designs’
behavior and their specification to mutual consistency, is of
importance and attention. There are some estimates talking that
about 70% total amount of development efforts are spent on the
verification [2]. The real practice shows that usually at least
half of total design development time is spent on this aim. The
code written in HDLs called HDL-model can be translated into
a net-list and then on this base the real device will be created. If
no modifications of a net-list take place, the functionality of the
produced device will be the same as of the HDL-model. Even
if the corrections took place, the equivalence can be checked by
means of special tools, e.g. [3]. Therefore, to reveal and correct
functional errors is possible at the stage of HDL-model
development. It should be noticed that the correction of
functional errors on later stages and, in particular, after chip
manufacturing requires more efforts and time, because
necessity to pass all stages of manufacturing again.

Complicated designs are usually developed by means of
abstraction and decomposition techniques. The common
approach is to develop the whole system abstractly and then to
create the subparts (modules) more carefully. Usually the test
system for the whole design under verification (DUV) is
created but it is rather abstract one. As some parts of the system

11

can be critical for the total system behavior, the module-
oriented test systems are developed. If these “little” test
systems can help to improve the common test system for the
whole DUV, it will be good for code reuse and debugging
abilities of the common test system.

This work is organized as follows. First, the review of
works related to verification of complicated hardware designs
is given. In the following section, the architecture of test
systems formerly proposed in [4] is described. Next section
introduces the architecture of multi-module test system.
Section 5 includes case studies. Section 6 concludes the paper.

Il. RELATED WORKS

There are two common ways of hardware verification.
First, we could use formal methods, e.g. to prove satisfiability
of a logical constructions in a formal model based on hardware
design in model checking [5]. All corrections are made over
static hardware designs. They are applicable well in case of
module-level verification but their scalability is insufficient [6]
to use them in case of the whole designs. To improve the
scalability, the hardware designs can be checked dynamically
during the simulation process. Simulation-based verification
allows checking the designs in real cases of their work.
Usually, simulation-based approaches possess the high level of
scalability and the thoroughness of verification varies
according to available resources and time. Below, when we are
talking of verification we are meaning only simulation-based
verification.

Typical components of the test systems are test sequence
generator (stimuli generator), reaction checker (or oracle), test
completeness estimator. The generation of sequence or stimuli
can be made manually and explicitly by means of test cases
description. Other stimuli generators produce test actions self-
automatically requiring manual description of variables set in
each stimulus with restrictions for their values. To generate
stimuli, special mechanism selects subset of available stimuli,
solves constraints in their variables assigning fit numbers to the
fields and start stimuli. This approach is called constrained-
driven verification (CDV) [7]. Another well-distinguished way
of stimuli generation is FSM traversing [8], where states of the
FSM are states of system under test and transitions between
them are applied operations. The reaction checker always
knows the correct behavior of DUV, e.g. utilizing a reference
model. Test completeness estimator usually works on the base

of source code coverage or functional model code or aspects
coverage.

The main subject of the article is the possibility for
developing test systems allowing reuse in the multi-module
complex design case. To reduce extra problems we suggest
using a uniform architecture for all test systems. When merging
test systems the question about merging of each component
from their structure arises. Consequently, the parts should be
intended for easy merging initially, their architecture should
provide such possibilities.

Among well-spread approaches of verification, we selected
Open Verification Methodology (OVM [9]) as the most spread
and seemed to be most suitable for our purposes to observe its
abilities of merging. Test systems according to OVM are
developed in accordance to the given architecture and
subdivision of test system’s components into several layers
[10]. The test system for each single module is named Open
Verification Component (OVC) (see Figure 1). Each OVC
contains basic means of creating CDV stimuli flow
(transaction sequencers, where transaction is a abstract
message containing information about test situation) and
delivering the flow to the DUV (so called transactors, i.e.
components which make direct and reverse transformation of
transactions and DUV’s wire signals). OVC can be connected
to each other when they are put under control of the united test
controller or in other words virtual generator [7]. In this case,
all the OVCs will generate stimuli flows. Developer of test
system modifies the redundant generators connected with
unavailable DUV’s wires to switch them off. The OVCs with
turned off generators check their target modules correctness
regarding to the stimuli flow to the components influence their
target modules work. Components checking correctness (or
scoreboards) continue checking using only available data from
DUV. Summarizing, test systems made according to OVM
satisfy many tasks usually arising in verification including
connection of several test systems. It should be noticed that
OVM is oriented to programming in SystemVerilog so that
connection with other languages is possible but knotted with
development of intermediate components.

OVC
Master Slave
Transaction Transaction
sequence sequence
generator generator
Driver |Driver"Mor1itor
b
~ ~ 4
~
Coverage ~ N 1 ’
N)
collector Y
~ 1 I}
¥ N,
Y
DUT »
AS
N Bus
A

Figure 1. Open verification component

We developed new approach and presented some aspects of
it in [4]. That paper touched upon only the problems of oracles’
development for single test systems. We will shortly review the

112

approach in this section and thoroughly in the next. The
method utilizes simulation-based verification and implies the
subdivision of test system components generally into stimuli
generator and oracle (or reaction checker). The generator
should create a flow of stimuli and apply them into the oracle
usually based on a reference model developed on selected level
of abstraction. Test is complete when the generator indicates it
according to a strategy of generation.

This approach has a distinctive feature when compared with
OVM: the reference models used in reaction checkers can be
originally written at a high level of abstraction and then can be
specified according to a progress of DUV development. To
make it possible, there are several techniques in the approach
such as model reactions’ arbitration mechanism, DUV
reactions’ detection mechanism, etc. After all, while DUV is
developed, the verification engineers usually develop the
software simulator of the total DUV. As they usually do it by
means of C++, to use exactly this language is useful to reuse
parts of simulators to create reference models with no extra
efforts. As the approach described in [4] uses C++, it has a
certain advantage over OVM while task of system simulator
reuse is conducting.

Ill. ARCHITECTURE OF SINGLE TEST SYSTEM

The architecture described in [4] was based on UniTESK
technology [11] developed in Institute for System
Programming of RAS. The architecture includes stimuli
generators (including FSM-based one), oracle (reaction
checker), and after all coverage tracker and verification report
generator (see Figure 2). The stimuli generator produces
sequence of messages and sends them as a parameter while
calling interface operations of the reference model. These calls
are named sending model stimuli:

dut.start (&DUT::pop stimulus, dut.ifacel, msgq);

Reaction checker processes messages and makes model
reactions. Then it sends stimuli (which now are called design
stimuli) to the target design and receives its design reactions.
At last, reaction checker checks correspondence between
model and design reactions and returns a verdict about
correctness of DUV at the current cycle. The coverage tracker
saves the information about functional coverage at the current
cycle. The report generator dumps important information about
the verification process such as called operations, reached
functional coverage and verification result.

Simulator
Stimuli generator

vy

Stimuli

Stimuli

———————>

"3

Coverage tracker

.+ Coverage

y 2

Verification report generator

Reaction checker Target design

Reactions

Verdict

Figure 2. Single test system architecture

The most complex component requiring and allowing reuse
is reaction checker (see Figure 3). The reaction checker
supplies the reference model with all the necessary functions,
which make it possible for the stimuli generator (or other
reaction checker) to utilize the reference model and model
adapter.

MS Stimuli generatpr >

Reaction checker

L Failed
Precondition checkers

Model adapter

Ref. model

}

| Input interfaces adapters I » DS
Input interface

Input interfaces models

v

Functional model

Control logic

Datapath Target design

MR

Commutation

MR¢ ¢ ‘MR

Output interfaces models |

Reactions queues

Primary arbiters

MR ¢ ¢ MR
Reaction matchers
Secondary arbiters,
I
w MR
| Postcondition checkers |17

Verdict
A Stimuli generator

[0}

Reaction detectors

v

| Output interfaces adapters

DR

e
[

CR

MS - Model stimulus (abstract message)

DS - Design stimulus (cycle- and pin-accurate serialization of MS)
MR - Model reaction (reference message or constraint)

DR - Design reaction (cycle- and pin-accurate series)

CR - Checked reaction (deserialization of DR)

Figure 3. Reaction checker architecture

The messages sent into the checker are called model stimuli
(MS). The generator (or other reaction checker) addresses the
MS flow to one of the input interfaces models.

On having received the MS, pre-condition checkers check
if the MS can be started. The MS, which staring requirements
are not satisfied at the current state of the functional model, is
rejected. In the other case they proceed both to the DUV via
input interface adapters (in this step processed MS is called
design stimuli, DS) and to the functional model via input
interface models set by the generator.

The functional model produces model reactions (MR) and
places them into one of the output interface models according
to rules included into the functional model.

The output interface models contain reaction queues
keeping MR and primary arbiters selecting MR subset at the
current simulation cycle. The arbiters work according to a
strategy selected by the test developer. The MR subset is sent

Output interface

113

into reaction detectors to help recognizing DUV’s reactions
(DR).

The reaction matchers fetch the MR sub-subset from the
output interfaces models and then start expecting the
corresponding reactions from the DUV. The restrictions are
made by the second arbiters and customized by test developer.
There are certain time restrictions for the waiting. If they are
violated, the test system shows the timeout error and stops
working.

When the DR are found, they are put into one of the output
interface adapters (corresponding MR, if it is found, helps to
select which one). If some of DR does not have the
corresponding MR, the test system shows an unexpected
reaction error and stops working.

The output interfaces adapters send the checked reactions
(CR) into the reaction matcher to find the corresponding MR
satisfied the restrictions made by secondary arbiters. After all,
post-condition checkers check equivalence between
corresponding MR and CR. If the MR and CR are equal, the
test process goes on. If there is a problem with messages, the
test system shows a given error and stops working.

Test successfully finishes when the stimuli generators
makes everything it was asked to do by the test developer (like
visiting all reachable states of the FSM, etc.).

IV. ARCHTECTURE OF MERGED TEST SYSTEM

The proposed TLM-based approach to develop single test
system can be used while the task is to make test system for a
total DUV on the base of test systems for the components of
the DUV. To reuse test systems for components is convenient
when parts of test systems can be connected to each other be
means of the interfaces they have. Therefore, the selected
TLM-based way of interface development has a certain
advantage: it allows reusing components of test systems as they
are, not taking only parts from components or using copy-paste
method. To develop complex test system is possible by means
of the following steps.

When there are several test systems to connect some of
them will miss their connection with DUV. We propose to
create common test system and inject all small reaction
checkers from earlier developed test systems connected to each
other (see Figure 4). Therefore, input and output interfaces
adapters and reaction detectors should be modified to connect
with other reaction checkers. Fortunately, their separation from
the reference model allows us to do without huge reference
model modifications.

When merging the reaction checkers, we create the
common test system and place sub reaction checkers into it.
The common test system possesses its own stimuli generator,
reaction checker and coverage tracker. While developing all
these parts, to reuse some parts of test systems previously
developed would be great achievement.

Simulator
Stimuli generator

¢ Stimuli

Common reaction
checker

$ F"T
RC RC
“erdict l

h 4

verification report generator

Stimuli

|)

MR

Cowverage tracker

RC - Target design

Reactions

* Coverage
v

Figure 4. Architecture of multi-module test system

The stimuli generator can inherit scenario functions from
sub generators but only if the part of message prepare and call
of original reaction checkers were split from each other to
different functions. In this case, the reaction checker used can
be easily changed to a common by means of overloading the
appropriate functions.

The coverage tracker is a common component for all test
systems. To use it, a coverage structure should be described
and registered in a tracker. The registration is identical in cases
of single or multi-module test systems. To refresh the coverage
information, some functions from functional models are
usually used. Since the models have been inserted into the
common test system, the reuse of the coverage becomes free of
charge. The common test system just calls all of them at every
cycle to make them collect data. It should be noticed, that
coverage structures from single test systems in some cases do
not provide important information for the case of combined
DUV and in this case either cross-coverage is created or new
coverage structures for the whole DUV are developed.

The combined reaction checkers is one of the most difficult
parts of combined test systems. The common reaction checker
looks like the single reaction checker but it should use included
reaction checkers functionality. Only the common reaction
checker is allowed to change values of DUV’s wires while sub
reaction checkers’ input and output interfaces adapters are
switched off. To switch them off is possible by means of
overloading to make them send model message not in the
absent DUV but to the other reaction checkers (see Figure 5).

To facilitate the connection between reaction checkers we
propose to use channels. Channel is a way to connect an output
interface model and an input interface model together. To do it
the message from the input interface should be translated into a
form applicable to the output interface to put into it. The
channel can also broadcast message into several input
interfaces. Usage of channels is given in Figure 6.

114

mMs Stimuli generator

Cormmon reaction

checker
A

ref. model : Failed
of unit & & Precondition checkers

Overloaded input
interfaces models

Model adapter 4

Ref.model o
Input
interfaces

Input interfaces models

adapters
[

» DS
Input
interfaces

Unit A funct. mode!

Owerloaded output
interfaces models

Functional model

Target

MR design

¥

Reaction
detectors

¥

MR MR

Output interfaces models

Reaction queues
Primary arbiters

MR* ‘ MR

Reaction matchers
™
: Secondary arbiters ;

MR

DR
Qutput
interfaces

Ref. rmodel
of unit B

Qutput
interfaces
adapters

Owverloaded input
interfaces models

Unit B funct. model

CR

h A

Postcondition checkers

|

* werdict
Stimuli generator
Figure 5. Architecture of multi-module reaction checkers
v :
Ref. model Ref. model
of unit A of unit B

Overloaded input
interfaces models

v

Unit A funct. model

MRy VMR

Overloaded output
interfaces models

DT T TP TR R

Overloaded input
interfaces models

v

Unit B funct. model

MR wMR

Overloaded output
interfaces models

Figure 6. Architecture of multi-module reaction checkers

The overloaded input interfaces models usually contain
precondition checkers so that they check protocols of the
communications between sub modules. It can help to reveal
problems, which can be found if the reference model takes
input stimuli only from stimuli generator: the input variables
values have wide variance and this variance usually
corresponds to the real work situation for the DUV’s parts.

The most distinctive feature of the approach, as it has been
said before, is that it uses C++ and can use some parts of
system simulators usually written in C++. Moreover, the
reference models due to their architecture can be reused in
development of Verilog-models. In this case, input and output
interface adapters do not work as usual: input interface adapters
should take the messages from the DUV, process them in
functional model and send the messages to the DUV by means
output interface adapters (see Figure 7).

Reaction checker

L Failed
Precondition checkers

Model adapter

Ms

Ref. model

le

Input interfaces models

v

Functional model

Input interfaces adapters DS

Input interface

MR Target design
Control logic ﬁ
Datapath Output interfaces adapters I —p DR

Output interface

Commutation

MS
DS
MR
DR

- Model stimulus (abstract message)

- Design stimulus (cycle- and pin-accurate serialization of MS)
- Model reaction (reference message or constraint)

- Design reaction (cycle- and pin-accurate series)

Figure 7. Architecture of reaction checker built into DUV

Common test system controls the reaction checkers built in
DUV. The checkers help Verilog-model developer in
accelerated development of the model as code in C++ with the
same functionality as in Verilog is usually written quicker.

Summing up, the approach allows developing test systems,
which can be reused as parts of common test system. These test
systems check not only the output data of DUV but input data
from, say, stimuli generator (by means of precondition
checkers). When the test systems are connected to each other
not to DUV, they can check the behavior of their neighbors, i.e.
they check the interconnection protocol of DUV’s components.
The test system supports special means to make the
interconnection such as interfaces and channels. After all, to
reduce the time spent to make the first version of DUV for
system-level verification, the test systems can be inserted into
the Verilog code of DUV while the last is still under designing.
The approach is supported by a library developed in C++, so
that test systems being developed according to the approach,
are also based on C++. It gives wide range of opportunities to
use all means of C++ to facilitate the development of the test
systems. It should be noticed, that C++ is usually used in
system level simulators of DUV, so that parts of the simulators
can be easily reused as reference models in the test systems and
vice versa. At last, the library is compatible with UniTESK
approach, which means the opportunity to develop high-quality
tests based on FSM-traversing even for the system-level case
and to spread test systems among clusters of computers.

V. CASE STUDY

The approach to develop single test systems has shown its
effectiveness in several projects [4]. The most interesting cases
are generalized in Table 1.

TABLE I. APPLICATIONS OF THE SUGGESTED APPROACH
Design under Depth of Source code, Labor costs,
verification verification KLOC man-months
Translation lookaside
buffer (TLB) Up to cycle-accurate 25 25

115

Non-blocking L2 cache | Up to detailed-timed

Northbridge data switch | Up to cycle-accurate

Memory access unit

(MAU) Up to cycle-accurate

The labor costs in Table 1 include verification plan writing,
test system development, as well as verification process and
debug of the developed test system. In case of non-blocking L2
cache the costs also include test system maintaining due to
permanent modifications in the DUT. Table 1 shows that time
spent to the verification can be roughly estimated to be one
man-month per one KLOC. The L2 cache case is an exception
from this rule, but it required additional supporting as it has
been already said.

A comparison between our results and the second approach
(OVM) could be worth knowing. Very little estimations of the
OVM application efforts prevented us from doing it. We
suggested those spent to the development of test systems with
close functionality to be similar to the proposed methodology.
It is because OVM also utilizes object-oriented language and
the set of test system components looks like proposed.
Nevertheless, there is a certain difference between approach
given in this article and OVM: our approach provides
additional means of FSM-based stimuli flow creation.
Actually, this question has not been thoroughly analyzed by us.
It is a point of the following research.

The proposed way of merging is a new revealed ability of
the basic approach. Only some experiments were conducted to
estimate the possibility of merging. First, the test system for a
simple FIFO module was developed. It took about two men-
days including efforts spent for documenting of the project.
Then this FIFO module was multiplied to become three FIFO-
modules into one envelop. Two of them were input buffers and
the third one was output buffer. We placed between them an
arbiter to select which one of the input buffers sends data to the
output one. It always selected the first FIFO if it contained any
data. To test this combination we combined three test systems
for original FIFO-module and added functionality of the arbiter
in a very simple way: functional model always reads data from
the first FIFO if it contained any data and in other case read the
second FIFO. Stimuli generator used original scenario
functions like “pop” and “push” but with a little modification
as now two FIFO played role of the input and the last one did
of the output. The interface adapters of sub test systems were
overloaded. Formerly, to make pop and push operations only
two interfaces had been used: one input and out output. In case
of input FIFOs, input interfaces were not changed (the
functionality of setting values to the DUV’s wires from sub
reaction checkers had been removed before). Output interfaces
were overloaded to send messages into output FIFO’s input
interfaces. Initially, the registration of adapters of interfaces
had looked like:

CPPTESK_SET OUTPUT_ ADAPTER (iface3,
FIFOMediator::deserialize iface3);

where deserializer is a function which translates DUV’s
wires signals into message. As the output interface iface3 was
not already output one, we overloaded this adapter:

CPPTESK SET INNER IFACE ADAPTER (FIFOMediator,
fifo0, fifoO.iface3, MM::deserialize inner iface0);

New deserializer calls the output FIFO fifo2:

CPPTESK DEFINE PROCESS (
MM: :deserialize inner iface0)
{

If(!fifOZ.isifull()) {

fifo2.start (&FIFO: :push msg,
fifo2.ifacel, data);

The output interface model of output FIFO just gave the
messages into common reaction checker’s output interface
model. To create the common test system we spent about half a
day accounting the time to research of merging possibility. The
time could have been spent for developing of complex test
system from scratch is expected to be about 2 days, but it is not
the most important. The time to connect sub test systems
slightly correlates with complexity of DUV’s sub part. Mostly,
it depends on amount of input and output interfaces and efforts
to connect them together. We have an estimate that to connect
exactly one input interface to one output is possible in about
one hour. This time will be spent to develop channel between
them that will translate messages between channels. The
average DUV’s part, by our estimates, consists of about ten
input and ten output interfaces, so that to connect two average
DUV’s parts is possible in one-two men-days, according to the
productivity of the verification engineer.

VI. CONCLUSIONS

This approach gives us a useful way to develop test systems
for separated parts of DUVs and then to merge the test systems
with high level of reuse. The main advantages of the approach
are the check of interconnection behavior with no additional
code and special means to facilitate reuse. The architecture is

116

supported by a library developed in C++ that allows using the
great opportunities of the language while developing test
systems. The fact that usually system level simulators are based
on C++ points to the ability of reusing parts of system-level
reference models and reference models of the developed test
systems and vice versa. There are two bonuses: the test systems
can control communications between functional models inside
the DUV as its parts, especially when the DUV is still under
construction, and that the library supporting the approach
supports UniTESK technology which allows developing high-
quality tests based on FSM-traversing and spreading test
systems among clusters of computers.

REFERENCES
[1] IEEE 1364-2005, Verilog Standard.
[2] J. Bergeron, Writing testbenches: functional verification of HDL

models. Kluwer Academic Publichers, 2003.

Tool called Formality by Synopsys (http://www.synopsys.com/Tools/
Verification/FormalEquivalence/Pages/Formality.aspx)

M. Chupilko, A. Kamkin. A TLM-based approach to functional
verification of hardware components at different abstraction levels. 12"
Latin-American Test Workshop, 2011.

E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999.

R. Kneuper. Limits of Formal Methods. Formal Aspects of Computing
(1997) 3: 1-000, 1997.

S. Iman. Step-by-step Functional Verification with SystemVerilog and
OVM. Hansen Brown Publishing Company, 2008.

V. Ivannikov, A. Kamkin, V. Kuliamin, A. Petrenko. Application of the
UniTESK technology to functional verification of software.
http://citforum.ru/SE/testing/unitesk_hard/, 2006 (in Russian)

Open Verification Methodology, http://www.ovmworld.org.
Y. Gubenko, A. Kamkin, M. Chupilko. Comparative analisys of modern

technologies of hardware designs test development.
http://citforum.ru/SE/testing/hardware_models/, 2009 (in Russian)

A. Barancev et al. UniTesK approach to the software development:
achievements and prospects. http://citforum.ru/SE/testing/unitesk/, 2004.
(in Russian)

(31
(4]
(5]
(6]
[71
(8l

[9]
[10]

[11]

Programming for Modular Reconfigurable Robots

Anna Gorbenko Vladimir Popov
Department of Mathematics and Department of Mathematics and
Mechanics Mechanics
Ural State University Ural State University
Ekaterinburg, Russia, 620083 Ekaterinburg, Russia, 620083
Email: gorbenko.aa@gmail.com Email: Vladimir.Popov@usu.ru

Abstract—Composed of multiple modular robotic units, self- must remain connected. Five types of modular reconfigurable

reconfigurable modular robots are metamorphic systems that robotic systems have been proposed in the literature:
can autonomously rearrange the modules and form differ-

ent configurations for dynamic environments and tasks. Self- * Fobots in which modules are reconfigured using external

reconfiguration is to solve how to change connectivity among intervention, e.g. [11] — [14];
modules to transform the robot from the current configuration « cellular robotic systems in which a heterogeneous collec-
into the goal configuration within the restrictions of physical tion of independent specialized modules are coordinated,

implementation. The existing reconfiguration algorithms used e.g. [15] - [18];
different methods, such as divide-and-conquer, graph matching 9. ; . . .
etc, to reduce the reconfiguration cost. However, the optimal ~* Swarm intelligence in which there are generally no phys-

solution with least reconfiguration steps has never been reached. ical connections between modules, e.g. [19] — [22];
The optimal reconfiguration planning problem of finding the « modular robots composed of a few basic elements which
least number of reconfiguration steps to transform between two can be composed into complex systems and used for

configurations is NP-complete. In this paper we describe an

approach to solve this problem. This approach is based on various modes of locomotion, e.g. [23] — [25];

constructing a logical models for considered problem. « fractal systems composed of modules with zero kinematic
mobility, but which can walk over each other in discrete
I. INTRODUCTION quanta due to changes in the polarity of magnetic fields,

Modular robotics has been the subject of much interest €-9- [51, [26].
in the research community [1]. Using large numbers of In the present work, a metamorphic robotic system is a
simple modules to replace one complicated, special-purpaxglection of independently controlled mechatronic modules,
device provides benefits in terms of flexibility, robustness, a@ch of which has the ability to connect, disconnect, and climb
manufacturing cost. The challenge in these systems liesOver adjacent modules, e.g. [6]. A metamorphic system can
controlling large numbers of low-powered, unreliable modulegynamically reconfigure by the locomotion of modules over
Motion planning and shape formation for these systems is tHir neighbors. Thus they can be viewed as a collection of
main problem of such a difficult challenge. connected modular robots which act together to perform the

Metamorphic robotic systems [2] can be viewed as a largéven task. Composed of multiple modular robotic units, self-
swarm of connected robots which collectively act as a singléconfigurable modular robots are metamorphic systems that
entity. Potential applications of metamorphic systems corfan autonomously rearrange the modules and form different

posed of a large number of modules include: configurations for dynamic environments and tasks.
. obstacle avoidance in highly constrained and unstructured/iodular reconfigurable robot programming can be substan-
environments: tially more challenging than normal robot programming due

« growing structures composed of modules to form bridge@,:

buttresses, and other civil structures in times of emer-« scale / number of modules;

gency; « concurrency and asynchronicity, both in physical interac-
« envelopment of objects, such as recovering satellites from tions and potentially at the software level;

space; « the local scope of information naturally available at each
« performing inspections in constrained environments such module.

as nuclear reactors. For modular reconfigurable robots it is developed several
Self-reconfiguring robots were first proposed in [3]. Imspecialized programming languages (e.g. [27], [28]). However,
this planar system modules were heterogeneous and sesmisting programming methods show relatively poor perfor-
autonomous. Other research focused on homogeneous systesasce for reconfiguration planning problems. Note that recon-
with non-autonomous modules in two dimensions [4] — [Aguration planning problems play a central role for modular
and three dimensions [8] — [10]. In this type of system thebots (e.g. [29] —[40]). Solutions for such problems lies at the
modules are not capable of acting independently, and thusart of any control system of modular robots. Performance

117

of such solutions is the base factor for the performance of tf7] etc. The different geometric arrangement of modules
whole control system. So, the main challenges for modulaetween lattice-type and chain-type modular robots makes
robotic systems is an efficient planner. It has long bedheir reconfiguration planning mechanisms fundamentally dif-
recognized that traditional methods are unsuitable due to fleeent. The work in this paper is more focused on chain-
large search space and the blocking constraints imposedtyyye reconfiguration. For simplicity, we will use the term
realizable module design. To ease the planning problem, mé&nyodular robots” or simply “robots” to denote “the chain-type
groups have proposed different kinds of metamodules, groupsdular robots”, and use “reconfiguration” to denote “chain-
of modules that act as a unit for planning or motion executidgipe reconfiguration” in the following.
purposes, each specific to a particular module design [7], [38],The existing reconfiguration algorithms used different meth-
[41], [42]. ods, such as divide-and-conquer [43], graph matching [44] etc,
Poor performance for reconfiguration planning problems i reduce the reconfiguration cost. However, the optimal solu-
not surprising, since such problems are computationally hatihn with least reconfiguration steps has never been reached.
In particular, in proved that the optimal reconfiguration plarin [48] proved that the optimal reconfiguration planning prob-
ning problem of finding the least number of reconfiguratiolem of finding the least number of reconfiguration steps to
steps to transform between two configurations (ORRYRs transform between two configurationsN#>-complete.
complete. Therefore, we need some intelligent solution for
this problem. However, the applying of distributed algorithmg_ Configuration Representation
or any iterative procedure requires a great exchange of infor-
mation between modules. This leads to the loss of solutionBefore defining the optimal reconfiguration planning prob-
accuracy and reduce performance. Therefore, it is desiral@, we would describe representation of robot's configuration
to solve ORP in a separate intelligent module which wouféfst. Two robots with the same graph topology can function
generate a final solution represented by simple instructioféfferently if the modules are connected via different con-
Note that the centralization of ORP solution allows to useectors (see e.g. [48]). To fully represent a robot's configu-
some remote computing resources and makes the performdi@®n, a special graph called C-Graph (Connector-Graph) is
independent from computing resources of modules. WheFPposed in [48]. C-Graph is the extension of normal graph

using such approach, programming of individual modul&¥ith differentiated connecting points. Each node has a finite
consists in number of ports that are internally labeled corresponding to

the connectors of a module. A connection between module
. transmission of sensory information:; u; conngckt)ortz and modgleus connectorj corresponds to an

« motor control; edge(, j) betweenu andv. , _ _

« receiving instructions for actuators. In principle we could represent a robot’s configuration as a

« processing of sensory information;

In this paper we describe an approach to solve OR%—Graph
problem. This approach is based on constructing a logical G=(V,E),
models for considered problem.

Il. OPTIMAL RECONFIGURATIONPLANNING PROBLEM

Self-reconfiguration is to solve how to change connectivity E ={e[1],e[2],...,e[m]},
among modules to transform the robot from the current con-
figuration into the goal configuration within the restrictions ofvhere:
physical implementation. Depending on the hardware design, each nodes[i] € V' represents the set
reconfiguration algorithms fall into two groups:

« reconfiguration for lattice-type modular robot and recon- v[i] = {v[i, 1],v[i,2],. .., v[i, pi]}
figuration for chain-type modular robot. In lattice-type
robot, modules lie in 2D or 3D grids; of connecting points ofith module, wherep; is the

« the reconfiguration is achieved through discrete move- number of connecting points éth module;
ments of modules detaching from the current lattice « each edge
location, moving along and surface of the robot and
docking at the adjacent cells. elj] = ([ir, l1],v[iz, l2]) € E
Example reconfiguration work includes [32] — [40] etc. In
chain-type robots, modules can form moving chains and loops
of any graph topology, and the reconfiguration is achieved
through “connect” and “disconnect” operations between mod-
ules along with the joint motion of chains composed of several
modules. Due to its difficulty, the chain-type reconfiguration
has received less attention. Existing algorithms include [43] — 1<l <pi,,1 <l < pi,.

represents a connection between moduyls connector
{; and moduleiy’s connectorl,, where

1<ip <n,1 <43 <m,

118

B. Reconfiguration Actions I1l. LoGICAL MODEL OF ORP

The two elementary reconfiguration actions are: . o .

. making new connections; The prpposmonal s_atlsflab_|l|ty problem (_PSAT) is a core
« disconnecting current co,nnections between modules %rt_)blem n .mgthglmatilcal logic and computing thepry. 'Propo—
connectivity rearrangement S|{|<_)nal satlsﬁaplhty is the proble_m of determlnmg |f_ the

i ' o variables of a given boolean function can be assigned in such
The robot can bend its body through module joints, S0 aRyyay as to make the formula evaluate to true. PSAT was the
two module;. with free connectors can potentially be aligngls; knownNP-complete problem, as proved by Stephen Cook
and dock with each other. in 1971 [49]. Until that time, the concept of atP-complete
problem did not even exist. Considered also different variants

) . . . _ of the satisfiability problem. For instance, Satisfiability (SAT)
The reconfiguration planning problem is defined as hoW he problem of determining if the variables of a given

modules in one configuration rearrange into another usiggojean function in conjunctive normal form can be assigned
several sets of reconfiguration actions. Basically, what cof sych a way as to make the formula evaluate to true. In
nections to make and what connections to disconnect SO @scfice, the satisfiability problem is fundamental in solving

to reconfigure from arbl_trary one shape to another? W|tho,L.1]tany problems in automated reasoning, computer-aided de-
loss of generality, we will always assume that the number gfyn, " computer-aided manufacturing, machine vision, database,
modules in the initial configuration is the same as that in thg,gtics, integrated circuit design, computer architecture de-

goal configuration. sign, and computer network design. Traditional methods treat

~ During the reconfiguration process, the reconfiguration agje satisfiability problem as a discrete, constrained decision
tions are most time- and energy-consuming, so it is a COmMgRypiem.

practice to aim at minimizing the number of reconfiguration
steps, i.e. the number of connect actions plus the number
of disconnect actions. Therefore, the optimal reconfiguratidn Reduction td®SAT
planning problem is to find the least number of reconfiguration .
steps to transform from the initial configuration into the goal Consider a set of C-Graphs
configuration.

Since the number of physical connections is predefined in {Gld]
the initial and goal configurations, the number of connect
actions is fixed once the number of disconnect action is knowhere

C. Optimal Reconfiguration Planning Problem

=(V,Elg] | 0 < q <k},

and vice versa. So we get that the optimal reconfiguration Elq) = {elg, 1], e[q,2], .. ., g, mg]}
planning problem is to find the either one of the following B
metrics: each edge

« least number of connect actions;

« least number of disconnect actions; elg, j]1 = (v[i1, 1], v]iz, 12]) € E[q]

« least number of reconfiguration steps (i.e., the number of
connect actions plus the number of disconnect aCt'Onspepresents a connection between modyle connectorl; and

For given two connected C-Graphs modulei,’s connectorly, where
I=(V.Ey) . .
1 Sll Sn,lS'LQ Sn71§ll Spi1a1§l2 Splg
and
G = (V, Ez) Let G[0] = I, G[k] = G. Now consider a set of boolean
variables

we say that there exists a reconfiguration plan with at rkost
reconfiguration steps if and only if there exists a sequence of
r < k connect and disconnect actions such that starting ffom
we obtainG and applying each of this connect and disconnect

{x[Q7ilai2;i37i4} ‘ OSQS k71 Sll Sna

actions we obtain a connected C-Graph. The decision version 1<iy <pi,1<iz<n,1<iy<py}
of optimal reconfiguration planning problem is formulated as
the following problem. Suppose that relation
OPTIMAL RECONFIGURATION PLANNING PROBLEM
(ORP): 2lg, i1, i, i3 ia] = 1

INSTANCE: C-GraphsI = (V,E;) and G = (V, Es), a

given integerk. means that
QUESTION: Whether there exists a reconfiguration plan for

C-GraphsI and G with at mostk reconfiguration steps? (v[iz, i2), v[iz,i4]) € Elq].

119

Consider following boolean function:

dg=
1< <n,
1§52 §pi17
1§83§'I’L,
1 <54 < py,

N 2lginyiz,is,is] =
]- S Z'1 é n,
1<z <pyy,s
1<i3<n,
1 S Z.4 Spiga

i1 # 51,
7:2 7& 52,
i3 # 83,
i4 # S4,
i1 7 83,
io # 54,
i3 7# 51,
i4 75 S92

l‘[q + 17@.171'272.371'4}-

It is easy to see that boolean functigfy] is satisfiable if and
only if G[q] = G[g + 1] or C-GraphGJq + 1] obtained from
G|q] by one connect or disconnect action. Therefore, it is easy
to see that boolean function

(A

(v[i1, 42], v[iz, a]) € E[0]

(A

(vlir, iz, vlis, ia]) ¢ EI0]

(A

(U[il,ig},v[ig, 24]) S E[kj]

x[07i177;27 23724} = 1)/\

‘T[07i17i25 7:377;4} = O)/\

Z[k},il,ig, i3,i4] = 1)/\

is satisfiable if and only if there exists a reconfiguration plan
for C-Graphsl and G with at mostk reconfiguration steps.
Note that

(A

(v[i1,d2], vlis, ia]) & E[k]

Z[k7i17i27 i37i4] = O)/\

3
©

(A
1Si1§n, J
1 S i2 Sph?

1 < 7:3 < n,

1 S i4 Spi;;?

1 < Z‘5 < n,

1 <6 < piys

1 < i7 < n,

1 <ig < pig,
(ilai?)) 7é (i57i7)7
(i1,13) # (i7,15)

_\w[j7i57i6a Z'7,’L8]))/\

”742
(/\ /\ w[jvilai27i37i4] ==
1<4; <n, =1
1 <2 < pyy,s
1 <3 <n,
1<i4 <pi

(~wly, i1, 12,13, 4]V
1

U)[], i3ai25 7;17i4])/\

N wlis — Vn+ig, i, i, s, i) —
1 SZI S’I’L,
1 S@Q gpip
1 SZ?) Snv
1 §714 Sp@w
1 §Z5 STL,

I‘[k,il, i27i3a Z4] = Z[kaif); 7;27i6ai4])/\

C A ¥lg))

0<g<k-—-1

(a=0) e (aV=p)A(-avp)).

N

n
(A (Vwlinizisid)A
1<ip <n, =t
1 <9 < piy,s
lgiSSnv
1 <y < piy,s

(/\ (/\ (ﬁw[jl,il,ig,ig,u]\/
Lsiasn q<j <o,

L<iz <piy, 1 < jy <,

Lsig<n, g+,

1 <44 < pyy,s

—w(ja, i1, 12, i3, 14])))A

Therefore[q] < ¢'[q], where

V'lg) = V
1<s <,
1< s2 <piys
1<s3<n,
1<s4<pi,

/\ ((zlg, i1, 42, 13, 4]V

1 <4 <,
1 S Z.2 Spila
]- S Z'3 S n,
1 <44 < piy,s
i1 # 81,
io # 82,
7:37é533
i4§£84,
i1 7 83,
io # 84,
i3 7# 51,
7:47582

ﬁff[q + 177;17i27i3ai4])/\

120

(_‘x[q, ila i?; i37 14}\/

Jj[q + 1)i17i2ai37i4]))7

n?
N N\ wliiriais,ia] =
1<i <n, i=1
1 SZZ Spiu
1 <3 <n,
1 <4 <piy

’LU[], i37i27i13i4] g

7l2

/\ ((w[j,ilaiQai37i4}v
1 S il S n, J=1
1 S Z.2 Spiu
1 < Z.3 < n,
1 <4y < piy
_‘w[j7i37i2;7:17i4])/\

(_‘w[j7i1ai27i37i4]v

U}[]7 i377;27i17i4]))‘

Sincea — < —a V 5,

N wlis — Vn+is, i, i, is, i) —
1 SZI §n7
1 SlQ Spiu
1 SZ?) Sna
1 §Z4 szp
1 §Z5 Sna

ir[ka11177:277:372'4] = Z[k7i57i27i67i4] =

/\ ~w((i5 — 1)n + i, i1, 92, 43, 44|V
1 S Z.1 S n,
1 S 7:2 Spilv
1 S i3 S n,
1 <y < piy,s
1 S Z.5 S n,
1 S i6 S n

xlk,i1,42,13, 14) = z[k, 15,12, 16, 14] &

/\ (—w((is — 1)n + g, i1, 42, i3, i4]V
1 S il S n,
1<y < pyy,s
1 < i3 < n,
1 S i4 S Dis,
1 < 7;5 < n,

((l’[]f, 7:1>7’.27,L.3c7i4]\/
ﬁz[k7i5,i2, i67i4])/\
(_'I[kail7i27i3a Z4]\/

z[k,i5, 12,76, 14])))-

121

So, using only—, A, andV, we obtain a boolean function

&= (A

(v[i1, ia], v]is, i4]) € E[0]

(A

(vli1, i), vlis, ia]) ¢ E[0]

(A

(i, d2], vlis,ia]) € E[k]

(A

(vlix, i2], vlis, 1a]) ¢ E[K]

1§7;1§’I’L7 J
1§i2§pi17
1§i3§n,

1§Z4§p237

«C A C A

1<i <m, 1§j1§n"z’
L<ia <piys 1 < jp <,
LSissn, g g
1§Z4§p237

1'[0,7:1,i277;3, Z4])/\

_\JS[O, il,ig,ig,i4])/\

Z[k77;17i25 Z-3ai4])/\

_'Z[kuilvi27i37 Z4])/\

3

w[.]a i17i2ai37i4]))/\
1

(mwlj1, 91,92, i3, 14]V

_‘w[j27i17i25 7’377’4})))/\

(A
]-Silgn? J
1 S i2 Spim

1 S Z‘3 S n,

1 S Z'4 sz‘3>

1 < Z.5 < n,

1 S Z.6 Spil?

1 S 7;7 S n,

1 <is < pi,
(ilai3) 7é (i5ai7)7
(ilai3) # (i7ai5)

—w(j, s, 46,97, 18])) A

2

3

(“w[jfila 7:272’377;4]\/
1

n2
(/\ /\((w[jvilvi%i?niél]v
1 S ’il S n, j=1

1 <42 <pyy,s

1 <i3 <mn,

1<y < pyy

_‘w[j7i37i27 Z.172'4])/\
(ﬁ’lU[j77;1,Z-2, i?niﬁdv

wlj, i3, 42,91, 14]))) A

(N (wllis —)n+ig, i1, ia, i3, 4]V Since

1<idp <n, (a=p) & (aV-0)A(maVF)),
1 <4 <pyy,s o " "
it is clear that & , Where
1<is<n,)" [q] < " [q]
1 <iq < piy, Y] = /\ ((x[g, 51, 52, 83, 4]V
1§Z5Sn7 1§51§n7
1SZG§” 1§82§pi17
((x[kail7i2ai3;i4]v 1 S 83 S n,
1 <54 <y,
_‘Z[k7i57i277:67i4})/\ 1 S tl S n,
S 1<t <p;
- k b b) \/ _ — v
(x[;11,12 13,14] 1<t <n,
zlk, is, iz, i, 1]))))A 1 <t4 < pis,
(s1,52,53,54) # (t1,t2,13,t4),
(/\ w/[q]) (81782a33784) 7& (t37t4at15t2)7

0<qg<k-1 —xlg + 1,1, 82,83, 84])A

such that¢&; is satisfiable if and only if there exists a

reconfiguration plan for C-Graphg and G with at most (5zla, 1,52, 53, 54V

k reconfiguration steps. It is easy to see that the size of xlqg+ 1,51, 82, 83, 84]))V

boolean functiorg; polynomially depends from the size of C-

Graphs. Therefore, we obtain an explicit reduction from ORP ((zlg, b1, ta, t3, ta] v

to PSAT. ﬂx[q+17t17t2,t3,t4])/\
Clearly, & is not in conjunctive normal form. Using the

distributive law, we can obtain frond; a boolean function (—zlg, t1,t2, t3, ta]V

in conjunctive normal form but this function will be have
exponential size. In some sense it is a good news. The
propositional satisfiability problem seems to become easiemMbte that
boolean functions are restricted to those in disjunctive normal ((z]g, s1, 52, 83, 4]V
form. This is because such a formula is satisfiable if and
only if some clause is satisfiable, and a conjunctive clause

$[q + 17t17t27t37t4}))'

—xlqg+ 1, 81, $2, 83, S4]) A

is satisfiable if and only if it does not contain bothand (—x[q, 51, S2, 83, S4]V
—x for some variabler. This can be checked in polynomial

time. Correspondently, the propositional satisfiability problem z[g + 1, 51, 82, 83, 54]))V
seems to become harder if boolean functions are restricted to (g, tr, to, b3, La]V
those in conjunctive normal form. From this point of view the e
impossibility of polynomial reduction frong; to a boolean —x[g + 1,t1,to, t3, t4])A

function in conjunctive normal form is a good news.
(ﬁm[Qa t17 t27 t3; t4]\/

B. Reduction tSSAT
It is easy to see that[q] < ¢"[q], where

Cf[q + 17t17t2;t3;t4])) =

(((z[g, s1, 52, 53, 84]V

Vgl = (z[q, 51,52, 83,54] =
1<s <n, /\ ﬁ‘fc[q—’_ 1781’82783’84])/\
1< 52 < pyy,s (—zq, 51, 52, 83, 54V
1 S S3 S n,
1 §S4§pi3 I[Q+1751752753754D)\/
lstism, (z[q,t1,t2,t3,t4]V
1<t < piy,
1<t3 <n, (g + 1,11, t2, 3, t4]))A
1 <1t4 < pyy,
x|q, S1, 52,53, 54|V

(81782783784) 7& (tlut27t37t4)v ((([q 122,23 4]
(81752753784) 7é (t3,t4,t1,t2), ﬂ'CL‘[q—i_ 1751582753584])/\

xlqg+ 1,51, 52,83, 84V (—xlg, s1, 82, 83, S4]V
x[q7t17t27t37t4] = x[CI‘f' 1at17t27t37t4])' .’l?[q-f- 1781782783784}))\/

122

(—x[q,t1,to, ts, ta]V
zlg+ 1,61, t0,t3,t4])) &
(z[q, s1, $2, S3, 84|V
—z[q+ 1, 81, 82, 83, $4]V
x[q, t1,t2, t3, t4]V
—x[q + 1,t1,to, t3, t4])A
(—z[q, 51, 52, 53, 54]V
x[qg + 1,81, S2, 83, 84]V
x[q, t1,t2, t3, t4]V
—x[q + 1,t1,t, t3, t4])A
(x[g, 81, 2, S3, S4]V
—z[q + 1, 81, S2, S3, $4]V
—z[q, t1, ta, 3, t4]V
xlg+ 1,t1,to, ts, ta])A
(—z[q, s1, S2, 83, 84|V
z[qg + 1, 51, s2, S3, $4]V
—xlg, t1, ta, ts, t4]V
x[q+ 1,t1,t2,t3,t4]).

Thereforep"”'[q] < """ [q], where
w//l/ [q] #

A

(x[q, s1, 82, 83, 84)V
]- S S1 S n,

1 <55 <pyy,

1<s3<mn,

1 <s4<py,

1<t <n,

1 S t2 S Diys

1<t3 <mn,

1 <t4 < pis,s

(51,52, 83,54) # (t1,t2,13,t4),
(51,32,53,84) 75 (tg,t4,t1,t2),

—z[q + 1, 81, 52, 83, 4] V x[q, t1, t2, t3, ta]V
—xlg + 1,t1, to, ta, ta])A
(—zq, 51, S2, S3, 84V
x[qg + 1,81, S2, S3, 84]V
x[q, t1,t2, t3, t4]V
ﬂx[q—i- 1,t1,t2,t3,t4})/\

(z[g, 51, 52, 83, 54]V
(g + 1,51, 52, 83, 54]V
—x(q, t1,t2, t3, t4]V
z(g + 1,1, to, ts, ta])A

(=z(g, 51, 82, 83, 54]V
z[q + 1, 51, s2, S3, $4]V
—z[q, t1, ta, 3, ta]V
x[q+ 1,t1,ta,t3, t4]).
Note that

A

].SZ'lSTL,
1§i2§pi17
1§i3§'ﬂ,
1§i4gpi3a
ISiE')Sna

(~w[(is — 1)n + ig, i1, @2, i3, 94]V

((z[k, i1, 2,15, 1a]V

—z[k, 5,12, i6, 14]) A

(—x[k, i1, d2, i3, 14V
zlk, is, 19, 06, 14]))) <

/\ ((mw((is —)n + i, i1, 12,13, 4]V
1 < il < n,

1 S i2 Spip

1< i3 < n,

1 S 7:4 Spma

1 < i6 <n

i

xlk,i1,12,13, 4]V
—z[k, 15,12, 16, 14]) A
(—w[(is — V)n + ig, 11, 92, i3, 14V
—xlk, i1, 12, 13,14V
z[k, 5, 12,16, 94]))-
So, we obtain a boolean function

L= (A

(v[i1, i2], vlis, ia]) € E[0]

A

(v[ix, i2], vlis, 1a]) ¢ E[0]

(A

(U[i],ig},v[ig,@;]) € E[k’]

A

(v[i1, i2], viz, i4]) ¢ E[k]
A
1 S Z.1 S n, J
1 S 7:2 S Diys

1§i3§n7
1 <44 < piy,

.’I}[O, i17i2ai3; 7/4])/\
(20,41, 99, i3, 14])\
Z[ka 7:171'2a7:37i4])/\

(

ﬁz[k” i17i2ai3; 7/4])/\

3

(

w(j, 1,192,143, 14])) A
1

123

/\ (/\ (mwlj, i1, 2,13, 14]V
1§i1§n7 1§j1§nn2’
1§i2§pi171§j2§n"2
Lsizsn, g 24

1 <44 < piy,s

)

—w(ja, i1, i2, i3, 14]))) A
n

2
(/\ /\(ﬁw[j,ihi%is,iﬂ\/
1Si1§n7 J=1
1 S 7:2 Spilv
1 < i3 < n,
1 <44 < piy,
1 S 7;5 S n,
1 <ig < piys
1 S Z.7 S n,
1 <ig < piy,s
(i1,43) # (i5,17),
(i1,3) # (i7,15)

_"U.)[j,’L'5,Z.6, 7’7718}))/\

1§i1§n7 J=
1§i2§pi17
1§Z.3§’I’L,

712

((wlg, 41,192, i3, 14V
1

—wlj, i3, 42,91, 14])A
(—w(j, i1, i, i3, 14]V
’w[], 2377’27 Z1724])))/\

(N ((wllis = Dn+ig, ir, iz, i3, ia]V
1< <n,

1< < pyy,

1 é ig < n,

1 <y < py,

1<i5 <m,

1 < i6 <n

xlk, i1, 09,13, 4]V
—z[k, i5, 2, 16, 14])A
(—~w(is — 1)n + ig, i1, 92, i3, i4]V
—alk, i1, 2,13, 4]V
z[k, is, ig, i6, 14])))A

(A 0"

0<g<k-1

IV. CONCLUSION AND EXPERIMENTAL RESULTS

In recent years, many optimization methods, parallel al-
gorithms, and practical techniques have been developed for
solving the satisfiability problem (see [50]). In particular,
proposed several genetic algorithms [51] — [54]. Considered
hybrid algorithms in which the approach of genetic algorithms
combined with local search [55].

Modern propositional satisfiability solvers are usually de-
signed to solve SAT formula encoded in conjunctive normal
form (CNF). Stochastic local search techniques have been suc-
cessful in solving propositional satisfiability problems encoded
in CNF. Recently complete solvers have shown that there are
advantages to tackling propositional satisfiability problems in
a more expressive natural representation, since the conversion
to CNF can lose problem structure and introduce significantly
more variables to encode the problem. CNF solvers can
be disadvantageous for problems which are more naturally
encoded as arbitrary propositional formula. The conversion to
CNF form may increase the size of the formula exponentially,
or significantly reduce the strength of the formulation. The
translation may introduce many new variables which increases
the size of the raw valuation space through which the solver
must search. Recently, interest has arisen in designing non-
clausal satisfiability algorithms (see e.g. [56] — [63]).

Relatively high efficiency demonstrated by algorithms based
solely on local search. Of course, these algorithms require
exponential time at worst. But they can relatively quick receive
solutions for many boolean functions. Therefore, it is natural
to use a reduction to different variants of the satisfiability
problem to solve computational hard problems.

Encoding problems as Boolean satisfiability and solving
them with very efficient satisfiability algorithms has recently
caused considerable interest. In particular, local search algo-
rithms have given impressive results on many problems. For
example, there are several ways of SAT-encoding constraint
satisfaction [64] — [73], clique [74], planning [75] — [95],
and colouring problems [74], [96] — [98]. The maximum cut,
vertex cover and maximum independent set problems can be
reduced to MAX-2-SAT [99] — [101]. There are a number of
implicit reductions from the Hamiltonian cycle problem to the
satisfiability (SAT) problem (see [74], [102], [103]).

In previous section we obtain an implicit reduction from
the optimal reconfiguration planning problem of finding the
least number of reconfiguration steps to transform between
two configurations to some variants of satisfiability: PSAT,
SAT. We create a generator of special hard and natural
instances for the optimal reconfiguration planning problem of
finding the least number of reconfiguration steps to transform
between two configurations. We use algorithms from [104].

such thaté, is satisfiable if and only if there exists a re-Also we design our own genetic algorithm for SAT which
configuration plan for C-Graph$ and G with at mostk based on algorithms from [104]. We use heterogeneous cluster
reconfiguration steps. It is easy to see that the size of booldmsed on three clusters (Cluster USU, Linux, 8 calculation
function &, polynomially depends from the size of C-Graphsodes, Intel Pentium 1V 2.40GHz processors; umt, Linux, 256
Since & in conjunctive normal form, we obtain an explicitcalculation nodes, Xeon 3.00GHz processors; um64, Linux,
reduction from ORP to SAT.

124 calculation nodes, AMD Opteron 2.6GHz bi-processors)

124

[105]. For computational experiment we create special haud] Beni, G. Concept of Cellular Robotic Systerfsoceedings of the IEEE
test sets and natural test sets. Special hard test sets based dﬁ;gfg”ationa' CSVmPOSi“rS” on Intelligent Contrpages 57-62, Arlington,
. : 1988. IEEE t Press.
ideas from [106]. Natural test sets based on ideas from [48]1%& ompulter Soclety Press

0

) - . Beni, G., and Wang, J. Theoretical Problems for the Realization of
tests we consider systems consisted from approximately Distributed Robotic System®roceedings of the 1991 IEEE Conference

of modular robots. on Robotics and Automatippages 1914-1920, Sacramento, 1991. IEEE

Computer Society Press.
Each test was run on a cluster of at least 100 nodes. FP;] Fukuda, T., and Nakagawa, S. Dynamically Reconfigurable Robotic

special hard test sets: the maximum solution time was 16" systemsProceedings of the 1988 IEEE Conference on Robotics and Au-
hours; the average time to find a solution was 33.2 minutes; the tomation pages 15811586, Philadelphia, 1988. IEEE Computer Society

; . ; ress.
best time was 116 seconds. For natural test sets: the maxi Fukuda, T., and Kawauchi, Y. Cellular Robotic System (CEBOT) as One

solution time was 9 hours; the average time to find a solution” of the Realization of Self-organizing Intelligent Universal Manipulator.
was 9.8 minutes; the best time was 9 seconds. Based on ourProceedings of the 1990 IEEE Conference on Robotics and Automation
experiments we can say that considered model can be useg g}gage_s 662-667, Cincinnati, 1990. IEEE Computer Society Press.

. 19] Beni, G., and Hackwood, S. Stationary Waves in Cyclic Swarms.
an efficient planner. Proceedings of IEEE International Symposium on Intelligent Control
pages 234-242, Los Alamitos, 1992. IEEE Computer Society Press.

ACKNOWLEDGMENT [20] Beni, G., and Wang, J. Swarm Intelligenderoceedings of Seventh
The work was partially Supported by Grant of President Annual Meeting of the Robotics Society of Japaeges 425-428, Tokyo,

. . . 1989. RSJ Press.
of the Russian Federation MD-1687.2008.9 and Analytlcﬁll] Hackwood, S., and Beni, G. Self-organizing Sensors by Deterministic

Departmental Program "Developing the scientific potential of ~Annealing.Proceedings of IEEE/RSJ International Conference on Intel-

high school” 2.1.1/1775. ligent Robot and Systems — IROS’@hges 1177-1183, Los Alamitos,
1991. IEEE Computer Society Press.
REFERENCES [22] Hackwood, S., and Beni, G. Self-organization of Sensors for Swarm

Intelligence.Proceedings of IEEE International Conference on Robotics

[1] Rus, D., and Chirikjian, G., EdsSpecial Issue on Self-Reconfiguring and Automation pages 819-829, Nice, 1992. IEEE Computer Society
Robots Autonomous Robotics, 2001, 10(1). Press.

[2] Chirikjian, G.S. Kinematics of a Metamorphic Robotic SysteRto- 23] Yim, M. A Reconfigurable Modular Robot with Many Modes of
ceedings of the 1994 IEEE International Conference on Robotics and "| ocomotion. Proceedings of the 1993 JSME International Conference
Automation pages 449-455, San Diego, 1994. IEEE Computer Society on Advanced Mechatronicpages 283-288, Tokyo, 1993. JSME Press.
Press.)) [24] Yim, M. Locomotion with a unit-modular reconfigurable robot. PhD

[3] Fukuda, T., and Nakagawa, S. A Dynamically Reconfigurable Robotic “{hesjs, Department of Mechanical Engineering, Stanford University, Stan-
System (Concept of a System and Optimal Configuratidgiceedings ford, 1994.

of the 1987 IEEE International Conference on Industrial Electronics[QS] Yim. M. New Locomotion GaitsProceedin
: > , M. gs of the 1994 IEEE Inter-
Control, and Instrumentatigrpages 588-595, Los Alamitos, 1987. IEEE" ~ional Conference on Robotics and Automatipages 2508—2524, San
4 Somrl)(uter Sé)u_lefty _Pres_s.T Fuii T K oA H. Kuroda. v.... .. Diego, 1994. IEEE Computer Society Press
[4] Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, ‘%6] Murata, S., Kurokawa, H., and Kokaji, S. Self-Organizing Machine.

and Endo, I. Self-Organizing Collective Robots with Morphogenesis in Vi) : .
.] h ideo Proceedings, 1995 IEEE International Conference on Robotics and
Vertical Plane.Proceedings of the 1998 IEEE International Conference Automation, Nagoya, Japan, May 1995.

on Robotics and Automation. Vol, pages 2858-2863, Leuven , 1998.[27] M. Ashley-Rollman, S. Goldstein, P. Lee, T. Mowry, and P. Pili4éld:

IEEE Computer Society Press. A declarative approach to programming ensemplesceedings of the

[5] Murata, S., Kurokawa, H., and Kokaji, S. Self-Assembling Machine. . _
Proceedings of the 1994 |EEE International Conference on Robotics and IZ%I(E)E International Conference on Robots and Systems, 2007. pp.2794

gtjéc;rsnanom pages 442-448, San Diego, 1994. IEEE Computer SoCle[I¥8] Charron-Bost, B., Delporte-Gallet, C., and Fauconnier,Lbcal and

[6] Pamecha, A., Chiang, C., Stein, D., and Chirikjian, G. Design and temporal predicates in distributed systerdsCM Transactions on Pro-

implementation of metamorphic robof8roceedings of The 1996 ASME gramming Languages.and Systems, 17(1):157-179, 1995'
Design Engineering Technical Conference and Computers in Engineerifg] PeRosa, M., Goldstein, S., Lee, P., Campbell, J., and PillscRlable

Conferencepages 110, Irvine, 1996. ASME Press. shape sculpting via hole motion: Motion planning in lattice constrained
[7] Rus, D., and Vona, M. Crystalline Robots: Self-reconfiguration with Unit- ~modular robots Proceedings of the IEEE International Conference on
compressible ModulesAutonomous Robatd0(1):107—124, 2001. Robotics and Automation, 2006. pp.1462-1468.
[8] Kotay, K., and Rus, D. Locomotion versatility through selfreconfiguratiod30] Dewey, D., and Srinivasa, S.8.planning framework for local metamor-
Robotics and Autonomous Syste@&(2-3):217—232, 1999. phic systemsTechnical Report CMU-RI-TR-XX, The Robotics Institute,

[9] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H. Tomita, K., _Camegie Mellon University, 2007. . .
and Kokaji, S. M-TRAN: Self-Reconfigurable Modular Robotic System[31] Ashley-Rollman, M.P., De Rosa, M., Srinivasa, S.S., Pillai, P., Gold-
IEEE/ASME Transactions on Mechatronid§4):431-441, 2002. stein, S.C., Campbell, Declarative Programming for Modular Robots
[10] Suh, J., Homans, S., and Yim, M. Telecubes: Mechanical Design of a IEEE/RSJ International Conference on Intelligent Robots and Systems,
Module for Self-Reconfiguring Robotic®roceedings of the 2002 IEEE ~ Workshop on Self-Reconfigurable Robots and Systems and Applications,
International Conference on Robotics and Automatisesges 4095-4101, 2007. pp.1-6.
Washington, 2002. IEEE Computer Society Press. [32] Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G. Useful metrics for
[11] Benhabib, B., Zak, G., and Lipton, M.G. A Generalized Kinematic ~modular robot motion planninglEEE Transactions on Robotics and
Modeling Method for Modular RobotsJournal of Robotic Systems Automation 13(4):531-545, 1997.

6(5):545-571, 1989. [33] Vassilvitskii, S., Kubica, J., Rieffel, E.G., Suh, J.W., and Yim, M.
[12] Cohen, R., Lipton, M.G., Dai, M.Q., and Benhabib, B. Conceptual On the General Reconfiguration Problem for Expanding Cube Style

Design of a Modular RobotASME Journal of Mechanical Design Modular RobotsProceedings of the 2002 IEEE International Conference

114:117-125, 1992. on Robotics and Automatippages 801-808, Washington, 2002. IEEE
[13] Sciaky, M. Modular Robots Implementation. In Nof, S., editdand- Computer Society Press.

book of Industrial Roboticgpages 759—-774. John Wiley and Sons, 198434] Kurokawa, H., Tomita, K., Kamimura, A., Yoshida, E., Kokaji, S., and

[14] Wurst, K.H. The Conception and Construction of a Modular Robot Murata, S. Distributed Self-reconfiguration Control of Modular Robot
System. In Van Brussel, H., editof,6th International Syposium On M-TRAN. Proceedings of the Twenty-Seventh Annual International Con-
Industrial Robots. 8th International Conference On Industrial Robot ference on Cement Microscgppages 254-259, Victoria, 2005. |IEEE
Technology: Proceedingpages 37—44, Brussels, 1986. Springer-Verlag. Computer Society Press.

125

[35] Hosokawa, K., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., and Endo, ence on Atrtificial Intelligencepages 135-139, Amsterdam, 1994. John
I. Self-organizing collective robots with morphogenesis in a vertical Wiley & Sons.
plane.JSME International Journal Series C Mechanical Systems Machiiig3] Jong, K., and Spears, W. Using genetic algorithms to solve np-complete
Elements and Manufacturing2:195-202, 1999. problems.

[36] Butler, Z., Murata, S., and Rus, D. Distributed Replication Algorithms In Schaffer, J.D., editoProceedings of the 3rd International Conference
for Self-Reconfiguring Modular RobotBroceedings of 6th International on Genetic Algorithmspages 124-132, Fairfax, 1989. Morgan Kaufmann
Symposium on Distributed Autanomous Robotic Systems (DARS’02) Publishers Inc.

pages 25-27, Fukuda, 2002. [54] Voorn, R., Dastani, M., and Marchiori, E. Finding simplest pattern
http://groups.csail.mit.edu/drl/wiki/images/c/c5/dars02.pdf structures using genetic programming. In Spector, L., Goodman, E.D.,
[37] Walter, J., Tsai, E., and Amato, N. Algorithms for Fast Concurrent Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M.,
Reconfiguration of Hexagonal Metamorphic RobdEEE Transactions Pezeshk, S., Garzon, M.H., Burke, E., edit®?mceedings of the Genetic
on Robotics21(4):621-631, 2005. and Evolutionary Computation Conferenqeages 3-10, San Francisco,

[38] Unsal, C., and Khosla, P.K. A Multi-layered Planner for Self- 2001. Morgan Kaufmann Publishers Inc.
Reconfiguration of a Uniform Group of I-Cube Moduld€EE Inter- [55] Hao, J., Lardeux, F., and Saubion, F. A hybrid genetic algorithm for the
national Conference on intelligent Robots and Systems. Vopafjes satisfiability problemProceedings of the 1rst International Workshop on
598-605, Maui, 2001. IEEE Computer Society Press. Heuristics pages 102-109, Beijing, 2002. Springer-Verlag.

[39] Reif, J.H., and Slee, S. Optimal Kinodynamic Motion Planning for 20056] Armando, A., and Giunchiglia, E. Embedding complex decision proce-
Reconfiguration of Self-Reconfigurable Robots. Robotics: Science and dures inside an interactive theorem prow&nnals of Mathematics and
Systems, Conference, Georgia Institute of Technology, Atlanta, GA, June Artificial Intelligence 8(3-4):475-502, 1993.

27-30, 2007. [57] Giunchiglia, E., and Sebastiani, R. Applying the Davis-Putnam proce-
http://www.roboticsproceedings.org/rss03/p20.pdf dure to nonclausal formulas. In Lamma, E., Mello, P., editéis|A 99:
[40] Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacrjst., Advances in Artificial Intelligence, 6th Congress of the Italian Association

and Wuhrer, S. Reconfiguration of Cube-Style Modular Robots Using for Artificial Intelligence pages 84-94, Bologna, 2000. Springer-Verlag.
O(log n) Parallel Moves. In Hong, S.H., Nagamochi, H., Fukunaga, 1{’8] Kautz_, H., Selman, B., and_McAIIester, D. Exp_lomng _/arlable depen-
editors, Proceedings of the 19th Annual International Symposium on dency in local searctRroceedings of the International Joint Conference
Algorithms and Computation — ISAAC 20@&ges 342-353, Gold Coast, on A_rt|f|C|aI Intelligence pages 7-9, Nagoya, 1997. Morgan Kaufmann
2008. Springer-Verlag. Publishers Inc. _

[41] Christensen, D., Ostergaard, E., and Lund, Hitetamodule control [9] Muhammad, R., and Stuckey, P.J. A Stochastic Non-CNF SAT Solver. In
for the atron self-reconfigurable robotic systeRroceedings of the The Yang, Q., Webb, G.1., editorRICAI 2006: Trends in Artificial Intelli-

8th Conference on Intelligent Autonomous Systems, Amsterdam, 2004. 9€Nce, 9th Pacific Rim International Conference on Artificial Intelligence
pp.685-692. ' ' pages 120-129, Guilin, 2006. Springer-Verlag.

[42] Dewey, D., Srinivasa, S.S., Ashley-Rollman, M.P., De Rosa, M., PiIIaE,GO] Sebastiani, R. Applying GSAT to non-clausal formulaeurnal of

P., Mowry, T.C., Campbell, J.D., and Goldstein, SG&neralizing Meta-
modules to Simplify Planning in Modular Robotic SysteRmeceedings
of IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems, 2008. pp.1338-1345.

[43] Casal, A., and Yim, M. Self-Reconfiguration Planning For a Class
Modular Robots.Proceedings of SPIE. Vol. 3839. Sensor Fusion an
Decentralized Control in Robotic Systems. Volplges 246—-257, Boston,
1999. SPIE Press.

[44] Nelson, C.A. A framework for self-reconfiguration planning for unit-

irggldllélr?rir:(;z(r)itr?. Pgljjrc'jl'uh:s;sdolzurdue University, Department of Mechan- Applications of Satisfiability Testing: 7th International Conference: SAT
9 9.) ! ' N . . . 2004 pages 663—-678, Vancouver, 2004. Springer-Verlag.

[45] Gay, S. Roombots. TOWafd Emanupatlon of _Furnlture. A Kinematic 64] Bessiere, C., Hebrard, E., and Walsh, T. Local Consistencies in SAT.
'\DAEp?nd_?_Et Rectl)znfl?urgn?r; Aqurlthméor C?a'n'-{yﬂeCMOdUI?r RSObOt * Theory and applications of satisfiability testing: SAT 2003: international
Easl er200e7$|s, cole Folytechnique, Department of Lomputer SCIENCe, «nterence on theory and applications of satisfiability testing, Nagjes

cole, : .) .) 400-407, Santa Margherita Ligure , 2003. Springer-Verlag.

[46] Shen, W.-M., Salemi, B., and Will, P. Hormone-Inspired Adaptivggs) payis M., Logemann, G., and Loveland, D. A Machine Program for
Communication and Distributed Control for CONRO Self-Reconfigurable ~theorem ProvingCommunications of the ACMS(7):394—397, 1962.
Robots.IEEE Transactions on Robotics and Automati@8(5):700-712, [66] Frisch, A., and Peugniez, T. Solving Non-Boolean Satisfiability Prob-
2002. L . lems with Stochastic Local Search. In Nebel, B., ediRngceedings of

[47] Hou, F, and Shen, W.-M. Distributed, Dynamic, and Autonomous he Seventeenth International Joint Conference on Avtificial Intelligence
Reconflguratlon Planning for Chaln_—Type Self-Reconfigurable Robots. pages 282288, Seattle, 2001. pp. 282 - 288. Morgan Kaufmann Publish-
Proceedings of 2008 IEEE International Conference on Robotics and g5 |nc.

Automation pages 3135-3140, Pasadena, 2008. IEEE Computer Somfgy] Frisch, A.M., Peugniez, T.J., Doggett, A.J., and Nightingale, P.W. Solv-
Press.]))) ing Non-Boolean Satisfiability Problems with Stochastic Local Search:

[48] Hou, F., Shen, W.-M. On the Complexity of Optimal Reconfiguration A Comparison of Encodingslournal of Automated Reasoning5(1-
Planning for Modular Reconfigurable RoboBsoceedings of 2010 IEEE 3):143-179, 2005.

International Conference on Robotics and Automatjaeges 27912796, [68] Genisson, R., and Jegou, P. Davis and Putnam Were Already Forward
Anchorage, 2010. IEEE Computer Society Press. _ Checking. In Wahlister, W., editorTwelfth European Conference on

[49] Cook, S.A. The Complexity of Theorem Proving Procedures. In Harri- Artificial Intelligence pages 180-184, Budapest, 1996. John Wiley and
son, M.A., Banerji, R.B., Ullman, J.D., editorSTOC '71 Proceedings of Sons.
the third annual ACM symposium on Theory of compytipages 151- [69] Gent, I. Arc Consistency in SAT. In van Harmelen, F., editmceed-
158, New York, 1971. Association for Computing Machinery Press. ings of the Fifteenth European Conference on Artificial Intelligepeges

[50] Gu, J., Purdom, P., Franco, J., and Wah, B. Algorithms for the Satisfia- 121-125, Lyons, 2002. I0S Press.
bility (SAT) Problem: A Survey. In Johnson, David, and Trick, Michael[70] Kasif, S. On the Parallel Complexity of Discrete Relaxation in Constraint
editors, Cliques, Coloring and Satisfiability: Second DIMACS Imple- Satisfaction NetworksArtificial Intelligence 45(3):275-286, 1990.
mentation Challengepages 19-152. American Mathematical Societyj71] Prestwich, S.D. Local search on SAT-encoded colouring problems.

Artificial Intelligence Researchl:309-314, 1994.

[61] Selman, B., Kautz, H., and Cohen, B. Noise strategies for improving
local search. In Hayes-Roth, B., Korf, R.E., editok&Al'94 Proceedings
of the twelfth national conference on Atrtificial intelligence (vol.dages
337-343, Seattle, 1994. American Association for Artificial Intelligence.

2] Stachniak, Z. Going non-clausékh International Symposium on Theory
and Applications of Satisfiability Testing: SAT 20(#ages 316-322,
Cincinnati, 2002. Springer-Verlag.

[63] Thiffault, C., Bacchus, F., and Walsh, T. Solving non-clausal formulas

with DPLL search. In Hoos, H.H., Mitchell, D.G., editor§heory and

Providence, Rhode Island, 1996. Theory and applications of satisfiability testing: SAT 2003: international
[51] Fleurent, J. Genetic algorithms and hybrids for graph colorkmnals conference on theory and applications of satisfiability testing, Wa@es
of Operations Researcl$3(3):437-461, 1996. 105-119, Santa Margherita Ligure , 2003. Springer-Verlag.

[52] Hao, J., and Dorne, R. A new population-based method for satisfiabilify2] Sabin, D., and Freuder, G. Contradicting Conventional Wisdom in
problems. In Cohn, A.G., editoProceedings of 11th European Confer- Constraint Satisfaction. In Cohn, A.G., editBroceedings of the Eleventh

126

European Conference on Artificial Intelligengeages 125-129, Amster- Intelligence and Reasoningages 362-376, Havana, 2001. Springer-

dam, 1994. John Wiley and Sons. Verlag.

[73] Walsh, T. SAT v CSP. In Dechter, R., editogixth International [91] Rintanen, J., Heljanko, K., and Nieraell. Planning as Satisfiability:
Conference on Principles and Practice of Constraint Programmages Parallel Plans and Algorithms for Plan Search. Technical Report 216,
441-456, Singapore, 2000. Springer-Verlag. Institute of Computer Science, University of Freiburg, Freiburg, Germany,

[74] lwama, K., and Miyazaki, S. SAR-variable complexity of hard combina- 2005.
torial problemsIFIP Transactions A: Computer Science and Technalogyi92] Rintanen, J., Heljanko, K., and Nieraell. Planning as satisfiability:
1:253-258, 1994. parallel plans and algorithms for plan searditificial Intelligence

[75] Bittner, M., and Rintanen, J. Improving parallel planning with con- 170(12-13):1031-1080, 2006. _ _
straints on the number of operators. In Biundo, S., Myers, K., and Rajdf3] Rintanen, J., Heljanko, K., and Nierael. Parallel encodings of classical
K., editors, Proceedings of the Fifteenth International Conference on Planning as satisfiability. In Alferes, J.J., and Leite, J., editoogics in
Automated Planning and Schedulingages 292—-299, Monterey, 2005. Atrtificial Intelligence: 9th European Conferengeages 307-319, Lisbon,
AAAI Press. 2004. Springer-Verlag.

[76] Erst, M., Millstein, T., and Weld, D. Automatic SAT-Compilation [94] Rintanen, J., and Jl_mgholt, H. Numeric state yariables in constraint-
of Planning ProblemsProceedings of the Fifteenth International Joint ~ Pased planning. In Biundo, S., and Fox, M., editdRgcent Advances
Conference on Arificial Intelligencepages 1169-1176, Nagoya, 1997. in Al Planning: 5th European Conference on Plannimgges 109-121,
Morgan Kaufmann Publishers Inc. [95] Dyvg]r?rrIg’ ﬁ/loognzplgir:]%:ggf”?gblanning as satisfiability with relazed

[77] Kautz, H. SATPLANO4: Planning as Satisfiability. In Edelkamp, S.! 1 Wl U -

Hoffmann, J., Littman, M., and Younes, H., editdPspceedings of the 4th step P'?F‘S- In O_rgun, M., and Thorn_ton, ‘]'.' editdrs2007 Advan_c_es
International Planning Competition at the 14th International Conference N Artificial Intelligence: 20th Australian Joint Conference on Artificial
on Automated Planning and Schedulinages 4445, Whistler, 2004. Intelligence pages 244-253, Surfers Paradise, Gold Coast, Australia,
AAAI Press. 2007. Springer-Verlag. _ _ 3

[78] Kautz, H., McAllester, D., and Selman, B. Encoding Plans in Proposﬁ%] van Gelder, A. Another Look at Graph Coloring via Propositional
tional Logic. In Aiello, L.C., Doyle, J., Shapiro, S.C., editoPspceedings Sat|sf|ab|l|_ty. In Mehrotra, A., Johnson, DS and .T”Ck’ M., gdltprs,
of the Fifth International Conference on Principles of Knowledge Rep- Computational Symposium on Graph Coloring and its Generalizations

: . . ages 48-54, Ithaca, New York, 2002. Springer-Verlag.
resentation and R?asonlngaglesh 874-384, Cambridge, Massachusettfgﬂ pBguhmala N., Granmo, O.-C Stochastri)c Lgearning ?or SAT- Encoded
1996. Morgan Kaufmann Publishers Inc. v CoT T ? s
[79] Kautz, H., and Selman, B. Planning as Satisfiability. In Neumann, Graph Coloring Problemsnternational Journal of Applied Metaheuristic

. - e Computing 1(3):1-19, 2010.
B., editor, Proceedings of the 10th European Conference on Artifici . . -
Intelligence pages 359-363, Vienna, 1992. John Wiley & Sons. a[58] Velev, M.N. Exploiting hierarchy and structure to efficiently solve graph

[80] Kautz, H., and Selman, B. Pushing the envelope: planning, propositional polonng_ as ISAT' Ifn Gielen, Gé ed|td?roce_zd|(;1%s of the ZOB:ZSIEIEI;/ASCM
logic, and stochastic search. In Brewka, G., edifnigceedings of the International conference on Computer-aided desiages —Lae, san

4 ; o) . 2007. IEEE Com r iety Press.
Thirteenth National Conference on Artificial Intelligence and the Eightl g]JgitlejékOg and Tuig gutﬁaj%ﬂ;tycmsezsnd largest bipartite subgraphs
Annual Conference on Innovative Applications of Artificial Intelligenc Y e '

In Cook, William, Lovasz, Laszlo, Seymour, Paul, edit@®mbinatorial
pages 1194-1201, Portland, 19_%_' AAAI Press. Optimization pages 181-244. American Mathematical Society, Provi-
[81] Kautz, H., and Selman, B. Unifying SAT-based and graph-based plan- 4ance Rhode Island. 1995.

ning. In Dean, T., editoProceedings of the Sixteenth International Joint[mo] Che’riyan 7. Cunn’ingnham W.H., Tuncel, L., and Wang, Y. A linear
Conference on Artificial Intelligencepages 318-325, Stockholm, 1999. programming and rounding approach to Max 2-Sat. In Johnson, David,

Morgan Kaufmann Publishers Inc.) and Trick, Michael, editorsCliques, Coloring and Satisfiability: Second
[82] Mattmiller, R., and Rintanen, J. Planning for temporally extended pmACS Implementation Challenggages 395-414. American Mathe-

goals as propositional satisfiability. In Veloso, M., edit®roceedings of matical Society, Providence, Rhode Island, 1996.

the 20th International Joint Conference on Artificial Intelligengages [101] Mahajan, M., and Raman, V. Parameterizing above guaranteed values:

1966-1971, Hyderabad, 2007. AAAI Press. MaxSat and MaxCutJournal of Algorithms31(2):335-354, 1999.

[83] Rintanen, J. Compact representation of sets of binary constraints.[i02] Hoos, H.H. SAT-Encodings, Search Space Structure, and Local Search
Perini, A., Penserini, L., and Peppas, P., editBreceedings of the 17th Performance. In Dean, T., editoBroceedings of the Sixteenth Inter-
European Conference on Artificial Intelligenceages 143-147, Trento, national Joint Conference on Artificial Intelligenceages 296-302,
2006. 10S Press. Stockholm, 1999. Morgan Kaufmann Publishers Inc.

[84] Rintanen, J. Evaluation strategies for planning as satisfiability. In Lop¢z03] Plotnikov, A.D. A Logical Model of HCPInternational Journal of
de Mantaras, R., and Saitta, L., editoBSCAl 2004: Proceedings of Mathematics and Mathematical Scienc6(11), 2001.
the 16th European Conference on Artificial Intelligenpages 682—-687, [104] hitp://people.cs.ubc.cahoos/SATLIB/index-ubc.html
Valencia, 2004. IOS Press. [105] http://parallel.imm.uran.ru/mvaow/hardware/supercomp.htm

[85] Rintanen, J. Heuristic Planning with SAT: Beyond Uninformed Depthf106] Navarro, J.A., and Voronkov, A. Generation of Hard Non-Clausal
First Search. In Li, J., editoAl 2010: Advances in Artificial Intelligence Random Satisfiability ProblemBroceedings of the Twentieth National
pages 415-424, Adelaide, 2010. Springer-Verlag. Conference on Atrtificial Intelligencepages 436—442, Pittsburgh, 2005.

[86] Rintanen, J. Heuristics for Planning with SAT. In Cohen, D., editor, AAAIl Press.

Principles and Practice of Constraint Programming: 16th International
Conferencepages 414-428, St. Andrews, 2010. Springer-Verlag.

[87] Rintanen, J. Planning graphs and propositional clause-learning. In
Brewka, G., and Doherty, P., editor®rinciples of Knowledge Rep-
resentation and Reasoning: Proceedings of the Eleventh International
Conferencepages 535-543, Sydney, 2008. AAAI Press.

[88] Rintanen, J. Symmetry reduction for SAT representations of transition
systems. In Giunchiglia, E., Muscettola, N., and Nau, D., editBre;
ceedings of the 13th International Conference on Automated Planning
and Schedulingpages 32-40, Trento, 2003. AAAI Press.

[89] Rintanen, J. A planning algorithm not based on directional search. In
Cohn, A.G., Schubert, L.K., and Shapiro, S.C., editd®snciples of
Knowledge Representation and Reasoning: Proceedings of the Sixth In-
ternational Conferencepages 617-624, Trento, 1998. Morgan Kaufmann
Publishers Inc.

[90] Rintanen, J. Partial implicit unfolding in the Davis-Putnam procedure
for quantified Boolean formulae. In Nieuwenhuis, R., and Voronkov, A.,
editors, International Conference on Logic for Programming, Artificial

127

Towards a real-time simulation environment on the
edge of current trends

Eugene Chemeritskiy

The Faculty of Computational Mathematics and
Cybernetics, Moscow State University,
Moscow, Russia
tyz@Ivk.cs.msu.su

This paper is devoted to renewing of the simulation project that
has been undoubtedly a successful one and has endured a wide
range of tasks, but is slowly and inevitable getting obsolete. In
attempt to stay in the top, the development of the new runtime is
started taking into account some historical regularities and
currents trends in the distributed real-time simulation and some
adjoining areas. The paper describes the problem scope resulted
from application of the considered technologies, analyzes its
possible solutions and estimates the related labor cost.

General Terms: Simulation Runtime, Distributed Real-time and
Embedded Systems, High Level Architecture.

l. INTRODUCTION

In the 1990s the Computer Systems Laboratory (CS Lab) at
Computational Mathematics and Cybernetics department of the
Moscow State University developed a parallel modeling and
simulation system called DYANA [1]. This simulation system
has been used a lot as a basis for researches and development
of a number of specialized simulation tools. One of these tools
called STAND [2] is a hardware/software environment for
hardware-in-the-loop simulation of the distributed real-time
and embedded systems (DRE).

The STAND environment has been applied to a number of
DRE simulation projects and proved its efficiency. To remain
at the same high advantageous level in the context of fast
progress in the whole IT area, it was decided to construct new
runtime following the current trends to standardization in the
simulation fields.

The standard-compliant runtime subsystem automatically
guarantees model compatibility. Models written in accordance
with the standard specifications could be always executed with
use of this runtime. Similarly, natively developed models could
be executed by any other certified system. This compatibility
could result in product popularization and the formation of user
community, and a large number of users, in its turn, could
accelerate the project development and lead to its further
improvement.

This work was supported in part by the Ministry of education and science
of the Russian Federation under Grant “Development of an integrated
environment and complex analysis methods for distributed real-time computer
systems functioning”.

128

Konstantin Savenkov (advisor)

The Faculty of Computational Mathematics and
Cybernetics, Moscow State University,
Moscow, Russia
savenkov(@cs.msu.su

Replacement of the STAND native runtime raises a number
of problems that could be separated into the following groups
in accordance with their nature.

A. Designing of DRE-supporting runtime in pursuance of the
latest simulation trends

Being quite a specific simulation case, DRE simulation
imposes some additional requirements to the runtime.
Currently, there is no any off-the-rack and well-fitted
simulation standard. Thereby some adjoining simulation areas
have been explored. In attempt to mark the current trends in
these areas, the third section of this paper gives a brief concept
of the simulation historical path and its progress regularities.
For each of the adverted innovations, the application goals and
prospects are described in context of the considered project
development.

Once the runtime is conceptually designed, the time comes
to its implementation. Despite the considered technologies are
relatively new, all of them have certain users and it is possible
to learn from their experience. The refinement of the existing
solutions and their adaptation to the purposes of the considered
project is far less labor-intensive than the development from
scratch. Thereby, the paper describes some possibilities for the
adoption of the turnkey solutions.

B. Integration to the STAND environment and maintenance
of the legacy projects

The next aspect of STAND runtime replacement is reuse of
the other STAND components. STAND software package
includes a number of additional assistance subsystems such as
trace collector, dynamic visualizer, version control system,
integrated model development environment and so on. All
listed subsystems are interconnected and have certain
dependencies from each other. Due to the runtime is not a rule
exception, replacement of this subsystem generates a large
amount of integration problems.

The integration problems are compounded by the necessity
of legacy project maintenance. The STAND environment
provides a highly specialized C-based model development
language. This language includes some functionality to

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su

simplify DRE simulation (e.g. integrated support of the DRE
data transmitting channels). These features are often
implemented as low-level functions integrated deeply inside
the runtime. Because of the interface limitations imposed to the
new simulation runtime by specifications of the selected
simulation standard, the effective implementation of the
mentioned functionality becomes a serious research challenge.

Il. THE STAND SIMULATION ENVIRONMENT

Modern DRE systems consist of multiple devices
connected by data transfer network which contain dozens of
channels. Development of DRE devices and of the DRE itself
is a distributed process performed by several workgroups and
the device prototypes become ready for integration in different
points of time. To meet the deadlines for DRE development,
the integration testing operations should begin in advance,
when some of the components are not implemented yet [2].

STAND enables incremental DRE gradual integration the
DRE according to the schedule of incoming devices. On early
stages of the DRE integration, most (or all) of the devices are
represented by the simplest simulation models reflecting only a
basic schedule of data exchanges. Then the detail level is
gradually increased upto full-scale models that include
software of real devices and generate appropriate data
matching the one generated by the device prototypes. On the
next step of integration the models are step-by-step replaced by
real devices that perform data exchange through the real
channels.

On every listed stage of the DRE integration, the available
set of devices and models could be analyzed and validated.
This approach provides the abilities to detect and fix existing
device errors in the earliest development phases and to reduce
the DRE development cost subsequently.

The considered simulation environment contains tools
intended to solve the following simulation-related tasks [2]:

1. Development of simulation models of DRE devices
and auxiliary synthetic simulation models (e.g. model of the
external environment);

2. Support for real-time execution of the available DRE
component set including the model-device interactions through
hardware channels;

3. Dynamic visualization of the simulation state and
results in graphical and tabulated form and abilities for human-
assisted control of the simulation;

4. Recording and processing of the simulation results,
interaction with hardware monitors for data exchange channels.

IIl. TRACING CURRENT TRENDS

A. Interface standardization

Simulation as a method for exploration of diverse object
properties and regularities among them outruns the advent of
computers for many years. However, its rapid development
started after the complex mathematical calculations had been
assigned to fast and reliable computers. In the beginning of the

129

1950s, the term simulation acquired the default meaning of
digital computer simulation. Subsequently the simulation was
defined as a combination of designing of the observed system
model and holding the necessary experiment set on digital
computers [3].

The observed system here means a separated part of the
world corresponding to the domain of researcher interests. This
world view is isolated during the experiment and consists of a
component set. Each of these components is characterized by
its property set and the dynamics of their change. Such a
system could exist in reality or be imagined, can receive
information and/or transmit it to its environment [4].

Abstraction that holds a subset of the observed system
properties is called a model. The selected property subset
should meet the objectives of the simulation. The result of
simulation has any sense only in case of the simulation goals
were properly identified and the constructed model is adequate
to these goals [4].

From the very beginning of the simulation history the
observed systems always tended to be represented in deeper
detail level. This tension results in the increasing size and
complexity of developed simulation model. This growth
required a respective performance increase from computer
systems, and this fact resulted in emergence of parallel
simulation systems. These systems share the simulation task
across multiple computing nodes. Typically such systems were
implemented locally within the organization that wanted to use
it (in accordance with this classification STAND is a parallel
system created in the CS Lab) [5].

The complexity of the models was not the only factor
leading to computer simulation tool evolution. The scope of
simulation has been growing either. After new simulation
problem types appeared, the related requirements were
imposed to modeling and simulation tools. For instance,
distributed simulation is often required in case of joint product
development when different product component are produced
by a number of workgroups located in different organizations.
This type of simulation intends encompassing of several
geographically separated simulation systems, which in turn
may consist of a single compute node, or be a parallel system.
Historically, the appearance of this task type led to the creation
of distributed simulation systems that provide an essential set
of services to the simulation participants and ensure its
consistent behavior [5].

The next and the latest commonly recognized step in the
modeling and simulation tool evolution is a standardizing of
the distributed system interfaces. Using of this principle results
in possibility to combine among a variety of independent
simulation systems and create a general model that can be
handled by every distributed system corresponding to the
standard specifications [6].

B. DRE simulation specific

The above classification groups existing simulation tasks
and tools according to node configuration of the underlying
computer system. There are lots of other features that could
serve as a classification criterion. The one that is important in

context of this paper is a range of supported participant types:
syntactic (could be completely represented by its model) or live
participants (represented by external entities). Generally live
simulation type is further separated into human-in-the-loop and
hardware-in-the-loop simulation depending weather the
experiments requires the human presence or the external entity
is a fully automated one.

Hardware-in-the-loop simulation often includes a number
of physical devices, which require their data to be delivered
with the respect to a given period of time (deadline), as the
participants. A meeting of the deadlines in such systems is a
focus of the of real-time system problematic, which are defined
as those systems in which a correctness of the system depends
not only on the logical results of computation, but also on the
time at which these results are produced. Thereby model time
must be synchronized with the astronomical one when the
model interacts with hardware.

A real-time application is usually comprised of a set of
cooperating tasks and they need a reliable prediction of the
worst-case scenario. Apart from satisfying the timing
constraints, another important characteristic of real-time
systems is the notion of predictability.

Real-time systems are usually classified into two categories
based on the nature of deadline, namely, hard real-time
systems, in which the consequences of deadline breaking may
be catastrophic and soft real-time systems, in which the utility
of results produced by a task with a soft deadline decreases
over time after the deadline expires. Examples of hard real-
time systems are avionic control and nuclear plant control.
Telephone switching system and video streaming applications
are examples for soft real-time systems [6].

Besides the support of hard and soft real-time simulation,
the simulation system intended to be used in DRE development
should interact with additional tools providing the following
capabilities:

1. Verification of the DRE devices compliance to the
technical specification;

2. Integrated testing and debugging of distributed DRE
software;
3. Performance and robustness evaluation of the DRE

architecture;

4. Scheduling of data transfers and validation of the
constructed schedules.

IV. DESIGNING THE RUNTIME

The High Level Architecture (HLA) is the conventional
standard in the field of distributed simulation and de facto is
supported by the most of non-distributed simulation tools and
by the community of distributed model developers. This
standard is acceptable for DRE simulation, so it was chosen as
a base standard.

Despite its initial focus on distributed simulation, using the
HLA standard results in some benefits in case of the parallel
simulation system (the nodes are located closely) development
either. The system based on this standard can become a

130

member of the distributed simulation and supports a range of
polytypic simulation models (e.g. as-fast-as-possible synthetic
models and any other types supported by the HLA standard)
out of the box. In addition, the operational power of utilities
devoted to distributed simulation enables easy setup of parallel
simulation system node set.

The HLA standard does not currently address real-time
simulation and HLA compliant simulation could not require
any Quality of Service (QoS) from the underlying middleware
(RTI). Indeed, there are several problems that should be solved
to enable it [8]:

1. No interfaces provided to specify end to end
prediction requirements for federate;

2. Management of underlying operating system(s) is
unavailable;

3. In distributed case, HLA supports two transportation
types only: the reliable one and the best-effort one (usually
encoded with the TCP and UDP network protocols) which are
not suitable for real-time constraints.

These different limitations have crucial impact for real-time
simulation systems where the amount and predictability of RTI
overhead is an important design factor. Thereby the considered
project requires development of an additional data transmitting
layer with a real-time support. Fortunately, there exist a
number of related standards and associated implementations.
One of the most widespread standards in this domain is the
OMG Data Distribution Service (DDS) [9].

The DDS standard defines a large number of QoS policies
for inter-process connection. Considering the need to meet the
constraints of real time, the represented project implementation
should follow the HLA standard specifications in context of
inter-process communication semantics and be based on DDS
standard in context of data transmission protocols.

To summarize the above, the new simulation runtime is
conceptually formed around the HLA simulation standard.
Because of the DRE simulation requires from the runtime some
extra features (such as QoS enabled connections) not specified
by HLA, the additional data transmitting middleware level
(specified by the DDS standard) should underlay the usual
HLA middleware (RTI) and possibly extend its functionality.
STAND consists of a number of computational nodes and this
imposes the resulting combined middleware to be deployed on
each of them.

A. The High Level Architecture standard

The roots for the HLA stem from distributed virtual
environments into which users, possibly at geographically
distant locations, can be encompassed. The HLA standard is a
conceptual heir of Distributed Interactive Simulation (DIS)
[10], which is a highly specialized simulation standard in the
domain of training environments, and is used mostly for
military purposes. The primary mission of DIS is to enable
interoperability among separated modeling and simulation
systems and to allow the joint simulation with the merged
systems participation.

HLA standard remains the DIS principle relevant and
extends it to the idea of polytypic model merging. Thus the
HLA development began in 1993 when the Defense Advanced
Research Projects Agency (DARPA) designated an award for
developing of an architecture that could combine all existing
modeling and simulation system types into one federation
providing the reuse of existing models and simulation utilities.

There are several federation types (so called proto-
federations) in accordance to the encompassed participant set
[11]:

1. The Platform federation type includes DIS-style
training simulations (that is real-time human-in-the-loop
training simulations);

2. The Joint Training federation type stands for as-fast-
as-possible time-driven and event-driven simulation (e.g.
command-level military trainings);

3. The Analysis federation includes as-fast-as-possible
event-driven simulations such as those that might be used in
acquisition decisions;

4. The Engineering federation including hardware-in-
the-loop simulations with hard real-time constraints.

The standard already has a pretty reach history and several
HLA versions have been published since its appearance. Most
of commercial tools currently support HLA version 1516-2000
specification. Some long term projects have being developed
less intensively since of their appearance before this version
have been published and are still specialized in DMSO 1.3
version. The most advanced tools are compatible with the latest
IEEE 1516-2010 (Evolved).

Middleware in computing terms is used to describe a
software agent acting as an intermediary between different
distributed processes. It is connectivity software which allows,
usually, several applications to run on one or several
computational nodes and to interact across a network [6].

The middleware involved in HLA is named the Run Time
Infrastructure (RTI). The RTI is the software implementation
of the HLA Interface Specification. It is a middleware for the
proper functioning of distributed simulation in accordance with
the principles and specifications from HLA standard [11].

B. The Data Distribution Service standard

OMG DDS specifications set the standard of inter-process
communication, which is applicable to a broad class of
distributed real-time and embedded systems (DRE). The basis
of DDS is a data-centric model with the publisher-subscriber
architecture (DCPS). The DCPS model forms layer, which
allows the integrated processes to set a typed shared data or get
the latest its version. As parts of DCPS, the global data space
and namespace are created. The publisher process (the one who
wants to create a shared object) should make the appropriate
entries in the global data and name spaces. Similarly, the
subscriber process can find the proper objects in the global
namespace and access to relevant data. It is important that the
announcement of the need to use the shared data and its direct
use are time separated, and this approach enables the quality of
service connection [7].

131

TABLE |
RTI IMPLEMENTATIONS

RTI Developer License type
ARTIS GAIA | University of Bologna | Open Source’
CERTI ONERA GPL v2 or later
EODiSP P&P Software GPL?
MAK MAK Technologies Commercial
NCWare Nextel Commercial
Portico Portico cbDL?
pRTI Pitch Technologies Commercial
RTI NG Raytheon Commercial

Full license text is available http:/pads.cs.unibo.it/
2General Public License
*Common Development and Distribution License

C. Evaluating of a suitable turnkey RTI implementation

There are a lot of off-the-rack RTI implementations (Table
I) and this fact gives a hope to get some developments from
other projects, learning from their mistakes. Thereby, it was
decided to explore the area in more details. The study was
conducted among the tools, satisfying (at least partially) to the
following criteria:

1. The description of the architecture and principles of
implementation are available;

2. The source code of the product is available.

3. The product continues to maintain and develop;

4. The implementation is used for real-time simulation;
5. The implementation is based on the DDS standard;

Most of the examined tools are commercial, and their
source code is unavailable. Thereby, benefits from the use of
these implementations, taken by the developers of the target
simulation system, are limited to the theoretical base. For
example it is known that NCWare implementation conforms to
DDS standard, and this scheme corresponds to the architectural
ideas founded into the basis of considered project. The study
found a number of open source systems also, and it was
decided to build the target simulation system on the basis of the
most suitable of them.

Unfortunately, all of the listed systems have a certain
drawbacks in accordance with the purposes of the submitted
project. The ARTIS GAIA implementation attracts by its
advanced load balancing mechanism supplementation, but the
license for this product does not allow the free use of its source
code (although it is stated that the project will be fully open in
future) [12]. The open source project EODISP stopped the
development in 2006 [13]. Accordingly, there is no one to
assist in solving of possible development difficulties
encountered. Portico project RTI is implemented using Java
and, due to the language specific, it is badly compatible with
the real-time simulation that is a primary goal of considered
project.

Thereby the best base RTI realization for the development
of the considered simulation system a priori is the CERTI one.
CERTI is distributed under the GPL license, continues to

http://pads.cs.unibo.it/dokuwiki/doku.php?id=pads:download

evolve, and is implemented in C++ (a number of extra bindings
including Java, Python, Fortran and even MATLAB is
currently available). In addition, CERTI could be deployed on
several combinations of platforms (Windows and Linux,
Solaris, FreeBSD...) and compilers (gcc, MSVS, Sun Studio,
MinGW...).

D. CERTI

For years, the French Aerospace Laboratory (ONERA)
develops its own HLA compliant RTI called CERTI. The
project started in 1996 and its primary research objective was
the distributed simulation itself whereas the appeared HLA
standard was the project experiment field. CERTI started with
the implementation of the small subset of RTI services, and
was used to solve the concrete applications of distributed
simulation theory [6].

Since the CERTI project was open sourced in 2002, a large
distributed simulation developer community has been formed
around the project. In many ways due to contributions of
enthusiasts, the CERTI project has grown from basic RTI into
a toolset including a number of additional software
components that may be useful to potential HLA users.

The CERTI project has always served a base for researches
in the domain of distributed simulation, and a number of
innovative ideas have been implemented with its use. Thus,
the problem of confidential data leak was solved in context of
CERTI RTI architecture, and the considered RTI guarantees
secure interoperation of simulations belonging to various
mutually suspicious organizations [14]. The certain interest for
the considered project is a couple of application devoted to
high performance and hard real-time simulation.

In spite of HLA is initially designed to support fully
distributed simulation applications, it provides a framework
for composing not necessarily distributed simulations.
Thereby there was created an optimized version of CERTI
devoted to simulation deployed on the same shared memory
platform and composed simulation running on high-
performance clusters [15].

Some experience could also be adopted from ONERA
project on simulation of satellite spatial system. Each federate
in this federation is a time-stepped driven one. It imposes an
additional requirement of hard real-time: the simulation
system should meet the deadlines of each step and synchronize
the different steps of the different federates [16].

Despite the distribution of commercial products, the project
development is still continuing in accordance with the HLA
simulation standard progress. Thus, CERTI supports HLA
IEEE 1516-2000 version since 2010 in addition to previous
DMSO 1.3 version.

V. WORK SCOPE ANALYSIS

During the searches of the turnkey projects, the well
suitable open source RTI implementation (CERTI) was found.
To meet the real-time system requirement the internal of this
middleware should gain the property of predictability and an
acceptable performance.

132

The first problem could be solved by RTI refining in
according with DDS specifications. During the constructing of
the considered RTI to the DDS middleware, it is important to
remain the ability of usual distributed simulation. The possible
solutions are to implement the optional real-time support or
provide the usual RTI-internal interface to the external
simulation participants whereas staying the real-time simulator
inside.

Test results show that the selected RTI loses to its
commercial analogues [17], and this is largely resulted from its
centralized architecture. Also the centralized architecture could
be a barrier during the refinement related to DDS-compliance.
Devoid of the central component the federated architecture
seems to be more suitable one. However, the best suitable
architecture should be identified in a separate study.
Nevertheless, the architectural changes are necessary and
justified. Fortunately, the CERTI RTI has been already served
as a basis for creating a hard real-time simulator and some
experience could be learned from that project.

There is an extra problem caused by high specialization of
the STAND runtime. In some cases the functionality of the
current STAND runtime could not be simulated even by the
combined HLA&DDS middleware, thereby it should be
injected into the middleware. Integrated support of physical
data transmitting channels is a good example of this case.

Besides the mere building of a new runtime, its replacement
results into a number of integration problems related to other
components of the STAND environment. Each subsystem
provides a certain interface to the others whereas the HLA-
compliant runtime has completely different interface set. The
best and the easiest way to solve the incompatibility problem is
a development of appropriate interface wrappers.

The history of highly specialized standards (and HLA in
particular) demonstrates a certain interface steadiness. Even if
the interface has changed, the modifications are usually related
to the service names and signatures whereas their semantic is
the same. This solution provides an ability to replace the
runtime again to the better HLA-compliant one or disintegrate
some other STAND subsystems into runtime independent
separated projects.

Unfortunately, there are some peculiar cases that could not
be solved in the described manner. These cases require an
embedding the additional hooks into RTI and lead to partial
loss of benefits considered above.

The problem of the legacy project maintenance can also be
considered as an integration problem, but it deserves more
detailed consideration. HLA defines a set of common service
devoted to a wide range of simulation tasks. This service set is
redundant and inconvenient to be used with the usual DRE
simulations whereas the absence of functionalities that could be
useful in this particular task.

Despite all the reasoning related to common integration
problems remains relevant, the legacy project maintenance
problem could be solved with use of another principle. There
could be some STAND subsystems requiring renewal, besides
its runtime. Thereby if there exists any programming language
which is acceptable to DRE simulation, there is a sense in

constructing the HLA-compliant binding for this language and
develop an additional translator for old projects.

In summary, the replacement of the current STAND
runtime with the concept designed reduces to the following
problem set:

1. Replacement of RTI architecture with more complex
and productive one;

2. Development of the acceptable interface wrappers for
other subsystems;

3. Injecting of some additional
required low-level services.

functionality and

VI. CONCLUSION

Using of the HLA distributed simulation standard for
building DRE simulation systems gives a certain benefits to the
developers, namely, automatic ability to execute any HLA-
compliant models and to participate in distributed simulation.
Building of the DRE simulation runtime raises a number of
development problems. The specific of DRE simulation
imposes some additional requirement to the runtime, and
specifications of the HLA standard do not satisfy the
appropriate product. There are two possible solutions: addition
of QoS policies to existing CERTI implementation and using
of the HLA standard over the DDS standard. The considered
solutions were analyzed and a second one was chosen.

Due to existence of some more or less suitable turnkey RTI,
the upcoming development promises to be easier than the
development from scratch. It reduces to refinement of the RTI
architecture, injecting the RTI with some new functionality and
developing of interface wrappers.

REFERENCES

[1] R.L. Smeliansky, A.G. Bakhmurov, and V.A. Kostenko, "DYANA - an
environment for simulation and analysis of distributed multiprocessor
computer systems," Moscow State University, Computational Math. and

Cybern. Dept., 1999.

V.V. Balashov et al., "A hardware-in-the-loop simulation environment
for real-time systems development and architecture evaluation,” in

[2]

133

(31
(4]

(5]
(6]

[71

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

International Conference on Dependability of Computer Systems, 2008,
pp. 80-86.

R.G. Sargent, "Requirements of a modeling paradigm,” in Winter
Simulation Conference, Arlington, USA, 1992, pp. 780- 782.

E.H. Page, "Simulation modeling methodology: principles and etiology
of decision support,” Department of Computer Science, Virginia Tech,
Blacksburg, USA, Ph.D. Dissertation 1994.

R.E. Nance, A history of discrete event simulation programming
languages. Blacksburg, USA, 1993.

E. Noulard, J.Y. Rousselot, and P. Siron, "Spring Simulation
Interoperability Workshop," in CERT]I, an open source RTI, why and
how, San Diego, USA, 2009.

Object Management Group; Object Interface Systems, Inc; Real-Time
Innovations, Inc; THALES, Data Distribution Service for Real-time
Systems, version 1.2., 2007.

M. Adelantado, P. Siron, and Chaudron J.B., "Towards an HLA run-
time infrastructure with hard real-time capabilities," in International
Simulation Multi-Conference, Ottava, Canada, 2010.

Real-Time Innovations, Inc. (RTI), "OMG Data-Distribution Service
(DDS): architectural overview," 2004.

Richard D. Fujimoto, Parallel and distributed simulation systems, 2000.

IEEE Std 1516.1-2000, "IEEE standard for modeling and simulation
(M&S) High Level Architecture (HLA) - federate Interface
specification," 2001.

L. Bononi, M. Bracuto, D’Angelo G., and Donatiello L., "A new
adaptive middleware for parallel and distributed Simulation of
dynamically interacting systems," in Distributed Simulation and Real-
Time Applications, 2004, pp. 178 - 187.

I. Birrer, B. Carnicero-Dominguez, M. Egli, B. Carnicero-Dominguez,
and A. Pasetti, "EODIiSP — an open and distributed simulation platform,"
in International Workshop on Simulation for European Space
Programmes, Noordwijk, the Netherlands, 2006.

P. Bieber, D. Raujol, and P. Siron, "Security architecture for federated
cooperative information systems,” in Annual Computer Security
Applications Conference, New Orleans, USA, 2000.

M. Adelantado, J.L. Bussenot, J.Y. Rousselot, P. Siron, and Betoule M.,
"HP-CERTI: towards a high performance, high availability open source
RTI for composable simulations,” in Fall simulation interoperability
workshop, Orlando, USA, 2004.

B. d’Ausbourg, P. Siron, and E. Noulard, "Running real time distributed
simulations under Linux and CERTI" in European Simulation
Interoperability Workshop, Edimburgh, Scotland, 2008.

L. Malinga and WH. Le Roux, "HLA RTI performance evaluation,” in
European Simulation Interoperability Workshop, Istanbul, Turkey, 2009,
pp. 1-6.

The problem of placement of visual landmarks

Anna Gorbenko Maxim Mornev Vladimir Popov
Department of Mathematics and Department of Mathematics and Department of Mathematics and
Mechanics Mechanics Mechanics
Ural State University Ural State University Ural State University
Ekaterinburg, Russia, 620083 Ekaterinburg, Russia, 620083 Ekaterinburg, Russia, 620083
Email: gorbenko.aa@gmail.com Email: max.mornev@gmail.com Email: Vladimir.Popov@usu.ru

Abstract—Many robotic problems are computationally hard. navigation [15] — [19]) appliance of visual landmarks as an
Implementation of various heuristics for solving such problems additional method allow significantly increase performance of
greatly complicates the development of efficient software for 5 hayigation system. We can use not only artificial landmarks

robotic systems. In recent years among developers of robotic . . .
software formed a direction of the development of individual [20] - [22] but also different objects from environment (see

solvers. Such solvers are designed for specific hard problems.€.9. [23] - [30]).
It should be noted that developed specialized programming Navigation systems based on landmarks are most simple

languages for robotic logic. These languages allow efficient scaleand efficient method of orientation. An appliance of artificial
logic circuits produced by the solver for large robotic complexes. landmarks provides a reliable way of autonomous operations.

On this basis it can be argued that now the main problem in this But f i f artificial land K d either initial
area consists in the developing efficient solvers themselves. In this ut tor appliance or artincial landmarks we need either iniia

paper we consider an approach to design of an efficient solver €quipment of coverage area of the robot or the robot itself
for the problem of placement of visual landmarks. In particular, should have a function of self-installation of landmarks. In
we present a formalization of the problem of placement of hoth cases decreasing of the number of landmarks have signif-
visual landmarks for navigation of mobile robots. We show that je4ny influences on improvement of the robot performance.
this problem is NP-complete. Also we propose an approach to L - -
solve this problem. Our approach based on the construction Another yvay consist ln.an implementation of ngtural Ia_nd—
of a logical model. In our construction we give an explicit Marks. Itis allows to avoid a cost of the landmarks installation.
polynomial reduction from the problem of placing of visual But in this case we need essentially more effective methods of
landmarks to the maximum satisfiability problem. Such approach yisual information processing than for artificial marks (see e.g.
pro;/ldes effective sotl_utlon of the considered problem using a high [31], [32]). In particular, for search even a simple regularity
periormance computing. we need to solve sonféP-hard problem (see e.qg. [33], [34]).
When we do not have sufficiently fast algorithms for solving
such problems, we use some self-learning navigation systems
Many robotic problems are computationally hard. In partigsee e.g. [25]). This leads to fast growth of landmarks data
ular, we can mention planning problems, pattern recognitiobase and, finally, to dramatic drop of performance of on-
pattern matching, localization problems, mapping problemispard computer systems. Therefore, problem of minimizing
SLAM (simultaneous localization and mapping) and manyf interest for both artificial and natural landmarks. In the
others. Implementation of various heuristics for solving sudirst case we need to minimize the cost of installation of
problems greatly complicates the development of efficielindmarks. In the second case we minimize an expense of
software for robotic systems. In recent years among developetsnputational resources for the new landmarks search and for
of robotic software formed a direction of the developmenhe identification of available landmarks. A question about
of individual solvers. Such solvers are designed for specific minimization of the number of used landmarks can be
hard problems [1] — [4]. It should be noted that developefdrmalized as some algorithmic problem where we need to
specialized programming languages for robotic logic [5], [6find an explicit placement of landmarks. This placement must
These languages allow efficient scale logic circuits producedfeguard a navigation of mobile objects in a specified area.
by the solver for large robotic complexes. On this basis it can
be argued that now the main problem in this area consists in ll. PROBLEM DEFINITION
the developing efficient solvers themselves. In this paper weUsually, a problem of placement of visual landmarks in a
consider an approach to design of an efficient solver for thieree dimensional space can be reduced to such problem in a
problem of placement of visual landmarks. two dimensional space. Frequently, an appropriate reduction
Visual navigation is extensively used in contemporary r@an be obtained using the fact that range of heights is too
botics (see e.g. [7] — [11]). In many cases methods of tlsenall in compare with horizontal coordinates (an underwater
visual navigation based on some algorithms of the selectinavigation) or by a sampling with a large step (an aero-
of visual landmarks. Note that even for other approaches (espace navigation). In both cases we can place a set of points,
reactive motion (see, in particular, [12] — [14]) or topologicalvhich corresponds to different heights in the one cell of

I. INTRODUCTION

134

sampling. When the range of heights is too large and horizonhalthis problem we need to find out whether therdlisC X
coordinates have a small variation (a navigation inside sach that for allX,Y € IT we have a following
skyscraper), usually, space is divided on horizontal layers lying XAy =0

in one plane. Thus, without loss of generality, we can consider o
a problem of placement of visual landmarks in the discrete UxenX = U.
spaceZ?, where Z is the set of integers. Also we identify
every element: of Z2 with a square with sides equal to one
and the center im. A set of points inZ?2 which of interest to
navigation we denote byw. Note thatN is not necessarily problem we can assume thatis divisible by three.

a connected area. For instance, we can be interested onI§7etd* L k=3,

in surface facilities and a part of the surrounding area can N = {(n+r—-1)20r —-1)+2i—1),0)|ie U},

be covered by water. Le§ be a set of points inZ? which)

permissible to placement of landmarks. It is natural to assume S={(n+r-1n+r-1+2(j-1)),

that we are dealing with some limited regidd such that m+r—Dm+r—1)[1<j<rh

N C R, S C R. Since the deployment regioR can contain

obstacles or visual landmarks can be visible not from all poinft®f any point

of space, it is natural to assign for each point of theSéls S;=((n+r—1)(n+r—1+2(j—1)), (n+r—1)(n+r—1))
own field of vision which is defined by the function

When n is not divisible by three, the answer is trivially
negative. So, without loss of generality, in the 3-set exact cover

from S consider the triangl&; with vertices in this point and
F:S— 2R points

A= (2 -1y -1
We can suppose that' is given by the sequence of pairs 5= Qe +r=1)(-1),0

consisting of elements of and corresponding subsets. Wend
also consider some constaséitwhich determines a minimal B =Q2(n+r—-1)n+r+j5—2),0).
number of necessary landmarks. Note that the valuel,of
i <m< -

usually, does not exceed 4. In the form of a SatISfIabIh?uTIEZze that for any:, 1 < m < n+r -1, the segment with
problem the considering problem can be formulated as follows:

THE PROBLEM OF PLACEMENT OF VISUAL LANDMARKS (2(n+r—1)(j—1)4+(n+r—1)(n+r—2)+2(m—1),
(VL):

INSTANCE: A finite setR, SC R, NC R, F: S — 2" a
natural parameterk, and a natural constand. and

QUESTION: Is thereT C S such that|T| < k and for all .
y € N there isD C T such that @ +r =D -1+ @ +r—1nt+r—2)+2m,

n+r—1n+r—2)

y € F(x) for all z € D; (n+r—1n+r-—2)),
|D| > d? . s .)
represents a tight space of zero width if and onbypif-r+j ¢
l1l. COMPLEXITY OF VL X;. Assume that the_ signal propagates rectilinear a_m_d define
' F(S;) as a set of points of triangle7; such thatx is visible
Theorem. VL is NP-complete. from S;. As R we consider rectangle, the bottom left corner

Proof. Note thatT C . Therefore, the number of elementsyf which is located at the poird, 0) and a upper right corner
in T is limited by the number of elements # A size OfF() of which is located at the p0|nt

for z € T is limited by the size ofN. It is evident that the
value 2n+r—1)(n+3r—3),2(n+7r—1)(n+7r—1)).

Uzer (1) It is easy to see that values & S, N, F, k, d is defined

correctly and their size polynomially depends from the initial
is computable in polynomial time from the number of eIemeanalta LetT’ be a triangle with vertices;

in T" and the size ofF'(z). So, for the problem VL there is a
polynomial algorithm of checking. Therefore, VL is MP. A;- =2n+r-1)G-1D+n+r—1)n+r-—2),
Now to prove the theorem it is sufficient to show the
hardness of VL. We reduce the 3-set exact cover problem to
VL. The 3-set exact cover problem is a well knowf-hard and

problem [35]. Initial data of this problem is the set

(n+r—1)(n+r—2)),

Bi=Q2n+r-1)G-1)+0m+r—1)(n+r),
U={12,...,n} (n+r—1)(n+r—2).
and the set Note that

Y={X;|1<i<nrX;,CU|X; =3} AiS;=((n+r—1)(n+r—142(—1)—

135

2ln+r—-1)G—-1),(n+r—-D(n+r—-1)) = and

(n+r—=1n+r—-1),(n+r—-1)(n+r—1)), Qnt+r=10 1) +2mn+r-1),0)

is visible from the pointS; if and only if points of the

Aij =((+r=1n+r-1+2(1)~ segments with vertices
2nt+r=DG -1 = (+r=1n+r-2) Qn+r—DG—1)+m+r—Dn+r—2)+2m—1),
m+r—1)n+r—1)—(n+r—1n+r—2) = (41 —1)(n+r—2)
(n+r—1n+r—1). and
S0, 4;8; = (n +r — 1)A’S;. Therefore, @ tr -1 —1)+ (7 — D +r—2)+2m,
A || ALS;. (n+r—1)(n+r—2)
In this cased’; € A;S;. Since not form an obstacle. Therefore, the segments with vertices
B;S;=((n+r—1)(n+r—1+2(j—1))- 2n+r—1)G—1)+2(m —1)(n+r—1),0)
2ln+r—=1n+r+j-2),(n+r-1)(n+r—-1))= and

(~(n+r—Dn+r—1),(n+r—1)(n+r-1)), @ +r =10 —1) +2m(n+r—1),0),

BiS;=((n+r—1)(n+r—1+2(j—1))-
2+ —1)(—1) = (47— 1) +7),
m+r—1n+r—1)—(n+r—1)(n+r—2))=
(—m—r+1n+r—1),

—~

is visible from the pointS; if and only if

—~

m—r+jecXj.
Consider the point
Ni=(n+r—-12(r—-1)+2i—1),0).

it is easy to see thaB) € B;S;. Clearly, in this case It is easy to see that the poif¥; belongs to the segment

Thus, trianglesT; and 7, are similar with the similarity ratio 2 +r =10 - 1) +2m(n+7r—1),0)]
if and only if
2n+r—-DG-1)+2(m—-1n+r—-1) <

(n+r—1)02(r—-1)+2i-1)<

n+r—1.
It is easy to see that for ajl segments with vertices
n+r—1)G -+ m+r—1(n+r—2)+2(m-1),
(n+r—1)(n+r-2) 2n+r—1)(j—1)+2m(n+r—1).
and Hence,
Chn+r—-1DG-1+n+r—1(n+r—2)+2m,
(n+r—1)(n+r—2),

1 <m <n+r—1, give us a partition of the segment; B’

(n+r—1)2(r—-1)+2i—1)—
2n+r—-1D(G-1)—-2(m—1)(n+r—1) >0,
2n+r—-1DG -1 +2mn+r—1)—

into n+r — 1 equal parts. It is evident that’, | = B, where (n+r—1)(2(r—-1)+2i—1)>0.
J< Therefore,
A= Q2m+r=1)G-D+n+r—1)(n+r—2)+2(m-1), 2r—1) 42 —1-2(j—1)—2(m—1) =
(n+r—1)(n+r-2) U242 1212 2m+2=
wherem =1 and % + 2 —2j —2m+1>0,
Bi=Q2n+r-1)G-1)+0n+r—-1)(n+r—-2)+2m, 2j—1)+2m—20r—1)—2i+1=
(ntr—1)(n+r-2) 2 24 2m -2 +2-2+1=
HianglesT, and7 we obtain that points of the segments with 2+ 2m = 2r =2 +120
vertices Leti =m —r + j + a. In this case we have
2 +7r—1)(G —1)+2(m —1)(n+r—1),0) 2a+1>0,

136

—2a+12>0. QUESTION: Is there an assignment of the set of variables

such that in the function
So,a = 0. Thereforei = m — r + j. Clearly, N; belongs to

the segment g(z1,22,. .., Tn)
[(Cn+r—-1DG-1)+2(m—1)(n+r—1),0); the maximum number of clauses is true?
Recently, proposed several genetic algorithms [38] — [41].
Cn+r=10G -1 +2m(n+7r—1),0)] Considered also hybrid algorithms based on combinations of
if and only if genetic algorithms and local search algorithms [42]. Relatively
i=m—r+] high efficiency can be achieved for algorithms based solely on

the local search. Of course, these algorithms run in exponential
Therefore, the pointV; is visible from the pointS; if and time in worst case. But they can relatively fast obtain a solution
only if s € X;. for many Boolean functions arising in practice. So, a reduction
from hard problems to SAT and MAXSAT for its solving
acquires a practical sense. For example, such approach was
Since the problem VL isN\P-complete, there is no polyno- considered for hamiltonian path problem in [43], [44].

mial time algorithm for finding a solution for this problem. Consider a reduction the problem VL to the MAXSAT. For
However, since the considered problem is of significant pragh ;, 1 < i < n, consider a set

tical use, we need to find a fast algorithm for solving this
problem. M, ={p|b; € F(ap)}.

Well known, many problems with practical applicationst js easy to see that the system of sifs 1 < i < n, can be
belong to the class of computational complexit?. Also constructed in polynomial time. Obviously, if for someve

all problems from theNP can be polynomially reduced tohaye a following inequality M;| < d, then the solution for
the problem of satisfiability of a Boolean function (SAT) (segne problem VL is negative.

IV. ALoOGICAL MODEL FORVL

e.g. [36]). This problem can be formulated as follows Thus, in further, without loss of generality, we assume that

BOOLEAN SATISFIABILITY PROBLEM IN CONJUNCTIVE for all i it is true that|)M;| > d. Therefore, for alli we can
NORMAL FORM (SAT): consider the system

INSTANCE: A Boolean function

]\/[i71, Mi72, e
g(x1, T2, ..., Tp)
from

in conjunctive normal form. |MG|([Mi] = 1) ... (|Ms] —d+2)

QUESTION: Is there an assignment of the set of variables (d—1)!
such that pairwise different subsets of the seff; each of which consists

g(x1, 22, ..., 2y) =17 from |M;| — d + 1 elements.

Directly from the definition of0/; ; follows that if for some

The satisfiability problem is a core problem in mathematicgland ar.bltraryj each of setd; ; .contalns at least one nur_nber
f a point of a landmark location, then from the poinptis

logic and computing theory. In practice, SAT is fundamentd!

in solving many problems in automated reasoning, computé’r@\'/\t;le_a: Ieasflhlaﬂdlmarks. ¢ landmark in th

aided design, computer-aided manufacturing, machine vision,. ? Ir)tﬁrtr;]re L1 _b taiipresence Obtspmti ?n mark in the
database, robotics, integrated circuit design, computer geint wi € number. Hence, we obtain tha

chitecture design, and computer network design. Traditional /\ (\/)
methods treat SAT as a discrete, constrained decision problem. MM =) (M| —d42) [€ M, -

A ; : 1< < Bl U i,j
Many optimization methods, parallel algorithms, and practical =J = (d—1)!

techniques have been developed for solving SAT. Recenily.true if and only if from the point; is visible at leastd
in the domain of development of fast algorithms to solvinggndmarks.

SAT was achieved a substantial progress (see, in particularyow we show that
[37]). Most studies have focused on genetic algorithms and

algorithms of local search. Note that significant attention i8 = (/\ ((\/ z) V sp))A
focused both on SAT and its optimization version MAXSAT 1<i<n, leM;
(see e.g. [36]) which can be formulated as follows. I1<r<m+1,

MAXIMUM SATISFIABILITY PROBLEM IN CONJUNCTIVE 1<j< ‘M”‘(lM”*(;)_”l'gllM""*dH)
NORMAL FORM (MAXSAT):

INSTANCE: A Boolean function (A (V @)vos))A

1 < 7 S n, [e Mi,j
g(x1, T2, ..., Tp) 1 <r<m4+l,

in conjunctive normal form. l<j< ‘Mi‘(le’l_&);'l'glM”_dH)

137

V. CONCLUSION AND EXPERIMENTAL RESULTS

In previous section we obtain an implicit reduction from
VL to MAXSAT.
Note that iny the total number of clauses is equal to New algorithms allow ordinary desktop computers to solve
boolean functions in conjunctive normal form, which has more
[Mi|(|Ms| = 1) ... (|Mi| —d +2) +m. than 10000 conjuncts (see e.g. [43]). There is a well known site
(d—1)! on which posted solvers for SAT [45]. Currently on the site
It is easy to see if there is a required placement of landmarRé!blished 16 implementations of algorithms for solving SAT.
then the Boolean function They are divided into two main classes: stochastic local search
algorithms and algorithms improved exhaustive search. All
(/\ \/) A solvers allow the conventional format for recording DIMACS

(/\)

1<t<m
provides a reduction from VL to MAXSAT.

2n(m+1)

1<i<mn, leM,; Boolean function in conjunctive normal form and solve the

1<j<| M(IM""*(CII)_&';‘M”*CI“) ‘ corresponding problem [46]. In addition to the solvers the site
also represented a large set of test problems in the format of

(/\ \/ xy) DIMACS. This set includes a randomly generated problems

1<i<n, le M, of satisfiability.

1<j<| im]\/[i‘*(1)“'(“\/[”*(“’2) ’ For the computational experiments we used heterogeneous

a-1) cluster based on three clusters:

is satisfiable. This obviously implies a satisfiability of the , The cluster of Ural State University (8 computational

Boolean function nodes, Linux, processor Intel Pentium IV 2.40GHz);

/\ (v 21) V $,))A o The cluster umt of Institute of Mathematics and Me-
" chanics, Ural Branch of the Russian Academy of Sci-

—~

<i< >y) .
1 - :47<77Ln L1 Le M, ences (256 computational nodes, Linux, processor Xeon
1 2) 2 |M;|(|Mi|=1)...(| M| —d+2) 3.00GHz) [47] (see also [48]);

=J= (a=1)! o The cluster um64 of Institute of Mathematics and Me-

chanics, Ural Branch of the Russian Academy of Sciences
(124 computational nodes, Linux, dual-core processor
AMD Opteron 2.6GHz bi-processors) [47] (see also [48]).
1| < i < MGl D). (M) d+2) In our experiments we used own genetic algorithm MSAT
=J= (d—1)! and two standard solvers [45] (fgrasp and posit). Computa-
If there is required placement of landmarks, then in tHéonal experiments were carried out on standard tests [45] and
Boolean functiony at least tests, obtained by special generators creating a natural data for
the problem VL and for a number of others robotics problems.
) [Mif(|Mi] —1) ... (|Mi| —d +2) The total was carried out 14 runs of cluster in the format of
(d—1)! 100 nodes on 20 hours. For summarizing final statistics were
clauses is true. selected 200 tests. Chosen tests was countered by three solvers
Suppose, that there is no required placement of landmarks5 modes with constraints on the limit of time
Then there ig andj such that the Boolean function NO restriction;
« 10 seconds;
\/ o « 100 seconds;
l e M, « 500 seconds;
« 1000 seconds.

We found that all three solvers have about the same per-
formance. The best average velocity is showed by fgrasp. A

(A (V z)v-s).
1<i<n, lEMi,j
1<r<m+1

2n(m +1

is false. Therefore for alt either

(\/)V 8

le M, slightly lower average velocity is showed by posit. Genetic

or algorithm showed a worst average velocity. From other hand
(\/ @) V sy we foun_d that algorithms _of Iocal_search are more resource

le M, demanding then the genetic algorithm. In particular, on some

is false. Thus, in the Boolean functianno more then
|MG|(IM;| = 1) ... (|Mi| — d + 2)

d—1) -1

2n(m + 1)

tests fgrasp could not finish the execution.

From our experiments we obtain an important property
of genetic algorithm. Algorithms of local search showing
relatively smooth results on several tests but genetic algorithm
has a significant difference (from 26 seconds to 12 hours) in

clauses is true. Therefore, we obtain a reduction from VL tome during the test execution. The total trend can be described

MAXSAT.

as follows. In many cases run time ranges from few seconds

138

Fig. 3. Robot Kuzma-I. Design of this robot based on the well-known
RC cars. From RC-CAR AT-10ES Thunder Tiger [50] we use only the four
wheel chassis, the high torque DC-MOTOR and a steering servo. The DC-
MOTOR drives the chassis and a steering servo controls the direction. The
electronic system based on SSC-32 microcontroller. Onboard computer based
on a motherboard with x86 compatible processor AMD Geode LX600 for
embedded systems. The robot is equipped with USB web camera Live! Cam
Video IM Pro (VF0410) [52].

Fig. 1. An artificial landmark.

Fig. 2. Semi-artificial landmarks.

Fig. 4. Another modification of Kuzma-Il. The robot is equipped with

. . _modified Lynxmotion [51] robotic arm and 2 x USB web camera Live! Cam
to few minutes. However, on a small set of Boolean functioNgjeq im pro (vF0410).

a run time of genetic algorithm increased to 10-12 hours.
Our experiments have shown that our approach can be

used for deS|gn of an efficient solver for the problem of oqyeqg composed of these mobile robots and a stationary
plagement' of visual Ianc;imarks.' Further advantages we can ﬂ'ﬁ)tnitoring system. In particular, we study different algorithms
by improving our genetic algorithm. of visual navigation based on landmarks. In general, good
_Thefirst author developed a software package for processiiig, i of robotic experiments do not guarantee high efficiency
video data to compute three-dimensional coordinates of ofy 55orithms. Perhaps experiments are conducted in too
jects [49]. This software package is designed for visual navigg,pie environments. Our theoretical results help us to select

tion on landmarks. To date, an intelligent system allowing the, ., riate methods as well as testbeds to demonstrate them.
use of artificial (specially designed) and semi-artificial (locat bome of our robots are able to add their own landmarks

in a special way but not specifically designed) landmarks ?é-g- Fig. 4 and 5). They use a wireless connection to a

various types implemented (e.g. Fig. 1 and 2). supercomputer to run the solver for VL to plan their actions.
Module of visual navigation based on landmarks used as

part of the onboard control system of various modifications

of robots Kuzma-I (e.g. Fig. 3 and 4) and Kuzma-Il (e.g. Fig. ACKNOWLEDGMENT

5 and 6). The onboard control system with module of visual

navigation based on landmarks of a modifications of Kuzma-The work was partially supported by Grant of President

Il (Fig. 5) was demonstrated at the International Exhibitioof the Russian Federation MD-1687.2008.9 and Analytical

INNOPROM - 2010 (15.07.2010 — 17.07.2010). Departmental Program "Developing the scientific potential of
For our experiments on intelligent control systems, we usggh school” 2.1.1/1775.

139

[7] Lowe D. Object Recognition from Local Scale-Invariant Featyi&CV.
1999. P. 1150-1157.

[8] Dudek G., Jugessur Robust Place Recognition using Local Appearance
based MethodsProceedings of 2000 IEEE International Conference on
Robotics and Automation. 2000. P. 1030-1035.

[9] Carneiro G., Jepson A.DMulti-scale Phase-based Local Features
CVPR. 2003. P. 736-743.

[10] Yang G., Hou Z.-G., Liang ZDistributed visual navigation based on
neural Q-learning for a mobile robotinternational Journal of Vehicle
Autonomous Systems. 2006. Vol. 4(2-4). P. 225-238.

[11] Visual navigation system for a mobile robot having capabilities of
regenerating of hidden imagebnited States Patent 4887223.

[12] Graf B. Reactive navigation of an intelligent robotic walking aid
Proceedings of the 2001 IEEE International Workshop on Robot Human
Interaction. 2001. P. 353-358.

[13] Pal P.K., Kar A.Sonar-Based Mobile Robot Navigation Through Su-
pervised Learning on a Neural NeAutonomous Robots. 1996. Vol. 3.
P. 355-374.

[14] Saint-Bauzel L., Pasqui V., Monteil A reactive robotized interface for
lower limb rehabilitation: clinical resultslEEE Transactions on Robotics.

. . . 2009. Vol. 25(3). P. 583-592.

Fig. 5. Robot Kuzma-Il. Design of this robot based on the well-known John ¥5] Angeli A., Filliat D., Doncieux S., Meyer J.-Avisual topological SLAM

5 Robot [53]. By utilizing heavy duty polypropylene and rubber tracks with ~5nq global localization Proceedings of the International Conference on
durable ABS molded sprockets the robot has excellent traction. Itincludes tWo Rqpotics and Automation. 2009. P. 1—6.

12vdc 50:1 gear head motors and the Sabertooth 2 x 5 R/C motor contro:!%l] Angeli A., Filliat D., Doncieux S., Meyer J.-Alncremental vision-

The electronic system based on SSC-32 microcontroller. Onboard computer .« tonological SLAMProceedings of the 2008 IEEE International
of this robot is Asus Eee PC 1000HE. The robot is equipped with modified Conferenge 0?1 Intelligent Robots a%d Systems. 2008. P. 1-6.

I\.f)llé\g(r)n:)“t/:ogr(rjo(b\%g 4?51)1 with wrist rotate and USB web camera Live! Carf']]] Filliat D. Interactive learning of visual topological navigatioRroceed-

’ ings of the 2008 IEEE International Conference on Intelligent Robots and
Systems. 2008. P. 1-7.

[18] Goedeng T., Nuttin M., Tuytelaars T., Van Gool LOmnidirectional
Vision Based Topological Navigatioimternational Journal of Computer
Vision. 2007. Vol. 74(3). P. 219-236.

[19] Vale A., Isabel Ribeiro M.Environment Mapping as a Topological
Representatian Proceedings of the 11th International Conference on
Advanced Robotics. 2003. P. 1-6.

[20] Kazumi O., Hidenori T., Takanori E., Takeshi T., ShigenoriNaviga-
tion using Artificial Landmark without using Coordinate Syst&iippon
Robotto Gakkai Gakujutsu Koenkai Yokoshu. 2003. Vol. 21. P. 3J11.

[21] Samuelsson MArtificial landmark navigation of an autonomous robot
Master ThesisOrebro University, Department of technology, SE-70182.
Orebro, Sweden, 2005.

[22] Hellmann I., Siemiatkowska BArtificial landmark navigation system
International symposium on intelligent robotic systems N 9. 2001. P. 219—
228.

[23] Astrand B., Baerveldt A.-JAn Agricultural Mobile Robot with Vision-

Fig. 6. Another modification of Kuzma-Il. The robot is equipped with a 2~ Based Perception for Mechanical Weed Contraltonomous Robots.

DOF robotic camera (USB web camera Live! Cam Video IM Pro (VF0410)). 2002. Vol. 13. P. 21-35.

[24] Hagras H., Callaghan V., Colley MPrototyping design and learning in
outdoor mobile robots operating in unstructured outdoor environments
IEEE International Robotics and Automation Magazine. 2001. Vol. 8(3).

REFERENCES

P. 53-69.
[1] Rus D., Vona M.Crystalline Robots: Self-reconfiguration with Unit- [25] Hagras H., Colley M., Callaghan \Online Learning and Adaptation
compressible ModulesAutonomous Robots. 2001. Vol. 10(1). P. 107 of Autonomous Mobile Robots for Sustainable Agricultératonomous
124. Robots. 2002. Vol. 13. P. 37-52.

[2] Unsal C., Khosla P.KA Multi-layered Planner for Self-Reconfiguration [26] Jung H.C.Visual Navigation for a Mobile Robot Using Landmarks
of a Uniform Group of I-Cube Module$EEE International Conference __Advanced Robotics. 1994. Vol. 9(4). P. 429-442. .
on intelligent Robots and Systems. 2001. Vol. 1. P. 598—605. [27] Gilg A., Schmidt G:Landmark-orlgnted visual navigation of a mobile

[3] Christensen D., Ostergaard E., Lund H.Metamodule control for the robot IEEE International Symposium on Industrial Electronics. 1993.
atron self-reconfigurable robotic systerRroceedings of the The 8th P. 257-262.

Conference on Intelligent Autonomous Systems. 2004. P. 685-692. [28] Zhu Z., Oskiper T., Samarasekera S., KumaPRcise visual navigation

[4] Dewey D., Srinivasa S.S., Ashley-Rollman M.P., De Rosa M., Pillai P., using multi-stereo vision and landmark matchirgroceedings of the
Mowry T.C., Campbell J.D., Goldstein S.Generalizing Metamodulesto SPIE. 2007. Vol. 6561. P. 656108.

Simplify Planning in Modular Robotic Systen®soceedings of IEEE/RSJ [29] Murrieta-Cid R., Parra C., Devy MVisual navigation in natural
2008 International Conference on Intelligent Robots and Systems. 2008. environments: from range and color data to a landmark-based model

P. 1338-1345. Autonomous Robots. 2002. V. 13(2). P. 143-168.

[5] Ashley-Rollman M., Goldstein S., Lee P., Mowry T., Pillai Meld: [30] Sala P., Sim R., Shokoufandeh A., Dickinsonl®ndmark Selection
A declarative approach to programming ensemblesoceedings of the for Vision-Based NavigationEEE Trans. on Robotics. 2006. V. 22(2).
IEEE International Conference on Robots and Systems. 2007. P. 2794— P. 334-349.

2800. [31] Basri R., Rivlin E.Localization and Homing Using Combinations of

[6] Charron-Bost B., Delporte-Gallet C., Fauconnierltdcal and temporal Model Views Al. 1995. Vol. 78(1-2). P. 327-354.
predicates in distributed system8CM Transactions on Programming [32] Wilkes D., Dickinson S., Rivlin E., Basri RNavigation Based on a
Languages and Systems. 1995. Vol. 17(1). P. 157-179. Network of 2D ImagedCPR-A. 1994. P. 373-378.

140

[33] Popov V.The approximate period problem for DNA alphab€&heoret-
ical Computer Science. 2003. Vol. 304. P. 443-447.

[34] Popov V.The Approximate Period ProbleAENG International Jour-
nal of Computer Science. 2009. Vol. 36(4). P. 268-274.

[35] Garey M.R., Johnson D.£omputers and Intractability. A Guide to the
Theory of NP-completenesd#/. H. Freeman, California, 1979.

[36] Papadimitriou C.H.Computational ComplexityAddison-Wesley Pub-
lishing Company, Reading/Menlo Park, NY, 1994.

[37] Gu J., Purdom P., Franco J., Wah Blgorithms for the Satisfiability
(SAT) Problem: A SurveyDIMACS Series in Discrete Mathematics and
Theoretical Computer Science. 1996. P. 19-152.

[38] Fleurent J.Genetic algorithms and hybrids for graph coloringnnals
of Operations Research. 1996. \Vol. 63. P. 437-461.

[39] Hao J., Dorne RA new population-based method for satisfiability prob-
lems Proceedings of 11th European Conference on Artificial Intelligence.
1994. P. 135-139.

[40] Jong K., Spears WJsing genetic algorithms to solve np-complete prob-
lems Proceedings of the International Conference on Genetic Algorithms.
1989. P. 124-132.

[41] Voorn R., Dastani M., Marchiori EFinding simplest pattern structures
using genetic programmindProceedings of the Genetic and Evolutionary
Computation Conference. 2001. P. 3-10.

[42] Hao J., Lardeux F., Saubion R hybrid genetic algorithm for the
satisfiability problem Proceedings of the 1rst International Workshop on
Heuristics. 2002. P. 102-109.

[43] Iwama K., Miyazaki SSAR-variable complexity of hard combinatorial
problems IFIP Trans. A Comput. Sci. Tech. 1994. Vol. I. P. 253-258.

[44] Plotnikov A.D. A Logical Model of HCP International Journal of
Mathematics and Mathematical Sciences. 2001. Vol. 26(11).

[45] http://people.cs.ubc.cahoos/SATLIB/index-ubc.html

[46] http://www.cs.ubc.cathoos/SATLIB/Benchmarks/SAT/satformat.ps

[47] http://parallel.imm.uran.ru/mvaow/hardware/supercomp.htm

[48] http://parallel.uran.ru/node/6

[49] Gorbenko A.Software for processing video data to compute three-
dimensional coordinates of object®achelor Thesis, Department of
Mathematics and Mechanics, Ural State University, Ekaterinburg, 2009.
(in russian)

[50] http://www.tiger.com.tw/

[51] http://www.lynxmotion.com/

[52] http://support.creative.com/Products/ProductDetails.aspx?%20cat|D=
218&CatName=Web+Cameras&subCatlD=%20846&subCatName=
Live!+Cam+Series&prodID=16904&prodName=
Live!+Cam+Video+IM+Pro+(VF0410)&bTopTwenty=1&VARSET=
prodfaq:PRODFAQ16904,VARSET=CategorylD:218

[53] http://www.lynxmotion.com/c-103-johnny-5.aspx

141

Hand Recognition in Live-Streaming Video

Mikhail Belov

Department of business-informatics
Higher School of Economics
Moscow, Russian Federation

mpbelov@gmail.com

Abstract— The article describes the algorithmic component of the
pattern recognition method for extracting hand patterns from a
video stream. Methods removing excess information from
frames, localizing fragments with a hand and extracting hand
contours to classify them are described.

Keywords-pattern recognition; Hu invariants; Canny detector;
video stream processing

l. INTRODUCTION

One can input data into a computer in a form of graphical
information. There are methods for processing the graphical
information and for treating it not only as a set of dots with
color codes, but also as a container for another data. This fact
gives an opportunity to extend the number of human computer
interaction (HCI) ways. Such systems are described in [5] and

[6].

It is planned to develop a system prototype for direct and
online controlling the graphical objects displayed on a screen.
Currently this idea has been implemented in two types of
systems: sensor screens and “smart boards”. In the first case, a
transparent sensor pad is placed over the screen, which catches
the user’s touches and translates them into control signals to
the processor. Due to an existing technology such screens are
expensive and produced mostly in small and medium formats.
In case of the “smart boards” the projector’s light is not
focused on a usual board, but aimed to a special sensor surface.
Unlike sensor screens, there are large “smart boards” because
of projector, but this approach remains rather expensive and
not suitable as a mass solution. Instead, building such a HCI
system based on a video camera and a projector will reduce the
dependency of the cost from the display size.

The article describes the algorithmic component of the
pattern recognition method for extracting hand patterns from a
video stream.

Il. PREPARING A FRAME

To remove excess information from a frame one can use
the Histogram Backprojection method. In this case a hand is
being searched by its color characteristics. The method can be
applied to search for pixels satisfying the histogram, or to
search a pattern (of a hand image) by shifting the pattern w.r.t.
the initial image. A frame fragment containing the hand image
should be used as a template histogram.

142

In Histogram Backprojection the model (target) and the
image are represented by their multidimensional color
histograms M and | as in Histogram Intersection. A ratio

histogram R, defined as R; = min (? 1), is computed from

the model and image histograms. It is this histogram R that is
backprojected onto the image, that is, the image values are
replaced by the values of R that they index. The backprojected
image is then convolved by a mask, which for compact objects
of unknown orientation could be a circle with the same area as
the expected area subtended by the object. The peak in the
convolved image is the expected location of the target,
provided the target appears in the image [1].

I1l. LOCALIZING A FRAME FRAGMENT WITH A HAND

We can locate a fragment with hand by calculating the
difference image characteristics [4]. We have to use an image
template, which contains a hand picture.

One of possible methods is a square difference matching
method. Perfect match leads to 0 result. Large result means bad
match:

Rsqairs () = Z [T(x',y") —I(x +x',y +y)]?
xl‘y’
Correlation matching methods multiplicatively match the

template against the image so a perfect match will be large and
bad matches will be small or 0.

Recorr(6,) =) [TG,y) - 1+ 2,y + Y
x!'yl
Correlation coefficient matching methods match a template
relative to its mean against the image relative to its mean, so a
perfect match will be 1 and a perfect mismatch will be -1; a
value of 0 simply means that there is no correlation (random
alignments).

Recoers(63) = D TG, y) - I'Ge+ 2,y + ¥

x'y!
Ce ., 1
Ty = Ty = G) Sy TG)
I(x+x,y+y)=
1
=Ilx+x,y+y)—

(W')Zx,yl(x-l'x!y-l_y)

These factors may be normalized [4]. The normalized
methods are useful because they can help reduce the effects of
lighting differences between the template and the image. In
each case, the normalization coefficient is the same:

Z(x,y) = Z T(x',y")?- Z Ix+x",y+y')?
x’,y' x’,y'

IV. EXTRACTING HAND CONTOURS

Then we extract contours from the image using the Canny
detector [2]. The Canny algorithm runs in 5 separate steps.

A. Smoothing: Blurring of the image to remove noise

It is inevitable that all images taken from a camera will
contain some amount of noise. To prevent that noise is
mistaken for edges, noise must be reduced. Therefore the
image is first smoothed by applying a Gaussian filter.

B. Finding gradients: The edges should be marked where the
gradients of the image has large magnitudes

Gradients at each pixel in the smoothed image are
determined by applying what is known as the Sobel-operator.

C. Non-maximum suppression: Only local maxima should be
marked as edges

The purpose of this step is to convert the “blurred” edges in
the image of the gradient magnitudes to “sharp” edges.
Basically this is done by preserving all local maxima in the
gradient image, and deleting everything else. The algorithm is
for each pixel in the gradient image:

1) Round the gradient direction 6 to nearest 45 -,
corresponding to the use of an 8-connected neighbourhood;

2) Compare the edge strength of the current pixel with the
edge strength of the pixel in the positive and negative gradient
direction. l.e. if the gradient direction is north (theta = 90),
compare with the pixels to the north and south;

3) If the edge strength of the current pixel is largest;
preserve the value of the edge strength. If not, suppress (i.e.
remove) the value.

D. Double thresholding: Potential edges are determined by
thresholding

Edge pixels stronger than the high threshold are marked as
strong; edge pixels weaker than the low threshold are
suppressed and edge pixels between the two thresholds are
marked as weak.

E. Edge tracking by hysteresis: Final edges are determined
by suppressing all edges that are not connected to a very
certain (strong) edge

Strong edges are interpreted as “certain edges”, and can
immediately be included in the final edge image. Weak edges
are included if and only if they are connected to strong edges.
The logic is of course that noise and other small variations are
unlikely to result in a strong edge (with proper adjustment of
the threshold levels). Thus strong edges will (almost) only be
due to true edges in the original image. The weak edges can
either be due to true edges or noise/color variations.

143

V. CLASSIFYING THE FOUND CONTOUR

We classify found contours after the extraction. Hu
invariant moments of contours are used for this. Moment is a
gross characteristic of the contour computed by integrating
over all of the pixels of the contour [3]. The (p, q) moment of a
contour is defined as:

n
Mg =) 106Y)xPyP
i=1

Here p is the x-order and q is the y-order, whereby order
means the power to which the corresponding component is
taken in the sum just displayed. The summation is over all of
the pixels of the contour boundary (denoted by n in the
equation).

The moment computation just described gives some
rudimentary characteristics of a contour that can be used to
compare two contours. However, the moments resulting from
that computation are not the best parameters for such
comparisons in most practical cases. In particular, one would
oft en like to use normalized moments (so that objects of the
same shape but dissimilar sizes give similar values). Similarly,
the simple moments of the previous section depend on the
coordinate system chosen, which means that objects are not
matched correctly if they are rotated.

A central moment is basically the same as the moments
just described except that the values of x and y used in the
formulas are displaced by the mean values:

n
Mp.q = Z I(x' y) (xavg)p(y - yavg)q
I1=0

Mo1

where xg,, = Z—;Z and yopg = 52

The normalized moments are the same as the central
moments except that they are all divided by an appropriate
power of mqq:

. = Hpq
pq +q)/2+1
moo(p a)/

The Hu invariant moments are linear combinations of the
central moments.

The following factors are used to detect similarity between
two contours [4]:

L1
11(A,B)=Zm— —5

A mi
i=1

i i
7
L(A,B) =) |mf = m?|
i=1
7

LB =Y =

i=1

1

A
i

B
—m!
A
m;

Here m# and m? are defined as:

mf = sign(h{") - log|hf|,
mi = sign(h{) - log |h{|,

where h# and h?

respectively.

are the Hu moments of A and B,

After classification
with a certain gesture.

VI.

The described image processing methods may be used with
various parameters. It is planned to implement the investigated
algorithm and to choose the best methods among the available
alternatives at the next step of the research. It is also needed to
assess the capabilities of usage Hu moments for hand contour
comparison and similarity detection. As further research of the
described method it is required to compare the contour

system performs the action associated

FUTURE WORK

144

similarity coefficient metrics listed above based on Hu
moments by quality of classification result.

[1]

[2

(31
(4]
[5]

(6]

REFERENCES

M. Swain, D. Ballard, “Color Indexing”. International Journal of
Computer Vision, 7:1, Kluwer Academic Publishers, Manufactured in
The Netherlands, 1991, pp. 11-32.

J. Canny. “A computational approach to edge detection. Pattern Analysis
and Machine Intelligence”, IEEE Transactions on, PAMI-8(6), Nov.
1986, pp. 679-698.

M. Hu, “Visual pattern recognition by moment invariants” IRE
Transactions on Information Theory 8, 1962, pp. 179-187

G. Bradski, A. Kaehler. “Learning OpenCV”. O'Reilly Media. 2008.
Pages: 576.

P. Garg, N. Aggarwal, S. Sofat. “Vision Based Hand Gesture
Recognition”, World Academy of Science, Engineering and Technology
— 49, 2009.

C. Keskin, A. Erkan, L. Akarun, “Real Time Hand Tracking and 3D

Gesture Recognition for Interactive Interfaces Using Hmm”,
ICANN/ICONIPP, 2003.

http://www.oreillynet.com/pub/au/3270
http://www.oreillynet.com/pub/au/3271

3P-1llusion Constructor

Maksim Rovkin, Evgenij Yel'chugin, Maria Filatova

dept. of Mathematics and Mechanics
Urals State University
Ekaterinburg, Russian Federation
e-mail : Maria.Filatova@usu.ru

Abstract—Madonnari, one of the kinds of street art, is very
popular in the world today. Drawings are made on gpavement
and are deliberately distorted in such a way that a illusion of a

three-dimensional object appears when the drawingsilooked at
from a certain point. It is remarkable that many painters use
methods developed in the sixteenth century to makesuch

drawings. Some graphical packages, for example Phasthop,
allow to distort images in such a way that they carbe seen
correctly from a different point. However, such pakages cannot
be used to construct illusions at the junction ofwo plains, and a
viewing point cannot be prescribed. We present a pgram which

makes it possible to construct 3D illusions at thgunction of two

or three plains and to select a point, viewing fromwhich

produces a spatial effect.

Image processing; computer graphics, graphic design;
projective geometry; estimation

. INTRODUCTION

Anamorphosis is an art of construction of delibeat
distorted images which, when looked at from a @enint,
regain their undistorted view. The art of anamogihavas
invented in China and brought to Italy in the s&xith century.
Probably one of the most spectacular and impressiagiples
of anamorphosis is Madonnari — one of the kindstadet art.
Drawing are made on a pavement (we will call suawihgs
3D-illusions) and are deliberately distorted infsacway that
an illusion of a three-dimensional object appeat®emwthe
drawing is looked at a certain angle. The centogat of art in
Italy in the sixteenth century was Madonna, whikhie reason
for the name “Madonnari”.

This kind of art is very popular in our time; moveo,
many businesses use 3D-illusions for advertisingniples of
such illusions is shown in Figure 1. Recently apeziment
was started in Canada, in which the speed of vehics
controlled by an optical illusion made on the roddhis
experiment is conducted by the Fund of Traffic $¢of
British Columbia.)

It is surprising that many painters that draw s on a
pavement use the same methods that were used 409 ago
by their predecessors. Some graphical packagdsasusdobe
Photoshop, have a Perspective tool, which allowsottstruct
3D-illusions in a plane. However, this tool is dp&d to
remove perspective distortions rather than to coostilusions
that appear as a result of perspective distortibasthis reason
it is not possible to prescribe a point, viewingnfr which
produces an illusion. It is not possible eitherctmstruct an

145

illusion from a number of images (or regions of gag) that lie
in different planes. Thus we are not aware of eris¢ of a
graphical package that is designed to constructiil8Biens in

a plane or a number of planes (although we invatighis
guestion specifically). Despite simplicity of readtion, we
found the idea of creating such a graphical toolyve
interesting.

We present a program (a 3D-illusion constructonijtem in
C#, which allows to produce 3D-illusions in a plane

o

Figure 1. Examples of such illusions advertizing

II. MATHEMATICAL MODEL

Suppose that, in three planes, we want to obtaifiLeion
of the image in Picture. Consider a Cartesian syste the
space (see Figure 2). Thus the problem is to amis@
projection of the Picture plane to the coordindsmes.

Let (uy,uy) coordinates of a pixel in Picture plang;\y)
coordinates of a pixel in one of coordinate planes.

Our task is to obtain a projective transformatiaiween
two planes. Such transformation is a rational fiamcof the
form

_ kv kv, +d
| kvrkiy, 1

@
=12

z
AfAzAyida)
| —
/ /.-—"
|~
el 8
Bt »
| Tichure =)
——
.;—'-""'_f
“‘\-._‘H‘__'_'_‘_,_,_,-—
7
Figure 2. a projection of the Picture plane to the

coordinate planes

To find ten coefficientsk , i =12 j =1.5we have to

know a set of five pointsug,u;) and a corresponding set of
points {/1,v,). These sets can be found using geometric view.
we substitute these points in (1) we obtain a systé linear

equations. The variables of this system are caeffis kij ,
i =12 j =1 .5se in an equation.

they can projected to a plane (or planes), whezdllision is
constructed. The output of the program is an infdgeAfter
the output image is printed and viewed from a daeiaint, an
illusion appears.

The results obtained with the program are showfignres
3 and 4. If the image of Figure 3 is printed, cagla and
viewed at a certain point, this produces an illasgiown in
Figure 4. We also note that this program allowsptoduce
cards shown in Figure 5.

Figure 3. Resulting image

Ill. PROGRAMDESCRIPTION

The program works with raster images. The usergiem
the coordinates of the point A and the size offilkewhere the
illusion will be constructed. After that the imageen selected,
which can placed in a 3D space, dimensions canfieddand

146

Figure 4. lllusion image

Figure 5. lllusion card

[1] Richard Hartley, and Andrew Zisserman, “MultipleeMi Geometry in
Computer Vision,” Cambridge University Press 208,607

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	06-yavorsky.pdf
	syrcose11_submission_001.pdf
	syrcose11_submission_002.pdf
	syrcose11_submission_003.pdf
	syrcose11_submission_004.pdf
	I. Introduction
	II. ARTCP and TCP
	III. ARTCP header structure
	IV. ARTCP header processing
	V. Time measurement for TI field in Linux

	syrcose11_submission_005.pdf
	syrcose11_submission_006.pdf
	syrcose11_submission_007.pdf
	syrcose11_submission_008.pdf
	syrcose11_submission_009.pdf
	syrcose11_submission_010.pdf
	syrcose11_submission_011.pdf
	syrcose11_submission_012.pdf
	syrcose11_submission_013.pdf
	syrcose11_submission_014.pdf
	syrcose11_submission_015.pdf
	syrcose11_submission_016.pdf
	syrcose11_submission_017.pdf
	syrcose11_submission_018.pdf
	syrcose11_submission_019.pdf
	syrcose11_submission_020.pdf
	syrcose11_submission_021.pdf
	syrcose11_submission_022.pdf
	syrcose11_submission_023.pdf
	syrcose11_submission_024.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

