

SYRCoSE 2011

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the 5th Spring/Summer Young Researchers’ Colloquium on
Software Engineering

Yekaterinburg, May 12-13, 2011

Yekaterinburg
2011

Proceedings of the 5th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2011), May 12-13, 2011 – Yekaterinburg, Russia:

The issue contains the papers presented at the 5th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2011) held in Yekaterinburg, Russia on 12th and 13th of May,
2011. Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include system programming; static verification and analysis of
programs; programming languages, methods and tools; testing of software and hardware systems;
automata theory; computer graphics and others.

Труды 5-ого весеннего/летнего коллоквиума молодых исследователей в области
программной инженерии (SYRCoSE 2011), 12-13 мая 2011 г. – Екатеринбург, Россия:

Сборник содержит статьи, представленные на 5-ом весеннем/летнем коллоквиуме молодых
исследователей в области программной инженерии, проводимом в Екатеринбурге 12-13 мая
2011 г. Отбор статей производился на основе рецензирования материалов программным
комитетом. На коллоквиум допускались как полные статьи, так и краткие сообщения,
описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: системное программирование;
статическая верификация и анализ программ; языки, методы и инструменты
программирования; тестирование программных и аппаратных систем; теория автоматов;
компьютерная графика и другие.

ISBN 978-5-91474-017-4

© Авторы, 2011

Contents

Foreword……………………………………………………………………………………………………5

Committees / Referees…………………….………………………………………………………………..6

Guest Talk

Crowdsourcing Projects for Research, Education and Better Life
 R. Yavorskiy………………………………………………...……………………………...………8

Biomolecular Computing

tRNA Computing Units and Programming Languages
 N. Odincova, V. Popov……………………………………...……………………………….……10

System Programming

Using Hardware-Assisted Virtualization to Protect Application Address Space Inside Untrusted
Environment

D. Silakov..……………………………………………………………………….………..……...17

Background Optimization in Full System Binary Translation
 R. Sokolov, A. Ermolovich.………………………………………………………………..………25

The ARTCP Header Structure, Computation and Processing in the Network Subsystem of Linux Kernel

A. Sivov, V. Sokolov…….………………………………………………………………..………..31

Information Representation, Search and Reasoning

A New Double Sorting-Based Node Splitting Algorithm for R-Tree

A. Korotkov…………………………...…………………………………………………………..36

Fuzzy Matching for Partial XML Merge
V. Fedotov…………………………………..……………………………...……………………..42

High-level Data Access Based on Query Rewritings

E. Stepalina……………………………………………………………………………………….45

Application of the Functional Programming Tools in the Tasks of Language and Interlanguage Structures
Representation

P. Ermakov, O. Kozhunova……………..………………………………………………………...48

Static Verification and Analysis of Programs

Static Verification Under The Hood: Implementation Details and Improvements of BLAST

P. Shved, V. Mutilin, M. Mandrykin…………..…………………………………………………..54

Detecting C Program Vulnerabilities
A. Ermakov, N. Kushik……………………………………………………………………………61

Model Checking Approach to the Correctness Proof of Complex Systems

M. Alekseeva, E. Dashkova………………...……………………………………………………..65

3

Programming Languages, Methods and Tools

Thorn Language: a Flexible Tool for Code Generation

Y. Okulovsky……………….………………….…………………………………………………..68

One Approach to Aspect-Oriented Programming Implementation for the C Programming Language
 E. Novikov ………………….…………………………………………………………………….74

Component-Based Software Engineering and Runtime Type Definition
 A. Shakurov……………………………………………………………………………………….82

Software Engineering Education

Educational Tests in “Programming” Academic Subject Development

O. Maksimenkova, V. Podbelskiy…….......……………………………………………………….88

Automata Theory

The Parallel Composition of Timed Finite State Machines

O. Kondratyeva, M. Gromov…….………………………………………………………….….…94

Separating Non-Deterministic Finite State Machines with Time-outs

R. Galimullin, N. Shabaldina…...…………………………………………………………....….100

Testing of Software and Hardware Systems

Model Based Conformance Testing for Extensible Internet Protocols

N. Pakulin, A. Tugaenko ….............................………………………………………………….105

Developing Test Systems for Multi-Modules Hardware Designs
M. Chupilko…………….………………………………………………………………………..111

Application-Specific Methods and Tools

Programming for Modular Reconfigurable Robots

A.Gorbenko, V. Popov…………….……………………………………………………………..117

Towards a Real-Time Simulation Environment on the Edge of Current Trends
E.Chemeritskiy, K. Savenkov……………………………………………………………………128

Computer Graphics and Vision

The Problem of Placement of Visual Landmarks

A. Gorbenko, M. Mornev, V Popov…………..…………………………………………………134

Hand Recognition in Live-Streaming Video
M. Belov…………………………..……………………………………………………………..142

3D-Illusion Constructor

M. Rovkin, E. Yel'chugin, M. Filatova…………………………………………………………..145

4

Foreword

Dear participants, we are glad to welcome you on the 5th Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE). This year we have the pleasure of holding
SYRCoSE in Yekaterinburg, the main industrial and cultural center of the Urals Federal District.
The colloquium is hosted by the Ural State University (USU), one of the most prestigious
universities in Russia. The event is organized by Institute for System Programming of RAS
(ISPRAS) and Saint-Petersburg State University (SPSU) jointly with USU and SKB Kontur.

Program Committee has selected 24 papers that cover different topics of software engineering
and computer science. Each submitted paper has been reviewed independently by two or three
referees. Participants of SYRCoSE 2011 represent well-known universities, research institutes
and IT companies such as Institute of Informatics Problems of RAS (IPI RAN), Intel, ISPRAS,
MCST, Moscow State University, National Research Nuclear University “MEPhI”, State
University – Higher School of Economics, Tomsk State University, USU and Yaroslavl
Demidov State University.

We would like to thank all the participants of SYRCoSE 2011 and their advisors for interesting
papers. We are also very grateful to the PC members and the external reviewers for their hard
work on reviewing the papers and selecting the program. Our thanks go to the invited speakers,
Petr Skobelev (SEC "Knowledge Genesis") and Shihong Huang (Florida Atlantic University).
We would also like to thank our sponsors, Russian Foundation for Basic Research (grant 11-07-
06013-г) and Microsoft Research. Finally, our special thanks to Irina Voychitskaya (SKB
Kontur), Maria Rudnichenko (SKB Kontur) and Tatyana Perevalova (USU) for their invaluable
help in organizing the colloquium in Yekaterinburg.

Sincerely yours

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
May 2011

5

Committees

Program Committee Chairs

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS Andrey N. Terekhov – Russia

Saint-Petersburg State University

Program Committee

 Habib Abdulrab – France
National Institute of Applied Sciences, INSA-Rouen Igor V. Mashechkin – Russia

Moscow State University

 Sergey M. Avdoshin – Russia
Higher School of Economics Alexander S. Mikhaylov – Russia

National Research Nuclear University "MEPHI"

 Eduard A. Babkin – Russia
Higher School of Economics Valery A. Nepomniaschy – Russia

Ershov Institute of Informatics Systems

 Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod Ivan I. Piletski – Belorussia

Belarusian State University of Informatics and
Radioelectronics

 Efim M. Grinkrug – Russia
Higher School of Economics Vladimir Yu. Popov – Russia

Ural State University

 Maxim L. Gromov – Russia
Tomsk State University Ruslan L. Smelyansky – Russia

Moscow State University

 Vladimir I. Hahanov – Ukraine
Kharkov National University of Radioelectronics Valeriy A. Sokolov – Russia

Yaroslavl Demidov State University

 Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University Vladimir V. Voevodin – Russia

Research Computing Center of Moscow State University

 Oleg R. Kozyrev – Russia
Higher School of Economics Mikhail V. Volkov – Russia

Ural State University

 Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS Rostislav E. Yavorsky – Russia

Microsoft

 Yury S. Lukach – Russia
Ural State University Nina V. Yevtushenko – Russia

Tomsk State University

 Tiziana Margaria – Germany
University of Potsdam Vladimir A. Zakharov – Russia

Moscow State University

Organizing Committee Chairs

 Alexander S. Kamkin – Russia
Institute for System Programming of RAS Irina A. Voychitskaya

SKB Kontur

Organizing Committee

 Yury S. Lukach – Russia
Ural State University Maria A. Rudnichenko

SKB Kontur

 Tatyana V. Perevalova
Ural State University Mikhail V. Volkov

Ural State University

 Vladimir Yu. Popov – Russia
Ural State University

6

Referees

Vladimir BASHKIN Valery NEPOMNIASCHY

Victor GERGEL Dmitry PAVLENKO

Efim GRINKRUG Alexander PETRENKO

Maxim GROMOV Ivan PILETSKI

Vladimir HAHANOV Vladimir POPOV

Alexander KAMKIN Svetlana PROKOPENKO

Vsevolod KOTLYAROV Alexey PROMSKY

Victor KULIAMIN Natalia SHABALDINA

Natalia KUSHIK Valery SOKOLOV

Egor KUZMIN Maria VETROVA

Alexander LETICHEVSKY Mikhail VOLKOV

Tiziana MARGARIA Rostislav YAVORSKY

Artem MELENTYEV Nina YEVTUSHENKO

Alexander MIKHAYLOV Vladimir ZAKHAROV

7

Crowdsourcing Projects for Research,
Education and Better Life

Extended abstract

Rostislav E. Yavorskiy
Vice President, Models and Algorithms

Witology, http://witology.com
Office 215, Building 3, Kapranova Per.

Moscow, 123242, Russia

Abstract. This paper provides a brief introduction into two open
source projects in the area of Computer Science and Software
Engineering in Russia

Crowdsourcing, open source projects, software engineering
education, computer science, DOM API testing, wild fires
monitoring

I. INTRODUCTION
According to Wikipedia [1] “Crowdsourcing is the act of

outsourcing tasks, traditionally performed by an employee or
contractor, to an undefined, large group of people or
community (a "crowd"), through an open call.” This paper
describes two initiatives of this format, where a wide
community of students and young researchers has been invited
to participate in solving a big and important problem. The both
projects are still active, so another goal of this paper is to
attract new activists to join.

II. DOM API TESTING FOR CONFORMANCE TO W3C
STANDARD

Document Object Model Application Programming
Interface (DOM API) standard specifies an interface for
accessing and manipulating documents programmatically in
Web browsers, see [2]. W3C group provides conformance tests
for DOM API; statistics on test case numbers is presented in
[5], see table 3. We just mention here that the standard
specifies 946 methods and attributes, and some modules are not
covered by the test suite at all.

A very rough estimate shows that deep and detailed
analysis and test development for a DOM element may require
up to one working week, so development of a full test suite
would require approximately 20 men-years.

The goal of our project is to involve wide community into
the work of creating the complete test suite, see [3].

A. Research
Creating test suites with a good coverage metrics is a

challenging research task. One may start with [4-5] and then
follow the references.

B. Education
This project could be used as a good topic for course paper,

diploma or even PhD thesis by students of Computer Science
and Software Engineering departments of universities.

C. Better life
Taking into account the role of Internet in our life, there is

no need to say much on justifying the importance of robustness
and interoperability of Web browsers.

III. USING SATTELITE IMAGES FOR MONITORING OF WILD
FIRES

Wild fire is a regular phenomenon, which causes extensive
damage both to property and human life. Satellite images
provide a good tool for studying, analyzing, and predicting
wild fires. A huge amount of satellite data is available online,
see e.g. MODIS page [6].

Our project [7] is aimed at involving wide community of
students and researchers into the work of analyzing the satellite
images and developing tools and algorithms for better
monitoring and predicting wild fires.

A. Research
There are four rather independent research areas, related to

this project.

• Scientific Databases. See e.g. project on
“Environmental Scenario Search Engine” [8].

• Image Recognition. See Open CV project for more
[9-10].

• Scientific Data Management and Visualization.
See e.g. Scientific Data Set project [11].

• Domain specific research. For example, models
and critical factors for wild fires appearance and
spreading.

B. Education
Similarly, this project provides numerous interesting

examples to be used at the relevant courses in universities.

The work described in this paper is partially sponsored by Microsoft Rus
and Microsoft Research

8

C. Better life
The importance of this project is obvious.

REFERENCES
[1] Wikipedia, The Free Encyclopedia, Crowdsourcing

 http://en.wikipedia.org/wiki/Crowdsourcing
[2] Document Object Model, http://www.w3.org/DOM/
[3] DOM API Testing for conformance against W3C standard,

http://domapitesting.codeplex.com
[4] DOM API Contracts and Test Suite Development Using Code Contracts

and Pex. Research Report. Institute for System Programming, Russian
Academy of Sciences (ISP RAS) by order of Microsoft Research,
November 2009. See http://domapitesting.codeplex.com/documentation

[5] Test Development for DOM Support in Internet Browsers. Research
report. Institute for System Programming, Russian Academy of Sciences

(ISP RAS) by order of Microsoft Research, June 2010. See
http://domapitesting.codeplex.com/documentation

[6] MODIS, Moderate Resolution Imaging Spectroradiometer,
http://modis.gsfc.nasa.gov/

[7] Monitoring of Wild Fires Project (in Russian) http://gis-
lab.info/projects/fires.html

[8] Open-source project Environmental Scenario Search Engine,
http://esse.wdcb.ru/

[9] И. Лысенков, Распознавание сгоревших территорий с помощью
деревьев решений и OpenCV, http://gis-lab.info/qa/burnedarea-
opencv.html

[10] Open Source Computer Vision library,
http://opencv.willowgarage.com/wiki/

[11] SDS: Scientific DataSet library and tools, http://sds.codeplex.com/

The work described in this paper is partially sponsored by Microsoft Rus
and Microsoft Research

9

tRNA Computing Units and
Programming Languages

Natalya Odincova
Department of Mathematics and

Mechanics
Ural State University

Ekaterinburg, Russia, 620083
Email: odincova.antalya@gmail.com

Vladimir Popov
Department of Mathematics and

Mechanics
Ural State University

Ekaterinburg, Russia, 620083
Email: Vladimir.Popov@usu.ru

Abstract—In this paper we consider some new computing units
for DNA-based computers. Construction of such unit essentially
based on properties of tRNA. Therefore, we call them as tRNA
computing units.

I. I NTRODUCTION

In the recent years several new ideas have been developed
to use non electronic natural phenomena for real, efficient
computation. In classical electronic-based computations the
information is stored and modified bitwise by electric and
electromagnetic means. It is typical for this kind of com-
putations that the number of steps performed per time unit
is huge but the number of processors running in parallel is
small. The main objective for the new approaches mentioned
above is not to speed up the number of steps per time unit
but to increase the degree of parallelism considerably. In
1985 D. Deutsch [1] proposed computers using quantum-
physical effects to store and modify information. The quasi-
probabilistic physical effect of quantum parallelism and mutual
dependences of between all bits (coherence effects) allow
to construct quantum algorithms that solve certain problems
faster than any known probabilistic algorithm. In [1] Quantum
Turing Machines are introduced as a theoretical model of such
a kind of computation. In [2] quantum machine algorithms for
the discrete logarithm and for integer factoring are given which
run in polynomial time. In 1994 different approaches came up
that used biological properties of DNA strings to store and
modify information. The general idea is to use a large number
of DNA strings as processors which compute in parallel. In
[3] P. Pudĺak introduced Genetic Turing Machines that are
probabilistic machines which can simulate the evolution of a
population of strings using two special operators controlling
the inheritance and the survival of strings. In this model on
each of the randomly chosen paths one string is processed.
Also in 1994, L. Adleman [4] used biological experiments
with DNA strings to solve some particular instances of the
directed hamiltonian path problem which is considered to be
intractable because of itsNP-completeness. In [5] – [7] R.
Lipton showed how to extend this idea to solve any problem
and discussed the practical relevance of this approach. He
defined a model of biological computing that has, besides the

classical means, the ability of manipulating large collections
of DNA strings. Performing one of the special operations
on a test tube means some simple manipulation of each of
the strings in the test tube. In that way each DNA string
corresponds to a piece of information, and all these pieces
can be modified in parallel. At current DNA manipulation
technology levels, DNA computing provides no advantage
over electronic computers, for example, when encoding the
computing task with DNA molecule in Adlemans directed
hamiltonian path problem, if the n is equal to 100, the amount
of DNA required would be larger than the weight of the earth.
There is not enough room for improvement on algorithm to
make the number of DNA molecules practically small. At this
stage, some people began to worry about the directions of
DNA computing study. However, in other sub-fields of DNA
computing, great progress has been made. There are currently
several research disciplines driving towards the creation and
use of DNA nanostructures for both biological and non-
biological applications. These converging areas are:

• the miniaturization of biosensors and biochips into the
nanometer scale regime;

• the fabrication of nano-scale objects that can be placed in
intracellular locations for monitoring and modifying cell
function;

• the replacement of silicon devices with nano-scale
molecular-based computational systems, and the appli-
cation of biopolymers in the formation of novel nano-
structured materials with unique optical and selective
transport properties.

DNA computing employs DNA molecule as a main resource
to fulfill computing tasks. However, the concept of primary
DNA computing unit keeps obscure. It is recently realized
that there are multiple forms of basic DNA computing units.
Adleman uses short oligonucleotides to encode mathematical
problems. The computing process is mainly performed in the
form of hybridization. Ligation and other molecular manipula-
tion steps are used for output abstraction. The correct answer
is hidden in a vast amount of different hybridization results.
Rothemund proposed a Turing machinelike DNA computing
unit [8]. In [9] – [11] published another study in which

10

an autonomous programmable DNA automaton is created. In
particular, in [9] – [11] for DNA automaton used a double-
stranded DNA as input, endonuclease and DNA ligase as
main hardware, transition molecules as software, thus creating
a two-state molecular finite automaton with a two-symbol
input, eight transition rules and 765 syntactically distinct
programs. DNA self-assembly has become one of the most
important directions for DNA computing [12] – [19]. Because
of its universal computing capability, DNA assembly provides
another avenue for universal DNA computer development.
DNA computing by self-assembly is basically a tiling process,
and the tile types can vary a lot. The tiles can be formed
with several singlestranded oligos, and each tile can have
different sticky DNA ends for a number of combinations with
other same or different tiles. The tiling can be designed in
a twodimensional or three-dimensional way, and the scale
for tiling should also be able to control. DNA assembly
can be completely programmed, though molecular biology
experiments are still a bottle-neck for large scale assembly.
In [19] authors brought a new landscape for this avenue.
Combinatorial cellular automata also used in designing any
tiling shapes. Besides, the natural affinity of DNA to bind with
proteins, some types of small molecules, even metal atoms,
makes it possible that assembled DNA can work as an inherent
or transient matrix for novel computing devices. In [20] – [23]
published a study in ribozyme unit research area. Ribozyme is
a piece of nucleic acid fragment with unique three-dimensional
structure that has an enzymatic ability to cut specific comple-
mentary oligos as substrate. If another oligo binds with the
ribozyme and prevents it from forming enzymatic conforma-
tion, the ribozyme stays in an inactive form. In [20] – [23]
founded ribozymes that can be easily manipulated as logical
gates. Thus such ribozyme can mimic conventional electronic
computing devices and theoretically develop universal DNA
computing system. Ribozymes can work as automaton, though
for the time being ribozyme or deoxyribozyme automaton is
still in its infancy. Ribozymebased DNA computing unit may
be extremely useful in designing logical computing devices in
the future, for example, single-molecule logical gate. In [24],
[25] also trying to employ ribozyme-based DNA computing
as a potential vehicle forin vivo DNA computing. Instead of
making ribozymes into logical gates or automata, in [24], [25]
ribozymes used to build simple automata that may be easier for
in vivousage. Membrane computing [26], [27] can be regarded
as a unique biological computing system. A cell is the basic
unit for membrane computing system. This unit is not a DNA
computing unit. However, membrane system provides another
sort of self-assembly tile, and each such unit can hold DNA
in it and may be able to translocate DNA molecules between
each unit in the future, so we would like to treat such unit
as a special DNA computing unit. It might be also called cell
computing, a natural distributed architecture of a computing
unit where any other DNA computing unit processes might be
embedded. Since no kind of artificial membrane computing
systems has been tested in the form of biochemical or physical
biochemical experiments, it is likely that the natural cells may

be firstly tried by cell molecular biology manipulations. So
somein vivo DNA computing technology may be needed to
develop beforehand.

In this paper we consider some new DNA computing units.
Construction of such unit essentially based on properties of
tRNA. Therefore, we call them as tRNA computing units.

II. tRNA COMPUTING UNITS

Transfer RNA (tRNA) is RNA that transfers a specific active
amino acid to a growing polypeptide chain at the ribosomal
site of protein synthesis during translation. tRNA has a3′

terminal site for amino acid attachment. This covalent linkage
is catalyzed by an aminoacyl tRNA synthetase. It also contains
a three base region called the anticodon that can base pair
to the corresponding three base codon region on mRNA.
Each type of tRNA molecule can be attached to only one
type of amino acid, but because the genetic code contains
multiple codons that specify the same amino acid, tRNA
molecules bearing different anticodons may also carry the
same amino acid. An anticodon [28] is a unit made up of three
nucleotides that correspond to the three bases of the codon on
the mRNA. Each tRNA contains a specific anticodon triplet
sequence that can base-pair to one or more codons for an
amino acid. To provide a one-to-one correspondence between
tRNA molecules and codons that specify amino acids, 61 types
of tRNA molecules would be required per cell. However,
many cells contain fewer than 61 types of tRNAs because
the wobble base is capable of binding to several, though
not necessarily all, of the codons that specify a particular
amino acid. A minimum of 31 tRNA are required to translate,
unambiguously, all 61 sense codons of the standard genetic
code [29].

The main function of tRNA is to recognize a fragment
of single-stranded DNA molecule which consists of three
nucleotides. As a result of such action is established a
correspondence between the triplet of nucleotides of DNA
nucleotides and a triple contact element of the tRNA molecule.
In vivo tRNA molecule used for the amino acids synthesis.
However, at leastin vitro using special enzymes, we can stop
the natural process of protein synthesis at the stage of reading
nucleotide triplets of the DNA molecule and start the process
of reading information from the tRNA molecules. As a result,
we obtain a new DNA molecule. In the classical model of
tRNA function we do not get anything interesting. In view of
one-to-one correspondence between triples of DNA and tRNA
we simply obtain a copy or some subsequence of the original
DNA molecule. More precisely,in vitro we can produce any
of following operations. Let

F [P](x) = y

whereF [P](x) is a function with a parameterP of the variable
x defined as follows:

x = x[1]z[1]x[2]z[2] . . . x[n]z[n]x[n + 1],

y = z[1]z[2] . . . z[n],

11

z[i] ∈ P ⊆ P = {UUU, UUC,UUA,

UUG,UCU,UCC,UCA, UCG,

UAU, UAC, UGU, UGC, UGG,

CUU,CUC,CUA, CUG,CCU,

CCC, CCA,CCG,CAU, CAC,

CAA, CAG,CGU,CGC, CGA,

CGG,AUU, AUC, AUA, AUG,

ACU,ACC, ACA,ACG,AAU,

AAC,AAA,AAG,AGU,AGC,

AGA, AGG,GUU, GUC, GUA,

GUG, GCU,GCC, GCA, GCG,

GAU,GAC, GAA,GAG,GGU,

GGC, GGA,GGG}+,

1 ≤ i ≤ n,

x[j] ∈ {A,U, C, G}∗,

1 ≤ j ≤ n + 1.

Note that in vitro the length of each wordx[j] depends on
the specific experimental conditions and the presence in this
words subwords from

{UAA,UGA, UAG}.

In general case we can suppose that the length ofx[j] is an
arbitrary number.In vivo

x[j] ∈ {UAA,UGA, UAG}∗.

So, we obtain some set of tRNA computing units each of
which is given by some operationF [P](x). We call them as
classical tRNA computing units.

Complete sets of tRNAs from one organism, including
at least one isoacceptor species for each of the twenty
amino acids, are known for several eubacteria (Mycoplasma
capricolum, Bacillus subtilis, Escherichia coli), yeast (Sac-
charomyces cerevisiae) and chloroplasts (Euglena gracilis,
Marchantia polymorpha, Nicotiana tabacum) or mitochondria
(Torulopsis glabra, ratus ratus). The number of genes for a
particular isoaccepting tRNA varies depending on the organ-
ism. Although these genes might have the same primary struc-
ture, it is more common that isoacceptor tRNAs feature the
same anticodon but slightly differing sequences. In yeast, for
example, the two tRNAphe

GAA [31] and the two tRNAthr
IGU [32]

are identical except two nucleotides. Compensatory mutations
frequently occur in the case when the difference between two
isoacceptors is located in a stem. Again in yeast tRNAphe, an
A-U base pair in the amino acid acceptor stem is exchanged
for a G-C pair. The same replacement is found in yeast tRNA.

Transfer RNA is the most extensively modified nucleic acid
in the cell. Modified nucleotides are contained in tRNAs from

all three phylogenetic domains (archaea, bacteria, eucarya
[33], [34]). The modifications are not introduced during tran-
scription, but are formed after the synthesis of the polynu-
cleotide chain, serving for an improvement of the specificity
and efficiency of tRNA biological functions. To date, more
than eighty modified residues have been discovered and their
chemical structures revealed [35]. Modified nucleotides are
located at 61 different positions in tRNAs, mainly in loop
regions. A large variety is present in the anticodon area,
especially in the first position of the anticodon (position 34),
and one base3′ to the anticodon (position 37). Apart from
one exception (archaeosineat position 15 in archael tRNAs
[36], all hypermodified residues are found in this region.
Minor modifications like methylated or thiolated derivatives
are usually situated outside the anticodon, with only one or two
kinds of modified nucleotides present at each position. Some
are common to almost all species, such as Dihydrouridine
in D loops and Ribothymine in T loops, whereas others are
characteristic of specific tRNAs. Examples are found in the
hypermodified wybutosine residue (a guanosine derivative)
at position 37 in almost all eukaryotic tRNAphe (except
that from Bombyx moriand Drosophila melanogaster) and
queueosine (another complicated post-transcriptional modifi-
cation of guanosine) at the first anticodon position of certain
tRNAs specific for tyr, his, asn and asp from eubacteria
and eukaryotes. In both domains, modification takes place
at different stages during the processing of precursor tRNA,
depending strongly on the concentration of the substrate as
well as on both the amount and the activity of tRNA-modifying
enzymes. Several studies have been carried out on precursor
tRNAtyr. The biosynthesis inXenopus laevis oocytesinitiated
by injection of the yeast tRNAtyr gene into either the nucles or
the cytoplasma revealed that most base modifications occur in
a sequential fashion in the nucleus before splicing [37], [38].

In many cases, the third nucleotide of the contact element
of mutant tRNA is not functional. Non-functionality of third
nucleotide of the contact element is connected with various
mutations that lead to changes in the secondary and the tertiary
structures of tRNA. It should be noted that these changes
are stable. Note also that these mutations are quite common.
In particular, the synthesis of some vital proteins ofHomo
Sapiensis only possible with the assistance of some mutant
tRNA. The classical transformation

XY Z → XY Z

for some such mutant tRNAs can be represented in form

XY → XY Z

in case when a third nucleotide of tRNA contact element does
not functional for the original DNA and for some other tRNAs
can be represented in form

XY Z → XY

in case when a third nucleotide of tRNA contact element
does not functional for the new DNA [30]. So, we obtain the

12

following set of relations:

S = {UUU = UU,

UUC = UU, UUA = UU, UUG = UU,

UCU = UC, UCC = UC, UCA = UC,

UCG = UC, UAU = UA,UAC = UA,

UGU = UG,UGC = UG,UGG = UG,

CUU = CU,CUC = CU,CUA = CU,

CUG = CU,CCU = CC,CCC = CC,

CCA = CC,CCG = CC,CAU = CA,

CAC = CA, CAA = CA, CAG = CA,

CGU = CG, CGC = CG, CGA = CG,

CGG = CG, AUU = AU,AUC = AU,

AUA = AU,AUG = AU,ACU = AC,

ACC = AC,ACA = AC,ACG = AC,

AAU = AA,AAC = AA,AAA = AA,

AAG = AA,AGU = AG, AGC = AG,

AGA = AG, AGG = AG, GUU = GU,

GUC = GU,GUA = GU,GUG = GU,

GCU = GC,GCC = GC,GCA = GC,

GCG = GC,GAU = GA, GAC = GA,

GAA = GA, GAG = GA, GGU = GG,

GGC = GG, GGA = GG, GGG = GG}

where
XY Z = XY

denotes the pair
XY Z → XY,

XY → XY Z.

We can produce any of following operations. Let

G[S, P](x) = y

whereG[S, P](x) is a function with parametersS and P of
the variablex defined as follows:

x = x[1]x[2] . . . x[n],

y = y[1]y[2] . . . y[n],

y[i] =



z, x[i] → z ∈ S ⊆ S

x[i], y[i] ∈ P ⊆ P

empty word

So, we obtain some set of tRNA computing units each of
which is given by some operationG[S, P](x). We call them
as mutational tRNA computing units.

The frequent occurence of non-canonical G-U base pairs
[39] is a noticeable feature of stem regions. Since their first
discovery in [40], other possible non-canonical pairs (for
example A-A, C-C, C-U, G-A, U-U, U-Y) have been detected
in the stems of various tRNAs [41]. G-U pairs, however, occur
with the highest frequency. As to stems, a frequently occuring
length can be attributed to loops as well. Anticodon and T
loops contain seven nucleotides, whereas D loops and variable
regions are areas of various lengths. An important discovery
regarding the primary structure was made in the early 1970s.
Certain positions in tRNAs are occupied by invariant or semi-
invariant nucleotides.

Insights concerning characteristic behaviour of natural
tRNA molecules were subsequently applied to the design
of artificial tRNA molecules [30]. Using the complete sets
of identity elements of some E. coli tRNAs as sequence
constraints in inverse folding, a large amount of thermodynam-
ically very stable sequences was obtained and subsequently
sorted out due to inefficient folding behaviour.

Genes of interest can be selectively metallized via the
incorporation of modified triphosphates [42]. These triphos-
phates bear functions that can be further derivatized with
aldehyde groups via the use of click chemistry. Treatment of
the aldehyde-labeled gene mixture with the Tollens reagent,
followed by a development process, results in the selective
metallization of the gene of interest in the presence of natural
DNA strands.

In [43] reported a simple solution based method for the
gold (Au) metallization of DNA resulting in a Au nanowire
network. Advantage of solution based approach is that it
allows the removal of excess gold (Au+3) ions by extraction
with tetraoctylammonium bromide (TOAB) in order to avoid
non specific metallization. Further it has been shown that Au
metallized DNA obtained in aqueous phase can be transferred
to organic phase using hexadecyl aniline (HDA). Au metal-
lized DNA has potential application in nanoscale devices.

Also a number of small organic ribonucleases have been
synthesized with rigid polycationic structures containing an
aromatic framework with two residues of bis-quaternary salts
of 1,4-diazabicyclo[2.2.2]octane (DABCO) bearing various
substituents [44]. The compounds carrying positively charged
groups connected via rigid linker are expected to bend the
sugar-phosphate backbone and can stimulate the intramolecu-
lar phosphoester transfer reaction.

Since we can use artificial nucleotides and artificial tRNA
molecules, we can consider artificial tRNA computing units. In
this case we consider some alphabetΣ and the set of relations

Q = {X1Y1Z1 → X1Y1Z1,

X2Y2 → X2Y2Z2,

X3Y3Z3 → X3Y3 |

Xi, Yi, Zi ∈ Σ, 1 ≤ i ≤ 3}.

13

We can define following operations. Let

H[Q](x) = y

where H[Q](x) is a function with a parametersQ of the
variablex defined as follows:

x = x[1]x[2] . . . x[n],

y = y[1]y[2] . . . y[n],

y[i] =


z, x[i] → z ∈ Q ⊆ Q

empty word

We obtain the set of tRNA computing units each of which is
given by some operationH[Q](x). We call them as artificial
tRNA computing units.

III. tRNA PROGRAMMING LANGUAGES

Let k ≥ 0 and m ≥ 1 be variables for natural numbers,
let a, b ∈ {0, 1}, let x be a word variable and letT , T1 and
T2 be set variables. LetI(x) ∈ {0, 1}∗ be the contents of
the word variablex, and letI(T) ⊆ {0, 1}∗ be the contents
of the set variableT in a given moment. We define the cut
operation\ by \av = v and\∆ = ∆ where∆ is the empty
word. Different types of DNA-computers use the following
instructions with set operations and conditions with set tests
[45].

T = T1 ∪ T2,

I(T1) ∪ I(T2);

T = In(k),

{0, 1}k;

T = T1 · T2,

I(T1) · I(T2);

T = \T1,

{\z | z ∈ I(T1)};

T = Sw(T1),

{y | ∃v∃w(vyw ∈ I(T1))};

T = a · T1,

{a} · I(T1);

T = Eq(T1 ·m · a),

{vaw | (v0w ∈ I(T1) ∨ v1w ∈ I(T1)) ∧ |v| = m− 1};

T = Bs(T1 ·m · a · b),

{vaw | v0w ∈ I(T1) ∧ |v| = m− 1}∪

{vbw | v1w ∈ I(T1) ∧ |v| = m− 1};

T = Bx(T1 ·m · a),

I(T1) ∩ ({0, 1}m−1a{0, 1}∗);

T = Br(T1 ·m · a · x),

{vI(x)w | vaw ∈ I(T1) ∧ |v| = m− 1};

T = Bl(T1 ·m · a · b),

{vbw | vaw ∈ I(T1) ∧ |v| = m− 1};

x ∈ T,

I(x) ∈ I(T);

T = ∅,

I(T) = ∅,

T1 ⊆ T2,

I(T1) ⊆ I(T2).

We can use our computing units independently or add them
to this computing units. Depending on experimental conditions
using the same computing units we can obtain essentially
different programming languages. For example, if we allow
unrestricted appliance of operationsF [P](x) andG[S, P](x),
then we can consider the following semigroup as a model of
computations:

〈A,U, C, G | S〉.

Note that
UAA = UACA = UAC = UA,

UGA = UGGA = UGG = UG,

UAG = UACG = UAC = UA.

Therefore,
〈A,U,C, G | S〉 =

{U,A, C, G,

UU, UA,UC, UG,

AU,AA,AC, AG,

CU,CA,CC,CG,

GU,GA, GC,GG}.

14

From other hand, using restricted appliance of operations
F [P](x) and G[S, P](x), we can easily obtain a semigroup
with undecidable word problem.

Note that for tRNA programming languages we have only
set and string variables and constants. This is a characteristic
feature of all programming languages for DNA computing. In
the case of DNA computing, we have significant difficulties
with numerical operations and numbers themselves. But “dif-
ficult” does not mean “impossible”. For example, suppose that
we have a binary register

a1a2a3a4

wherea1, a2, a3, a4 ∈ {0, 1}. Assume that we want to define
some bit operations. We can emulate this binary register the
following word:

GGA1GGA2GGA3GGA4

where

Ai =


G, ai = 0

C, ai = 1
Let

G0,1,1[S1, P] : GGCx[1]x[2]x[3] → GGx[1]x[2]x[3],

G0,1,2[S2, P] : GGx[1]x[2]x[3] → GGGx[1]x[2]x[3],

G0,2,1[S1, P] : x[1]GGCx[2]x[3] → x[1]GGx[2]x[3],

G0,2,2[S2, P] : x[1]GGx[2]x[3] → x[1]GGGx[2]x[3],

G0,3,1[S1, P] : x[1]x[2]GGCx[3] → x[1]x[2]GGx[3],

G0,3,2[S2, P] : x[1]x[2]GGx[3] → x[1]x[2]GGGx[3],

G0,4,1[S1, P] : x[1]x[2]x[3]GGC → x[1]x[2]x[3]GG,

G0,4,2[S2, P] : x[1]x[2]x[3]GG → x[1]x[2]x[3]GGG,

G1,1,1[S3, P] : GGGx[1]x[2]x[3] → GGx[1]x[2]x[3],

G1,1,2[S4, P] : GGx[1]x[2]x[3] → GGCx[1]x[2]x[3],

G1,2,1[S3, P] : x[1]GGGx[2]x[3] → x[1]GGx[2]x[3],

G1,2,2[S4, P] : x[1]GGx[2]x[3] → x[1]GGCx[2]x[3],

G1,3,1[S3, P] : x[1]x[2]GGGx[3] → x[1]x[2]GGx[3],

G1,3,2[S4, P] : x[1]x[2]GGx[3] → x[1]x[2]GGCx[3],

G1,4,1[S3, P] : x[1]x[2]x[3]GGG → x[1]x[2]x[3]GG,

G1,4,2[S4, P] : x[1]x[2]x[3]GG → x[1]x[2]x[3]GGC,

x[i] ∈ P = {GGG,GGC},

S1 = {GGC → GG}, S2 = {GG → GGG},

S3 = {GGG → GG}, S4 = {GG → GGC}.

Let
Bi,j(x) ⇀↽ Gi,j,2(Gi,j,1(x)).

It is easy to check that usingBi,j we can obtain arbitrary bit
operations.

IV. CONCLUSION

In this paper we consider some new computing units which
can be used in different programming languages for DNA-
based computers.

As the main direction of further research we can mention
the rigorous formalization and classification of programming
languages based on tRNA computing units and the study of
computational power of such programming languages.

ACKNOWLEDGMENT

The work was partially supported by Grant of President
of the Russian Federation MD-1687.2008.9 and Analytical
Departmental Program ”Developing the scientific potential of
high school” 2.1.1/1775.

REFERENCES

[1] D. Deutsch.Quantum theory, the Church-Turing principle and the univer-
sal quantum computer, Proceedings of the Royal Society London, 1985,
Vol. A400, 97–117.

[2] P. W. Shor.Algorithms for quantum computation: Discrete logarithms
and factoring, Proceedings of the 35th IEEE Symposium on Foundations
of Computer Science, 1994. pp.124–134.

[3] P. Pudĺak.Complexity theory and genetics, Proceedings of 9th Conference
on Structure in Complexity Theory, 1994. pp.183–195.

[4] L. M. Adleman. Molecular computation of solutions to combinatorial
problems, Science, 1994, Vol. 266, 1021–1024.

[5] R. J. Lipton.Speeding up computations via molecular biology, Technical
report, Princeton University, 1994.

[6] R. J. Lipton.Using DNA to solve NP-complete problems, Technical report,
Princeton University, 1995.

[7] R. J. Lipton.DNA solution of hard computational problem, Science, 1995,
Vol. 268, 542–545.

[8] P. W. K. Rothemund.A DNA and restriction enzyme implementation
of Turing machines, R.J.Lipton and E.B.Baum, editors. DNA Based
Computers: Proceedings of the DIMACS Workshop, Princeton University,
Providence, Rhode Island, 1996. pp.75–119.

[9] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro.
Programmable and autonomous computing machine made of biomole-
cules, Nature, 2001, Vol. 414, 430–434.

[10] Y. Benenson, R. Adar, T. Paz-Elizur, E. Keinan, Z. Livneh, E. Shapiro.
DNA molecule provides a computing machine with both data and fuel,
Proceedings of the National Academy of Sciences of the United States
of America, 2003, Vol. 100, 2191–2196.

[11] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro.An autonomous
molecular computer for logical control of gene expression, Nature, 2004,
Vol. 429, 423–442.

[12] T. H. LaBen, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif,
N. C. Seeman.The Construction of DNA Triple Crossover Molecules,
Journal of the American Chemical Society, 2000, Vol. 122, 1848–1860.

[13] H. Li, S. H. Park, J. H. Reif, T. H. LaBean, H. Yan.DNA-Templated Self-
Assembly of Protein and Nanoparticle Linear Arrays, Journal of American
Chemistry Society, 2004, Vol. 126, 418–419.

[14] S. H. Park, H. Yan, J. H. Reif, T. H. LaBean, G. Finkelstein.Electronic
nanostructures templated on self-assembled DNA scaffolds, Nanotechnol-
ogy, 2004, Vol. 15, 525–527.

[15] N. C. Seeman.Nucleic Acid Junctions and Lattices, Journal of Theoret-
ical Biology, 1982, Vol. 99, 237–247.

[16] A. T. Winfree. The Geometry of Biological Time, Springer-Verlag,
Berlin, 2000.

[17] H. Yan, T. H. LaBean, L. Feng, J. H. Reif.Directed Nucleation Assembly
of Barcode Patterned DNA Lattices, Proceedings of the National Academy
of Science of the United States of America, 2003, Vol. 100, 8103–8108.

[18] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean.DNA-
Templated Self-Assembly of Protein Arrays and Highly Conductive
Nanowires, Science, 2003, Vol. 301, 1882–1884.

[19] P. Yin, A. J. Turberfield, J. H. Reif.Design of an Autonomous DNA
Nanomechanical Device Capable of Universal Computation and Univer-
sal Translational Motion, Tenth International Meeting on DNA Based
Computers. LNCS 3384, Springer-Verlag, New York, 2005. pp.426–444.

15

[20] M. N. Stojanovic, T. H. E. Mitchel, D. Stefanovic.Deoxyribozyme-based
Logic Gates, Journal of American Chemistry Society, 2002, Vol. 124,
3555–3561.

[21] M. N. Stojanovic, P. de Prada, D. W. Landry.Homogeneous assays based
on deoxyribozyme catalysis, Nucleic Acids Reserch, 2000, Vol. 28, 2915.

[22] M. N. Stojanovic, D. Stefanovic.A deoxyribozyme-based Molecular
Automaton, Nature Biotechnology, 2003, Vol. 21, 1069.

[23] M. N. Stojanovic, D. Stefanovic.Deoxyribozyme-based Half-Adder,
Journal of American Chemistry Society, 2003, Vol. 125, 6673.

[24] http://bdcc.kmip.net/htmls/dnacomputer/index.php
[25] http://bi.snu.ac.kr/biocomputers2004
[26] G. P̆aun. Membrane Computing: An Introduction, Springer-Verlag,

Berlin, 2002.
[27] G. P̆aun.Membrane computing: Main ideas, basic results, applications,

Molecular Computational Models: Unconventional Approaches (M. Ghe-
orghe, ed.), Idea Group Publ., London, 2004. pp.1–31.

[28] G. Felsenfeld, G. Cantoni.Use of thermal denaturation studies to
investigate the base sequence of yeast serine sRNA, Proceedings of the
National Academy of Science of the United States of America, 1964, Vol.
51, 818–826.

[29] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott,
S. L. Zipursky, J. Darnell.Molecular Biology of the Cell, W.H. Freeman,
New York, 2004.

[30] M. D. Friede.Design of artificial tRNAs, Dissertation zur Erlangung des
akademischen Grades Doctor rerum naturalium, Vorgelegt der Formal-
und Naturwissenschaftlichen Fakultät der Universiẗat Wien, Wien, 2001.

[31] G. Keith and G. Dirheimer.Evidence for the existence of an expressed
minor variant tRNAphe in yeast, Biochemical and Biophysical Research
Communications, 142:183–187, 1987.

[32] J. Weissenbach, I. Kiraly, and G. Dirheimer.Primary structure of
tRNAthr 1a and b from brewer’s yeast, Biochimie, 59:381–391, 1977.

[33] M. Sprinzl, C. Horn, M. Brown, A. Ioudovitch, and S. Steinberg.
Compilation of tRNA sequences and sequences of tRNA genes, Nucleic
Acids Research, 26:148–153, 1998.

[34] C. R. Woese, O. Kandler, and M. L. Wheelis.Towards a natural system
of organisms: proposal for the domains archaea, bacteria and eucarya,
Proceedings of the National Academy of Sciences of the United States
of America, 87:4576–4579, 1990.

[35] G. R. Bjork, J. M. Durand, T. G. Hagervall, R. Leipuviene, H. K. Lund-
gren, K. Nilsson, P. Chen, Q. Qian, and J. Urbonavicius.Transfer RNA
modification: in on translational frameshifting and metabolism, FEBS
Letters, 452:47–51, 1999.

[36] C. G. Edmonds, P. F. Crain, R. Gupta, T. Hashizume, C. H. Hocart,
J. A. Kowalak, S. C. Pomerantz, K. O. Stetter, and J. A. McCloskey.Post-
transcriptional modification of tRNA in thermophilic archae (archeabac-
teria), Journal of Bacteriology, 173:3138–3148, 1991.

[37] D. A. Melton, E. M. de Robertis, and R. Cortese.Order and intracellular
location of the events involved in the maturation of a spliced tRNA,
Nature, 284:143–148, 1980.

[38] K. Nishikura and E. M. De Robertis.RNA processing in microinjected
xenopus oocytes. Sequential addition of base modifications in the spliced
transfer RNA, Journal of Molecular Biology, 145:405–420, 1981.

[39] B. Masquida and E. Westhof.On the wobble G-U and related pairs,
RNA, 6:9–15, 2000.

[40] R. W. Holley.Structure of an alanine transfer ribonucleic acid, JAMA,
194:868–871, 1965.

[41] N. B. Leontis and E. Westhof.Conserved geometrical base-pairing
patterns in RNA, Quarterly Review of Biophysics, 31:399–455, 1998.

[42] G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, and
T. Carell.Directed DNA Metallization, Journal of the American Chemical
Society, 128(5):1398–1399, 2006.

[43] A. S. Swami, N. Brun, and D. Langevin.Phase Transfer of Gold
Metallized DNA, Journal of Cluster Science, 20(2):281–290, 2009.

[44] E. A. Burakova and V. N. Silnikov.Molecular Design of Artificial
Ribonucleases Using Electrostatic Interaction, Nucleosides, Nucleotides
and Nucleic Acids, 23(6-7):915–920, 2004.

[45] D. Rooß and K. W. Wagner.On the Power of DNA-Computing, Infor-
mation and Computation, 131(2)95–109, 1996.

16

Using Hardware-Assisted Virtualization
to Protect Application Address Space

Inside Untrusted Environment
Denis Silakov

Institute for System Programming
at the Russian Academy of Sciences

Moscow, Russian Federation
Email: silakov@ispras.ru

Abstract—In this paper we present a virtualization-based
approach of protecting execution of trusted applications inside
potentially compromised operating system. In out approach, we
do not isolate application from other processes in any way;
instead, we use hypervisor to control processes inside OS and to
prevent undesired actions with application resources. The only
requirement for our technique to work is presence of hardware
support for virtualization; no modifications in application or OS
are required.

Index Terms—Virtual Machine Monitor, Hypervisor, Security,
Protection

I. INTRODUCTION

In modern software world, an operating system is a key
component responsible for many security aspects of applica-
tion execution process. In particular, it should provide pos-
sibilities to manage access permissions of application files
and other resources, guarantee isolation of application address
space in memory and so on.

However, many widespread operating systems (such as
Linux or Windows) are known to be subjected to vulnerabili-
ties which can be used by malicious code to compromise the
whole system or particular application. As operating systems
evolves, vulnerabilities are detected and fixed. But at the
same time a lot of new features are added which potentially
introduce new vulnerabilities. Size of code which is executed
with highest privileges in modern OS is large. In particular,
many popular systems are based on monolithic kernel where
every device driver is a part of the kernel (that is, works in the
same address space with other kernel parts and other drivers).
It is common for drivers to contain issues. Vulnerability
research performed in 2005 has shown that device drivers were
responsible for about 85% of failures in Windows XP [1];
similar statistics was reported for Linux [2]. It is very likely
that the situation will not change in the near future, since size
of drivers grows faster than size of any other part of the kernel
[3].

Microkernel-based operating systems are claimed to be
more secure due to the fact that the size of code executed
in privileged mode is very small [4]. However, in such
systems interaction between micro kernel and drivers which

becomes quite expensive. If used on a desktop machine with
lots of peripheral devices, such systems often demonstrate
worse performance. In addition, there are a lot of applications
developed for widespread OSes with monolithic kernels. It
would be very expensive to port all these programs to a system
with completely new architecture. As a result, nowadays
microkernel-based systems are primarily used either in highly
tailored areas (e.g., QNX for embedded real-time systems) or
for educational purposes (e.g., Minix).

Thus, there is a need for application protection techniques
that will not require modifications of existing operating sys-
tems or applications, but at the same time will provide more
reliable and secure services than traditional approaches.

One of the possible techniques is to use hardware-assisted
virtualization. As implemented in modern Intel and AMD
processors, it allows to launch a program (called hypervisor)
that has full control over hardware and runs with higher
privileges than OS. Normally, hypervisor is responsible for
virtualization (e.g., creating and managing virtual machines),
but its functionality can be enhanced. In particular, it can
provide some security services. Hypervisor is usually much
more smaller than OS (for example, most hypervisors do not
have a large set of device drivers). As a result, hypervisor
potentially contains less vulnerabilities and usually considered
to be more secure than commodity operating systems. In
this paper, we suggest an approach for protecting application
address space using hypervisor.

The remainder of the paper is structured as follows: Section
2 observes existing virtualization-based approaches to pro-
tection of application resources. Section 3 describes general
architecture of our protection system and specific aspects of
protecting address space of applications of different kinds.
Section 4 describes implementation of our approach and
present performance measurement results. Finally, Section 5
summarizes the main ideas.

II. HYPERVISOR-BASED PROTECTION SYSTEMS

The idea of using hypervisor for different security tasks
has got much attention after Intel and AMD introduced their
first implementations of hardware-assisted virtualization in

17

years 2005-2006. Many approaches requires modifications of
applications, OS (e.g., [5] or [6]) or even hardware ([7], [8]).
Though some of these approaches seem to be quite effective,
their usage is rather limited.

A promising approach is Overshadow technology of mem-
ory protection suggested by researches from Stanford and
Princeton Universities, MIT and VMware, Inc ([9]). It does
not require modifications of OS or applications. Instead, it
encrypts process memory area of working processes. If OS
or other program try to access process memory, they only
see encrypted data. For trusted process itself, a ”normal”
memory view is provided. Similar approach based on dynamic
encryption of application memory is presented in [10].

However, these approaches are primarily aimed at hiding
application data from third parties. In our work, we suggest
an approach that allows other processes to read memory of
a trusted process, but denies to modify it. Such assumption
is useful for cases when trusted application needs to pass
some data to other processes by means, for example, of shared
memory. That is, our approach protects execution process of a
trusted application, but does not hide its whole data from other
programs. But if necessary, our system can be easily modified
to completely deny access to application’s memory.

An advantage of Overshadow is that no modifications are
required in existing software (OS, applications) and hardware.
More precisely, there are no hardware-specific requirements
only if hypervisor used is able to perform virtualization
without hardware assistance. However, in this case protection
system architecture is bounded to architecture of particular
hypervisor. Moreover, such hypervisors for x86 platform are
rather complex and they are rather hard to implement (since
x86 architecture by itself is hard to virtualize due to de-
sign). Among effective implementations, we can mention only
VMware VMM (used in Overshadow) and VirtualBox [11].
Since such hypervisors are complex (and in addition, VMware
hypervisors are mostly closed source products), it is not easy
to modify them to implement additional functionality.

On the other hand, in the last several years Intel and
AMD have added virtualization support to their processors
and made it easier to create virtualization products [12]. These
possibilities are now utilized by such products as Kernel-based
Virtual Machine (KVM), Xen, VMware ESX and others. In
our approach we assume that target system provide hardware-
assisted virtualization. This puts some limitations on hardware
where our approach is applicable, but significantly simplifies
its implementation.

III. CONTROLLING CONSISTENCY OF A TRUSTED
PROCESS

In our threat model, we suppose that the operating system is
not reliable and contains vulnerabilities which can be exploited
by malware to gain high privileges. Such privileges would
allow attacker to control all processes running in the system
and perform malware injections in their files or directly in the
process code in the memory.

In our protection system, potentially compromised OS is
located inside virtual machine controlled by hypervisor, which
is a core part of the protection system. Hypervisor has higher
privileges than OS inside VM and can monitor and control
events inside VM.

In order to guarantee consistency of a trusted application,
hypervisor should guarantee the following:

• application files on disk (in particular, executables and
libraries) are not modified by malicious software; in this
paper, we only consider executable files and libraries that
form the application, ignoring the task of protection of
other files and resources that can be used by application
(e.g., protection of different data files);

• address space of a running process is not modified in an
unallowed way by other processes running in OS.

Let us consider how these tasks are solved by suggested
protection system.

A. Checking Consistency of Executable Files and Libraries

When launching a trusted application, we should first ensure
that executable being launched is an expected one. In order
to do this, we should check that application executable file
(and shared libraries, if any) on disk was not modified by
malicious code. To make such check possible, every trusted
application in our system should provide hypervisor with a
registration data, generated inside trusted environment on the
basis of application files. This registration data is stored in
hypervisor and cannot be accessed by OS.

Registration data for application executable files and shared
libraries consists of SHA-1 hash codes. Such codes are gener-
ated for every memory page containing either instructions or
static data. Currently we assume that the page size is equal
to 4 kilobytes (a default value on most systems). However,
nowadays Linux provides support for larger pages [13], and
we plan to support such pages in future, as well.

B. Protecting Control Flow

In our system, the working virtual machine is provided
with a single-core virtual CPU, so OS inside this VM can
only use a pure time-sharing multitasking. There is no way
to run different processes on different CPU cores in parallel.
In particular, at any moment of time either CPU and other
resources are used by trusted code or they are used by
potentially malicious software. Thus, if we want to protect
trusted process, we should only ensure that the process address
space and other system resources that can influence process
execution (e.g., different system registers) were not modified
in a forbidden way while the trusted process was inactive.
When trusted process is active, all events in the system are
allowed. In particular, trusted process can modify its own code
segments in memory. Besides application code and static data
loaded at launch, we can control consistency of any data pages
loaded by during process execution. More particular, we track
states of all memory pages written by the process.

In order to implement such protection, we use hypervisor to
handle interruptions of trusted code execution. When a trusted

18

process is interrupted, hypervisor saves information about its
address space and other protected resources inside its own
memory. Only after that, control is passed to operating system.
When OS returns control to the trusted process, hypervisor
compares actual state of protected resources with the saved
one. If any discrepancy is detected, the protection system
reports an attack attempt and the process is not considered to
be trusted any more. From that moment, it will not be allowed
to use protected system resources (e.g., network connection).

One of the main components of the protection system is a
register integrity checker used to protect control flow of trusted
processes. The control flow is considered to be integral, if the
following requirements are met:

1) actual address of program entry point is equal to the
value specified in the registration data;

2) every time the control is passed from the OS kernel
to the trusted process, address of instruction invoked
in the process is either equal to the instruction where
the process was previously interrupted, or is equal to
a special signal handler (registered by the process in
advance).

The first requirement is checked only when the process is
launched using a system call like exec(). More generally,
it should be checked when the process enters the trusted
mode, but in our work we do not consider situations when
the process can enter the trusted mode after the launch.
The second requirement is checked every time the control is
passed to the trusted process. When such an event occurs, the
hypervisor verifies instruction address, as well as values of
general purpose, segment and different system registers.

C. Protecting Address Space

Hypervisor controls integrity of all virtual memory pages
(containing either code or data) of the process. When a trusted
process accesses a memory page for the first time, this page
is marked as active. If the page accessed for the first time
contains program code or static data, then it is checked that
the page hash sum corresponds to the one specified in the
registration data. This allows to verify that the program code
and static data were not modified after registration data was
generated. Other pages are allowed to have random data when
they are accessed by trusted process for the first time. If in
the sequel trusted process accesses such a page, the hypervisor
checks that the page content was not modified since the last
time when it was accessed by the process.

In order to perform such integrity monitoring, hypervisor
uses a special control table of process active virtual pages
which we call Memory Integrity Table (MIT). For every virtual
page V , the MIT table contains either address of corresponding
physical page P (if V is mapped to a physical memory) or
hash sum H if the page is not mapped.

At runtime, programs can detach memory pages from their
address space (e.g., by means of munmap() system call).
Hypervisor tracks such system calls and removes the active
mark from the detached pages.

Pages storing dynamic data inside address space of a trusted
process can be subjected to legal modifications by the process
itself, as well as by some system calls (e.g., read()). If an
active page of a trusted process is mapped to a physical page,
then write access to that page is allowed for the trusted process
only. When a trusted process tries to access a page for which
a hash sum is set in the MIT table, hypervisor checks integrity
of that page by calculating hash code for its current content
and comparing it with the expected value stored in the control
table.

Moreover, hypervisor allows only modifications that touch
memory areas explicitly specified in the system call parame-
ters. Modifications outside such explicitly specified areas are
prohibited. It is important to note that on Intel x86 architecture
it is possible to set access permissions on the page-level basis,
while processes may want to write data which is not aligned
to page size. In order to support protection of such data,
hypervisor used special trick based on the fact that for every
process one can specified address area writable for kernel with
per-byte precision.

Before transferring system call to OS kernel, the protection
system for every out parameter allocates a ”shadow” memory
area inside virtual address space of the process and set registers
controlling passing of return values to point to that area. Thus,
output of every system call is redirected to memory area not
used by the process. When system call returns control to the
process, hypervisor copies its output to corresponding areas
inside process memory.

In order to maintain mappings in the MIT table and to
intercept page access attempts, hypervisor runs every trusted
process in a separate protection domain. Protection domain is a
set of memory pages with individual access permissions. This
set of pages for a particular protection domain is dynamically
altered by hypervisor when process requests more memory
or frees unnecessary pages. Every attempt to access a page
outside the protection domain, as well as access violation for
the page inside the domain, leads to exception which is caught
and handled by hypervisor.

Implementation of protection domains is based on the
Nested Page Tables (NPT) mechanism (NPT implementation
in Intel processors is called Extended Page Tables, the one
from AMD – Rapid Virtualization Indexing). NPT tables
are used to perform translation of pseudo-physical addresses
used inside VM to physical addresses of the real hardware.
When a process is launched in the trusted mode, hypervisor
creates an empty set of NPT tables for it. Every time when
OS kernel passes control to the trusted process, hypervisor
activates page tables corresponding to that process. This is
performed by means of the Virtual Machine Control Block
(VMCB) structure. When trusted process is interrupted and
control is passed back to the OS kernel, hypervisor switches
active nested pages once again and activates tables of untrusted
domain (a joint domain for OS kernel and other untrusted
processes).

When a process tries to access a page which is not yet
reflected in the NPT tables, or when access violation occurs, a

19

Nested Page Fault (#NPF) exception is thrown, VM is stopped
and control is passed to the hypervisor. Hypervisor maintains
NPT mapping only for active pages which are not swapped
out to the storage device and which were not modified by
third-party processes. This approach allows to determine if the
process accesses a page for the first time or it accesses pages
which were modified since the last access by this process or
loaded from swap.

When the #NPF exception is thrown, a pseudo-physical
address of page inside VM is reported, access to which led to
the exception. However, in order to get the expected hash sum
for the page from the control tables, hypervisor should also
know a virtual address, access to which finally led to #NPF.
In order to calculate virtual address, hypervisor disassembles
the current instruction of the trusted process (address of such
instruction is always stored in the IP register) and analyzes all
virtual addresses accessed by this instruction. Using page table
of the operating system, hypervisor calculates real addresses
corresponding to these virtual ones and detects which of them
corresponds to the pseudo-physical address access to which
led to the #NPF exception. With this virtual address, the
hypervisor is able to verify integrity of the page accessed by
the trusted process.

D. Protecting Dynamically Linked Applications

Address space protection approach described above easily
applies for statically linked programs. Such a program is
represented by a single executable file that does not import
any libraries from the OS, so we can know in advance
location of code and static data inside the application. How-
ever, nowadays developers often take an advantage of using
splitting functionality between separate libraries which are
combined together by the loader during program start up
or even loaded by request during program execution (such
functionality is provided in Linux by libdl library). Protection
of such programs (especially those that use libdl functionality)
introduces new challenges.

Dynamically linked application consists of a main exe-
cutable file and several libraries loaded by dynamic loader
during application launch. In Linux, for both executable files
and dynamic libraries ELF format is used. Every ELF file has a
set of DT NEEDED entries which store names of libraries that
should be loaded with this file. When launching an executable,
dynamic loader processes DT NEEDED entries of the file
itself, then DT NEEDED entries of libraries loaded as file
dependencies and so on – such iterations are performed until
DT NEEDED entries of all files from the loaded set are
satisfied by files from this set.

The set of DT NEEDED entries can be extracted from the
ELF file by means of appropriate tools. However, the final set
of loaded libraries can be different for the same executable
in different Linux distributions, because internal dependencies
of libraries can differ. Moreover, in addition to dependencies
statically recorded in the ELF file structures which are resolved
during file launch, it is possible to load libraries at runtime by
means of functions provided by libdl library. In many cases,

it is almost impossible to automatically detect which libraries
will be loaded using such functionality, because the name of
the library to be loaded can be calculated at runtime.

Due to these facts, in our approach user should explicitly
list all the libraries that will be loaded during application work
in particular system. This set considered to be a set of trusted
files. If a library not included in this set will be loaded and
put to the application address space, this will be reported as
an attack attempt.

In addition to libraries, for every dynamically linked appli-
cation the Linux kernel exposes a shared object called Virtual
Dynamically-linked Shared Object (VDSO) which exports
symbols implementing virtual system calls [14]. Traditionally,
system calls in Linux on the x86 platform were implemented
using 0x80 software interrupt. With modern processors, faster
implementations are available that use SYSCALL or SY-
SENTER instructions for AMD and Intel processors respec-
tively. For every of these techniques, the Linux kernel has
a corresponding VDSO variant. Implementation of all these
three VDSO variants can be extracted from the Linux kernel
sources.

Thus, a memory image of a dynamically linked application
consists of the following components:

• executable file (launched by user or by other process);
• dynamic loader (usually – ld-linux.so);
• set of libraries specified as ELF file dependencies and

loaded at application start;
• set of libraries loaded at runtime using libdl functionality;
• VDSO library.
Registration data of dynamically linked application should

contain information about all these components.
An important feature of dynamic libraries is that their

code is position-independent and can be located any area of
application’s address space. Address value specified in the ELF
file header in Linux running on x86 platform nowadays is just
a recommendation for the loader. In reality, dynamic loader
can place every file at other address, and such addresses can
vary in different systems or even in different instances of the
same application.

Note that since VDSO is a shared object, it can also be
located at any address inside process address space. Thus,
location of VDSO in process memory can be different for
different processes.

Finally, executable files can also contain position-
independent code. Executable files that consist of such code
only (Position-Independent Executables, PIE) are relatively
widespread in the Linux ecosystem.

Thus, every component of dynamically linked application
can be located at any virtual address inside application address
space. Since the memory is allocated and managed on the
per-page basis, correlation between actual address of every
component and the value specified in ELF header is expressed
by the following formula:

Actual address = ELF address+ k ∗ (page size)

where k is some integer number.

20

Thus, though location of different components of dynam-
ically linked application in virtual memory is not known in
advance, these locations can be easily calculated by hypervisor
during application start up. Location of libraries loaded using
libdl functions can be calculated at the moment when dlopen()
function is invoked. This allows to adopt registration data
for every particular launch of application. As we will discuss
later, the only thing hypervisor has to calculate is a difference
between real address and the value specified in the ELF header
(and thus reflected in the registration data) which is identified
by a single integer number k. It is important to note that since
library code is position independent, it is not subjected to any
modifications by loader.

Before passing control to entry point of dynamically linked
application, dynamic loader should link together all compo-
nents of application and set actual addresses of all imported
symbols. For the context protection system, it is important
to ensure that no malicious code interfere with this process,
replacing address of legal imported function with address of
malicious symbol. Let us proceed with details of dynamic
loader work process and see how protection system guarantees
consistency of function addresses.

During dynamic linking process, system loader first loads all
necessary files to memory and then initiates symbol resolution
process. For every binary symbol imported by some ELF
file (this file is called importer) the loader should locate
the file where the symbol is implemented (this file is called
exporter). Dynamic loader analyzes symbol tables of exporter
and importer and updates the Global Offset Table (GOT),
which is located at the data segment of the importer. The GOT
table contains an entry for every imported binary symbol (cor-
responding to a function o global variable). Symbol resolution
procedure is the same for libraries loaded during application
launch and the one loaded at runtime using libdl functionality.

Code segment of ELF file that imports some functions
contains Procedure Linkage Table (PLT) which contains a
stub symbol for every imported function. When an attempt is
performed to call some imported function, the control is passed
to the corresponding stub which takes unnecessary address
from the GOT table and passes control to that address. Thus,
a call to an imported function is an indirect call by address
recorded in the appropriate GOT table entry.

GOT and PLT tables used when a call to imported function
happens are located in the segments of that ELF file from
which the call is performed. Thus, they are taken into account
when file hash sum is calculated and monitored by the pro-
tection system during application work. The whole dynamic
linking process, including modification of the GOT table, is
performed by the dynamic loader which works in the user
space. The process requires no kernel-level activities and thus
cannot influence other applications in case of errors. This is
one of the advantages of using ELF format for executable files.

Thus, if dynamic loader is a trusted program, then all the
actions during dynamic linking are performed by trusted code.
Dynamic loader is much more smaller then the Linux kernel
and it does not vary significantly among different distributions

(in particular, it does not allow insertion of some third-party
software such as drivers in its code). Thus, we believe that it is
reasonable to consider dynamic loader to be a trusted process.
In the rest of the paper, we use the assumption that the dynamic
loader is a trusted program. Note that since dynamic loader is
included in the process image, hypervisor is able to compare
its content with registration data. Thus, the protection system
is able to check that the loader is the same as the one in the
system where the registration data was generated.

When launching a dynamically linked application, the Linux
kernel creates a virtual address space for the new process
and loads application executable file (which was actually
launched), dynamic loader and VDSO library there. All other
libraries are loaded using explicit calls to the mmap() system
call from the dynamic loader. This call returns a virtual address
where the library is located. Since hypervisor monitors all
system calls performed by application, it can track library
loading and build a mapping between library name (passed
as a parameter to the open() call, whose result is then passed
to mmap()) and library location in the process address space.
For every loaded library it is checked, if the library is included
in the list which was provided by user when generating
registration data. If so, then hypervisor is able to compare
hash sum of the loaded library with the expected value and
verify that this is, indeed, an expected file. If the loaded file
is not included in the list of trusted libraries, or if its hash
sum does not match the value expected, then the loaded code
reported to be untrusted. If the control is passed to such code,
then hypervisor will nullify application privileges, so it will
not be considered to be trusted any more.

OS kernel passes addresses of components loaded during
application launch to dynamic loader using ELF auxiliary
vectors [15]. During application launch, array of such vectors
is put at the process stack just after environment variables and
thus can be easily analyzed by hypervisor. Each vector is just
a pair of numbers (vector type and value).

In order to be able to protect application address space, we
should know values of vectors with the following types:

• AT PHDR – Base address of executable file;
• AT ENTRY – Entry point of program ;
• AT BASE – Base address of dynamic loader;
• AT SYSINFO EHDR – Base address of the VDSO li-

brary.
When application is launching, the control is first passed

to the entry point of the dynamic loader. The loader per-
forms dynamic linking of the executable file launched and
libraries loaded as its dependencies and then passes con-
trol to the address specified in the AT ENTRY vector.
AT SYSINFO PHDR vector is used by libc library to perform
a system call.

Every component of dynamically linked application can be
loaded at (almost) random address which differs from the one
recorded in the file header. However, in any case the following
conditions are met:

• For every loaded component, hypervisor can obtain the
effective address where the component is located in

21

virtual memory before the control is passed to that
component or before that component is accessed by
someone else (e.g., by dynamic loader which should at
least read header of loaded file during dynamic linking
process). Thus, hypervisor can verify component integrity
before the component is used by other parts of trusted
application.

• Every file is stored in the address space continuously,
so if a file is loaded at the address different from the
one specified in its header, hypervisor just have to shift
registration data for this file, without a need to recalculate
it.

Thus, hypervisor is still able to protect application address
space, but for every application component it should calculate
an effective address where the component is loaded. For
executable files, dynamic interpreter and VDSO library such
addresses can be obtained from AT PHDR, AT BASE and
AT SYSINFO EHDR vectors respectively. For other libraries,
the effective address is a result of the mmap() system call.

After calculation of real address value, hypervisor adjusts
registration data for the trusted process by updating the MIT
table which stores mapping between addresses of every page
of trusted process and hash codes. For every component, such
an update is performed as soon as component virtual address
becomes known. For shared libraries, this happens after return
from the mmap() system call (for libraries specified directly
as ELF file dependencies – during application start up, for
libraries loaded using dlopen() function – when loading a
library during application work). For other components the
update happens at the moment of application start up (more
particular – after return from the execv() system call).

Information about real location of application components
is obtained from the Linux kernel, which is untrusted in our
threat model. However, if kernel provides hypervisor with
wrong information (that is, real address values differ from
the one reported by kernel), this will be detected as soon as
some part of application will try to access a page with wrong
data. In this case, expected hash sum for the page will differ
from the observed one and the attack will be reported. Thus,
it is impossible for the kernel to substitute some part of the
application without being noticed.

It is important to note that similar to hypervisor, dynamic
loader during the linking process uses information obtained
from the kernel. Protection system should guarantee that the
loader uses the same data as the hypervisor itself – otherwise
the resulting application image in memory can differ from
hypervisor expectations. Thus, we should guarantee that hy-
pervisor and dynamic loader use the same values of auxiliary
vectors. But these vectors are located in the application stack
which is monitored by our protection system and whose
integrity is guaranteed. Thus, hypervisor is able to control
that the loader itself (ld-linux.so) and application components
(executable and libraries) are consistent and match registration
data.

Thus, protection of stack, code segment and process data
automatically guarantees protection of PLT and GOT tables,

as well as ELF auxiliary vectors.
In order to prevent execution of unauthorized code, hypervi-

sor uses one more feature of modern hardware architectures,
namely NX (No eXecute) bit. If a process tries to execute
instruction from a page marked with this bit, a page fault
exception is thrown. Hypervisor sets NX bit in the NPT for all
pages of a trusted process except those that contain executable
code authorized by means of registration data. If a trusted
process attempts to execute a code from a NX page, a page
fault exception is thrown. In case of page fault, hypervisor
checks error code and if the fault was caused by attempt of
launching some instruction, then the process is considered to
be compromised and protection system deprives this process
of privileged rights, so it is not trusted any more.

E. Protecting MultiThread Applications

In addition to dynamically linked programs, nowadays many
applications use multithread paradigm, when program consists
of several threads which work in parallel in the same address
space. In Linux, threads are created using clone() system call
with CLONE VM flag.

All threads of the same process have the same page tables.
For such threads, hypervisor also uses the same nested page
tables and the control MIT table. It is important that in our
system a virtual machine where the trusted processes work
has only one CPU core available, so at any time point only
one thread can really execute CPU instructions. Thus, when
considering address space access, we can safely ignore the
fact that the process is divided on several threads. In a single-
core system, it does not matter if the access is performed
from mono-thread trusted process or from some thread of
multithread trusted process. In addition, absence of “real”
parallelism allows us not to care about synchronization of
thread access to nested page tables or MITs.

However, every process thread in Linux can have its own
address space to store data unique to particular thread. This
storage (called thread local storage) is created automati-
cally by compiler for variables that have thread specifier,
or can be created at runtime by means of functions like
set thread area().

Thread local storage is implemented completely on the
software layer by compiler, libc library and Linux kernel. For
every thread, a separate memory area is allocated to store
thread-specific data. Since all this memory areas are allocated
inside process address space (common for all threads), every
thread can potentially access a local storage of any other
thread.

Thread local storage is located in a separate segment man-
aged by the GS register which is set to different values for
different threads when thread-local data is accessed. In order
to control integrity of thread local data, the memory protection
system should monitor GS register value and corresponding
record in the segment table. These values can be monitored
in the same way as other resources and processor registers, so
protection of multithread applications fits well the approach
used in our protection system.

22

IV. IMPLEMENTATION

The approach suggested in this paper was implemented on
the basis of KVM (Kernel-based Virtual Machine) hypervisor
which is included in the Linux kernel. KVM itself is a kernel
module which adds hypervisor functionality to the Linux ker-
nel. KVM requires QEMU application to manage and emulate
different virtual machine resources and devices (keyboard,
network card, etc.). In our work, we use KVM version 88,
kernel 2.6.31.6 and QEMU 0.13.0. Virtual machines with
trusted applications are run under Fedora Linux 13 with the
same kernel (2.6.31.6). Currently our implementation supports
virtualization of 32-bit systems on AMD platform. For the
experiments described below, we have used AMD Phenom
9750 Quad-Core Processor which has four 2.4MHz cores.
The host machine had 4GB RAM, and virtual machine was
configured with 512MB RAM. It is important to note that it
is not necessary to load hypervisor when the machine starts;
we have investigated possibility of on-demand activation of
protection system [16]. Such on-demand activation (which
involves launching hypervisor from running OS, creation of
a virtual machine and placing the OS inside this machine) is
possible, though requires special hardware (Trusted Platform
Module, TPM).

To automate generation of registration data for trusted
processes, we provide a tool named ElfHash that processes
executable file which will be launched and its DT NEEDED
dependencies. We suppose that the system where the regis-
tration data is generated provides trusted versions of libraries
used by dynamically linked application. On the basis of such
assumption, the ElfHash tool analyzes system libraries that
satisfy application dependencies and create registration data
for them. Alternatively, user can provide the tool with his
own versions of such libraries. In additional, user can specify
libraries not mentioned in file dependencies but that can be
loaded at runtime using libdl functionality. Finally, we provide
registration data for the dynamic loader itself. The data is
generated using VDSO implementation which is considered
to be trusted.

A. Attack Detection

In order to evaluate if the protection system works as
expected, we have emulated two kinds of attacks on trusted
processes: modification of application files on disk and mod-
ification of trusted code in memory. For our experiments, we
have used the SSH tool which was establishing connection
from the virtual machine to some remote host. Network
card was considered to be a protected system resource, so
only trusted applications were allowed to access it. Operating
system itself was not aware of network card.

When emulating attacks concerning application file modifi-
cations, we have investigated behavior of the protection system
in the following cases:

• SSH executable differs from the one registered in the
protection system;

• one of the libraries from ELF DT NEEDED dependen-
cies differs from the one used to register SSH in the
protection system;

• one of the libraries loaded by SSH using dlopen() differs
from the one registered in the protection system.

In the first two cases, the protection system reported the
attack attempt during application startup. In the third situation,
attack attempt was reported at the moment of dlopen() call. In
all cases, access to network card was denied and connection
to remote host was not established.

In addition, we have checked situations when library is
loaded which is not present in registration data. The library
can either be loaded by the process itself or pre-loaded if user
sets LD PRELOAD variable. In such situations, the protection
system also reported attack attempt, as expected.

To emulate attacks concerning modification of the code of
a running process, we have used techniques based on the
ptrace() system call. In particular, we have used the PreZ
tool [17] which attaches to running process and creates its own
thread inside it. This thread opens a port for TCP connections
and spawns a shell for every incoming connection. The shell
can then be used by remote party to perform different actions
on the machine with privileges of the infected process.

During our experiments, the protection system has success-
fully detected all code injection attempts and blocked access
to the network card for the SSH process.

B. Performance

In order to estimate delays introduced by the protection
system, we have compared performance of two applications
– Apache web server and SSH client – in the following cases:

• applications are launched on bare hardware;
• applications are launched inside virtual machine without

protection systems;
• applications are launched inside virtual machine with

protection system controlling their address space.
In order to measure Apache performance, we have used

the Flood load tester (a part of the Apache project). Number
of processes launched by Apache to serve the requests (that
is, number of trusted processes) was limited to ten. In case
of SSH, we have used the SCP utility to copy large (four
gigabytes) file through network. There was only one trusted
process in this experiment.

Since our protection system assumes that only one processor
core is assigned to virtual machine, in our experiments we
were using a single core in all cases. Measurement results
are presented at Fig.1. We have normalized the results and
assigned 100 units to performance on the bare hardware, so it
is easy to compare the measurements.

As one can see, in case of Apache performance loss is
almost unnoticeable, while for SSH it is much more higher.
This is probably caused by the fact that during the experiment
Apache was receiving simple requests and their processing
did not require much memory, while copying file with SSH
involved encryption of large amount of data which led to
significant usage of memory by trusted process. In addition,

23

100 101
104

100

124

152

Protection system

Usual VM

 Bare hardware

 Apache SCP

Fig. 1. Protection system performance

when dealing with large data transferring through network, a
significant delay is introduced by emulation software by itself.
Nevertheless, even for SSH performance loss is acceptable if
sender wants to protect the data from potentially compromised
OS.

V. CONCLUSION

In this paper, we have presented a novel approach for pro-
tecting applications running inside potentially compromised
operating system. The approach is based on using virtual ma-
chine monitor (hypervisor) which tracks all events inside OS
and prevents unallowed modifications of application resources.

Unlike other hypervisor-based protection techniques, our
approach does not lead to isolation of application from other
OS components. Hypervisor’s functionality is flexible and
can be adjusted to control usage of any particular hardware
resources, so only trusted applications have access to them.
For example, application of our protection system to control
usage of network connection is described in [18]. Finally, the
approach can be extended in order to protect all application
files, not only executables and libraries. This will require
interception of direct file input/output (using read()/write()
system calls) in addition to mmap() manipulations and storing
hash codes for all files used by application. We believe that it
is not hard to extend our approach in this way, though such
improvements can introduce significant performance drop.

The approach does not require any modifications in op-
erating system or applications, but relies on several aspects
of hardware-assisted virtualization implemented in Intel and
AMD x86 processors. In order to implement the approach,
there is no need to develop a hypervisor from scratch. In-
stead, one can extend existing products such as KVM or
Xen. Our KVM-based implementation has demonstrated that
performance overhead introduced by the protection system is
acceptable, so we believe that the approach is viable and can
be applied in those areas where information security is the
primary goal.

REFERENCES

[1] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” ACM Trans. Comput. Syst., vol. 23,
no. 1, pp. 77–110, 2005.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical
study of operating system errors,” in SOSP, 2001, pp. 73–88.

[3] G. Kroah-Hartman, “How linux supports more devices than any other
os, ever,” O’Reilly Media Interview, Oct. 2008. [Online]. Available: http:
//broadcast.oreilly.com/2008/10/how-linux-supports-more-device.html

[4] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make
operating systems reliable and secure?” Computer, vol. 39, pp. 44–51,
May 2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1137232.1137291

[5] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” SIGOPS Oper.
Syst. Rev., vol. 37, pp. 193–206, October 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945464

[6] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: making
trust between applications and operating systems configurable,”
in Proceedings of the 7th symposium on Operating systems
design and implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 279–292. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1298455.1298482

[7] J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in Proceedings of the 14th ACM
conference on Computer and communications security, ser. CCS ’07.
New York, NY, USA: ACM, 2007, pp. 389–400. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315294

[8] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,”
SIGARCH Comput. Archit. News, vol. 33, pp. 2–13, May 2005.
[Online]. Available: http://doi.acm.org/10.1145/1080695.1069971

[9] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 2–13, March
2008. [Online]. Available: http://doi.acm.org/10.1145/1353535.1346284

[10] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ser. VEE ’08. New York, NY, USA: ACM, 2008, pp. 71–
80. [Online]. Available: http://doi.acm.org/10.1145/1346256.1346267

[11] Oracle vm virtualbox. [Online]. Available: http://www.oracle.com/us/
technologies/virtualization/oraclevm/061976.html

[12] J. Fisher-Ogden. (2006) Hardware support for efficient virtual-
ization. [Online]. Available: http://www.cse.ucsd.edu/∼jfisherogden/
hardwareVirt.pdf

[13] R. Krishnakumar, “Hugetlb - large page support in the linux
kernel.” Linux Gazette, vol. 155, Feb. 2008. [Online]. Available:
http://linuxgazette.net/155/krishnakumar.html

[14] J. Petersson, “What is linux-gate.so.1?” Aug. 2005. [Online]. Available:
http://www.trilithium.com/johan/2005/08/linux-gate/

[15] M. Garg, “About elf auxiliary vectors.” 2006. [Online]. Available:
http://articles.manugarg.com/aboutelfauxiliaryvectors.html

[16] D. Yefremov and P. Iakovenko, “An approach to on-demand
activation and deactivation of virtualization-based security systems,”
in Proceedings of the fourth Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE 2010), 2010, pp. 157–
161. [Online]. Available: http://syrcose.ispras.ru/2010/files/syrcose10
submission 5.pdf

[17] F. Loukos. (2010) Injecting code at a running process. [Online].
Available: http://fotis.loukos.me/blog/?p=145

[18] I. Burdonov, A. Kosachev, and P. Iakovenko, “Virtualization-based
separation of privilege: working with sensitive data in untrusted
environment,” in Proceedings of the 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems, ser. VDTS ’09.
New York, NY, USA: ACM, 2009, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/1518684.1518685

24

Background Optimization in Full System Binary
Translation

Roman A. Sokolov
MCST CJSC

Moscow, Russia
Email: roman.a.sokolov@gmail.com

Alexander V. Ermolovich
Intel CJSC

Moscow, Russia
Email: karbo@pvk13.org

Abstract—Binary translation and dynamic optimization are
widely used to provide compatibility between legacy and promis-
ing upcoming architectures on the level of executable binary
codes. Dynamic optimization is one of the key contributors to
dynamic binary translation system performance. At the same
time it can be a major source of overhead, both in terms of
CPU cycles and whole system latency, as long as optimization
time is included in the execution time of the application under
translation. One of the solutions that allow to eliminate dynamic
optimization overhead is to perform optimization simultaneously
with the execution, in a separate thread. In the paper we present
implementation of this technique in full system dynamic binary
translator. For this purpose, an infrastructure for multithreaded
execution was implemented in binary translation system. This
allowed running dynamic optimization in a separate thread
independently of and concurrently with the main thread of
execution of binary codes under translation. Depending on the
computational resources available, this is achieved whether by
interleaving the two threads on a single processor core or by
moving optimization thread to an underutilized processor core.
In the first case the latency introduced to the system by a
computational intensive dynamic optimization is reduced. In the
second case overlapping of execution and optimization threads
also results in elimination of optimization time from the total
execution time of original binary codes.

I. INTRODUCTION

Technologies of binary translation and dynamic optimiza-
tion are widely used in modern software and hardware com-
puting systems [1]. In particular, dynamic binary translation
systems (DBTS) comprising the two serve as a solution to
provide compatibility between widely used legacy and promis-
ing upcoming architectures on the level of executable binary
codes. In the context of binary translation these architectures
are usually referred to as source and target, correspondingly.

DBTSs execute binary codes of source architecture on
top of instruction set (ISA) incompatible target architecture
hardware. They perform translation of executable codes incre-
mentally (as opposed to whole application static compilation)
interleaving it with execution of generated translated codes.
One of the key requirements that every DBTS has to meet
is that the performance of execution of source codes through
binary translation is to be comparable or even outperform the
performance of native execution (when executing them on top
of source architecture hardware).

Optimizing translator is usually employed to achieve higher
DBTS performance. It allows to generate highly efficient target

architecture codes fully utilizing all architectural features
introduced to support binary translation. Besides, dynamic
optimization can benefit from utilization of actual information
about executables behavior which static compilers usually
don’t possess.

At the same time dynamic optimization can imply sig-
nificant overhead as long as optimization time is included
in the execution time of application under translation. Total
optimization time can be significant but will not necessarily
be compensated by the translated codes speed-up if application
run time is too short.

Also, the operation of optimizing translator can worsen the
latency (i.e., increase pause time) of interactive application or
operating system under translation. By latency is meant the
time of response of computer system to external events such
as asynchronous hardware interrupts from attached I/O devices
and interfaces. This characteristic of a computer system is as
important for the end user, operation of hardware attached or
other computers across network as its overall performance.
Full system dynamic binary translators have to provide low
latency of operation as well. Binary translation systems of
this class target to implement all the semantics and behavior
model of source architecture and execute the entire hierar-
chy of system-level and application-level software including
BIOS and operating systems. They exclusively control all the
computer system hardware and operation. Throughout this
paper we will also refer this type of binary translation systems
as virtual machine level (or VM-level) binary translators (as
opposed to application-level binary translators).

One recognized technique to reduce dynamic optimization
overhead is to perform optimization simultaneously (con-
currently) with the execution of original binary codes by
utilizing unemployed computational resources or free cycles.
It was utilized in a number of dynamic binary translation and
optimization systems [2], [3], [4], [5], [6], [7], [8]. We will
refer this method as background optimization (as opposed to
consequent optimization, when optimizing translation inter-
rupts execution and utilizes processor time exclusively unless
it completes).

The paper describes implementation of background opti-
mization in a VM-level dynamic binary translation system.
This is achieved by separating of optimizing translation from
execution flow into an independent thread which can then con-

25

currently share available processing resources with execution
thread. Backgrounding is implemented whether by interleaving
the two threads in case of a single-core (single processor)
system or by moving optimization thread to an unemployed
processor core in case of a dual-core (dual processor) system.
In the first case the latency introduced to the system by
the ”heavy” phase of optimizing translation is reduced. In
the second case, overlapping of execution and optimization
threads also eliminates the time spent in dynamic optimization
phase from the total run time of the original application under
translation.

The specific contributions of this work are as follows:

• implementation of multithreaded infrastructure in a VM-
level dynamic binary translation system;

• single processor system targeted implementation of back-
ground optimization technique where processor time shar-
ing is implemented by interleaving optimizing translation
with execution of original binary codes;

• dual processor system targeted implementation of back-
ground optimization technique where optimizing trans-
lation is being completely offloaded onto underutilized
processor core.

The solutions described in the paper were implemented
in the VM-level dynamic binary translation system LIntel,
which provides full system-level binary compatibility with
Intel IA-32 architecture on top of Elbrus architecture [9], [10]
hardware.

II. LINTEL

Elbrus is a VLIW (Very Long Instruction Word) micropro-
cessor architecture. It has several special features including
hardware support for full compatibility with IA-32 architecture
on the basis of transparent dynamic binary translation.

LIntel is a dynamic binary translation system developed for
high performance emulation of Intel IA-32 architecture sys-
tem through dynamic translation of source IA-32 instructions
into wide instructions of target Elbrus architecture (the two
architectures are ISA-incompatible). It provides full system-
level compatibility meaning that it is capable of translating
the entire hierarchy of source architecture software (including
BIOS, operating systems and applications) transparently for
the end user (Fig. 1). As is noted above, LIntel is a co-
designed system (developed along with the architecture, with
hardware assistance in mind) and heavily utilizes all the
features of architecture introduced to support efficient IA-32
compatibility.

In its general structure LIntel is similar to many other binary
translation and optimization systems described before [11],
[12], [13] and is very close to Transmeta’s Code Morphing
Software [14], [15]. As any other VM-level binary translation
system, it has to solve the problem of efficient sharing of
computational resources between translation and execution of
original binary codes.

VM-level dynamic binary translation
system LIntel

Elbrus CPU
(IA-32 incompatible)

IA-32 BIOS, OS, drivers
and libraries

IA-32 applications

Fig. 1. VM-level dynamic binary translation system LIntel.

Translation cache:
execution of

translated codes
and profiling

Optimizing region
translation

Interpretation
and profiling

Non-optimizing trace
translation

IA-32 binaries

Adaptive
retranslation

Fig. 2. Adaptive binary translation.

A. Adaptive binary translation

LIntel follows adaptive, profile-directed model of translation
and execution of binary codes (Fig. 2). It includes four levels
of translation and optimization varying by the efficiency of the
resulting Elbrus code and the overhead implied, namely: inter-
preter, non-optimizing translator of traces and two optimizing
translators of regions. LIntel performs dynamic profiling to
identify hot regions of source code and to apply reasonable
level of optimization depending on executable codes behavior.
Translation cache is employed to store and reuse generated
translations throughout execution. Run-time support system
controls the overall binary translation and execution process.

When the system starts, interpreter is used to carefully
decode and execute IA-32 instructions sequentially, with at-
tention to memory access ordering and precise exception
handling. Non-optimizing translation is launched if execution
counter of a particular basic block exceeds specified threshold.

Non-optimizing translator builds a trace which is a seman-
tically accurate mapping of one or several contiguous basic
blocks (following one path of control) into the target code. The
building blocks for the trace are templates of the corresponding
IA-32 instructions, where template is a manually scheduled
sequence of Elbrus wide instructions. After code generation
and additional corrections like actual constants and address
values patching the trace is then stored into the translation

26

 Cycles per one source
instruction translation

Translated code
performance

Non-optimizing translation 1600 0.18
O0 optimization 30000 0.58

O1 optimization 1000000 1.0

Fig. 3. Average translation overhead per one IA-32 instruction and the
performance of translated codes (normalized to O1).

cache. Trace translator produces native code without complex
optimizations and focuses more on fast translation generation
rather than code efficiency. It improves start-up time signifi-
cantly as compared to interpretation. At the same time non-
optimizing translation is only reasonable for executable codes
with low repetition rate.

Traces are instrumented to profile hot code for O0-level
optimizing translation. The unit of optimizing translation is
a region. In contrast to traces, regions can combine basic
blocks from multiple paths of control providing better oppor-
tunities for optimization and speculative execution (which is
an important source of instruction level parallelism for VLIW
processors).

O0-level translator is a fast region-based optimizer that
performs basic optimizations implying low computation cost,
including peephole, dead-code elimination, constant propaga-
tion, code motion, redundant load elimination, superblock if-
conversion and scheduling.

Strong O1-level region-based optimizer is on the highest
level of the system. The power of this level is comparable
with high-level language optimizing compilers1. It applies
advanced optimizations such as software pipelining, global
scheduling, hyperblock if-conversion and many others, as well
as utilizes all the architectural features introduced to support
binary optimization and execution of optimized translations.

Region translations are stored in the translation cache as
well. Profiling of regions for O1-level optimization is carried
out by O0-level translations.

Optimized translations not always result in performance
improvement. Unproven optimization time assumptions can
cause execution penalty. These include incorrect speculative
optimizations, memory mapped I/O access in optimized code
(where I/O access is not guaranteed to be consistent due to
memory operations merge and reordering), etc. Correctness
of optimizations is controlled by the hardware at runtime.
Upon detecting a failure, retranslation of the region is launched
applying more conservative assumptions depending on failure
type.

Fig. 3 compares average translation cost of one IA-32 in-
struction and the performance of translated codes for different
levels of optimization. Adaptivity aims at choosing appropriate
level of optimization throughout the translation and execution
process to maintain overhead/performance balance.

Fig. 4 shows translation and execution time distribution for
SPEC2000 tests running under Linux (operating system is

1In fact, O0/O1 notation of LIntel’s binary optimizers corresponds to
conventional 02/O3-O4 optimization levels of language compilers.

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

Non-optimized code
O0 code
O1 code

Other
Optimization (O0+O1)

Fig. 4. Profile of binary translation in case of consecutive dynamic
optimization.

being translated as well). While translated codes are executed
most of the tests’ runtime, optimizing translation overhead is
significant and equals to 7% on average.

B. Asynchronous interrupts handling
One of the run-time support system functions is to handle in-

coming external (aka asynchronous) interrupts. The method of
delayed interrupt handling allows to improve the performance
of binary translated code execution and interrupt handling
by specifying exactly where and when a pending interrupt
can be handled. When interrupt occurs, interrupt handler only
remembers this fact by setting corresponding bit in the proces-
sor state register and returns to execution. Interpreter checks
for pending interrupts before next instruction execution. Due
to efficiency reasons, non-optimized traces only include such
checks in the beginning of basic blocks. Optimizing translators
inject special instructions in particular places of a region code
(where execution context is guaranteed to be consistent) that
check for pending interrupts and force execution flow to leave
region and switch to interrupt handler if needed.

This method of pending interrupt checks arrangement sim-
plifies planning and scheduling of translated codes as there
is no need to care about correct execution termination and
context recovery at arbitrary moments of time. At the same
time it allows LIntel to respond reactively enough to external
events.

The bottleneck in this scenario is the presence of optimizing
translation phase. If an interrupt occurs when optimization is
in progress, it has to wait for optimization phase completion
to be handled (Fig. 5). Due to computational complexity of
optimizations employed, optimizing translation can consume
significant amount of processor time and as such, the delay of
response of the system to an external event can be noticeable
(see evaluation in Section III-B).

III. BACKGROUND OPTIMIZATION

To overcome the problems of performance overhead and
latency caused by optimizing translation, the method of back-

27

Execution Execution

New hot region
acquired

Interrupt

Interrupt delivery delay
(latency)

Interrupt
delivery

End of optimizationStart of optimization

Fig. 5. Asynchronous interrupt delivery delay (latency) due to optimizing
translation.

ground optimization was employed in LIntel.
The concept of background optimization implies perform-

ing optimizing translation phase concurrently (or pseudo-
concurrently) with the main binary translation flow of ex-
ecution of original binary codes. Application-level binary
translators usually implement this by utilizing native operating
system’s multithreading interface and scheduling service to
perform optimization in a separate thread. VM-level binary
translation systems require internal implementation of multi-
threading to support background optimization.

In this section we describe implementation of background
optimization in the VM-level DBTS LIntel. Two cases are
considered: in the first case LIntel operates on top of a single-
core target platform system; in the second case there are two
cores available for utilization.

SPEC2000 tests are used to demonstrate the effect of
background optimization implementation.

A. Execution and optimization threads

A multithreaded execution infrastructure was implemented
in LIntel, with optimizing translation capable of running inde-
pendently in a separate thread, which enabled execution and
optimization threads concurrency. Execution thread activity
includes the entire process of translation and execution of
original binary codes, except for optimizing translation (of
both O0 and O1 levels), i.e.: interpretation, non-optimizing
translation, run-time support and execution itself. Optimizing
translator is run in a separate optimization thread when new
region of hot code is identified by the execution thread. When
optimization phase completes, generated translation of the
region is returned to the execution thread, which places it into
the translation cache.

During the region optimization phase corresponding orig-
inal codes are being executed either by interpretation or by
previously translated codes of lower levels of optimization.
Selection of new hot regions for optimization will not be
launched unless current optimization activity completes.

By the end of optimization, memory pages that contain
a source code of the region under optimization can get
invalidated (due to DMA, self-modification, etc.). As such,
before placing optimized translation of the region into the
translation cache, execution thread must check region’s source
code consistency and reject the region if verification fails.
This routine is assisted by the memory protection monitoring

Execution Execution

New hot region
acquired

Interrupt
Interrupt
delivery

End of optimizationStart of optimization

Interrupt
Interrupt
delivery

Execution

Optimization

Fig. 6. Asynchronous interrupt delivery in case of interleaved background
optimization.

 Consecutive
optimization

Interleaved
(background)
optimization

O1 phase mean time 1.54 s 3 s

O1 phase max time, T01_max 8.8 s 29.5 s

interrupt delivery mean time
with no optimization in progress 54 µs

interrupt delivery max time
(with О1 phase in progress) 8.8 s (T01_max) 1.7 ms

Fig. 7. Interrupt delivery time (CPU frequency = 300 MHz; thread time slice
= 50000 cycles). O1-level optimization time is used as a reference as this
phase consumes a greater number of processor cycles per source instruction
as compared to O0-level optimization.

subsystem (introduced in the Elbrus hardware to support
binary translation [16]) which controls source and translated
(as well as translations-in-progress) codes coherency.

Separation of execution and optimization threads allows to
schedule them across available processing resources in the
same way as multitasking operating systems schedule pro-
cesses and threads. By now, two simple strategies of processor
time sharing were implemented in LIntel enabling optimiza-
tion backgrounding for single-core and dual-core systems.

B. Background optimization in a single-core system

In case of a single-core system background optimization
is implemented by interleaving of execution and optimization
threads. Throughout optimizing translation of a hot region
processor switches between the two threads. Scheduling is trig-
gered by interrupts from internal binary translation dedicated
timer ”invisible” for executable codes under translation. Each
thread is assigned a fixed time slice. When execution thread is
active, incoming external interrupt has a chance to be handled
without having to wait for region optimization to complete
(Fig. 6). If there are no hot regions pending for optimization,
execution thread fully utilizes the processor core.

To demonstrate single-core background optimization ap-
proach, a simple strategy of processor time sharing was chosen
when both threads have equal priority, with equal time slices
assigned (meaning that optimization thread’s processor utiliza-
tion is 50%, in contrast to 100% utilization when optimizing
consequently). As seen from Fig. 7, interleaving of execution
and optimization improves interrupt delivery time significantly.

At the same time, as Fig. 8 demonstrates, this approach tend

28

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

 0%

 2%

 4%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

1.8%

-4.0% -3.7%

-15.5%

-10.5%-10.7%

-17.4%

-5.6%

-3.8%

-1.5%

2.8%

-2.6%

-4.0%

-6.1%

Fig. 8. Binary translation slow-down when interleaving optimization with
execution (as compared to consecutive optimization).

to degrade binary translation performance.
Degradation can be explained by the fact that hot region

optimization phase now lasts longer. As a result, optimized
translations injection into execution is being delayed, mean-
while source binary codes are being executed non-optimized
(or interpreted). Additional overhead comes with context
switching routines.

Basically, single-core background optimization implemen-
tation is not of high priority currently. At the same time
we believe that it is possible to improve its efficiency by
tuning various parameters like execution and optimization
threads’ time slices and profiling thresholds to achieve earlier
injection of optimized translations into execution process while
keeping whole system latency acceptable. Besides, IA-32
”halt” instruction can be used as a hint to utilize free cycles
and yield processor to optimization thread before the end of
execution thread’s time slice. Extensive study of execution and
optimization threads’ processor time utilization was made in
[17].

C. Background optimization in a dual-core system

In a dual-core system LIntel completely utilizes the second
(unemployed otherwise) processor core to perform dynamic
optimization in a background thread. In this case execution
thread exclusively utilizes its own core and only interrupts
execution to acquire next region for optimization and allocate
generated translation when optimization completes.

As Fig. 10 demonstrates, overlapping of execution and
optimization by moving optimization thread onto a separate
core not only eliminates the problem of latency, but also
increases overall binary translation system performance.

The resulting speed-up (6% on average) agrees good enough
with dynamic optimization overhead estimated for the case of
consecutive optimization (see Section II-A).

D. Discussion and future works

As noted above, selection of hot regions in execution thread
gets blocked unless optimization phase completes. However,

Core 2
· Optimizing translation
 of region

Core 1
· Execution
· Run-time support
· Interpreter and non-opt. translation

Acquire new
hot region

Allocate region translation
in translation cache

Fig. 9. Utilization of a separate processor core for dynamic optimization.

-2%

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

6.1%5.5%

1.1%

4.5%

8.7%
7.7%

13.2%

4.2%
3.0%

0.4%

7.1%

0.5%

5.2%

7.1%

Fig. 10. Binary translation speed-up when optimizing on a separate processor
core (as compared to consecutive optimization).

profile counters continue to grow, and by the end of optimiza-
tion there may be several nonoverlapping regions in the profile
graph with counters exceeding threshold. As counters are
checked during execution of corresponding translated codes,
next optimizing translation will be launched for the first region
executed. Not necessarily will this region be the hottest one.
As such, a problem of suboptimal hot region selection arises
which also needs to be addressed (profile graph traversal can
be quite time-consuming and is not an option).

The profile of binary translation for SPEC2000 tests (Fig.
4) suggests that current optimization workload is not enough
to fully utilize optimization thread affiliated processor core,
which will run idle most of the application run time. To im-
prove its utilization ratio, optimizing translator can be forced
to activate more often. This can be achieved by dynamically
decreasing of hot region profiling threshold depending on
current load of the core affiliated with optimizing translator.
When execution activity is naturally low, this core should be
halted due to energy efficiency reasons.

This is reasonable to ask why not utilize unemployed
processor core to execute source binary codes. In other words,
if there are more than one target architecture microprocessor
core in the system, source architecture system software (e.g.

29

operating system) could ”see” and utilize the same number
of cores. Current Elbrus architecture implementation (used in
this paper) does not satisfy IA-32 architecture requirements
concerning organization of multiprocessor systems. As a re-
sult, IA-32 multiprocessor support is not possible on top of
Elbrus hardware. But we hope to implement this scenario
in the future. Still, we believe that having processor cores
solely utilized for dynamic optimization is reasonable due to
a following:

• different classes of software (legacy software, software
for embedded systems, etc.), not always developed with
multiprocessing or multithreading in mind, can benefit
from multicore or multiprocessor systems when being
executed through binary translation with background op-
timization option;

• keeping in mind the tendency towards ever increasing
number of cores per chip, it seems reasonable to uti-
lize some cores to improve dynamic binary translation
system performance; not only optimizing translator can
consume this resources; other jobs that could also be
performed asynchronously include identification and se-
lection of code regions for optimization [18], software
code prefetching [19], persistent translated code storage
access [20] 2, etc.

Finally, we think that a promising direction for future
research and development is building a binary translation
infrastructure that could support unrestricted number of exe-
cution (in terms of source architecture virtual machine; so that
operating system under translation could ”see” more than one
processor core), optimization and other threads and schedule
them efficiently across the available computational resources
depending on their quantity, load and binary codes execution
behavior.

IV. CONCLUSION

The paper addresses the problem of optimization overhead
in dynamic binary translation systems and presents the appli-
cation of background optimization technique in full system
dynamic binary translator LIntel. Implementations for single-
core and dual-core systems are considered. In the first case
backgrounding is implemented by interleaving execution and
optimization, while in the second case dynamic optimization
is completely moved onto a separate processor core. In both
cases background optimization solves the problem of high
latency caused by dynamic optimization which is particularly
important for full system execution environment. Performing
optimization on a separate core also eliminates optimization
overhead from the application run time thus improving binary
translation system performance in general.

2Asynchronous access to a persistent code storage (aka CodeBase) has
already been implemented in LIntel by the moment but is not covered
in this paper as we only consider the effect of background optimization
implementation.

REFERENCES

[1] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes. Morgan Kaufmann, 2005.

[2] S. Campanoni, G. Agosta, and S. C. Reghizzi, “ILDJIT: a parallel
dynamic compiler,” in VLSI-SoC’08: Proceedings of the 16th IFIP/IEEE
International Conference on Very Large Scale Integration, 2008, pp. 13–
15.

[3] C. J. Krintz, D. Grove, V. Sarkar, and B. Calder, “Reducing the
overhead of dynamic compilation,” Software: Practice and Experience,
vol. Volume 31 Issue 8, pp. 717–738, 2001.

[4] J. Mars, “Satellite optimization: The offloading of software dynamic
optimization on multicore systems (poster),” in PLDI ’07: 2007 ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2007.

[5] P. Unnikrishnan, M. Kandemir, and F. Li, “Reducing dynamic compila-
tion overhead by overlapping compilation and execution,” in Proceed-
ings of the 11th South Pacific Design Automation Conference (ASP-DAC
’06). Piscataway, NJ, USA: IEEE Press, January 2006, pp. 929–934.

[6] M. J. Voss and R. Eigenmann, “A framework for remote dynamic
program optimization,” in Proceedings of the ACM SIGPLAN workshop
on Dynamic and adaptive compilation and optimization, 2000, pp. 32 –
40.

[7] W. Zhang, B. Calder, and D. M. Tullsen, “An event-driven multithreaded
dynamic optimization framework,” in Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’05). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 87–98.

[8] H. Guan, B. Liu, T. Li, and A. Liang, “Multithreaded optimizing
technique for dynamic binary translator CrossBit,” Computer Science
and Software Engineering, International Conference on, vol. 5, pp. 945–
952, 2008.

[9] B. Babayan, “E2k technology and implementation,” in Euro-Par ’00:
Proceedings from the 6th International Euro-Par Conference on Parallel
Processing. London, UK: Springer-Verlag, 2000, pp. 18–21.

[10] V. Volkonskiy, “Optimizing compilers for Elbrus-2000 (E2k) architec-
ture,” in 4th Workshop on EPIC Architectures and Compiler Technology,
2005.

[11] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and
Y. Zemach., “IA-32 Execution Layer: a two-phase dynamic translator
designed to support IA-32 applications on Itanium-based systems,” in
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 2003, p. 191.

[12] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B.
Yadavalli, and J. Yates, “FX!32: A profile-directed binary translator,”
IEEE Micro, vol. 18, no. 2, pp. 56–64, 1998.

[13] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,
“Dynamic and transparent binary translation,” Computer, vol. 33, no. 3,
pp. 54–59, 2000.

[14] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing Software:
Using speculation, recovery, and adaptive retranslation to address real-
life challenges,” in Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 2003.

[15] A. Klaiber, “The technology behind Crusoe processors,” Transmeta
Corporation, Tech. Rep., January 2000.

[16] A. V. Ermolovich, “Methods of hardware assisted dynamic binary trans-
lation systems performance improvement,” Ph.D. dissertation, Institute
of microproccessor computing systems, Moscow, 2003.

[17] P. Kulkarni, M. Arnold, and M. Hind, “Dynamic compilation: the bene-
fits of early investing,” in VEE ’07: Proceedings of the 3rd international
conference on Virtual execution environments. New York, NY, USA:
ACM, 2007, pp. 94–104.

[18] J. Mars and M. L. Soffa, “MATS: Multicore adaptive trace selection,”
in Proceedings of the 3rd Workshop on Software Tools for MultiCore
Systems (STMCS 2008), April 2008.

[19] J. Mars, D. Williams, D. Upton, S. Ghosh, and K. Hazelwood, “A reac-
tive unobtrusive prefetcher for multicore and manycore architectures,”
in Proceedings of the Workshop on Software and Hardware Challenges
of Manycore Platforms (SHCMP), June 2008.

[20] A. V. Ermolovich, “CodeBase: persistent code storage for dynamic
binary translation system preformance improvement,” Information tech-
nologies, vol. 9, pp. 14–22, 2003.

30

The ARTCP header structure, computation and
processing in the network subsystem of Linux kernel.

Anatoliy Sivov
Yaroslavl State University

Yaroslavl, Russia
mm05@mail.ru

V.A. Sokolov (research supervisor)
Yaroslavl State University

Yaroslavl, Russia

Abstract—ARTCP is a transport level communication protocol
based on TCP. It uses temporal characteristics of data flow to
control it, that allows to split algorithms of congestion avoidance
and reliable delivery. The article discusses possible ARTCP
header structure and practical aspects of forming the header and
calculation of the header fields. It demonstrates the possibility of
transparent replacement of TCP with ARTCP due to flexible
ARTCP connection setup implementation and ARTCP packets
structure compatibility with TCP. The questions of precise time
dispatching of the received packets are discussed. The Linux
kernel interfaces for time measurement are described as well as
the clock source abstraction layer and its implementation.

Networking; transport protocol; ARTCP; time measurement;
Linux kernel.

I. INTRODUCTION

TCP is the most widespread transport protocol with the
reliable data delivery today. It has become the industry
standard de facto. However, this protocol is not ideal. It has at
least two big disadvantages. The first of them is that its data
flow management algorithm results in periodic network
congestion by design. It leads to unnecessary packet loss and
latency increase. The second is inefficient bandwidth use in the
unreliable physical environment (i.e. wireless networks) where
BER can be reasonably high. This disadvantage comes from
TCP impossibility to distinguish packet loss due to congestion
and packet loss due to some transmission errors.

Adaptive Rate TCP (ARTCP) is a transport protocol with
the reliable data delivery that uses some TCP principles but
tends to solve these two TCP's disadvantages. ARTCP uses
temporal characteristics of data flow in its data flow
management algorithm. It allows ARTCP to determine
bandwidth efficiently without need in periodic network
congestion. The main feature of ARTCP is a logical separation
of error correction and data flow management. Due to this
separation ARTCP is able to use bandwidth more efficiently
than TCP in unreliable environment [1]. The ideas of ARTCP
and protocol's description can be found in [1] and [2].

This article is a research-in-progress report about ARTCP
implementation in Linux kernel. It considers the following
things: transparent replacement of TCP with ARTCP,
coexistence of TCP and ARTCP, ARTCP header structure and

processing, and computation of ARTCP header fields values in
Linux kernel.

The Linux kernel is chosen as the target platform of
ARTCP implementation for several reasons:

• Linux is an open source system. It allows to use its
source code and modify it. So, Linux allows the most
flexible implementation process it could be what is
very important while implementing protocol that is
closely associated with the existing one. It makes
implementation to be much more easy and efficient
comparing with writing the module for operating
system with closed sources.

• Linux has very good network subsystem. When
implementing transport protocol it is very desirable to
have good implementation of underlying protocols as
well as networking implementation at whole. Linux
has advantages of very good networking stack with
well-implemented layers abstraction and object-
oriented socket concept. The other advantage is a TCP
implementation modularity.

• Linux is a popular, industry-choice operating system.
Linux is the most popular operating system in the
industry comparing with the other open source
operating systems. The wish to create an
implementation of ARTCP for OS widely used in the
industry influenced on the choice among variety of
open source operating systems.

• Linux can run on various hardware platforms. Linux
has support of many hardware platforms including
x86, ia64, x64, arm, avr, mips, ppc and so on. ARTCP
implementation written hardware-independently will
be supported on all of these platforms.

II. ARTCP AND TCP
It is very important to have TCP working on the system

which supports ARTCP. Taking into account that ARTCP is
considered as transparent replacement of TCP the
responsibility for this lies on ARTCP implementation. It is so
because applications (or overlying protocols such as HTTP)
does not know whether they establish TCP or ARTCP
connection unlike the situation when they use the other

31

transport protocols (UDP or something more exotic like
SCTP).

We have chosen to support TCP on ARTCP-featured
systems in two ways. At first, operating system administrator
must have a simple capability to choose whether to use TCP or
ARTCP. This problem is solved with addition of
tcp_enable_artcp kernel parameter with possible values 0 or 1
where 0 means that ARTCP is disabled (and TCP is used) and
1 means that ARTCP is enabled (and ARTCP is used if
possible for all connections). Like any other kernel parameter
this parameter is accessible in runtime with /proc/sys/ interface.
Its value can be changed with writing 0 or 1 to
/proc/sys/net/ipv4/tcp_enable_artcp file. Also its value can
be set in /etc/sysctl.conf file in the same way as any other
kernel parameter.

Secondly, ARTCP implementation must be able to fall back
to TCP if the other end of connection does not support
ARTCP. This capability allows to have ARTCP enabled in the
TCP world. It is very useful to be able to switch to TCP in the
kernel without any packet retransmission or disturbing
overlying protocol or an application that uses ARTCP/TCP
connection but imposes ARTCP packet structure and
connection setup to be TCP-compatible. This article suggests
ARTCP header structure and connection setup that are TCP-
compatible and makes it possible to fallback to TCP at any
time of connection. Also it represents implementation of
ARTCP header processing in Linux networking subsystem and
discusses the questions of ARTCP header fields values
calculation.

III. ARTCP HEADER STRUCTURE

As mentioned above ARTCP header structure must be
TCP-compatible. Let us consider TCP header and how it is
possible to extend it to fit ARTCP needs.

TABLE I. TCP HEADER

Bit 0-3 4-7 8-15 16-31

0 Source port Destination port

32 Sequence number

64 Acknowledgment number

96
Data
offse

t

Rese
rved Flags Window size

128 Checksum Urgent data pointer

160 Options (optional field)

TCP has a native support to extend header called TCP
options. TCP options are considered in [3] and succeeding
RFCs and have the following format: first byte contains option
number, second byte contains option length (in bytes including
2 bytes for number and length fields) and 0 or more bytes
(specified in the length field) contains option value. There are
only two exception for this format. Option number 0 is one
byte long. It is used to mark the end of options list. The other
exception is an option number 1 which is used for padding to

align other options on 32-bit boundaries. TCP header allows up
to 40 bytes to be used for options list.

ARTCP requires only two extra fields for its functionality:
PS field and TI field. Each one of them can be represented as
32 bit number. PS (Packet Sequence) field holds unique packet
sequence number (modulo 232, of course). According to [1] this
field must be presented in every ARTCP packet with payload
data. ARTCP receiver uses this field to determine whether the
packet received is the next packet in the stream comparing with
the previous received packet. So, the value of PS field in
ARTCP is to help receiver to distinguish the packet in order
sent first time from the packet in order sent again (due to some
packet loss). Indeed data presented in TCP header are enough
to distinguish segments in order from segments out of order
using the sequence number field. However, in terms of TCP
there is no difference between the segment sent first time and
the segment sent again (due to retransmission) because both of
them share the same sequence number and there is no any
indication of retransmitted segment in TCP.

The second field, TI (Time Interval) is used by ARTCP to
compute the value of stream's duty ratio. The paper [4]
suggests to carry the time interval measured between two
consecutive moments of ARTCP packets arrival. It is
considered more useful to carry time intervals in the TI field
instead of carrying duty factor what was suggested in [1].
ARTCP receiver puts this field in every its acknowledgment
packet (packet that has ACK flag). It is necessary to use real
(“human”) time units for time interval resolution in TI that
must not depend on hardware used by sender or receiver (i.e.
these units must not be CPU ticks or something like that). The
paper [4] suggests to use microseconds for this purpose. Time
measurement with this resolution is possible on the most of
hardware used nowadays and has a sufficient precision for the
existing problem. TI field may be represented with 32 bit
number.

Both TI and PS can take the form of TCP options in
ARTCP header. In this case they must take at least 6 bytes (8
bytes to keep the 32 bit alignment) – 1 byte for option number,
1 byte for option length and 4 bytes for option value (and 2
bytes for alignment). For today implementation PS field may
use option number 253 and TI field may use option number
254. These option numbers are chosen in conformity with
RFC 4727 [5] to use in experiments. They must be changed
later in conformity with RFC 2780 [6]. The use of TCP options
numbers 253 and 254 is regulated in RFC 3692 [7].

Summing up, ARTCP header is a valid TCP header
extended with two TCP options called PS and TI. Every
ARTCP packet with payload data as well as packet with SYN
or FIN flag contains PS field with packet sequence number in
the header. This number is one more than the number of
previous segment transmitted by the sender (excluding case of
retransmission during connection setup). Namely, if the
segment with value N in the field PS was transmitted by sender
but was not delivered (or its acknowledgment was not received
by sender) then this segment is retransmitted (with possible
repacketization) but has value N+1 (modulo 232) in the PS
field. Every ARTCP packet with ACK flag must contain TI
field in its header. TI field must have 0 as value if this packet is

32

an acknowledgment for a packet that contains in PS field value
that differs from the value of previous received packet
incremented by one modulo 232. Otherwise, field TI must
contain calculated value of the time interval. Both fields PS
and TI are written in the network order.

IV. ARTCP HEADER PROCESSING

ARTCP shares a lot of algorithms with TCP, also ARTCP
implementation must allow fallback to TCP if one of
connection ends does not support ARTCP. So it's decided to
use existing network subsystem of Linux kernel,
implementation of Ipv4/TCP stack in particular, to implement
ARTCP.

As described above, ARTCP header differs from TCP
header with presence of PS and TI fields only. These fields are
represented in the form of TCP options so that it is necessary to
modify the code that implements TCP options reading and
writing to implement reading and writing of ARTCP header.

To form TCP options to be sent in the header Linux kernel
uses struct tcp_out_options, the structure that contains the
fields with values of different TCP options supported by
network stack of Linux and bit field options to set flags that
indicates which options must be written to the header of the
current TCP packet. To implement writing of ARTCP header
the fields for TI and PS values were added to this structure,
also bit flags, that indicates the presence of the fields and are
used in options bit field, were created.

For this structure to be filled correctly the functions that
initializes the instance of this structure were modified. These
functions are tcp_syn_options, tcp_synack_options and
tcp_established_options. They forms options for SYN
packets, SYN-ACK packets and the other packets,
respectively. The modified functions checks whether socket is
in the ARTCP mode and if so adds information about needed
PS or/and TI field.

To write TCP options into network buffer that contains the
header tcp_options_write function is used. This function is
modified as well to write PS and TI fields to the header if it is
specified in the instance of the modified struct
tcp_out_options. All these modifications make it possible to
form ARTCP packets in the Linux network subsystem.

To parse the options of the TCP header in the packet
received Linux calls tcp_parse_options function, which
analyzes the received data and forms the instance of struct
tcp_options_received by writing received values into it. To
support ARTCP this structure was extended with fields ps and
ti that contains values of fields PS and TI of the received
ARTCP packet and bit field artcp_options that determines
which ARTCP fields were actually presented in the header (PS,
TI, both or none). Also tcp_parse_options function must be
modified to handle ARTCP fields and form the modified
structure.

To handle ARTCP packets properly it is necessary to
process received ARTCP fields depending on the connection
state and the presence/absence of payload data in the received
packet. In IPv4/TCP stack received SYN packet is processed in

tcp_v4_conn_request function. The modified code of this
function checks the kernel parameters set by administrator by
reading sysctl_tcp_enable_artcp variable which has
information whether ARTCP is globally enabled in the system
or not. If ARTCP is enabled tcp_v4_conn_request checks the
presence of field PS in the received SYN packet and the
correctness of its value as well as the absence of field TI. If all
checks are passed then function puts socket in ARTCP mode
and initializes all resources needed by ARTCP connection.
Otherwise, the function puts socket in TCP mode.

If the socket has already sent SYN packet (and is in SYN-
SENT state) then the packets received with this socket are
handled with tcp_rcv_synsent_state_process. The modified
code of this function checks the presence of PS and TI fields in
the header and correctness of their values when SYN-ACK
packet is received for socket in ARTCP mode. If checks are not
passed then the function puts the socket in TCP mode.
Otherwise, function initializes all resources needed by ARTCP
connection.

For established ARTCP connection all received packets are
handled with tcp_rcv_established function. The modified
code of this function processes ARTCP packets for the socket
in ARTCP mode. If the header of the received packet has no
needed fields PS (for packet that has payload data) or TI (for
packet that has ACK) or the header of the packet without
payload data has field PS then socket falls back to TCP. If
ACK packet received then the value of field TI is passed to
data flow management algorithm of ARTCP. For packet that
has payload data the function checks the value of field PS. If
this packet is the next (after previous received packet) packet
sent by the other end according to this field then it is necessary
to calculate the difference between the time of arrival of these
two packets to send it in the field TI of the acknowledgment
packet. Otherwise, the ACK packet will contain 0 in the field
TI.

V. TIME MEASUREMENT FOR TI FIELD IN LINUX

TI requires time measurement with microseconds
resolution what may be nontrivial problem. Linux kernel
guarantees the availability of so-called “system clock”
represented with jiffies interface. Jiffies can be considered as
read only global variable which is updated with HZ frequency.
HZ is a compile-time kernel parameter whose reasonable
range is from 100 to 1000 Hz [8]. So, it is guaranteed to have
an interface for time measurement with 1-10 milliseconds
resolution.

The availability of more precise techniques for time
intervals measurement is hardware-dependent. Let us consider
x86 architecture as an instance. All IMB-compatible PCs have
Programmable Interval Timer (PIT) known as chip Intel 8523
(or Intel 8524 and other analogues). This chip (or an analogue,
i.e. south bridge of the motherboard may have this
functionality) has three independent 16-bit counters called
channels. Channel 0 usually is used for clock interrupts
generation. Channel 1 assists in generating timing for DRAM
memory refreshes. And channel 2 commonly generates PC
speaker tones. PIT allows to achieve 1 ms time resolution.

33

The other clock source is Real Time Clock (RTC). RTCs
usually have an alternate source of power, so they can continue
to keep time while the primary source of power is off or
unavailable. RTC's functionality is provided with south bridge
in the modern motherboards. However, RTC allows time
measurement with 1 ms resolution.

The most modern x86 motherboards have Advanced
Programmable Interrupt Controller (APIC) and APIC timer as
a consequence. This timer's frequency equals CPU bus
frequency what allows time measurement with a high
resolution (about 10 nanoseconds). The other benefit is that in
contradistinction to PIT and RTC local APIC timer does not
require call to I/O port. The most uniprocessor PCs above
Pentium 4 explicitly prohibits APIC by disabling it in BIOS.

Also systems, that have a support of Advanced
Configuration and Power Interface (ACPI), have so-called
Power Management timer (PM timer). Unlike APIC timer, it is
possible with PM timer to have a reliable time independently
on CPU speed changes due to active power management with
OS.

At the beginning of 2000s Intel and Microsoft corporations
has developed High Precision Event Timer (HPET) [9]. This
timer has a high frequency (not less than 10 MHz) and uses 64-
bit counter. Often it is a most preferable high-precision clock
source in the system.

In addition to peripheral timers x86 computers have on-
chip (on-CPU) 64-bit counter called Time Stamp Counter
(TSC). Comparing with the other counters this one has
advantages of less read latency and high resolution. The
frequency of this counter on different CPUs varies and can
equal CPU frequency or CPU bus frequency. There are two
major problems to use this counter as clock source. The first
one is that Time Stamp Counters may be not synchronized
between cores of SMP [10]. The second is that frequency of
TSC may be non-constant (due to power management or
processor frequency changes on idle and so on).

Intel's software developer's manual [11] describes in depth
the differences in TSC implementation on different Intel CPU
families. It also describes the way to recognize whether CPU
has TSC with invariant rate. Most AMD processors have TSC
that is unusable as a reliable clock source because of certain
circumstances.

The facilities for time interval measurement in x86
architecture listed above give an idea of the difficulty to solve
this problem more precisely for different processors. The
support of other hardware architectures (arm, mips and so on)
highly increases this difficulty. The other problem is a non-
triviality of time units translation from “machine” time units
used in the chosen device to “human” time units (for example,
microseconds needed by ARTCP). Reading the report [12]
shown in 2005 in Ottawa (Canada) at a symposium devoted to
Linux you can get an idea on the complexities associated with
the solution of this problem.

Fortunately, Linux kernel provides the means for solving
these problems. To have a possibility to use different hardware
counters and timers “clock source” concept is implemented in

Linux kernel. According to this concept, each hardware
architecture supported by Linux implements for each available
facility a “clock source” interface. It does it by initializing an
instance of struct clocksource interface and registering it in
operating system with call to either clocksoure_register_khz
or clocksource_register_hz. Struct clocksource has field
rating that allows Linux to choose the best “clock source”
available for the specified hardware. Best “clock source”
corresponds to the registered instance of struct clocksource
with the biggest value of field rating. The values of this field
are logically interpreted in that way: 1-99 – unfit for real use
(only available for bootup and testing purposes), 100-199 –
base level usability (functional for real use, but not desired),
200-299 – good (a correct and usable clocksource), 300-399 –
desired (a reasonably fast and accurate clocksource), 400-499 –
perfect (the ideal clocksource, that is a must-use where
available).

Since the best “clock source” has been chosen Linux kernel
is able to read its counter values by calling the function passed
in field read of struct clocksource. This function returns the
value in abstract “machine” time units represented with cycle_t
data type. Linux kernel can use the values of field mult and
field shift of struct clocksource to translate this value to
nanoseconds.

Linux kernel provides various interfaces for indirect work
with “clock sources” and to retrieve the values of time in
“human” units. The most interesting of them are
getnstimeofday and getrawmonotonic functions. Both of
these functions return the value of time as an instance of struct
timespec. This structure consists of two fields: tv_sec that
carries seconds and tv_nsec that carries nanoseconds. The most
significant difference between these functions is that the former
unlike the second uses NTP correction to adjust value it
returns. The absence of this correction in getrawmonotonic
allows to use this function to compute time intervals where the
correspondence of the time set on the machine to the actual
time does not matter. Based on these considerations, ARTCP
implementation uses getrawmonotonic interface to calculate
time intervals between two consecutive received ARTCP
packets with payload data.

The first time reading with getrawmonotonic happens in
artcp_init function in the process of ARTCP connection
initialization when either socket, that sent ARTCP packet with
ACK, receives ARTCP packet with SYN-ACK, or socket
receives ARTCP packet with SYN (and ARTCP is globally
enabled). Subsequent readings occur when ARTCP packets
with payload data are received. Moreover, if the value of the
field PS in the received packet is one greater (modulo 232), than
the value of the field PS in the previous received packet, then
the value for the field TI of the acknowledgment packet is
calculated with call to artcp_ts_diff_to_ti function. The
function artcp_ts_diff_to_ti takes two struct timespec
arguments, that represent the time interval, and returns the
difference between these moments of time in microseconds.

Summarizing the material described in this article, we can
conclude that, having made the above changes in the source
code of Linux network subsystem, we get the implementation
of ARTCP packets processing (receiving, sending, calculation

34

of field values) that is completely independent from the
implementation details of data flow management function and
the other parts of ARTCP. Moreover, the implementation is
cross-platform (in the hardware) and uses the best available
hardware facility for time intervals calculation with the ability
to increase the resolution of the field TI up to nanoseconds. It is
also worth nothing that the implementation does not conflict
with the existing functionality of Linux network subsystem,
allowing the latter to use TCP connections simultaneously with
ARTCP and even switch ARTCP connections to TCP mode.

[1] I. V. Alekseev, V. A. Sokolov, D.U. Chaly. Modeling and analysis of
Transport protocols for computer networks. Yaroslavl State University,
2004. (in Russian)

[2] I. V. Alekseev, V. A. Sokolov Compensation Mechanism for Adaptive
Rate TCP. // 1-St International IEEE/Popov Seminar "Internet:
Technologies A and Services". P. 68-75, October 1999

[3] J. Postel. Transmission Control Protocol. // RFC 793 (STD7). 1981.
[4] I. V. Alekseev, S. A. Merkulov, A. A. Sivov. “Aspects of practical

implementation of ARTCP in Linux kernel 2.6” // Modeling and
analysis of information systems. Volume 17, №2. Yaroslavl: Yaroslavl
state university, 2010. P. 144-149 (in Russian)

[5] B. Fenner. Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers. // RFC 4727. 2006.

[6] S. Bradner, V. Paxson. IANA Allocation Guidelines For Values In the
Internet Protocol and Related Headers. // RFC 2780. 2000.

[7] T. Narten. Assigning Experimental and Testing Numbers Considered
Useful. // RFC 3692. 2004.

[8] J. Corbet, A. Rubini, G. Kroah-Hartman. Linux Device Drivers. 3rd
edition. O'Reilly, 2005.

[9] IA-PC HPET (High Precision Event Timers) Specification. Rev. 1.0a.
Intel Corporation, 2004.

[10] AMD Technical Bulletin – TSC Dual-Core Issue & Utility Fix.
Advanced Micro Devices, Inc. 2007.

[11] Intel® 64 and IA-32 Architectures Software Developer's Manual.
Volume 3A: System Programming Guide, Part 1. Intel Corporation.
January 2011.

[12] J. Stultz, N. Aravamudan, D. Hart. We Are Not Getting Any Younger: A
New Approach to Time and Timers. // Proceedings of the Linux
Symposium. Vol. 1. P. 219-232, July 2005.

35

A new double sorting-based node splitting
algorithm for R-tree

Alexander Korotkov
National Research Nuclear University MEPhI

31 Kashirskoe shosse
Moscow, Russian Federation

Email: aekorotkov@gmail.com

Abstract—A storing of spatial data and processing of spatial
queries are important tasks for modern databases. The execution
efficiency of spatial query depends on underlying index structure.
R-tree is a well-known spatial index structure. Currently there
exist various versions of R-tree, and one of the most common
variations between them is node splitting algorithm. The problem
of node splitting in one-dimensional R-tree may seem to be too
trivial to be considered separately. One-dimensional intervals can
be split on the base of their sorting. Some of the node splitting
algorithms for R-tree with two or more dimensions comprise
one-dimensional split as their part. However, under detailed con-
sideration, existing algorithms for one-dimensional split do not
perform ideally in some complicated cases. This paper introduces
a novel one-dimensional node splitting algorithm based on two
sortings that can handle such complicated cases better. Also this
paper introduces node splitting algorithm for R-tree with two or
more dimensions that is based on the one-dimensional algorithm
mentioned above. The tests show significantly better behavior of
the proposed algorithms in the case of highly overlapping data.

I. INTRODUCTION

Spatial data processing is an important task for modern
databases. Since the volume of information in databases
increases continuously, the database management systems
(DBMS) need spatial index structures in order to handle
spatial queries efficiently. The problem of spatial indexes is
that there is no ordering which reflects proximity of spatial
objects [5]. This is why B-tree [3] can not handle spatial object
efficiently. R-tree [7] is the most well-known index structure
for spatial data. R-tree is a height balanced tree like B-tree,
which hierarchically splits space into possibly overlapping
subspaces. Spatial objects in R-tree are approximated by
minimal bounding rectangles (MBRs), see figure 1. Leaf node
entry of R-tree contains MBR of spatial object and a reference
to the corresponding database object. An entry of non-leaf
node of R-tree contains reference to the child node and MBR
of all rectangles in child node. Since the rectangles of a same
node of R-tree can overlap, exact match query may lead to
multipath tree scan. This forms significant difference of R-tree
from such data structures as B-tree. The number of query paths
and, in turn, the number of node accesses of non-exact match
query also strongly depends on degree of rectangle overlap.
R-tree was originally designed for access to multidimensional
data, but it is also applied for one-dimensional intervals [10].

The quality of R-tree strongly depends on the node splitting
algorithm. The task of node splitting is to split entries of the

MBR

Spatial
object

Fig. 1. MBR illustration

overflowed node into two groups which will form two new
nodes. Node splitting algorithm substantially determines the
area and degree of overlap of the tree rectangles. In turn these
parameters determine the probability of multipath queries. The
following parameters can be used in order to estimate the
quality of a node splitting:

• The overlap of bounding rectangles. The smaller overlap
of entry rectangles leads to the smaller probability of
multipath queries.

• The coverage of bounding rectangles. The coverage of a
split is a total area of bounding rectangles. In general
smaller coverage leads to the smaller probability of
multipath queries when query area is relatively large [1].

• Storage utilization. As the measure of storage utilization,
a ratio between a numbers of entries in the smaller group
and the greater group can be used. Typically, constraint
is imposed on this parameter, i.e., the minimal number
of entries in the resulting node m is defined. Restriction
of this parameter is very reasonable, but this parameter
can also be an optimization target. The higher ratio leads
to the smaller tree balancing during construction. In turn,
this influences the tree quality.

The illustration of dillemma between less overlap and less
coverage is given on figure 2.

The paper is organized as follows. Section II describes
node splitting algorithms which currently exist. Section III
introduces double sorting-based one-dimensional node split-
ting algorithm and its generalization for multidimensional
case. Section IV provides the experimental comparison of the
proposed algorithm with other existing algorithms. Section V
is a conclusion.

36

Fig. 2. Illustration of overlap vs. coverage dilemma

II. RELATED WORK

Originally Guttman in [7] introduced three node splitting
algorithms:

• Exponential algorithm. This algorithm searches for global
minimum of the area covered by rectangles by the enu-
merations of all possible splits. This method is too CPU
expensive, because it requires exponential time.

• Quadratic algorithm. This algorithm consists of two steps.
At the first step, two seeds of two resulting groups are
selected. The seeds are selected as the rectangles that
have maximal difference between their MBR area and
their own area. At the second step, all other rectangles
sequentially join some of the groups. Each time the
rectangle for which the increase of MBR area due to its
joining to one of the groups is maximal joins the group
which MBR area increases less.

• Linear algorithm. This algorithm is similar to quadratic
one, but it has two differences that make it linear. At
first, seeds are selected along the axis that allows avoiding
comparison of each pair of rectangles. The second is that
rectangles join the groups in arbitrary order.

In [6] Green’s algorithm was proposed. This algorithm is
similar to Guttman’s linear algorithm, but it uses sorting along
the chosen axis and splitting entries at halves between the
groups according to the sorting.

In [4] R*-tree splitting algorithm was proposed. This work
contains tree construction modifications as well as new node
splitting algorithm. The important feature of this work is using
rectangle margin as an optimization criterion of node splitting.
This algorithm is similar to Green’s algorithm, but has two
differences. At first, it chooses axis for splitting that minimizes
the sum of margins of MBR groups among all possible sorting-
based splits along this axis. At second, it does not split entries
at halves, but finds the minimal overlap between all splits
based on sorting along this axis. In [12] the comprehensive
perfomance analysis of R*-tree is presented. The optimization
of R*-tree for non-uniform data is presented in [9].

In [2] a new linear algorithm was proposed. This algorithm
makes splits of rectangles along axes based on the closeness

of rectangles to value boundaries of the axes. After that, the
choice is made among the splits by comparison of the overlaps
and distribution ratios.

Since applications of R-tree exist for one-dimensional case,
one-dimensional split for R-tree can be considered as a
separate problem. One of the negative aspects of R-tree
application to one-dimensional case is weak performance of
high-overlapping data, such as validity interval or transactional
time intervals [11]. This aspect can be partially eliminated by
introducing new node splitting algorithm for one-dimensional
case which deals better with highly overlapping data.

Guttman’s quadratic and linear algorithms can be easily
applied to one-dimensional case. For Guttman’s quadratic
algorithm there is no matter to use quadratic algorithm for
picking seeds, because most distant seeds can be found as
the intervals which contain the general lower and upper
bound, correspondingly. Green’s and R*-tree splitting algo-
rithms comprise one-dimensional split as their part. A new
linear algorithm also can be applied to one-dimensional case,
but we have only one axis for split and will not have to choose
among the axes.

III. PROPOSED ALGORITHM

A. Definitions

In one-dimensional splitting algorithm, the input entries
contain a set I of the intervals xi: I = {xi}. An interval
is the pair of the lower and the upper bounds: xi = (li, ui).
The general lower bound is l = min{li}, and the general
upper bound is u = max{ui}. At first, the consideration of
splits will be limited by the splits in which one group contains
general lower bound and another group contains general upper
bound. For this class of splits we will say that a pair (a, b)
is a splitting pair, if any interval from I is bounded by (l, a)
or (b, u): ∀x(x ∈ I ⇒ (x ⊆ (l, a)) ∧ (x ⊆ (b, u)). In other
words, a and b are the upper and the lower bound of groups,
respectively, for some split of split class under consideration.
Let us note that sometimes the splits which are not contained
in this class of splits are reasonable. In the figure 3, a split
of this class is shown. In the figure 4, a split for the same
dataset is shown. In that split, one group stretches from the
general lower bound to the general upper bound while another
group has rather small area. This split can not be produced by
splitting pair.

We will say that the split pair (a, b) is a corner splitting
pair if (a ∈ {ui}) ∧ (b ∈ {li}) ∧ ((∀t(t < a ⇒ ∃x(x ∈
I ⇒ (x 6⊆ (l, t)) ∧ (x 6⊆ (b, u)))) ∨ (∀t(t > b ⇒ ∃x(x ∈
I ⇒ (x 6⊆ (l, a)) ∧ (x 6⊆ (t, u))))). In other words, a is one
of the upper interval bounds, b is one of the lower interval
bounds, and a can not be lower or b can not be higher if the
property of being splitting pair still remains. This assumption
regarding split seems reasonable since otherwise another split
would exist which overlap would be smaller and the minimal
number of entries in the group would not be smaller, i.e., there
would be a better split in terms of optimization target of this
algorithm.

37

1
2

3
4

5
6

7
8

Fig. 3. A split that can be produced by the splitting pair

1
2

3
4

5
6

7
8

Fig. 4. A split that can not be produced by the splitting pair

B. Algorithm

The algorithm EnumerateCornerSplitPairs(see Algorithm 2)
enumerates all corner splitting pairs. The algorithm is based
on using two sorted arrays: the first one contains the input
entries sorted by the lower bound and the second one contains
the input entries sorted by the upper bound. In the main loop
of this algorithm, iterations for both arrays are performed
simultaneously, so that the property of splitting pair is retained.
When a corner splitting pair is found, the ConsiderSplit(see
Algorithm 3) is invoked. ConsiderSplit takes the bounding
intervals of groups and maximal numbers of entries which
can be placed into groups as its input data. Maximal numbers
of entries that can be placed into groups are determined using
EnumerateCornerSplitPairs by the indexes in the sorted arrays
in which the values of splitting pairs are placed. ConsiderSplit
reveals the split with minimal overlap of group bounding
intervals, where the minimal number of entries in group is
greater than or equal to m (m is minimal number of entries
in group). When the split with zero overlap is possible,
ConsiderSplit chooses the split for which the distance between
group bounding intervals is maximal. This property is achieved
by allowing the overlap variable to be negative. Let us note that
if there are some entries which can be placed into both groups,
ConsiderSplit considers the split in which the distribution of
entries between groups is closest to the uniform one.

The algorithm DoubleSortSplit(see Algorithm 1) represents
the splitting algorithm in general. At first, it invokes Enumer-
ateCornerSplitPairs in order to find allowable corner splitting
pair with minimal overlap. Then it distributes entries which
can be distributed unambiguously. After that, the rest of entries
is sorted by centers of their interval, and they are distributed
in a way that makes distribution between groups the most
uniform. Since sorting is most time expensibe part of this
algorithm, it’s time complexity is O(n · log(n)) (n – number

of input entries).

Algorithm 1 DoubleSortSplit
Input: Overflowed node
Output: Two nodes, at least m entries in each

1: Invoke EnumerateSplitPairs in order to find the corner
splitting pair with minimal overlap.

2: Distribute entries that can be placed in only one group
into groups.

3: Sort the rest of entries by centers of their intervals.
4: Distribute first m entries to the first group, and distribute

other entries to the second group in a way that makes
distribution between groups the most uniform.

C. Application to multidimensional case

The proposed algorithm can also be applied to multidimen-
sional case. Algorithm MultidimensionalDoubleSortSplit(see
Algorithm 4) represents such an application. At first, it enu-
merates corner splitting pair along all the axes, and selects the
corner splitting pair and the corresponding axis which have the
minimal overlap. At second, the entries which can be placed
unambiguously are placed. After that the rest of entries are
sorted by difference of group area incensement. Finally the
split is chosen which has minimal overlap of groups.

IV. PERFOMANCE TESTS

A. Experimental setup

All the tests were on run on Core 2 Duo 3 GHz computer
with 2 GB of memory with Ubuntu 10.10 32bit. For the im-
plementation of R-tree with various node splitting algorithms
GiST[8] framework in PostgreSQL DBMS was selected. GiST
generalizes various search trees including R-tree.

B. Datasets

Each dataset contains 106 randomly generated intervals. The
size of intervals conforms to Gaussian distribution with zero
mean and the variance that produces the required level of
interval overlapping. The level of interval overlapping varied
exponentially from 1 to 104. The interval center distribution
is determined by the dataset type as follows.

• Uniform dataset. The centers of intervals conform to the
uniform distribution along interval [0; 1);

• Gaussian dataset. The centers of intervals conform to the
standard Gaussian distribution.

• Uniform cluster dataset. At first, 500 cluster centers,
which conform to the uniform distribution along interval
[0; 1), were generated. After that, for each center 2000
interval centers were generated which offsets from the
center conform to the uniform distribution along the
interval [0; 6 ∗ 10−4).

• Gaussian cluster dataset. At first, 500 cluster centers,
which conform to the standard Gaussian distribution,
were generated. After that, for each center 2000 interval
centers were generated which offsets from the center

38

Algorithm 2 EnumerateCornerSplitPairs
Input: Set of invervals
Output: Enumeration of all splits that can be produced with

corner splitting pairs by invoking ConsiderSplit
1: Sort intervals by lower bound, write the result to array a
2: Sort intervals by upper bound, write the result to array b
3: s1⇐ (a[0].l, b[0].u)
4: s2⇐ (a[0].l, b[n− 1].u)
5: i⇐ 0
6: j ⇐ 0
7: {Iterate until finding a first split produced by the corner

splitting pair.}
8: while b[j].u = s1.u and j < n do
9: j ⇐ j + 1

10: end while
11: considerSplit (s1, j, s2, n− i)
12: while i < n do
13: prev s2 l⇐ s2.l
14: next s1 u⇐ s1.u
15: next i⇐ i
16: {Find next value of s1 upper bound and the correspond-

ing value of s2 lower bound which forms the corner
splitting pair with it.}

17: while next i < n and next s2 l = s2.l do
18: next s1 u⇐ max{next s1 u, a[next i].u}
19: next i⇐ next i+ 1
20: if next i ≥ n then
21: break
22: end if
23: next s2 l⇐ a[next i].l
24: end while
25: if next i ≥ n and next s1 u = s1.u then
26: break
27: end if
28: {All intermediate values of s2 lower bound form the

corner splitting pair with the previous value of s1 upper
bound.}

29: while j < n and b[j].u ≤ next s1 u do
30: if b[j].u > s1.u and b[j].u < next s1 u then
31: s1.u⇐ b[j]
32: considerSplit (s1, j + 1, s2, n− i)
33: else
34: s1.u⇐ b[j]
35: end if
36: j ⇐ j + 1
37: end while
38: {Passage to the next values of s1 upper bound and s2

lower bound.}
39: s1.u⇐ next s1 u
40: s2.l⇐ next s2 l
41: if next i < n then
42: i⇐ next i
43: considerSplit (s1, j, s2, n− i)
44: else
45: considerSplit (s1, j, s2, n− i)
46: break
47: end if
48: end while

Algorithm 3 ConsiderSplit
Input: Bounding intervals s1 and s2 of two groups, numbers

n1 and n2 which represent the maximal numbers of entries
that can be placed into each group.

Output: Updated information regarding the optimal split cur-
rently found.

1: overlap⇐ (s1.u− s2.l)/(s2.u− s1.l)
2: if n1 ≥ m and n2 ≥ m and overlap < best overlap

then
3: best overlap1⇐ overlap
4: best s1⇐ s1
5: best s2⇐ s2
6: best n1⇐ n1
7: best n2⇐ n2
8: end if

Algorithm 4 MultidimensionalDoubleSortSplit
Input: Overflowed node
Output: Two nodes, at least m entries in each

1: Invoke EnumerateSplitPairs for each axis in order to
find allowable corner splitting pair with overall minimal
overlap.

2: Distribute entries which can be unambiguously placed into
only one group in accordance with the corner splitting pair
previously found.

3: Sort other entries by the difference of group area incense-
ment when adding the entry.

4: Distribute the first k sorted entries to the first group,
and other entries – to the second group, so that the
minimal overlap between group MBRs over all possible k
is achieved.

conform to the Gaussian distribution with zero mean and
the variance of 6 ∗ 10−4.

For two-dimensional case the datasets were similar. Rather
than scalar random values that were generated in the datasets
above, vectors of random values having the same distribution
that was used in one-dimensional case were generated. Thus
these datasets contained rectangles.

C. One-dimensional case

The tests have shown that all sorting-based splitting algo-
rithms perform on this datasets almost equally. This is why
only one sorting-based algorithm is represented here, namely,
the center sorting algorithm. The following node splitting
algorithms were included into tests for one-dimensional case.

• Guttman’s quadratic algorithm.
• Center sorting algorithm that searches for the split with

minimal level of overlap.
• The proposed double sorting-based algorithm.

In order to compare the efficiency of index structures produced
by various splitting algorithms, the numbers of node accesses
for query execution were measured. 100 small random inter-
vals having size 10−5 were generated for testing, and the

39

100 101 102 103 104

0.6

0.8

1

1.2

1.4

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(a) Uniform dataset

100 101 102 103 104

0.6

0.8

1

1.2

1.4

1.6

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(b) Gaussian dataset

100 101 102 103 104

0.8

1

1.2

1.4

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(c) Uniform cluster dataset

100 101 102 103 104

0.6

0.8

1

1.2

1.4

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(d) Gaussian cluster dataset

Quadratic Guttman’s Sort Double sorting

Fig. 5. Comparison of the node access numbers for one-dimensional splitting
algorithms

100 101 102 103 104

0.8

1

1.2

1.4

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(a) Uniform dataset

100 101 102 103 104

0.8

1

1.2

1.4

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(b) Gaussian dataset

100 101 102 103 104

0.8

1

1.2

1.4

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(c) Uniform cluster dataset

100 101 102 103 104
0.6

0.8

1

1.2

1.4

1.6

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(d) Gaussian cluster dataset

Quadratic Guttman’s Sorting Double sorting

Fig. 6. Comparison of tree building time for one-dimensional splitting
algorithms

number of node accesses required for finding intervals in
test datasets that overlap with them was measured. In the
figure 5, the average number of node accesses is shown. To
simplify the comparison, not absolute value of node access
numbers is presented, but rather the ratio of that value for
particular algorithm to the average value for all algorithms.
The measurements were performed for four datasets described
in the subsection above, and for various data overlap levels. In
the figure 6 the comparison of tree building times is presented.
The data is presented in the same manner as for the data
access: as a ratio of building time of particular algorithm to

100 101 102 103 104

1

1.5

2

2.5

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(a) Uniform dataset

100 101 102 103 104

0.6

0.8

1

1.2

1.4

1.6

1.8

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(b) Gaussian dataset

100 101 102 103 104
0

1

2

3

4

5

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(c) Uniform cluster dataset

100 101 102 103 104

0.5

1

1.5

DATA OVERLAP

N
O

D
E

A
C

C
E

S
S

E
S

(d) Gaussian cluster dataset

Quadratic Guttman’s New Linear Double sorting R*-tree

Fig. 7. Comparison of the node access numbers for 2-dimensional splitting
algorithms

100 101 102 103 104

0.5

1

1.5

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E
(a) Uniform dataset

100 101 102 103 104

0.5

1

1.5

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(b) Gaussian dataset

100 101 102 103 104
0.5

1

1.5

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(c) Uniform cluster dataset

100 101 102 103 104

0.5

1

1.5

DATA OVERLAP

T
R

E
E

B
U

IL
D

T
IM

E

(d) Gaussian cluster dataset

Quadratic Guttman’s New Linear Double sorting R*-tree

Fig. 8. Comparison of tree building time for 2-dimensional splitting
algorithms

the average building time.
We can see that the number of node accesses required for

searching in double sorting-based algorithm is almost never
greater than this number in other algorithms. With large data
overlap, there is significant superiority of double sorting-
based algorithm, up to 50%, in comparison with sorting
algorithm, and up to 2 times in comparison with Guttman’s
quadratic algorithm. We can see that tree construction time for
double sorting-based splitting algorithm is smaller than that for
Guttman’n quadratic algorithm, but is slightly greater than the
time for the sorting algorithm.

40

D. Two-dimensional case

The following node splitting algorithms were included into
tests for two-dimensional case:

• Guttman’s quadratic algorithm.
• New linear algorithm.
• Proposed double sorting-based algorithm.
• R*-tree splitting algorithm.

Numbers of node accesses for query execution and tree
building time were compared in a same manner as in the one-
dimensional case. In the figures7 node access numbers are
compared. In the figure 8 tree building times are compared.
At first, we can see a weaker correlation between relative node
access numbers and the data overlapping. And that correlation
is decreased with increasing the number of dimensions. We
can see that double sorting-based algorithm shows superiority
in terms of node access numbers in most test cases. The tree
building time of double sorting-based algorithm is close to that
of R*-tree splitting algorithm.

V. CONCLUSION

In this paper, new double sorting-based node splitting al-
gorithm for R-tree was proposed. This algorithm was initially
developed for better handling of complicated cases in one-
dimensional split. The proposed splitting algorithm is based
on the notion of corner splitting pair and the algorithm of its
enumeration. After that, this splitting algorithm was applied
to multidimensional cases.

In one-dimensional case, the tests show superiority of the
proposed algorithm in terms of the number of node accesses
over Guttman’s quadratic and simple sorting-based algorithm.
The higher superiority was achieved with larger data overlap
due to ability of the proposed algorithm to better handle
complicated cases. In two-dimensional case, the tests show su-
periority in terms of number of node accesses over Guttman’s
quadratic, new linear and R*-tree splitting algorithms in most
test cases.

REFERENCES

[1] A. F. Al-Badarneh, Q. Yaseen, and I. Hmeidi. A new enhancement to
the r-tree node splitting. J. Information Science, 36(1):3–18, 2010.

[2] C.-H. Ang and T. C. Tan. New linear node splitting algorithm for r-
trees. In Proceedings of the 5th International Symposium on Advances
in Spatial Databases, SSD ’97, pages 339–349, London, UK, 1997.
Springer-Verlag.

[3] R. Bayer and E. McCreight. Organization and maintenance of large
ordered indices. In Proceedings of the 1970 ACM SIGFIDET (now SIG-
MOD) Workshop on Data Description, Access and Control, SIGFIDET
’70, pages 107–141, New York, NY, USA, 1970. ACM.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an
efficient and robust access method for points and rectangles. SIGMOD
Rec., 19:322–331, May 1990.

[5] V. Gaede and O. Günther. Multidimensional access methods. ACM
Comput. Surv., 30:170–231, June 1998.

[6] D. Greene. An implementation and performance analysis of spatial data
access methods. In Proceedings of the Fifth International Conference on
Data Engineering, pages 606–615, Washington, DC, USA, 1989. IEEE
Computer Society.

[7] A. Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 14:47–57, June 1984.

[8] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search
trees for database systems. In Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95, pages 562–573, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[9] K. Kanth, D. Agrawal, A. Singh, and A. E. Abbadi. Indexing non-
uniform spatial data. Database Engineering and Applications Sympo-
sium, International, 0:289, 1997.

[10] C. P. Kolovson and M. Stonebraker. Segment indexes: Dynamic indexing
techniques for multi-dimensional interval data. In J. Clifford and
R. King, editors, SIGMOD Conference, pages 138–147. ACM Press,
1991.

[11] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-
evolving data. ACM Comput. Surv., 31:158–221, June 1999.

[12] Y. Tao and D. Papadias. Performance analysis of r*-trees with arbitrary
node extents. Tran. Knowl. Data Eng. (TKDE, 16:6–653, 2004.

41

Fuzzy matching for partial XML merge
Vladimir Fedotov

ISP RAS
Moscow

Email: vfl@ispras.ru

Abstract—In this paper we describe our experience in creating
a tool capable to provide traceability of the requirements between
different versions of the LSB and POSIX standards. We propose
an approach for merging requirement markup without exact
matching of the documents by means of arithmetic hashing and
context similarity analysis.

I. I NTRODUCTION

In the past several years XML made huge progress, mostly
due to its extensions. ISO finally standardized OpenXML and
OpenDocument as document formats for office applications,
thus making possible long standing dream of simple and robust
document exchange in a heterogeneous environment.

At present day there are hundreds of XML extensions [1],
applicable to a huge variety of tasks, from relational databases
to vector graphics. Among the most important - XHTML pro-
viding transition from HTML to XML. Its importance relies on
a huge amount of standards, specifications, recommendations
and RFCs available in HTML and, with adoption of XHTML,
available to processing by means of XML-aware tools.

Our present work is intended to provide requirement trace-
ability between different versions of POSIX and LSB stan-
dards. Previous versions of these standards were convertedto
XHTML with requirements markup for the needs of OLVER
[2] and other projects.

Actual markup consists of one or more span tags wrapping
requirement-related text nodes. It is important to note here
that span can actually divide text node to several chunks,
therefore creating a sub-tree in place of one node, thus making
impossible direct matching between marked and non-marked
documents.

<p a r e n t>
u n r e l a t e d t e x t

The s p i c e must f low !
< / span>
u n r e l a t e d t e x t

< / p a r e n t>

Listing 1. Markup example

So our goal may be defined as follows: given marked up
previous version of the document, trace requirements chunks
in the next version of the document and, if that trace was
successful, merge requirement markup.

II. PROBLEM DESCRIPTION

Despite being straightforward, this problem actually repre-
sents a challenge to existing XML merging tools. Limited to
open source Java implementations, we were unable to find a
solution robust enough due to various reasons.

First of all, the given task requires zero faults merge, as a
fault leads to document corruption. In case of XML merge, a
fault is mismatching during the node mapping process, which
can easily occur between nodes with the same names or values.

Second, it requires to trace a match between actually
different nodes, as the markup can break up a text node in
two or more chunks.

Third, the solution should take into account the context
of matching nodes. For example, valid requirement for one
document isn’t valid for another document if it was moved to
”Deprecated requirements” section.

Finally, the solution has to be stable enough to work in the
production environment. Unfortunately, most of the discovered
tools were academic researches discontinued by their authors.

III. R ELATED WORK

Tree diffing and merging remains a very active field of
research, presently due to popularity of the bio-informatics.
There is a variety of different techniques applicable to very
different sets of problems. Very good review of the techniques
available for XML was done by K. Komvoteas in [3].

Basically, an XML documents can be merged by direct
comparison of their nodes, traversed in the definite order. Dis-
covered conflicts fall into two categories: node insertion and
node deletion. Some algorithms also recognize moving and
updating, while others simply represent them as a consecutive
deletion and insertion. Ruling out these conflicts is actually
called a ”merge”.

Unfortunately, such direct comparison will often provide
bogus results because nodes may only differ by their context.
There are several approaches developed to compare node
contexts.

DiffX algorithm [4] uses fragment matching technique. Ac-
cording to it, a node is considered a match if it has the largest
matching neighborhood then any other equal node. Weakness
of that approach is in corner cases – it is unable to provide
any ruling in case of equal nodes with equal fragments, thus
leaving us without guarantees of correct matching. Moreover,
there is no simple way to perform a reverse task – to trace a
single node by its context, in case we want to match actually
different nodes.

42

A slightly different approach is proposed in [5]. So-called
”fingerprinting” is a way of storing node context in a vector of
MD5 hashes. A node is considered a match if its fingerprint
has the matching neighborhood within a given radius. As
opposed to DiffX, it is possible to trace a node by matching
its context, but such an approach will produce false resultsin
case of matching several equal chunks with the same context,
like brackets or commas enclosing reference links, which often
occurs in documents.

Radically different is a three-way merge approach, which
makes use of three documents instead of two. Often used in
the revision control systems, three-way merge compares two
target documents while also considering a ”base” document.In
practice, it is implemented as a diff between the documentα

and the base, and then patching the documentβ with resulting
delta.

In our case it could be implemented by considering the
original unmarked document as a base, diffing it with the
marked up document, and patching the target document with
resulting delta. Diffing the unmarked base with the marked
up document will produce the markup anchored to the actual
nodes, which can be traced much more effectively in a
target document. We are considering implementation of this
approach in the future versions of our tool.

IV. A RITHMETIC HASHING

To address the issues described above we propose an
approach combining two different ways of evaluation of the
node equality: by using positional metric and by comparing
similarity of their text contents.

Each node has several attributes defining its position in the
document: position in the traversal sequence, position among
the siblings, depth, index among the identical siblings and
overall siblings count. The problem is that these attributes
should be properly weighted to be used in the positional metric
and approach to provide such weighting isn’t clear. Which is
more important for node equality: to have same depth or same
traversal position? What if the node match candidate have
exactly same siblings and depth, but is located in completely
different place in document? And if another match candidate
is located in exactly same place, but has no matching siblings?

In our implementation arithmetic hash provides us with
cumulative positional metric. It uses general approach quite
similar to arithmetic coding algorithm [6], but in completely
different way.

Starting from the root, an interval is assigned to each node,
with a random number from that interval assigned as its label.
Each interval is divided by the number of node descendants
and each descendant is provided with a range within parent
interval according to its position among sibling nodes (fig.1).

While being extremely simple this hashing technique pro-
vides us with positional metric which can be easily evaluated
as a distance between the node labels (1). Its deliberately made
biased towards matching of the nodes on the same axis, but
being extremely sensitive to any changes in the siblings order

roo t

a b

a a ab ba

Fig. 1. Labelling example

providing better matching for equal text chunks, as opposed
to [5].

distance(x, y) =
|label(x)− label(y)|

min(interval(x), interval(y))
(1)

V. CONTEXT SIMILARITY

Bearing in mind that we are dealing with an XHTML
documents, it is safe to say that almost any axis in such
documents ends with a text node leaf. Therefore any ascendant
nodes can be defined by the concatenation of the descendant
text node values.

Evaluating similarity between text contexts provides us the
similarity metric, that can be used for searching of the proper
parent node, which later serves as a context for positional
metric. Similarity itself can be evaluated by applying Jaccard
index to the tokenized text contents (2).

jaccard(A,B) =
|A ∩B|

|A ∪B|
(2)

Being much faster than commonly used Levenshtein edit
distance [7], Jaccard index provides satisfactory results, which
can be further improved by taking into account the fact that
requirement text should be equal or included into reference
text. Therefore in our approach we use slightly modified
similarity index (3).

similarity(A,B) =
|A ∩B|

A
(3)

VI. GLUING IT TOGETHER

While none of the metrics described above can be used ef-
fectively separately, being combined they provide surprisingly
robust results.

Similarity metric provides good results in case of compar-
ison between nodes with diverse chunks of text, but fails if
text contexts are exactly the same, which occurs quite often.

43

On the contrary, positional metric is ineffective in case of
comparison between trees with strong differences, but becomes
extremely effective for the small sub-trees.

Wrapping these metrics inside a stable sorting algorithm
achieves the desired result. Firstly nodes are being sorted
by their positional metric, then by their similarity metric.
Therefore similarity metric has the priority over positional
one, but in the corner case of several nodes having the same
similarity index, they will be ruled out by their label distance,
as opposed to [4].

VII. C ONCLUSION

This paper presents a new approach to merge XML doc-
uments without exact matching of their nodes by using an
algorithm combining node matching, based on the positional
metric evaluated as label distance, with text similarity analysis
based on the evaluation of modified Jaccard index between
reference and target text nodes.

Despite being work in progress, our approach is already
showing good results while merging different versions of LSB
and POSIX standards as well as RFCs and many others.

In the nearest future we consider implementing three-way
merge, based on our current approach and provide an open
source Java implementation.

REFERENCES

[1] http://en.wikipedia.org/wiki/Listof XML markup languages
[2] http://linuxtesting.org/project/olver
[3] K. Komvoteas,XML Diff and Patch Tool, 2003.
[4] R. Al-Ekram, A. Adma and O. Baysal,diffX: An Algorithm to Detect

Changes in Multi-Verion XML Documents, 2005.
[5] S. Ronnau, G. Philipp and U.M. Borghoff,Efficient Change Control of

XML Documents, 2009.
[6] J.J. Rissanen,Generalized Kraft Inequality and Arithmetic Coding, 1976.
[7] V.I. Levenshtein,Binary codes capable of correcting deletions, insertions,

and reversals, 1966.

44

High-level Data Access Based on Query Rewritings

Ekaterina Stepalina

National Research University – Higher School of Economics

33/5 Kirpichnaya, st., Moscow, Russian Federation

estepalina@mail.ru

Abstract—This paper describes the ODBA problem solution

based on query rewriting techniques, introduces the DL-Lite

logics for knowledge representation and the query rewriting

algorithms for high-level data access. The RQR algorithm’s

optimization capabilities are considered.

Keywords- ODBA;description logic; DL-Lite; query answering,

query rewriting,OWL 2 QL

I. INTRODUCTION

A conceptual interface for accessing the data stored in
existing relational databases can be implemented via query
rewriting techniques. Built on these techniques, the interface
may be independent from DBMS and as well as from particular
DB schemes[6]. The development of such interface is an actual
problem of raising the abstraction level for working with data
and high-level integration of information systems. The
ontology representation format OWL 2 QL has been specially
designed to use actual database technology for query answering
via query rewriting. An efficient query rewriting algorithm
RQR[1] was introduced at the international OWLED-2009
workshop: it translates queries to ontologies into the queries to
ordinal databases. The data complexity of RQR is no higher
than P in the worst case. The additional advantage of the
algorithm is that it can be used for more expressive descriptive
logics – DL-Lite and higher. This paper describes the ODBA
problem, introduces DL-Lite logics and query rewriting
techniques, then analyses the RQR optimization capabilities.

II. ODBA PROBLEM

With conceptual modeling progress (OOP, UML) and
system sophistication the need of providing an information
system with a high-level interface for working with large
amounts of data is appeared. Such interface may be provided if
the knowledge domain is represented in an ontology
description form (knowledge base). The data access problem
though a high-level conceptual interface is called ontology-
based data access (ODBA) [1]. The solution must satisfy the
following requirements: 1) efficient query processing, which
must be ideally executed with the same speed as the SQL
queries over existing RDB, and 2) the query processing must
use all advantages of relational technologies already used to
store data.

III. ONTOLOGY-BASED KNOWLEDGE REPRESENTATION

Knowledge base, KB - is the knowledge domain
description saving the relationships’ semantics between
concepts. KB allows extracting data stored in a database

(ABox), taking into account the constraints expressed at a
higher conceptual level (TBox)[4]:

KB = TBox+ABox, or (1)

Where TBox (T) – terminological box – the conceptual data
model, for instance, Entity-Relationship;

ABox (A) – assertional box – data set stored in a database.

An ontology can be called a particular instance of KB,
represented on a formal KB description language. Description
logic (DL) of a special expressivity power can be used as a
knowledge representation language. The expressivity power is
defined by the set of axioms allowed in TBox and ABox. On
the one side, the language should be as more expressive as
possible to completely describe the knowledge domain. On the
other side, the reasoning problems over KB must have an
acceptable computational complexity.

IV. SYNTAX AND AXIOMS OF THE DL-LITE FAMILY

The DL-Lite[1] language family is proposed for conceptual
modeling in addition to UML and ER. The DL-Lite syntax:

 , (2)

 , (3)

 , (4)

 (5)

TBox is a finite set of , - concept and role
inclusion axioms.

ABox is a finite set of , , and

 - assertions.

Where - object name, – concept name, – role name, q
– integer number.

Interpretation (essentially, the particular instance of KB)
is a pair if non-empty domain and an interpretation function

 :
 ,

 and
 (6)

For each interpretation the unique name assumption (UNA)
status is also specified. UNA affects on the computational
complexity characteristics of :

 (7, UNA)

Languages of different expressive power are produced by
restricting the set of allowed axioms. The main axioms:

45

 , (8)

 , (9)

 , (10)

 , (11)

 (12)

Where means the cardinality of the following set.

Additional axioms reflect various relationships used in
conceptual modeling:

 (13)

 iff

 , (14)

 iff

 , (15)

 iff

 , (16)

 iff
 , (17)

 iff
 , (18)

 Where is a satisfaction relation in KB.

The common denominators of DL-Lite logics are the
following – 1) it is not possible to assign particular roles only
to certain concepts, that means all roles can be applied to every
concept (; 2) TBox axioms are only concept
inclusions and cannot represent any kind of disjunctive
information, for instance, that several concepts cover the whole
domain.

V. MAIN PROBLEMS OF WORKING WITH KNOWLEDGE

BASES

Given a KB one may consider the following
fundamental reasoning problems [5]:

A. Satisfiability

Check whether a model of K exists.

B. Instance checking

Given an object and a concept , check whether
 , or, in other words, whether for each of .

C. Query answering

Given a query and a tuple of objects from , check
whether , or, in other words, whether is an answer
to the query w.r.t. .

The computational complexity of these problems depends
on a number of variable and fixed input parameters. The input
parameters are: the TBox size, , the ABox size, , the
 size, the query size – the number of query
parameters, .

The combined and data (by the amount of data to be
processed) complexity are separately considered w.r.t.
reasoning problems. The data complexity is the most important
in ODBA problem context, so the TBox size is considered
fixed, and the query size is negligible w.r.t. the size of ABox.

VI. EFFICIENT QUERY ANSWERING IN DL-LITE KBS

The maximal expressive language for conceptual modeling,
for which the query answering complexity (data) will not

exceed P, is h
 [1]. If UNA is accepted, then query

answering in h

 will have the least

computational complexity by the amount of data - . This
feature causes a very important fact:

Given a knowledge base satisfying

 with UNA and a conjunctive (with no disjunctions)

query . Then and TBox can be rewritten into a union
of conjunctive queries over ABox only, and the
answer for this new query will be sound and complete[3].

Based on this fact, query rewriting allows one to obtain a
knowledge base over a traditional database, as well as to work
with data at the conceptual level independently from a certain
database scheme, and effectively use all advantages provided
by modern relational DBMS.

VII. QUERY REWRITING ALGORITHMS FOR OWL 2 QL AND

HIGHER

For information systems working with large amounts of
data, mostly performing the query answering problems, the
W3C consortium’s proposed the OWL 2 QL standard. This

standard based on less expressive, than h

, the

 subset of axioms (another designation -

). The complexity of all reasoning problems over

 ontologies does not exceed polynomial. This

significant restriction’s been added because the equality or
inequality of objects in OWL is to be specified explicitly with
no UNA (or not UNA) implicit assumption. To keep the
reasoning problems’ complexity constant and UNA-
independent for ontologies built in compliance with the OWL 2
QL standard, it’s been decided not to include axioms, which
allow one to define function dependencies and numeral
restrictions over concepts. These axioms strongly affect the
reasoning complexity, which depends on the fact whether UNA
or not UNA is assumed in the ontology.

Query rewriting techniques and algorithms are intensively
developed for OWL 2 QL to provide mechanisms for high-
level conceptual query answering over existing databases.

Currently two algorithms have been designed and
implemented[2]: CGLLR and RQR.

The CGLLR algorithm for DL-Lite has been implemented
in several systems, such as QuOnto, Owlgres, ROWLKit. The
RQR algorithm for DL-Lite+ was introduced in 2009 and
implemented in REQUIEM. Both algorithms, CGLLR and
RQR, retrieve the same results of query rewriting. During the
rewriting process each algorithm produces a large number –
about several thousand - UCQ (unique conjunctive query). This
results in complicated SQL queries with too many unions,
which can be impracticable to DBMS.

The algorithms have been tested on computers with equal
configuration. The testing data included 9 ontologies of the

 [2] expressivity level, corresponding to the OWL 2

46

QL profile and used in real applications, such as VICODI
project, LUBM, SANAP and other.

An active optimization work on these algorithms is
conducted in the following directions:

 Simplifying the initial query through query
subsumption check;

 Excluding UCQ, which have no corresponding OWL-
RBD mappings.

The experiments[2] showed that in some cases RQR with
subsumption checking generates less UCQ, than CGLLR.
Moreover, unlike CGLLR, the RQR algorithm can be used for
more expressive description logic languages, than DL-Lite.

In whole, RQR works more effectively than CGLLR,
supports large amounts of data, complex queries and qualified
existential restrictions (). With subsumption checking applied
to initial queries both RQR and CGLLR generate an equal
number of UCQ. However, the subsumption check itself takes
time and practically equalizes the result efficiency of RQR and
CGLLR in the worst case.

VIII. FUTURE WORK

The experiment results demonstrate that RQR is more
preferable for query rewriting, than CGLLR[2].

For researching into practical usage aspects of these
algorithms, first of all, one should find out how much query
answering based on described query rewriting techniques is
efficient on real databases. The obvious obstacle for query
rewriting approach is the need of mapping a conceptual model
to a particular database for each database and for each unique
model. However, it is an additional abstraction layer

requirement, which is inevitable to raise the abstraction level of
data access interface.

In further experiments the testing data must include queries,
which are to be transformed into SQL queries to real databases
based on prerequisite mappings. One may suppose that the
query rewriting algorithm efficiency may also significantly
depend on a particular mapping representation. Currently, there
are no standards and examined formalisms to define such
mappings.

Further optimizations can be applied to RQR: forward and
backward subsumption check, query condensation and other.
Additional experiments with these optimizations are needed.
Besides, full features of OWL 2 QL (especially, data types)
must be supported in RQR, and a new series of experiments
will be required to get reliable results of checking the RQR

efficiency with the complete support for .

[1] Artale, A.; Calvanese, D.; Kontchakov, R. and Zakharyaschev, M.

(2009) The DL-Lite family and relations. Journal of Artificial
Intelligence Research 36 (1), pp. 1-69. ISSN 1076-9757.

[2] H.P´erez-Urbina, I.Horrocks, and B.Motik. Efficient Query Answering
for OWL 2. In Proceedings of the 8th International Semantic Web
Conference (ISWC2009), Chantilly, Virginia, USA, 2009.

[3] H.P´erez-Urbina, B.Motik, and I.Horrocks. Tractable Query Answering
and Rewriting under Description Logic Constraints.
JournalofAppliedLogic, 2009.

[4] F. Baader. Logic-Based Knowledge Representation. In M.J. Wooldridge
and M. Veloso, editors, Artificial Intelligence Today, Recent Trends and
Developments, number 1600 in Lecture Notes in Computer Science,
pages 13–41. Springer Verlag, 1999.

[5] The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2002. ISBN 0521781760.
Edited by F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F.
Patel-Schneider.

[6] Semantic Future by SWUG. [Online]:http://semanticfuture.net.

47

http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521781760

APPLICATION OF THE FUNCTIONAL PROGRAMMING TOOLS IN THE TASKS

OF LANGUAGE AND INTERLANGUAGE STRUCTURES REPRESENTATION

Peter Ermakov

Institute for Informatics Problems,
The Russian Academy of Sciences

IPI RAN
Moscow, Russia

petcazay@gmail.com

 Olga Kozhunova
Institute for Informatics Problems,
The Russian Academy of Sciences

IPI RAN
Moscow, Russia

kozhunovka@mail.ru

Abstract. The paper considers issues of formal methods in
the tasks of knowledge representation including optimization
of formal grammars by means of functional programming
languages. One of the possible applications of the formal
notation given is illustrated by the task of parallel natural
texts analysis and comparison.

Keywords: functional programming tools, language
structures representation, parallel texts analysis and
comparison

I. Introduction

At present the problem of machine text analysis in natural

language is one of the key challenges in the field of
information technologies and research. For its solution one
involves various interdisciplinary approaches and methods.
This caused by the complex character of the research led in
the direction: several disciplines are engaged, namely,
computer linguistics, artificial intelligence, and formal
mathematical methods.

Among linguistic resources that have been developed as a
result of such research in the fields of natural language
analysis and knowledge acquisition are well-known electronic
dictionaries, syntactic parsers, language ontologies, generators
of syntactic trees: WordNet, EuroWordNet, Ontolingua,
Russian dictionary RusLan, а также Penn Treebank, Ragel,
Syntax Definition Formalism, Spirit Parser Framework,
SYNTAX, Yacc, etc. This list is quite incomplete, though, it
only demostrates variety of approaches and instruments
involved in the procedures of natural language mechanisms
analysis and modelling.

Thus, automatization of a set of processes within the
language (grammar analysis, syntactic and semantic
representations, etc.) and of its interaction with human
activities (speech recognition, machine translation, parallel
texts comparative analysis, and so on) is one of the up-to-date
relevant tasks for several disciplines and domains
simultaneously. [i, ii].

But the level of sophistication of the existing approaches
to language structures and processes representation scales up
with the growing demands to the language models. This
induces a search of new approaches to language structures
representation and hybridization of the well-functioning old
methods.

As an example one can study the difficult and long way of
universal grammar search to use it in natural language
representations which is dramatic for the optimization of
machine translation systems, syntactic and semantic text
analysis, texts comparative analysis and preset concepts and
relations acquisition, etc. One of the principal founders of the
approach to modelling of natural language units, relations, and
mechanisms of their interaction by means of formal grammars
was Noam Chomsky [iii]. Time passed, and many followers of
his approach appeared. They started the above mentioned long
search. It led them to the gradual enumeration and revision of
the existing grammar types, then — to their complication and
adaptation to possible applications, and finally — to
dissatisfaction from the formal representation they got as a
result, and address to statistical methods that prevailed in this
field up to the moment. But soon many experts in their
independent research found out that statistical methods don't
solve the problem of completeness and accuracy of the natural
language structures representation. For this reason today more
and more specialists address to hybrid methods which are
untrivial in construction but more precise accordingly to the
applications needed. Besides, validation of their
implementation is to be carried out through all the stages of
the language representations, its structures analysis,
comparison with the existing patterns, and so on [iv].

Thus, as it was mentioned above, formal grammars is a
mathematical apparatus meant for the text analysis. The most
interest form the perspective of the problem considered attract
regular and context-free grammars [iii]. For each of them a
relevant analytical engine exists thanks to which parsing
might be conducted automatically, i.e. by means of
computational procedures. Each analytical engine possesses a
set of advantages and disadvantages. For instance, some of the
disadvantages are complex structure, infeasibility of the
universal engine design and need in its constant rebuild
according to a specific application.

48

This involves many questions, particularly: is it possible to
build a universal mechanism of the natural language structures
representation using the existing formal methods and
techniques? Is there any probability of minimizing work of
experts in the procedures of formal representations and natural
language structures comparison and their verification?

In an attempt to answer these and other questions this
paper suggests an approach which allows representing natural
language grammars (as well as formal ones) in a form not
demanding an analytical engine design for text parsing and
analysis. Rejection of analytical engines use will give us an
opportunity to get rid of a set of technical problems associated
with their complex implementation. For instance, it is
suggested to enhance formal grammars with the functional
programming languages and their tools. One of the possible
applications of the suggested formal representation is
illustrated by an example of the comparison of natural
language parallel texts.

II. Formal Grammars and Analytical Engines

Consider a selected at random formal grammar

()PS,,V,V=G NT , where TV is a finite set of terminals,

NV is a finite set of nonterminals, start symbol NVS∈ and P

is a finite set of productions of a form

() α:αβα:βα ∈∈∃∧∅≠∧∪∈→ vVvVV, NNT .

According to Chomsky classification, formal grammars
are divided into four types [iii]:

• unrestricted (type 0)
• context-sensitive (type 1)
• context-free (type 2)
• regular (type 3)
The first two types (type 0 and type 1) have no application

due to their complexity, except for the context-sensitive
grammars which might be used when analyzing natural
languages texts excluding the task of compilators building.

The types 2 and 3 on the contrary have plenty of various
applications. For example, context-free grammars are used
when describing computer languages syntax. Regular
grammars are applied for description of the unary
constructions: identifiers, strings, constants, assembler
languages, command processors, etc.

An analytical engine for regular grammars is finite state
automaton. Equivalence of the regular grammar and finite
state automaton is proved in the Kleene theorem [v], which
allows assuming the concepts of regular grammar, regular
expression, and finite state automaton equivalent.

The field of application of regular grammars in the tasks of
natural language structures recognition is rather limited. This
is related to the uneasiness of finding a regular expression for
describing any of the formal languages, not to mention natural
language and its structures. We’d like to note though, that
regular expressions is a very convenient tool for analyzing
short and highly formalized language constructions.

At present basic instruments of formal and natural
languages analysis are context-free grammars. Analytical
engine for context-free grammars is a one-sided
nondeterministic automaton with stack outer memory. In the
most trivial case of such automaton’s algorithm
implementation, it is characterized by an exponential
complexity. But iterative upgrade of the algorithm may lead us
to its polynomial time value depending on the length of the
input set of symbols and necessary for its analysis [vi].

Among the existing context-free languages one can
distinguish a class of deterministic context-free languages,
which are interpreted by deterministic automaton with stack
outer memory. The principal feature of these languages is their
unambiguity: it is proved that one can always build an
unambiguous grammar for any deterministic context-free
language [vi, vii]. Since the languages are unambiguous, they
are most useful when it comes to building compilators [vi].

Moreover, among all the deterministic context-free
languages exist such classes of languages which allow
building a linear recognizer for them. This is the recognizer
which time value related to the time for decision-making
about a set of symbols belonging to a language has a linear
dependency on the chain length [vi]. Syntactic constructions
in the majority of the existing programming languages might
be classified as ones of the class mentioned. This aspect is
very important when developing up-to-date high-speed
compilers.

As a rule, the more complex from the mathematical
perspective an analytical engine is, the more challenging is its
technical implementation. Case with finite state automata
(both with memory and without it) isn’t an exception. It’s
well-known that having formal grammar one can build a
automaton accepting it [vii, viii]. But this automaton possesses
a set of disadvantages when it comes to its application to
natural language grammars. For instance, rules of natural
language include a plenty of features of natural language
structures which are attributive by their nature. Processing of
such transformation rules implemented using finite state
automaton may lead to the increase of the automaton states
and to growth of amount of the transformation rules when
changing the states. Moreover, when implementing the above
mentioned transformation rules one needs to create a problem-
oriented analytical engine to handle processing of the input set
of symbols of the natural language structures and to apply
interpreting rules to them.

49

III. Computational and Functional Grammars

In order to minimize above mentioned challenges the

authors suggest an approach which allows representing of
natural language grammar rules as functions in mathematical

sense, that is BA
f

→ or () ByA,xxf=y ∈∈: . For

making it more convenient and clear to handle natural
language grammar rules as mathematical functions (i.e. as a

transformation which is written as BA
f

→) we suggest

to use such tools as n-tuples to keep necessary attributive
characteristics (for example, gender, singular\plural, etc.).
Representation of the rules as functions also gives an
opportunity to use instruments of the functional programming
to build systems of grammar parsing and analysis and
interlingual transfer not loosing efforts to build such an
analytical engine as a finite state automaton.

Consider the approach in more detail.
Representation of grammar rules, or transformation rules,

as mathematical functions has the following advantages in
comparison with formal grammar apparatus:

• Usage of functional programming tools to
build systems of transfer immediately;

• Possibility of higher-order function
applications.

It’s worth noting that by concept “system of transfer” in
the paper we understand software implementation of an
analytic engine for processing of transformations expressed as
functions.

We’ll illustrate it by an example: consider a simple
sentence in English «I can swim» and its translation into
Russian «Я умею плавать».

Examine transformations expressed as mathematical
functions. For the example given we use syntax of the
functional programming language Erlang:

(1)
trans(i) → я,
trans(can) → мочь,
trans(swim) → плыть;
On applying the functional programming tools, one can

split an input sentence into separate words (this mechanism
isn’t given in detail in the paper). Having applied the above
given rules immediately, the following result might be
obtained:

(2) я мочь плыть.
Such “translation” is quite unfit to the translation taking

into account all the links between natural language structures.
However, we’d emphasize that to build such a system of
transfer no additional tools were involved except for the
system of rules. The whole mechanism of transfer was
provided with the functional programming language.

Application of higher-order functions gives an opportunity
to pass a function as a parameter to other functions. This
allows, for instance, handling the normalization (i.e. putting
into normal form – for example, infinitive verb form, noun in
singular, etc.) of any natural language structure before transfer.

Using n-tuples as a form of representation of natural
language structures enables to generalize attributive
characteristics of words and use pattern alternations of such
structures in prospect (see an example below). Consider an
example of a function which in a case with its argument a
noun in singular leaves it without any modifications, but in a
case with it in plural, adds an “s” inflexion to the end of the
word:

(3)
func({X, noun, singular}) → X,
func({X, noun, plural}) → X ++ «s»;
Such function might be of use, say, when generating text in

English.
That’s why we’d like to consider such representation form

of natural language information as n-tuples in detail. As one
can see from the example above, this approach gives an
opportunity of arrangement of attributive features and its
further use in transformations. Apart from this, using n-tuples
for storage of attributive features of language structures
enables us to extract functions according to language
structures of various levels of abstraction (for instance, a
word, a phrase, a sentence, etc). any of such language
structures has its own set of attributes, hence there should be
functions which have words, phrases, and so on, as their
arguments.

At first sight the above given approach to representation of
natural language grammar rules apparently generates a huge
amount of transformations even for a narrow domain. It is the
case. But one should note that since system of transfer built
using functional programming tools cannot be considered a
finite state automaton, and, thus, doesn’t have any states and
rules of transformations between the states, so the amount of
transformations isn’t dramatic. Absolute clearness (absence of
the inner state) of the analytical engine gives an opportunity to
perform analysis and synthesis of transformations by an expert
in the field of computer linguistics in a convenient mode.

The second distinctive feature of the suggested approach is
quite technical one. It is essential to design and implement a
relevant analytic engine for every information system which
tasks correlate with natural language structures analysis based
on mathematical apparatus of formal grammars. As it was said
above, this task is rather complex and laborious. However, in
the case of functional representation of grammar rules as an
analytical machine the environment of the functional
programming might be used (for instance, Erlang, Haskell)
[ix].

But here’s a more formal description of the suggested
approach.

50

Firstly, introduce a concept “Computational and
Functional Grammar”. Consider a formal

grammar ()PS,,V,V=G NT , where P

is () α:αβα:βα ∈∈∃∧∅≠∧∪∈→ vVvVV, NNT .

Computational and Functional Grammar (CFG) is a form
of notation of the above mentioned formal

grammar ()Af,T,=GFC , where T is a finite set of

parametric n-tuples, f – transformation function TTf →: ,
A – finite set of atoms.

By parametric n-tuple we mean an n-tuple elements of

which might be elements of the setsNV , TV , A and special

symbol «_».
By atom we assume any unambiguously determined

identificator such that () ∅∪∩ =VVA TN . Atoms are

meant for setting attributive characteristics of natural language
words (gender, singular/plural, case, etc.). They are specific
instrument for simplifying of natural language structures
analysis in particular.

We'd like to emphasize that atoms and atomic structures
are included into CFG description. Thus, all possible
attributive characteristics of language structures are defined in
the Grammar. That is, CFG is a formalism sufficient for
natural language structures analysis, and there is no necessity
for using any of other mathematical tools in addition to it.

Function f in Computational and Functional Grammars is
defined in the table form similar with the Backus-Naur form
which is used for setting the rules in context-free grammars.

The symbol «_» is suggested to denote an n-tuple element
which value one may ignore when defining the transformation
function. Thus, illustrate the sense of the special symbol «_»
by an example.

Consider a set of atoms A = {noun, verb, plural, singular,
ok, not ok} and a function defined as follows:

(4)
f({noun, _}) → {ok},
f({verb, _}) → {not ok};
Then f({noun, plural}) = {ok} and f({noun, singular}) =

{ok}, i.e. the function’s value will be {ok} regardless of noun
is in singular or in plural.

To illustrate the difference in grammar rules
representations by example, we’ll consider a formal grammar
G = ({a, the, dog, cat, chased}, {<S>, <NP>, <VP>, <N>,
<V>, <DET>}, <S>, P) where P:

(5)
<S> ::= <NP> <VP>,
<NP> ::= <DET> <N>,
<VP> ::= <V> <NP>,
<DET> ::= a | the,
<N> ::= dog | cat,
<V> ::= chased

where NV>DET< >,VP< >,NP< >,S< ∈ and

TVchased cat, dog, the, a, ∈ .
In case of functional representation the above defined

grammar will be expressed as follows:
{ }()∅f,,chasedcat,dog,the,a,,DET,V,N,VP,NP,S=GFC

where f:
(6)
f(<DET>) -> a,
f(<DET>) -> the,
f(<N>) -> dog,
f(<N>) -> cat,
f(<V>) -> chased,
f(<NP>) -> f(<DET>) ++ f(<N>),
f(<VP>) -> f(<V>) ++ f(<NP>),
f(<S>) -> f(<NP>) ++ f(<VP>);
Symbol «++» denotes an operation of concatenation.
One should pay attention that in the considered example

the set of atoms A is empty. This points to the fact that such
grammar doesn’t take into account attributive characteristics
of words and language constructions. One may also notice that
the set T in the example above is just a joint alphabet of
terminals and nonterminals of the initial grammar G.

IV. Task of parallel texts analysis and comparison

At the contemporary stage of design and development of

natural language processing systems the main emphasis is
merged towards creation of parallel texts (i.e. texts in several
languages equivalent by their contents and representation
forms) analysis techniques. It generates a set of tasks
concerned with their adequate interpretation and application,
above all, those are tasks of machine translation and
knowledge processing [x, xi, xii].

 For that reason we demonstrate capabilities of the
functional programming tools when applied in the task of
parallel text analysis and comparison, including the task of
interlanguage structures transfer from one language into the
other [xiii]. As an example we consider texts of the patent
claims (in chemical technologies) in German and English
respectively:

(7)
• Claim in German: Verfahren zur Epoxidierung einer

organischen Verbindung mit wenigstens einer C C-
Doppelbindung mit Wasserstoffperoxid in Gegenwart
wenigstens einer katalytisch aktiven Verbindung und
wenigstens eines Lösungsmittels, dadurch gekennzeichnet,
dass ein Produktgemisch umfassend a-Hydroperoxyalkohole
unter Einsatz wenigstens eines Reduktionsmittels reduziert
wird.

51

• Claim in English: A process for the epoxidation of
an organic compound having at least one C-C double bond by
means of hydrogen peroxide in the presence of at least one
catalytically active compound and at least one solvent,
wherein a product mixture comprising [alpha]-
hydroperoxyalcohols is reduced using at least one reducing
agent.

When consistently comparing the claims given (for

instance, for the sake of confirmation of the patent
information and data mining in chemistry) the following
transformations were detected:

(8)
(a) Verfahren zur Epoxidierung → A process for the

epoxidation

N [verb, nom, neutr, sg] + Prep [zu+der, dat, comp, fem,

sg] + N [dat, fem, sg] → Art [indef, sg] + N [com, sg] + Prep
+ Art [def, 0] + N [com,sg]

(b) ein Produktgemisch → a product mixture

Art [indef, masc, nom, sg] + N [comp, nom, neutr, sg] →

Art [indef, sg] + N [com, sg] + N [com,sg]

(c) dadurch gekennzeichnet → wherein

Pron + Part [II f, masc, sg] → Adv

The above given transformations are described by means

of primitive language markup and a set of grammar attributes.
Thus, in case (b) (example (8)) the transfer of German phrase
structure «ein Produktgemisch» into English one «a product
mixture» is described as a modification of an article (Art) with
attributes «indef, masc, nom, sg» (that is indefinite,
masculinum, nominative case) and a compound noun N from
the left part of the transformation into a phrase structure in
English with an article and its attributes «indef, sg» and two
nouns in the right part of the transformation.

However, this technique of transformations notation (in the
example above) possesses some disadvantages, namely,
awkwardness of the rule itself and need to interpret it with the
help of specifically designed analytic engine.

But using functional programming tools (which are the
instruments of language structures representation in the case
as well) may give one an opportunity to write down the rule
(b) from the example (8), as follows:

(9)
(b) ein Produktgemisch → a product mixture

v({«ein»,art,indef,masc,nom,sg}) → «a»,
v({«Productgemisch»,noun,comp,nom,neutr,sg}) →

«product mixture»;
fgerman-english(
{X1,art,indef,masc,nom,sg},

{X2,noun,comp,nom,neutr,sg}) →
v({X1,art,indef,masc,nom,sg}) ++
v({X2,noun,comp,nom,neutr,sg});

V. Conclusion

In the paper a new approach to natural language grammar

representation as functions in mathematical sense is
considered. Also opportunities of applying functional
programming tools to building systems of transfer are
demonstrated. Practical application of the approach is viewed
from the perspective of parallel texts analysis and comparison
(texts from patent and scientific fields).

Further research within the approach and associated tasks
may be conducted in the following directions:

• Customizing of the existing representations of
the natural language grammars to functional form;

• Creation of problem-oriented system of
functional programming to make handling of natural language
rules more convenient;

• Enhancement of functional programming
tools taking into account needs and tasks of computer
linguistics.

i . Козеренко Е.Б. Лингвистическое моделирование для
систем машинного перевода и обработки знаний //
Информатика и ее применения, №1, том 1. – М.: Торус,
2007. – С.54-65.

ii . Козеренко Е.Б. Глагольно-именные трансформации
при англо-русском машинном переводе //
Компьютерная лингвистика и интеллектуальные
технологии: Труды международной конференции
«Диалог 2007» / Под ред. Л.Л. Иомдина, Н.И. Лауфер,
А.С. Нариньяни, В.П. Селегея. - М.: Изд-во РГГУ,
2007. – С. 286-294.

iii Chomsky N. Syntactiс Structures. — The Hague: Mouton,
1957.

iv . Jacobs, Roderick A. and Peter S. Rosenbaum. English
Transformational Grammar. Blaisdell, 1968.

v Клини С.К. Математическая логика. -М.: изд-во Мир,
[1967]1973.

vi Дж. Хопкрофт, Р. Мотвани, Дж. Ульман. Введение в
теорию автоматов, языков и вычислений = Introduction
to Automata Theory, Languages, and Computation. — М.:
«Вильямс», 2002. — С. 528.

vii . А. В. Гладкий, А. Я. Диковский, “Теория формальных
грамматик” / Итоги науки и техн. Сер. Теор. вероятн.
Мат. стат. Теор. кибернет., 10. – М.: ВИНИТИ, 1972. –
C. 107–142.

viii . Кобринский Н.Е., Трахтенброт Б.А. Введение в
теорию конечных автоматов. – М.: Гос. издательство
физ.-мат. литературы, 1962. – 405 с.

52

ix http://erlang.org, http://haskell.org
x . Козеренко Е.Б. Проблема эквивалентности языковых
структур при переводе и семантическом выравнивании
параллельных текстов // Компьютерная лингвистика и
интеллектуальные технологии: Труды международной
конференции «Диалог 2006» / Под ред. Л.Л. Иомдина,
Н.И. Лауфер, А.С. Нариньяни, В.П. Селегея. - М.: Изд-
во РГГУ, 2006. – С.252-258.

xi . Nivre J., Boguslavski I., Iomdin L. Parcing the
SynTagRus Treebank of Russian \ Proceedings of the
International Conference COLING’2008, Manchester, UK,
2008.

xii . Macken L., Lefever E., Hoste V. Linguistically-based
sub-sentential alignment for terminology extraction from a
bilingual automotive corpus \ Proceedings of the
International Conference COLING’2008, Manchester, UK,
2008.

xiii .Кожунова О.С. Выявление номинализованных
конструкций в параллельных текстах патентных
документов на русском и немецком языках //
Компьютерная лингвистика и интеллектуальные
технологии: Труды международной конференции
«Диалог 2009» / Под ред. Л.Л. Иомдина, Н.И. Лауфер,
А.С. Нариньяни, В.П. Селегея. - М.: Изд-во РГГУ,
2009. – С.185-191.

53

Static Verification “Under The Hood”:
Implementation Details and Improvements of

BLAST
Pavel Shved

Institute for System Programming, RAS
shved@ispras.ru

Vadim Mutilin
Institute for System Programming, RAS

mutilin@ispras.ru

Mikhail Mandrykin
Moscow State University

misha.bear.1990@gmail.com

Abstract—BLAST is an open-source static verification tool used
in checking safety properties of C programs. Given a C program
with several assertions, which should not fail at runtime, BLAST
statically analyzes the program, and either returns a program
execution path that leads to violation of one of the assertions,
or proves that no assertion is violated. If BLAST fails to prove
inreachability of assertions, it may terminate with error, or loop
forever. The framework approach employed in BLAST is counter-
example guided abstraction refinement (CEGAR) empowered
with lazy abstraction.

The first record of BLAST dates from 2002. The tool had
been constantly improving until July 2008, mostly by its original
creators. Beginning in 2009, we continued working on it as a
part of Linux Driver Verification project.

In this article we overview the current status of BLAST: outline
the algorithms the CEGAR framework approach is implemented
on top of, describe the heuristics used and the technical details
of the implementation, and list the external components BLAST
relies on. Along with this description, we outline and evaluate
the improvements we made since its last release by the original
BLAST team, and share our view on the further improvement
of the tool.

Index Terms—Software verification, safety properties, reacha-
bility verification, static analysis.

I. INTRODUCTION

BLAST is an acronym of “Berkeley Lazy Abstraction Soft-
ware verification Tool”. It is a C program verification tool that
solves reachability problem. Given a C program, a name of
the main function (“entry point”) and a name of a label, it
reasons if there exists a program execution path that starts at
the entry point and reaches the label specified.

It analyzes the program with CounterExample-Guided Ab-
straction Refinement approach (for details, see [11]). The way
it implements CEGAR is known as “lazy abstraction” [12],
a novel approach at that time that aims to retain the part of
abstraction that should not change, instead of rebuilding ab-
straction from scratch after each counterexample analysis. This
approach gave the name to BLAST, and the article referenced
([12]) presented BLAST in its “Experimental Results” section;
moreover, this article does not contain any reference to another
source where BLAST was described or mentioned.

The task in subject is computationally impossible, as the
halting problem may be reduced to it. The tool therefore
does not guarantee its analysis will terminate. BLAST may
terminate in runtime if it detects that the program can’t be

analyzed by it, or provide an incorrect result: either “false
unsafe” (a program that does not violate the safety property
being checked, but is reported as “unsafe”) or “false safe” (an
“unsafe” program reported as “safe”). However, if the tool
reports an “unsafe”, it also prints the error trace: the path to
error location from the entry point, which may be followed
through by a human.

To build an open automated system for Linux device drivers
described in [13], we needed a verification tool, and that article
outlines BLAST as a tool “intended for academic research
in software verification”. The experiments demonstrated that
its potential may spread beyond mere academic application,
serving as a verification engine in an intensive driver checking
workflow, as well as provide a ground for research in the do-
main of static analysis. However, before its potential strength
became current a serious work has been done.

A good description of how the algorithms implemented in
BLAST work is in [6]. That article contains a step-by-step
explanation how a sample program is verified with BLAST,
but does not focus on its implementation details.

In this article we describe what BLAST is now, and outline
how we improved it since its last official release (version 2.6)
by the original team. “Vanilla” algorithms described elsewhere
(see [12] and [6]), we list the undocumented but worthwhile
improvements the authors of BLAST made in its imple-
mentation1; we focus, however, on listing our contribution,
and evaluate the impact of our improvements in the relevant
domains if possible.

A. Algorithms used in BLAST

The algorithms used in BLAST are briefly described as
“lazy abstraction CEGAR, with Cartesian predicate abstrac-
tion and LA+EUF Craig interpolation as predicate discovery
procedure”.

To be more specific, this means:
• CEGAR — counterexample-guided abstraction refine-

ment, a process of solving reachability problem by con-
structing a crude abstraction of all possible paths reached

1The authors recommend to always configure BLAST to use these improve-
ments instead of “vanilla” algorithms by specifying “-craig 2 -predH 7”
in the command line of the tool.

54

Fig. 1. Assumption as a library call

void custom_assume(int condition)
{ if (!condition)

ENDLESS: goto ENDLESS;
}

from the entry point and iteratively refining this abstrac-
tion by analysis of plausible paths that lead to the error
location, until the abstraction contains no such paths—or
a reachable error location is found. For more info, see
[11];

• lazy abstraction — an implementation of CEGAR char-
acterized by refining only those parts of abstraction that
should contribute to proving inreachability after a coun-
terexample analysis. Re-evaluation of other parts of ab-
straction is avoided as much as possible. For more info,
see [12];

• control-flow graph (CFG) — lazy abstraction assumes
that the program is represented as a finite control-flow
graph, i.e. a labeled-transition system. The abstraction is
then a “reachability tree”: a prefix tree of all possible
paths in the CFG from the entry point, each node (loca-
tion) being marked with an abstract state. It’s named an
“Abstract Reachability Tree”, or simply “ART”.

• Cartesian predicate abstraction — representation of
the abstract state of a location as a conjunction of zero or
more predicates previously discovered. Unlike Boolean
abstraction, Cartesian one restricts usual first-order
Boolean logic formulæ to conjunction operator only. For
more info, see [2];

• Craig interpolation — a procedure of building a Craig
interpolant: given two Boolean formulæ with an un-
satisfiable conjunction, construct an over-approximation
of the first one that uses only terms from the second
one, keeping the conjunction of the approximation and
the second formula unsatisfiable. As of today, BLAST
uses this procedure to construct new predicates for its
Cartesian abstraction.

II. IMPLEMENTATION DETAILS

A. Generic information

Comprising components written in various languages,
BLAST has its core part written in OCaml, and it compiles
with OCaml 3.11 version. BLAST runs under Linux.

OCaml abstracts away memory operations, automated pro-
cessing of which took a considerable time, according to pro-
filing results. By tuning some documented options of OCaml
runtime, we decreased memory allocation overhead. Sample
programs demonstrated a 20% increase in the amount of
locations explored.

B. Program representation

As previously noted, the approach implemented in BLAST
requires the whole program to be represented as a finite

control-flow graph. It means that all functions should be
inlined, and no recursion is allowed. However, BLAST ap-
proaches this in a different way; it uses CIL [16] to build
per-function control-flow graphs. During the program analysis,
BLAST automatically jumps to the proper function unless it
is called via a function pointer. This approach provides more
flexibility, and allows to implement heuristics that concern
function calls. For instance, BLAST is capable to support
recursion with restricted depth. We also implemented a similar
bounding even for non-recursive calls, as we had noticed
that analysis does not need to traverse deeply in the call
graph to succeed in finding bugs. In Linux Driver Verification
project, this allowed us to use code generation tools that
automatically satisfy unresolved external calls to functions
specified throughout the whole kernel without a dramatic
analysis quality degradation.

The representation in such form ignores loop structure,
and unrolls them into a set of conditional jumps. The goto
operators are respected as well. This allows programs to
undergo serious transformations, and still be checkable by
BLAST. We needed a functionality to denote assumptions of
the form “from now on, a certain condition holds”2. Instead
of trying to built this into BLAST as a special directive, we
devised a library function that solves this problem; it’s listed
on Figure 1. The function is a valid C as well as it does not
confuse BLAST with an unnatural endless loop.

As Linux Kernel sources leveraged the whole power of C
language and its GNU extensions, we integrated the latest CIL
version to BLAST (1.3.7 instead of 1.3.1), and made several
minor improvements to it. Now BLAST is capable to read and
process drivers of Linux Kernel of version 2.6.37 with just 2%
of modules leading to parse errors during the analysis.

C. Abstract Reachability Tree exploration

As noted above, lazy abstraction approach does not require
the abstract reachability tree to present in memory as a
separate data structure. Hence, in BLAST the abstraction is
stored in a custom data structure as a graph, and the abstract
postcondition computation happens at its leaf nodes (also
named the “frontier”). If set of possible program states in a
leaf is empty, it’s not traversed anymore. When a leaf contains
a plausible error location, the counterexample analysis begins,
and the reachability tree is then cut so that its only leaf is the
one specified by the error path analysis. When a leaf is covered
by another leaf which was already processed, the analysis
stops in favor of that already happening starting from the
covering leaf. It is implemented by storing “reached region”
that comprises all the locations reached so far.

The order the leaves are processed in is tunable. Presets in-
clude depth-first traversal, breadth-first traversal and bounded
depth-first search (traverse in depth-first manner up to depth
N , add the pending nodes to queue and get the next node from
the queue). The default method is BFS; possible reason is that

2This is useful to specify preconditions for initial data, which may rule out
false positives in certain situations.

55

it allows to find error locations faster, and the experimental
data described in [4] prove that BFS allows faster verification
than DFS.

Processing a leaf constitutes on determining its region (an
over-approximation of all possible program variable states on
this path) by incoming edge in the CFG and region in previous
location. More on this procedure in Section II-G.

D. Counterexample analysis

When a counterexample—a reachable error location, for
which the abstraction contains a non-empty set of program
states,—is found in the reachability tree, its analysis starts.
A sequence of operations that leads to this location from the
root node is fetched from the ART. Then, preconditions of all
nodes are taken, and static single assignment (SSA) conversion
is applied to the resultant formulæ. The formulæ are stored in
a custom OCaml data structure.

Interestingly, a path formula is converted to SSA backwards:
i.e. the closer the nodes are to the root of the tree the greater
the indexes of their variables are. Therefore, different error
paths do not have a common prefix in their path formulæ.
An optimization opportunity here would be to reverse the
indexes and parallelize ART exploration and path formulæ
construction. This might also help with alias analysis (see
Section II-I).

For the further analysis, the formulæ are converted from
custom format to one of formats suitable for external solvers
(special modules take care of that). Due to large size of the
formulæ the conversion may take a lot of time. It was the
case for SMT solvers format. To overcome this, we focused
on this conversion, and made it nearly a thousand times faster,
which made the conversion overhead negligible compared to
the time to perform an actual formulæ analysis. This result
also demonstrates that tight integration with solver’s formulæ
representation format might not be necessary for a CEGAR-
based verification tool.

After proving that the formula is unsatisfiable (hence the
counterexample is spurious), predicate discovery procedure
starts. These two activities are described in the next two
sections.

E. Path feasibility checking

External solvers are to decide if the formula is satisfiable
(sat) or unsatisfiable (unsat). If error path formula is unsat-
isfiable, then the counterexample is spurious, and should be
analyzed, and the abstraction should be refined; otherwise,
there’s an error in the program. For first-order logic in Linear
Arithmetic and Uninterpreted Function Symbols theory, for-
mula satisfiability is a computationally hard problem. Thus,
careful choice of SAT solver is crucial for building a fast
verification tool.

In the BLAST as of 2008 Simplify solver was used; it is a
“stack-based” solver3 (which makes it ideal for analyzing path

3Allows to push/pop conjuncts of a formula and analyze the conjunction
of formulæ currently on stack; this could assist checking several formulæ that
share common parts for satisfiability.

formulæ concurrently with their generation), but it is a legacy
closed-source software with serious licensing limitations. After
resolving the performance issues in conversion to SMTlib
format (see sec II-D), we turned to experimenting with SMTlib
solvers, mainly with CVC3, as its LGPL license fits our aim
of building an open toolset for software verification.

We noticed that in BLAST it is possible for SAT solver
to report “unknown” instead of “unsat”, and these results are
indistinguishable for BLAST. Since proving satisfiability of
large formulæis hard, and, at the same time, if a formula is
satisfiable, it’s more likely for the satisfying input to be found
really quick, the “unknown” result may server as “unsat” if
the solver is tuned properly. We tried CVC3, and discovered
that by default it runs in a “honest” mode where no unknown
results were possible, and it took CVC3 gigabytes of RAM
and several minutes to verify a typical formula appearing in
driver source code analysis.

It turned out that the main reason for such a low CVC3
performance on many typical BLAST queries was its use of
certain quantifier instantiation heuristics. By default, BLAST
path formulæ contain quantified axioms used to model mem-
ory with aim to rule out some false unsafes when pointer
operations are used. Default settings of CVC3 (used for
SMT-LIB benchmark) turned complete quantifier instantiation
heuristic, which made it try to instantiate every given axiom
with every suitable combination of ground terms occurring in
the formula. Also one axiom instance may itself contain new
ground terms that can be again used for instantiation. Since
the typical BLAST formula contains quantified axioms and a
lot of terms, the solver spent much time and memory on the
instantiations described above.

We used an option to disable complete instantiation heuristic
and put a smaller limit on the number of repeated instanti-
ations. This significantly decreased the number of resulting
instances and thus time and memory consumption. Then we
also disabled some other heuristics regarding quantifiers. It
didn’t cause any significant correctness degradation because
the axioms rarely helped the solver prove formula unsatisfia-
bility.

As of today, there is no reason to use Simplify anymore, as
CVC3, combined with our fixes to integrational components
of BLAST, outperforms it.

We also removed predicate normalization from BLAST4,
as we supposed that solvers should do it much faster. Our
experiments confirmed this.

F. Predicate discovery
Vanilla algorithm to discover predicates with Craig inter-

polation looks like this. A path formula is cut into conjuncts
(basic blocks are cut apart), and at each cut point the conjunc-
tion of all terms before and after formula may undergo Craig
interpolation. For LA+EUF theory Craig interpolants always
exist ([15]), and an interpolating prover is a tool to find them.

However, instead of running an interpolating prover at each
cut point, BLAST first determines “useful blocks”, a subset of

4Actually, we added an option to turn it off/on.

56

operations along the trace that contribute to unsatisfiability of
the formula: a minimum set of blocks conjunction of which is
unsat, while the rest of the formula is satisfiable. There may
be several non-overlapping sets of useful blocks for a trace.
Essentially, “useful blocks” are close to unsatisfiability core
of a path formula, with two differences:

• granularity of predicate selection is operator-wise, i. e.
a predicate for one assignment or conditional may only
participate as a whole, while only a part of it may belong
to unsatisfiability core5;

• regions may participate in “useful blocks”. A region,
by construction, is an over-approximations of the path
formula to the location it is assigned to. So, instead
of analyzing the trace prior to a certain location, if
a conjunction of the region in this location (computed
by previous refinement procedures) and the part of the
formula past this location is unsat, then we treat the
region as if statement, and nominate it as a part of useful
block set.

The bits of formula extracted this way may themselves
become predicates for the abstraction (as in one of the steps
in SLAM tool [1]). However, BLAST goes further, and runs
the interpolating prover for each cut point between blocks in
each of the “useful block” sets, treating each set as a small
error trace. This way it only calls interpolating prover as many
times, as there are these useful blocks, and the formulæ for it
to handle are much smaller.

To determine these “useful blocks” BLAST joins predicates
in path formula one-by-one, beginning from the last, until their
conjunction becomes unsat. Then the latest block joined is
a useful one. The next useful block is found with the same
procedure, but the first useful block found is added to each
conjunction. The procedure repeats recursively until the set of
blocks found so far and the next useful block alone form an
unsatisfiable conjunction.

For stack-based solver, such as Simplify, joining predicates
one-by-one is straightforward. For SMT solvers all intermedi-
ate conjunctions were to be checked separately. We noticed,
however, that conjunction of all blocks from the end of the
trace up to i-th one is a monotonous function of i (the more
blocks you join, the more likely their conjunction is unsat), and
binary search may be applied to find the next useful block. We
implemented the binary search for SMT solvers, and we also
implemented caching for the predicates converted to SMTlib
format. For a complex sample cxausb driver the number of
calls to SMT solver was decreased from 32630 to 831, thus
reducing the overall verification time of this sample by the
factor of 7.

Craig interpolants for each cut point in small “traces”
constructed from each of the useful block sets are calculated
and added to lists of potential predicates in the locations of
the real trace between the first and the last useful blocks, and
to the locations in their ART subtrees. The negations of the

5It is especially important for more complex formulæ: when alias analysis
(see Section II-I) or other techniques (such as [17]) are used.

interpolants are not added at this point, but they will be taken
into account during the refinement.

To perform the interpolation, an Apache-licensed CSIsat
prover [9] is used, which takes input in “FOCI” format.
It sometimes outputs interpolants with real arithmetic (for
instance, it may print “x < 0.1 · y” instead of “10x < y”); in
these cases, BLAST ignores its output and finds less predicates
hoping that the rest would be enough to prove the safety of a
program.

Each predicates is encoded as a Boolean variable, and each
region is stored as a BDD (binary decision diagram) over these
variables.

G. Abstraction refinement

After an error path was encountered and analyzed, the
analysis in the ART subtree of the node corresponding to the
“useful” block closest to the root is restarted, and the nodes
in it are removed from the queue (also known as “frontier”).

To calculate the region of a frontier node, the “abstract
postcondition” procedure described in [12] is used. For each
of the predicates discovered for this location it is tested if the
precondition of the operation along the incoming edge, given
the predicate is assumed, is implied by the calculated region
in the parent node. To check satisfiability of the formulæ built
this way the same SMT solver is used as in the trace analysis.

Since all the data required by such a refinement are local,
the exploration of the state space may be made concurrently.
We have not implemented this for BLAST, however, a research
in this direction yields promising results [14].

After predicate for a node is verified, the node should be
tested for coverage. For this, it constructs a BDD that denies
that the calculated region for this node implies the reached
one, and checks it for truthfulness via BDD, each predicate
from the Cartesian abstraction being represented as a distinct
BDD term. If this crude check fails, a more precise one with
use of the SAT solver is performed; it takes into account that
predicates share variables, and are not independent from one
another. If a node is not covered, its children are added to the
frontier, and the reached region for the location is updated.

H. Configurable verification

In BLAST it is possible to use lattice-based data-flow anal-
ysis to aid CEGAR. Lattices are known to over-approximate
the feasible program states, so they may be used to rule out
infeasible paths in combination with usual CEGAR analysis
to analyze the rest. BLAST contains several such lattices, and
only one of them (SymbolicStore) is a generic-purpose lattice
that fits all C programs; it is capable to store information
on concrete values of integers and structure fields as well as
perform shape analysis [5].

To utilize capabilities of lattice-based data-flow analysis,
BLAST extends the structure of node’s region beyond the
usual conjunction of interpolants. The region in BLAST is a
tuple of CEGAR’s predicate constraint, and of several lattice
elements, the set of lattices being configured by user. If any
of tuple elements is ⊥ (or false, for predicate regions), then

57

the further path exploration is not necessary, since one of the
means has proved it infeasible.

As for coverage checking, the lattice-aided verification con-
tained a severe issue: the stopjoin operator was hardcoded;
it made BLAST nominate a single joined region as reached
instead of a set of regions. This cuts feasible program paths,
since SymbolicStore lattice regions are not a powerset do-
main [7] (while predicate regions are). Also, stopjoin made
the number of false safes too big for a certain environment
model6, so we implemented stopsep which checks coverage
against a set of reached regions, and several versions of
merge operator: join at meet-points (merge-join), join at equal
predicates (merge-pred-join)7, and no join (merge-sep). After
experiments we chose stopsep with merge-pred-join as our
default setting.

As a result, the runtime of BLAST with a SymbolicStore
lattice had a 50% increase, but the precision was improved
significantly: the amount of true unsafes increased by 20%
approximately.

This concept of combining different operators in the explo-
ration of state space of a single program in a configurable
way was then developed by one of the authors of BLAST in
the other tool, CPAchecker [8]. Our experience demonstrates
that while it’s not trivial to add more operators the BLAST
implementation is loosely-coupled, and it is only lack of
syntax and framework sugar what prevents a developer from
configuring such operators easily, but the changes one is
required to make are not dramatic.

I. Alias analysis

BLAST employs flow-insensitive may-alias analysis for
more precise reasoning about pointer assignments. As pointed
out in [5], the analysis is “home-brewed”, and we’ll describe
the algorithm here briefly.

The alias analysis starts when the first feasible error location
is found. Originally, BLAST performed this costly procedure
at the beginning of analysis of a program, but for programs
with unreachable error locations, or in cases when all error
paths are ruled out by lattice analysis (see Section II-H), but
we fixed this.

First, the whole program is analyzed, and the aliasing rela-
tion is calculated: if x may point to y at any point of program,
then “may-alias(x,y)” is true. The relation is not reflexive:
while x may be any identifier, y should refer to a concrete
memory location (stack- or statically-allocated memory, or a
location with a malloc() call). An over-approximation is
built by analyzing each assignment (if x is assigned an address
of z then x may point to z8), and closing it transitively (i. e. if
y is assigned to x, and y may-point to z then x may-point to z).
This way, an over-approximation of an “ideal” may-aliasing
relation is built.

6Environment models are “main” functions generated based on templates
for Linux device drivers. For more see [13].

7Predicate equality was tested via BDDs that stored them.
8Pointer operators are ignored at this point, only identifier names are

essential here.

Fig. 2. Verification of this program requires more lvalues than it contains

void mutex_lock(struct mutex* mtx)
{ assert (*mtx == 0);

*mtx = 1; }
void mutex_unlock(struct mutex* mtx)
{ assert (*mtx == 1);

*mtx = 0; }
int main()
{ struct mutex* m;
mutex_lock(m);
mutex_unlock(m);

}

Each expression is encoded as a bit-vector, and the relation
is stored in the a BDD. If x aliases q, and the expressions are
encoded as vectors X and Q respectively, then true value for
bit-vector (X, Q) is inserted into BDD.

When the path formula is constructed, and an assignment
*y=q appears in it, alias analysis comes into play. It queries
each lvalue (a non-constant expression that denotes a concrete
value in the writable memory) encountered in the program if
y may-alias its base identifier. For each lvalue x it may alias,
the following expression is added to the formula in addition
to the usual predicate:

((y = x)→ (∗x = q)) ∧ ((y 6= x)→ (∗x = ∗xold)) (1)

where ∗xold is the previous instance of expression ∗x in
the SSA form. The expression means “if y really points to
the same place x does, then the value of ∗x also becomes q.
Otherwise, this assignment does not change the value of ∗x”.

The lvalues iterated should not be constrained by those en-
countered in the program. For instance, consider the following
program on Figure 2. To verify it, we need to consider ∗m as
an lvalue, while the program does not contain it. BLAST has
a functionality to close the set of lvalues of a program under
dereference and taking a field (for structures) operations up
to a specified number of dereferences. The depth of such a
closure is required to be at least one for the program shown
above, but it already prohibitively increase the number of
iterations over lvalues, beyond the sensible time limits.

Some may-aliases are also must-aliases. For instance, CIL
frontend generates additional variables for assignments to
complex lvalues that involve multiple dereferences and field
takings. These variables are known to alias only one single
variable, and the expressions like (1) generated for them will
not contain any disjunctions, and unconditionally assign the
value to the must-alias.

We tried to decrease such a number of iterations over lvalues
by withdrawing must-aliases from the set of lvalues, then
by adding all ”const” values to the set of must aliases (to
withdraw even more), but we could not make the iterations
fast enough. This improved the speed of alias analysis alone

58

by factor of hundreds, but even this wasn’t fast enough. Using
faster data structures might help, but we think that a qualitative
research boost should precede fast verification of pointer-
abundant programs.

J. Interaction with user

UI was aimed to satisfy a user that looks at the console
output: plain text printing of debug information, analysis work,
statistics and reports mingled together. We did not change this
much, but tuned the output of error trace and verdicts to fit
automatic processing of it. Now the external tools may read
the verdict, and the error trace with additional information.
This is especially useful when the exploration is cut due to
function call depth limit a user specified, because it would be
unclear from the trace that the limit was enforced rather than
the function is not found.

K. Infrastructure

We added regression tests based on situations that occur
during Linux device drivers analysis. They contain both ex-
pected and current results, for tracking improvements as well
as degradations.

External SAT solvers are connected through a special layer,
that allows parallel execution of queries to the external tools.
For instance, CVC3 is known to have a lag between it outputs
an answer and finished the work (perhaps, due to complicated
resource deallocation), but the layer between BLAST and a
solver does not make BLAST wait and reap the process. Ditto
for interpolating prover.

BLAST contains a lot of dead code. Only a narrow set
of options is supported: some configurations do not work
at all, and terminate with an exception unconditionally. We
did not try to eliminate it; one of the reasons is that it
contains surprises: for example, we were going to implement
the closure under dereferences we described in Section II-I on
our own, but we suddenly found the working code for this
commented out.

1) External components summary: Default shipment of
BLAST includes:

• CUDD package — utilities for binary decision diagrams.
Implemented in C, distributed under MIT-like license.

• CVC3 solver [3] — proves (in)satisfiability of various
formulæ. Implemented in C++, licensed under LGPL.
Communicates to BLAST via SMTlib competition for-
mat.

• CSIsat interpolating prover [9] — computes Craig inter-
polants for LA+EUF. Implemented in OCaml, licensed
under Apache. Communicates via FOCI-like interface
(which is supported, for instance, by MathSAT [10]
interpolating prover as well).

• CIL C frontend — converts C program into syntax
tree stored as OCaml structures. Implemented in OCaml,
licensed under Apache.

L. Known limitations

BLAST does not support assignments of structures as a
whole; does not support function calls by pointer (although
some dead code on this matter is included); ignores inline
assembly; does not provide automatic deduction of properties
involving reasoning about lists and other complex pointer-
based structures; does not support arrays, treats each array
field as a separate identifier, and can not associate a[i]
and a[j] if i = j (i and j being the variables); can not
reason about pointer inequalities; does not have a fast aliasing
solution; ignores short logic in conditional statements; does
not cope with interpolants with real numbers; lacks automatic
modularization, and always analyzes the program as a whole.

III. EVALUATION

To evaluate our improvements, we compared how the latest
BLAST version form the original developers and our version
performs on Linux device drivers from media/ folder of
2.6.37 kernel, and with a simple rule that checks if the mutex
locking is correct. Each launch of BLAST was limited with
15 minutes of CPU time and 1 Gb of memory. To make the
older BLAST work with our newest tools, we merged several
integrational fixes to it, and we had to merge the latest CIL
frontend as well, as the default frontend in the older BLAST
can process zero drivers. The results of the comparison are in
the Table I.

The results demonstrate that the new version of BLAST
is capable to find three times more errors9 (and the newer
version found all the five errors found by the older one), and
total speed was improved by the factor of 5, given that the
precision of BLAST has increased (see Section II-H). The
number of drivers that were reported as neither safe nor unsafe
is two times less than those of the original version. With newer
version, only 30 drivers exceeded resource limits (only two of
them timing out), while the older version ran out of allowed
resources in 52 cases, and it means that 22 out of 52 the most
complex samples were successfully verified under the same
constraints.

In the media folder the new frontend has eliminated all
the parsing errors; however, a more exuberant evaluation of
the newer BLAST demonstrates that as much as 1.1% drivers
are still not parsed by BLAST in 2.6.37 kernel. Compared to
the original BLAST that can process zero Linux kernel drivers
without special patches applied to their source code, this is
quite an improvement.

IV. CONCLUSION

Having started from BLAST 2.6 of 2008, we implemented
a lot of fixes to BLAST, which improved its productivity on
industrial code base (Linux device drivers) by a factor of
more than five (as the evaluation in Section III demonstrates),
making it, at the same time, more precise and capable to
find more errors, as well as more tolerant to the C code it

9The correctness rule was intentionally weak, so most of these errors are
not kernel bugs, but they are valid if approached as mere assertion violations
in C programs.

59

TABLE I
EVALUATION OF THE ORIGINAL AND THE CURRENT VERSIONS OF BLAST

BLAST version Total Failures SAFE UNSAFE Total time Timed out Memory limit Other failures
Original 389 110 274 5 11.5 hours 36 16 58
Current 389 57 317 15 2.1 hours 2 28 27

parses. The precision improvement is not just ad-hoc, caused
by optimized resource consumption: the algorithms themselves
were improved as well.

During our experiments, we succeeded in utilizing a generic
SMT solver, and demonstrated that formulæ conversion from
an internal verification tool’s format to SMTlib competition
format for programs as large as Linux device drivers takes
negligible time compared to other activities.

We learned also that BLAST is extensible enough to imple-
ment more powerful verification algorithms, albeit it is not a
straightforward task for a developer. Thus, the weaknesses of
BLAST may be overcome, and it’s too early for BLAST to
be considered obsolete.

REFERENCES

[1] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver
verification with under 4 false alarms. In Conference on Formal Methods
in Computer Aided Design, FMCAD 2010, Lugano, CH, 2010.

[2] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. Proc. TACAS, page
268–283, 2001.

[3] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[4] D. Beyer, A. Cimatti, A. Griggio, M.E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Formal Methods
in Computer-Aided Design, 2009. FMCAD 2009, pages 25–32, nov.
2009.

[5] D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape analysis. Proc.
CAV, LNCS, 4144:532–546, 2006.

[6] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast: Applications to software engineering.
Int. J. Softw. Tools Technol. Transf., 9(5):505–525, 2007.

[7] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Con-
figurable software verification: concretizing the convergence of model
checking and program analysis. In Proceedings of the 19th international
conference on Computer aided verification, CAV’07, pages 504–518,
Berlin, Heidelberg, 2007. Springer-Verlag.

[8] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for con-
figurable software verification. Technical report, School of Computing
Science, Simon Fraser University, 2009.

[9] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSIsat: Interpola-
tion for LA+EUF. In CAV, pages 304–308, 2008.

[10] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The mathsat 4smt solver. In CAV,
pages 299–303, 2008.

[11] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. Proc. CAV, LNCS, 1855:154–169, 2000.

[12] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Lazy
abstraction. In Symposium on Principles of Programming Languages,
pages 58–70. ACM Press, 2002.

[13] Alexey Khoroshilov, Vadim Mutilin, Vladislav Shcherbina, Oleg Strikov,
Sergei Vinogradov, and Vladimir Zakharov. How to cook an automated
system for Linux driver verification. In 2nd Spring Young Researchers’
Colloquium on Software Engineering, volume 2 of SYRCoSE 2008,
pages 11–14, 2008.

[14] Nuno P. Lopes and Andrey Rybalchenko. Distributed and predictable
software model checking. In Proceedings of the 12th international
conference on Verification, model checking, and abstract interpretation,
VMCAI’11, pages 340–355, Berlin, Heidelberg, 2011. Springer-Verlag.

[15] K.L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
pages 101–121, 2005.

[16] George C. Necula, Scott Mcpeak, Shree P. Rahul, and Westley Weimer.
Cil: Intermediate language and tools for analysis and transformation of
c programs. In In International Conference on Compiler Construction,
pages 213–228, 2002.

[17] Pavel Shved. On reasoning about finite sets in software model checking.
In 4th Spring Young Researchers’ Colloquium on Software Engineering,
SYRCoSE 2010, pages 17–26, 2010.

60

 1

Abstract—C/C++ language is widely used for developing tools

in various applications, in particular, software tools for critical
systems are often written in C language. Therefore, the security
of such software should be thoroughly tested, i.e., the absence of
vulnerabilities has to be confirmed. When detecting C program
vulnerabilities static source code analysis can be used. In this
paper, we present a short survey of existing software tools for
such analysis and show that for some kinds of C code
vulnerabilities this analysis is insufficient. Thus, we briefly
present an approach for SPIN based approach for vulnerability
detection which may be useful in some cases.

Index Terms—C programming language, software
vulnerability, static/dynamic detection method

I. INTRODUCTION

HE problem of computer-aided software testing
becomes important as the complexity of software tools

increases and programs written in C/C++ programming
language are often used in many critical systems. The security
of such software should be thoroughly tested, i.e., the absence
of vulnerabilities has to be confirmed. There are two different
approaches for vulnerability testing: static and dynamic
methods. In this paper, we present a short survey of existing
tools based on static vulnerability detection methods and show
that for detecting some vulnerabilities, for example a buffer
overflow vulnerability, SPIN [1] based approach may be more
appropriate.

The structure of the paper is as follows. Section II contains
preliminaries. Section III is devoted to static code analyzers: a
short survey of existing tools for static vulnerability detection
is presented in this Section. Section IV discusses a SPIN based
approach for vulnerability detection while Section V
concludes the paper.

II. PRELIMINARIES

A program vulnerability is a property of the program that
allows a user to disturb confidentiality, integrity, and/or
availability of this software. Given a set of vulnerabilities
(features) of a C program, if the program has none of these

1 This work is partly supported by RFBR-NSC grant № 10-08-92003

features then the program is said to be safe w.r.t. the given set
of vulnerabilities; otherwise, the program is unsafe w.r.t. this
set of vulnerabilities. Vulnerability detection methods can be
classified as static and dynamic methods [2]. When static
detecting methods are applied the source code is analyzed
without running the program while dynamic detection
methods require the program of interest to be executed.

Given a C program, in this paper, when illustrating the
approaches, we consider the following types of possible
vulnerabilities: type overflow, type conversion overflow, array
overflow (incorrect array index), string overflow which can be
considered as different types of a buffer overflow vulnerability
and double free vulnerability. All these types of vulnerabilities
are specified in details in [3]. Type overflow occurs in a C
code when a variable v is defined as a variable of type t and
the value e of this variable when executing the code can
exceed the maximal value for type t. It can occur when a given
expression e is assigned to a variable v, i.e., the C code has an
instruction v = e, and in general, the maximal value for type t
might be different for different platforms and operating
systems. An array overflow takes place when a programmer
deals with an array a that has size_a items while using a
variable a[i] for i >= size_a. When analyzing student software
tools implementing well-known array algorithms such as
different sorts and/or search of minimal/maximal array item,
we noticed that many those programs are unsafe w.r.t. type
overflow and array overflow (incorrect array index)
vulnerabilities. In order to estimate whether existing static
methods can detect type overflow and array overflow
vulnerabilities we consider three student implementations of
array algorithms and run existing tools for detection of such
vulnerabilities. In the next section, we present a short survey
of existing tools for static code analysis and their outputs for
several vulnerable student programs. We then show that some
of such vulnerabilities can be detected using SPIN based
approach.

III. STATIC CODE ANALYZERS

When estimating the security of student implementations of
array algorithms we considered the following tasks:
calculating the average value of integer array items, the bubble
sort, the insertion sort. C implementations of these programs
are specified in the Table 1 which is divided into three

Detecting C Program Vulnerabilities 1

Anton Ermakov, Natalia Kushik
dept. of Information Technologies

Tomsk State University
Tomsk, Russsia

antonermak@inbox.ru, kushiknatalya@yahoo.com

T

61

 2

sections. Table 1.1 contains a C implementation of calculating
the average value of integer array items (Program 1), Table
1.2 contains a C implementation of the bubble sort (Program
2) while Table 1.3 contains a C implementation of the
insertion sort (Program 3). Program 1 has a type overflow
vulnerability in the line

sred+=a[i];
There is no check in Program 1 if sred variable value does

not exceed the maximal value of the type unsigned short; in
this paper, the maximal value equals 65536 and each unsigned
short variable occupies two memory bytes. Programs 2 and 3
have an array overflow vulnerability, since array indexes of
arrays a and arr are not checked whether they exceed the
number of array items.

Program 1 –
C implementation of

calculating the average
value of integer array

items

int main(){
unsigned short n=0, a[10];
printf("Enter size of array,
please:");
scanf("%d",&n);
for (int i=0; i<n; i++)
{printf("%d. ",i);
scanf("%d",&a[i]);
}
unsigned short sred=0;
for (int i=0; i<n; i++)
{
sred+=a[i];
}
sred/=n;
printf("Sred:%d",sred);
system("pause"); return sred;
}

Table 1.1 C implementation of array algorithms
(Program 1)

Program 2 –
C implementation
of the bubble sort

int main()
{
unsigned short j=0,i=0,n, a[10];
cout<<"Enter integer, please:";
cin>>n;
for (i=0; i<n; i++)
{
 cout<<i<<" = ";
 cin>>a[i];
}
unsigned short temp;
bool t = true;
while (t==true)
{
 t = false;
 for (j=0;j<n-1; j++)
 {
 if (a[j]>a[j+1])
 {
 temp=a[j];
 a[j]=a[j+1];
 a[j+1]=temp;
 t=true;

 }
 }
}
 for (i=0;i<n; i++)
 {
 cout<<i<<"="<<a[i]<<endl;
 }
system("pause");return1;
}

Table 1.2 C implementation of array algorithms
(Program 2)

Below we describe the outputs of several static source code
analyzers that have been run against C implementations in the
Table 1.

A. ITS4 is a static code analyzer that has been
developed in USA by the Cigital company in 1992 [4]. The
ITS4 is a tool for static detection vulnerabilities in C/C++
programs. The tool can be executed under Windows or Linux
operating systems.

Program 3 –
C implementation

of the insertion sort

int main()
{
unsigned short length, key,
arr[10];
int i=0, j=0, tmp=0;
cout<<"length:";
cin>>length;
 for (i=0; i<length; i++)
 {
 cout<<i<<" = ";
 cin>>arr[i];
 }
for (i=0; i < length; i++)
{
tmp = arr[i];
for (j=i-1;j>=0 && arr[j]>tmp;j-
-)
 arr[j+1] = arr[j];
arr[j+1] = tmp;
}
for (i=0;i<length; i++)
 {

cout<<i<<"="<<arr[i]<<endl;
 }
system("pause"); return 1;
}

Table 1.3 C implementation of array algorithms
(Program 3)

When analyzing a given C code the ITS4 relies on its

database of potentially dangerous C functions and if there is a
call for such dangerous function in the given code the ITS4
returns a corresponding report with some recommendations
about proposes (preferable changes) in the code. The ITS4 tool
is a free software tool that can be easily downloaded from
web-site [4]. We executed ITS4 against Programs 1, 2, 3
(Tables 1.1, 1.2, 1.3) and the ITS4 has detected two calls for

62

 3

dangerous functions. Those are scanf() and printf(), in
particular, the ITS4 has reported that scanf() is a function of a
high risk for a buffer overflow vulnerability.

B. Flawfinder is also a static C/C++ code analyzer that
has been developed by David A. Wheeler in May, 2004 [5].
Flawfinder “scans” a given code and similar to the ITS4, has a
list of potentially dangerous instructions of a code. Given a
code, selected dangerous instructions (if any) are then ordered
according to the risks. The Flawfinder report for a
programmer points out the calls for dangerous functions and
proposes a way for changing the code. However for the above
Programs 1, 2, 3 the Flawfinder report has only one dangerous
function – system() and the recommendation “try using a
library call that implements the same functionality if
available”.

C. Graudit is a tool that can also help to statically
detect several C code vulnerabilities [6]. In order to run this
tool it is necessary to call utility Grep under Unix operating
system. As usual, there can be several options how to run this
utility but in the simplest case only the path to cpp file has to
be specified. As a result, a colorful report will appear where
for a given C program, some dangerous instructions are blue
colored. One can also manually add more instructions into the
database of dangerous functions. For each program in Table 1
the Graudit colored functions scanf(), printf() and stream
input/output operators cin and cout.

D. CppCheck 1.46 is a tool with the original name
С++check that has been developed by Daniel Marjamäki and
Cppcheck team from 2007 until 2010 [7]. The CppCheck
utility is specialized for memory leakage vulnerabilities. As it
is mentioned in [7] CppCheck has detected 21 errors in the
Linux Core and many other errors in free software. The
Cppcheck is also a free software tool under the conditions of
the GNU General Public License. We have run the Cppcheck
against above Programs 1, 2, 3 and the output message “No
errors found” has been returned.

E. AEGIS is another tool for static detection
vulnerabilities in C/C++ programs [8]. The AEGIS has been
developing in Digitek Labs since 2008. This laboratory is
strongly connected with Saint-Petersburg Polytechnic
University, Russia. One of the advantages of this tool is that
the AEGIS supports vulnerability detection for several files
simultaneously if they are united in one project. The AEGIS
detects vulnerabilities that can often occur in C programs,
such as memory leakage, incorrect pointers, incorrect array
indexes, uninitialized variables, the use of potentially
dangerous functions etc. In order to statically detect these
vulnerabilities the AEGIS derives the abstract model of the
program for verification. The free usage of the analyzer is
available via the official Digitek Labs web-site [9]. Before
running this tool it is necessary to make some transformations
of a given C code for further compiling. For example, in the
AEGIS, it is prohibited to analyze a code where two or more C
instructions are located in the same program line. We have
correspondingly changed the above Programs 1, 2, 3 and have
run the AEGIS. For Program 1 of average value calculating the
AEGIS detected an incorrect array index for the array arr
while for Programs 2 and 3 of array sorts the AEGIS
mentioned only the call of unsafe function system().

F. There are other static code analyzers that can be
used for vulnerability detection in C programs. For example,
Cqual [10], developed by Dan Wilkerson in 2004, Eshelon
AK-VS [11] developed in Russia, Klocwork Truepath [12]
developed by Klocwork company and Coverity Static Analysis
[13] developed by Coverity company in USA, MOPS [14] and
BOON [15] are tools for static detection vulnerabilities. We
could not execute these tools due to some reasons such as a
high price, lack of documentation, absence of demonstrating
version etc. However, according to their descriptions [10–15],
all these tools are developed for static detection of
vulnerabilities and many of them allow static analysis not only
for C/C++ code but also for Java or C# programs.

According to the above short survey of static code
analyzers, one can conclude that most existing tools only
search for dangerous functions and despite of their
descriptions do not detect type overflow and incorrect array
index vulnerabilities. The latter means that for some kinds of
software vulnerabilities static detection is not enough, that is
the reason why in the next section we present a brief overview
of an approach for dynamic detection vulnerabilities [3].

IV. SPIN BASED APPROACH FOR DETECTING VULNERABILITIES

Most existing tools providing dynamic detection
vulnerabilities are based on randomly generated input data for
a given program. Thus, it is difficult to guarantee the fault
coverage for such security testing. There also exist special
tools for distributed programs testing, for example, Helgrind
[16] that is designed for multithreaded programs testing. We
note that this tool does not support buffer overflow detection
technique but it is able to control synchronization between
threads.

There are other model checking techniques which are
widely used for vulnerability detection. Working together with
our French colleagues we proposed a detection technique
based on SPIN model checker [1]2 and have partially
presented the obtained results in the technical report [3]. In
this case, a vulnerability is described as a property that has to
be verified. However, SPIN accepts a program written in
PROMELA language and thus, the first question is how to
translate a C code into PROMELA instructions when
verifying a property of interest. If the program is vulnerable,
i.e., possesses a “bad” feature, then SPIN produces a
counterexample that corresponds to the values of internal
variables or of input data of the program. We note that,
according to SPIN documentation features might be specified
as temporal logic formulas or Buchi automata [17]. In the
former case, we propose how to inject such data into the
program in order to show a programmer which part of the
code is vulnerable. The proposed technique somehow takes
into account both static and dynamic vulnerability detection,
since PROMELA model is verified statically while
counterexample is injected into the program through its run-
time. In [3], some discussions can be found how to translate C
instructions into PROMELA instructions and how the

2 The work was done together with French scientific group of Prof. Ana
Cavalli (TELECOM & Management Sud Paris)

63

 4

injection procedure can be implemented. In PROMELA
language verified properties are described as assertions and
such assertions have to be constructed for each type of
vulnerabilities. Unfortunately the translation performed by
MODEX tool [18] cannot be applied directly and since we are
in the process of developing new automatic tools for such
translation, some C codes were manually converted into
PROMELA codes and corresponding assertions were added.
We have applied a proposed technique to the above Programs
1, 2, 3 and SPIN produced counterexamples for all of them.
We injected data according to these counterexamples, found
out that the programs return wrong results and no error
message about “bad” input data has appeared, i.e., SPIN has
detected type overflow and array overflow vulnerabilities in
the above programs. For example, for Program 1 a
counterexample produced by SPIN has the value 10005 for
each array item value, the returned result when running the
program was 3451 while the right value should be 100050,
i.e., this C code has a type overflow vulnerability.

For Program 2 SPIN produced a counterexample as well as
for the array dimension as for array item value. In this case
when detecting array overflow vulnerability the
counterexample was n = 11 when each array item equals 11
too. When detecting type overflow vulnerability SPIN
produced the value 70035 that was then assigned to each array
item. After applying these input data to Program 2 incorrect
result has been obtained when running the C program while no
error occurred. According to the incorrect result that can easily
be checked, one can conclude that SPIN has detected type and
array overflow in Program 2. For Program 3 (Table 1) SPIN
has produced the same counterexample n = 11 for an array
overflow while in the counterexample for a type overflow
vulnerability, each array item was assigned to 80040.

In order to compare SPIN based vulnerability detection
technique with other tools providing dynamic vulnerability
detection we have run the Memcheck utility of Valgrind
software [15] against Programs 1, 2, 3. Memcheck is designed
to detect memory leakages in C/C++ programs and incorrect
use of uninitialized values. Valgrind allows a programmer to
assign desirable values to input variables and by use of a
virtual machine the Memcheck utility checks whether memory
leakage occurs during the program execution. We have run
Memcheck against Programs 1, 2, 3 with counterexamples
produced by SPIN and neither type overflow nor array
overflow vulnerability has been mentioned.

Based on the obtained experimental results, we can
conclude that SPIN based detection techniques could be useful
when analyzing the C code safety.

V. CONCLUSIONS

In this paper, we have presented a short survey of existing
tools providing vulnerability detection in C/C++ programs.
Several tools have been executed against student
implementations of array algorithms. The experimental results
clearly show that for some kinds of C code vulnerabilities
static analysis can be insufficient and we have presented a
brief overview of a SPIN-based approach for vulnerability

detection. The obtained preliminary results clearly show that
SPIN based detection techniques could be useful when
analyzing the C code safety. In this paper, we did not discuss
vulnerability detection techniques based on other model
checkers; such a comparison is a part of our future work.

REFERENCES
[1] G. Holzmann. Spin Model Checker. Primer and Reference Manual.

Addison Wesley, 2003.
[2] Willy Jimenez, Amel Mammar, and Ana R. Cavalli. Software

Vulnerabilities, Prevention and Detection Methods. A Review, SEC-
MDA workshop.– Enschede, The Netherlands, June, 24, 2009.

[3] Technical report of the joint FCP Russian-French grant №
02.514.12.4002, Step 4.

[4] Cigital [Electronic resource] – http://www.cigital.com/its4/
[5] Flawfinder home page [Electronic resource] –

http://www.dwheeler.com/flawfinder
[6] Just Another Hacker [Electronic resource] –

http://www.justanotherhacker.com/projects/graudit/download.html
[7] Sound Forge [Electronic resource] –

http://sourceforge.net/apps/mediawiki/cppcheck/
[8] Digitek Labs [Electronic resource] – http://www.digiteklabs.ru/aegis/
[9] Digitek Labs [Electronic resource] – http://aegis-

demo.digiteklabs.ru/s2a.webserver/
[10] Department of computer science. University of Maryland [Electronic

resource] – http://www.cs.umd.edu/~jfoster/cqual/
[11] Soft Line [Electronic resource] – http://soft.softline.ru/NPO-

Echelon/eshelon-ak-vs/
[12] Klocwork [Electronic resource] –

http://www.klocwork.com/products/insight/klocwork-truepath/
[13] Coverity [Electronic resource] –

http://www.coverity.com/products/static-analysis.html
[14] Electrical engineering and computer sciences [Electronic resource] –

http://www.cs.berkeley.edu/~daw/mops/
[15] Electrical engineering and computer sciences [Electronic resource] –

http://www.cs.berkeley.edu/~daw/boon/
[16] Valgrind [Electronic resource] – http://valgrind.org/info/tools.html
[17] SPIN [Electronic resource] – http://spinroot.com/
[18] Modex [Electronic resource] – http://cm.bell-

labs.com/cm/cs/what/modex/index.html

64

Model checking approach to the correctness proof
of complex systems

Marina Alekseeva
P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia

Email: marya 87@mail.ru

Ekaterina Dashkova
P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia

Email: dea.yar@mail.ru

Abstract—Very often the question of efficiency in terms of
execution time memory usage, or power consumption of the
dedicated hardware/software systems is of utmost interest that
is why different variants of algorithms are developed. In many
situations the original algorithm is modified to improve its effi-
ciency in terms like power consumption or memory consumption
which were not in the focus of the original algorithm. For all this
modifications it is crucial that functionality and correctness of
the original algorithm is preserved [1].

A lot of systems increasingly applying embedded software
solutions to gain flexibility and cost-efficiency. One of the various
approaches toward the correctness of systems is a formal veri-
fication technique which allows to verify the desirable behavior
properties of a given system. This technique nowadays is well
known as model checking. Model is expected to satisfy desirable
properties.

Verification is the analysis of properties of all admissible
program results through formal evidence for the presence of
required properties. The basic idea of verifying the program is
to formally prove the correspondence between the programming
language and the specification of the problem.

Program and specification describe the same problem using
different languages. Specification languages are purely declar-
ative, human-centered. Imperative programming languages are
more focused on executing on the computing device. Therefore
less natural for men.

Likewise, this technique is an excellent debugging instrument.
From the standpoint of programming technology verification
enables to obtain a better strategy for debugging programs.

Index Terms—verification, automata-based programming,
complex systems.

I. INTRODUCTION

Correctness of Information and Communication Technology
(ICT) systems [2] is the background for their safety. Errors
could be catastrophic. The fatal defects in the control software
are very dangerous and the number of defects grows exponen-
tially with the number of interacting system components. Day
after day ICT systems are becoming more complex.

ICT systems are universal and their reliability is the main
point in the system design process. The key instrument for
design process is verification techniques (fig.1). The features
which are verified could be taken from specification. They are
usually the main properties of the systems. They should be
correct which means react adequate for any command. The
accurate modelling of systems often leads to the discovery of
incompleteness, ambiguities, and inconsistencies in informal
system specifications.

Such problems are usually discovered at later stage of the
design. The system models are accompanied by algorithms
that systematically explore all states of the system model. This
provides the basis for a whole range of verification techniques
as model checking.

Fig. 1. The process of verification

II. MAIN PART

A. Model-checking

Model checking [3] is one of various verification techniques.
It explores all possible system states in a rude manner.

The system model is usually automatically generated from a
model description that is specified in some appropriate dialect
of programming or hardware description languages.

The property specification prescribes how the system be-
haves. All relevant system states are checked whether they
satisfy the desirable property or not (fig.2).

Models of systems describe the behavior of systems in an
accurate and unambiguous way. They are mostly expressed
using finite-state automaton, consisting of a finite set of states
and a set of transitions. In order to improve the quality of the

65

model, a simulation prior to the model checking can take place.
Simulation can be used effectively to get rid of the simpler
category of modelling errors. Eliminating these simple errors
before any form of thorough checking takes place may reduce
the costly and time-consuming verification effort.

Model checking has been successfully applied to several
ICT systems.

Fig. 2. The process of model-checking

B. Automata-based programming.

Automata-based programming can be used in several types
of programming systems [4]:
• transforming systems (compilers, archivators). Finite au-

tomaton in programming traditionally used in design of com-
pilers. In this situation automaton is understood as some
calculating feature which has an input line and output line.
• reactive systems (telecommunication systems and systems

of control and managing of physical devices). In this case
the automata-based programming solves the problem of logic
programming. Automaton is a device that has several parallel
input lines (often binary), on which in real time the signals
from the environment are coming. Processing such kind of sig-
nals, automaton is forming values for several parallel outputs.

So, the usefulness of the automata-based approach can be
characterized with the combination of the words ”complex
behavior”. For such kind of systems it is very important that
automata-based approach separates the description of logic
of behavior and semantics. This feature makes automaton
description of complex behavior clear and understandable.

Transition systems are often used in computer science
(semantical models for a broad range of high-level formalisms
for concurrent systems, such as process algebras, Petri Nets,
statecharts).They are a fundamental model for modelling soft-
ware and hardware systems.

Transition system is defined as TS. TS is a tuple (S, Act,→,
I, AP, L) where
• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act× S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labeling function.
TS is called finite if S, Act, and AP are finite.
Consider the following example (fig.3). The transition sys-

tem in fig.3 is a schematic design of an automaton. The au-
tomaton can either deliver tea or coffee. States are represented
by ovals and transitions by labeled edges. Initial states are
arrow without source.

The state space is
S = {pay, select, tea, coffee}.
The set of initial states consists of only one state, i.e., I =
{pay}.

The action insert coin denotes the insertion of a coin,
while the automaton actions get tea and get coffee denote the
delivery of tea and coffee. Transitions of which the action
label is not of further interest here are all denoted by the
distinguished action symbol τ . We have:
Act = {insert coin, get tea, get coffee, τ}.
Automaton is represented by two locations pay (start) and

select. Notes that after the insertion of a coin, the automaton
nondeterministically choose to provide either coffee or tea.

Fig. 3. A simple transition system

III. RESULTS

Authors had an experience of applying the model checking
method. Their diploma paper was devoted to the verification
of the WTP (Wireless Transaction Protocol). The simple
transactions were built with the help of CPN Tools and NS2
Simulator. Two types of instruments were explored.

A. System modeling. NS2.

Simulation is widely-used in system modeling for appli-
cations ranging from engineering research, business analysis,
manufacturing planning, and biological science experimenta-
tion. Network Simulator (Version 2), widely known as NS2,
is an event driven simulation tool which is very useful in

66

studying the dynamic nature of communication networks.
NS2 provides users with a way of specifying such network
protocols and simulating their behaviors. NS2 suggest two
steps of work. The first step is constructing a model with the
help of programming on C++, and finally the use of the Object-
oriented Tool Command Language (OTcl) for analysis of the
model and simulating the network conditions. It allows us to
include our C++ programming code to the NS2 environment.
We decided that NS2 is the most convenient tool for modeling
the network behavior.

B. Proposed model.

The Wireless Transaction Protocol is responsible for re-
liable message delivery. Maximum Transfer Unit (MTU) is
a maximum size of a packet in networks. If we have a
message that is bigger than MTU then WTP fragmentizes this
message. Flow control in cases of fragmented messages, is
performed by sending fragments in groups. Every group of
packets requires only one acknowledgement of the group. The
last packet of each group contains a special flag. This flag
indicates the end of the group and receiver knows when to
send an acknowledgment. Size of each group depends on the
link characteristics and the device memory. It is necessary
to avoid extra packet retransmission and data loss. Receiver
sends a negative acknowledgement (NAK) if the end-of-group
packet is received whilst intermediate packets are missing.
This operation is repeated until the entire group is received and
a positive acknowledgment is sent. If timeout occurs, only the
last packet of the group is retransmitted, and sender knows
what packets have been lost. Wireless Transaction Protocol
tries to minimize the number of unnecessary retransmissions.

In our model we have three parameters:
• ts is the time interval between consecutive packets of the

group which are sent from the sender SENDER to the receiver
RECEIVER.
• tr is the interval between consecutive packets of the group

which are received by the RECEIVER.
• Pam as the number of packets in the group.
In our model there are two types of acknowledgments (ACK

is a positive and NAK - negative acknowledgment).
When receiver sends an acknowledgment it transfers tr with

the help of it. Sender calculates special ratio. Depending on
the result of this ratio sender has several situations for analysis
and further actions.
• Perfect network conditions.
• Parameters can be modified by increasing Pam, decreasing

ts and timeout.
• There is no enough data for our algorithm to make a

decision how to modify parameters (conditions of a network
correspond to the established parameters).
• The network is congested, parameters can be modified by

decreasing Pam, increasing ts and timeout.

IV. CONCLUSION

Theory of programming even in the 1968 openly accepted
the crisis of software development. The main symptom of

this crisis is disability of the developers to provide the main
feature of the software: its correctness. Theoreticians and
practitioners of software underline that the crisis of methods of
the development of software shows mainly during the design
of the systems with complex behavior and automata-based
approach can deal with this problem. That is why it is the
answer for the most up-to date problems of the software
development industry. The predictions show [4] that the area of
applying automata-based programming will be expanded and
this technology will be developed. A new models, notations
and instruments will appear in the foreseeable future.

ACKNOWLEDGMENT

The following scientific advisers supported us by using
(sometimes very) preliminary versions of this article: Valery
A. Sokolov (Yaroslavl, Russia), Dmitry U. Chaly (Yaroslavl,
Russia), Egor V. Kuzmin (Yaroslavl, Russia).

The authors would also like to thank the dean of Yaroslavl
Demidov State University Computer Science Department P.G.
Parfenov for interest and support of this project and the
head of scientific-educational center ”Center of Innovation
Programming” Professor V.A. Sokolov for helpful advices.
This work would be developed and extended in the future.

REFERENCES

[1] Anikeev M., Madlener F., Schlosser A., Huss S.A., Walter C., ”Automated
Correctness Proof of Algorithm Variants in Elliptic Curve Cryptography”
Modeling and Analysis of Information Systems, pp. 7–16, 2010.

[2] Baier Christel, Katoen Joost-Pieter. ”Principles of Model Checking,” The
MIT Press, Cambridge, Massachusetts, London, England, 2008.

[3] Egor V. Kuzmin, ”Introduction to the theory of mathematical processes
and structures,” Yaroslavl Demidov State University, Yaroslavl, Russia,
2001.

[4] N.I. Polikarpova, A.A. Shalyto, ”Automata-based programming” Saint-
Petersburg State University of Informatic Technologies, Mechanics and
Optic, Saint-Petersburg, Russia, 2009.

67

Thorn language: a flexible tool for code generation
Yuri Okulovsky

Ural State University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—This paper presents a new approach to domain-
specific languages creation. Instead of defining both language
syntax and semantics for each case, the same general-purposed
markup language Thorn is used. The original model of trans-
lation associates commands inside a Thorn document with pro-
grams written in some script language. When the compiler needs
to execute a command, it launches a corresponding program,
passes data from the document to the program, and uses an
output value of the program as the result of the command. We
describe an approach to code generation based on Thorn, and
compare the approach to other known code generation methods.
We give various examples of Thorn-based code generators.

Index Terms—code generation, domain-specific languages, au-
tomated programming, language-oriented approach

I. I NTRODUCTION

Every programmer likes writing elegant code, implementing
sophisticated algorithms and developing original architecture.
Real software, however, often consists of stereotyped and
uncreative code: business logic control, layout of widgets,
interaction with database, automata dispatch tables, etc.The
more features a software product has, the larger amount of
stereotyped code it contains. This leads to the staff expansion
and project management issues. In addition, a comprehensive
testing of stereotyped code is required. The natural desire
emerges to eliminate these inconviniences.

In fact, all the history of programming languages is a history
of attempts to decrease the percentage of stereotyped code
and to improve its structure. Simple arithmetical operations
in Assembler require several lines of code. More modern
languages like C allow writing the same operations in one
line. Memory management in C demands special attention,
leading to lots of stereotyped code and numerous memory
leaks. These issues was resolved with garbage collection in
Java and C#. The most recent developements in programming
languages simplify significantly collection management and
interaction with databases (LINQ [13]), widgets layout (WPF
[13]), or contracts control (Eifell [10]). However, software
products often have unique patterns in addition to well-known
ones. These patterns are typically not supported by languages.

The promising approach to described problems is code
generation: writing programs that write programs [8], [5].The
simpliest case is a tool that allows description of the desired
code in text or graphic format, and then produces the code. For
example, Microsoft Visual Studio contains a special wizard
for visual creation of widgets and forms [2]. Another example
is production of parsers from grammars [9]. There are many

code generators, which produce specific software from UML
diagrams or other description of data [7]. Code generator tools
cover areas that are less common than database handling or
widgets layout. They are not, however, a general solution of
the stereotyped code problem. There is no general approach
behind these tools, and so they cannot be reused to produce
code for other patterns.

Domain-specific languages (DSL, [14]) are an attempt to
apply code generation to even narrower areas. In the DSL
approach, a new small language is created for every specific
code pattern. The language is applicable only in its domain:it
is not general purpose language, and may even not be Turing-
complete. DSL are widely used in program engineering.

The obvious way to create DSL is to define its grammar,
then write or generate a parser and implement a transla-
tion scheme on certain program language. Language analysis
requires substantial additional competence of a programmer
and therefore sets an “entry threshold“ that limits the code
generation availability. In many cases, it is simplier just
to write a templated code manually than to design a new
language. There also exist several tools for DSL creation,
the most prominent being Visual Studio DSL Tools [4] or
JetBrains Meta-Programming system [6]. These tools have
immense capabilities and allow creation of very complex
models and languages. However, studying these tools is even
more complex than writing DSL compiler manually.

Our concern is to decrease a complexity of DSL creation
and therefore improve a code generation availability. We want
to make code generation so simple that its usage would be
reasonable even in simpliest cases. We explore a different
approach to domain-specific languages. By our observations,
domain-specificlanguageis not required in many cases. We
may use the same general-purpose markup language (like
XML) in different domains to describe a desired program code.
However, domain-specificsemanticsis still needed, because
the way the description is to be processed changes with each
domain. We propose a new way to create code generators: a
language with separted semantics. The language only defines
how we should markup the data with commands, and does not
specify what the commands mean. The logic of commands is
written in arbitrary programming language for each domain.

Our approach to code generators resembles the Common
Gate Interface (CGI) approach to web applications. CGI does
not require invention of a special language for each web
site, like the DSL approach. It does not make us write

68

individual programs that analyze HTTP packages. Instead,
CGI parses packages itself and adopts environment variables
and standard input to carry information from the package.
Then CGI launches an arbitrary program, which processes the
request, accepts an output of the program and sends it back to
the user over the network. In spite of thorough research, we
have not found this model to be implemented in any known
programming language or tool.

Our approach to code generation was implemented in Thorn
— a new programming language with separated semantics,
designed especially for code generation. It is an Open source
product under GPL v3 licence. Thorn is a fully operable soft-
ware product, tested for more than four years, with successeful
practice in code generation.

In the first section, we describe Thorn language: the syntax
of Thorn document, the way to create a new command and
details of the way commands are executed. In section 2 we
describe a relatively simple code generator for HTML and
WordprocessingML [1] documents. In section 3 we describe
the Thorn programming technique for creation of complex
generators – functional generators. We also describe two
examples of functional generators. The first generator converts
bibliographic data from Thorn to BibTeX, HTML, Wordpro-
cessingML and some other formats. The second generator,
described in section 4, is rather a programming framework
that consists of Thorn libraries and C# auxiliary assemblies.

II. T HORN ESSENTIALS

Thorn document is a tree of nested commands. The example
of Thorn syntax is shown in Listing 1. We may compare
the Thorn document with the corresponding HTML document
which is shown in Listing 2.

Listing 1 Thorn code for a table.
\table[border=1 align=center] {
\tr {

\td {a11} \td {a12}
}
\tr {

\td {a21} \td {a22}
}

}

Listing 2 HTML code for a table.
<table border=1 align=center>
<tr>

<td> a11 </td> <td> a12 </td>
</tr><tr>

<td> a21 </td> <td> a22 </td>
</tr>

</table>

Thorn document is more compact than HTML. Its size
may be further decreased. Firstly, if the order of parame-

ters of a command is fixed, their names may be omitted:
\table[1 center]. Secondly, we may define the nesting
of commands. We know\tr command is always inside
\table, and\td is inside\tr. Therefore, curly brackets
may also be omitted. The resulting code is shown in Listing 3.

Listing 3 Compact Thorn code for a table.
\table[1 center]
\tr \td a11 \td a12
\tr \td a21 \td a22

Parsing of input stream is provided by pushdown automaton.
It should be mentioned that due to curly brackets ommiting,
Thorn grammar is ambiguous. Depending on commands’
definitions, the string\cmd1 \cmd2 may be interpreted as
\cmd1{\cmd2{}} or \cmd1{}\cmd2{}, which implies
different parse trees.

The order of parameters’ names, the rules of nesting and the
logic of commands are defined in command files. The set of
such files (library) must be loaded by Thorn before document
compilation starts. The example of\table command file is
shown in Listing 4.

Listing 4 Declaration of\table command.
#Keys=border,align;Blocks=entry;
#Parents=body;Type=Perl;Free=yes;

$STRING="<table border=$PARAM{border}
align=$PARAM{align}>

$TEXT{entry}
</table>";

The command description starts with service section, which
is marked with# symbol (lines 1-2 in Listing 4). The service
section specifies the default order of two parameters,border
and align. Their names may be omitted, as in Listing 3.
The command description also specifies the name of text
entry to use inside the program. Other parameters specify
the command, which can contain\table, the language the
command logic is programmed in, the fact that we may omit
curly brackets fortable command.

After the service section is completed, the program in Perl
is written. This program fills$STRING variable, which is an
output of the program. It uses special hashes%PARAM and
%TEXT, which store text variables from the input document.
Aside from special variables, the program is arbitrary: it can
manipulate files, use modules, etc. The program is executed
not by Thorn, but by the Perl compiler. When Thorn acquires
all the information about the command\table (in Listings
1 and 3, these are values ’1’ and ’center’ and the result
of execution of twotr commands), it launches the Perl
compiler with ’processor’ program, and stores information
about command and its parameters to STDIN. The processor
reads the information from STDIN, executes the command
code byeval function, and prints the result to STDOUT.

69

Thorn compiler reads STDOUT, removes the command from
the document and places the result in corresponding place.

Commands may return an error message, which will be
passed to the user. Commands may interact by global vari-
ables, stored in%GLOBAL hash. Processor obtains%GLOBAL
hash from Thorn compiler and sends it back each time. Macros
are also available: the result of a macro command will be
processed by Thorn again.

Currently, there are three ways to execute the Thorn com-
mand:

• Use Perl commands;
• Make the new type of command and write a plugin that

executes this type. This includes addition of new script
languages in Thorn;

• Reference Thorn.dll in a .NET project, associate a com-
mand name with a class that implements corresponded
interface, and launch Thorn compiler from the project.

Commands can be documented in Thorn language. A com-
ment section is placed before a command section with##
marker. It contains a commentary in Thorn language with spe-
cial commands like\desc (general description),\key[i]
or block[i] (i-th parameter or text block description), etc.

Let us give an example of basic code generation of C# code.
Consider a command\event in Listing 5. This command

Listing 5 Command for generation of events.
#Type=Perl; Keys=Type,Name; Blocks=Comment;
$type=$PARAM{Type}EventHandler;
$name=$PARAM{Name}EventSize;
$args=$PARAM{Type}EventArgs;

$STRING.="
///<summary>
///$TEXT{Comment}
///</summary>
public event $type $name;

///<summary>Raises $name</summary>
protected virtual void On$name($args e) {

if ($name!=null) $name(this,e);
}";

will transform the following Thorn code:

\event[Mouse MouseMove]{Comment}

into a declaration of event and corresponding invocation
method.

Several simple libraries for generation of C# code have
been developed. Commands in these libraries can generate
properties (with custom access modifiers and optional in-
vocation of event), events, enumerations,switch operators
(in case they are large and nested) and other templates for
fast C# programming. We can use commands from different
libraries in the same document. It corresponds to merging code
generator applications, but does not require any special efforts.

Comparison to XML and XSL approach. In certain
degree, Thorn follows XML/XSLT approach to HTML/CSS
generation. In this approach, data is written in an XML docu-
ment. The document is then converted into HTML with XSLT.
It is even possible to use XSL to convert XML document into
Java source code [3].

We argue that Thorn is more comfortable for code gen-
eration than XML/XSLT technology. The key difference is
a possibility to use an arbitrary language for commands’
logic. That simplifies generators greatly. Note how natural
and readable listing 5 looks, especially in comparison with
XSLT schemata in [3]. We may develop different commands
in different languages, therefore choosing the most fitting
language. In addition, we may create new command types and
therefore patterns for commands’ logic, as it will be shown
below.

It is possible to develop an XML compiler that acts exactly
as Thorn compiler: parses tags and processes them with Perl.
The reason why we have developed a new language is that we
wanted to minimize manual typing and therefore make Thorn
more comfortable for code generation. Still, Thorn approach
to compilation can be applied to other languages.

Comparison to DSL approach. Thorn language itself is not
domain-specific, since its semantics is not defined. However,
Thorn with selected set of libraries can be considered as a
domain-specific language. Therefore, Thorn can be viewed
as a tool for DSL creation. We believe that Thorn is much
simplier than other such tools. There is no need to describe
tokens, write down language grammar, etc. To create language
semantics we only need to write simple Perl programs, and
demands for these programs to be Thorn commands are
not burdensome. Summarizing, Thorn has a very low “entry
threshold“ and can be used for fast creation of small DSL for
a project, hence making code generation more available.

Thorn can be also used as a back-end for a compiler.
Commands of Thorn form a tree, therefore a parse tree of
a front-end compiler can be stored as a Thorn document and
then interpreted with appropriate library.

III. C ODE GENERATION FOR MARKUP LANGUAGES

In this section, we consider generation of documents written
in markup languages [11]. We have developed a library for
producing an HTML code from Thorn description. It supports
all HTML tags. It defines nesting of tags so curly brackets are
rarely used. It specifies orders of most popular parameters of
tags. In addition, if a parameter name starts with! symbol
(!SomeStyle), it will be placed in style attribute as
SomeStyle=Something. All these improvements make
Thorn files very small and readable in comparison with
generated HTML.

All commands for HTML tags perform the same logic. The
name of a command is translated into a tag, all attributes are
listed after this tag with their names, the only text block is
placed inside a tag, etc. Hence, we actually do not need to
program the command logic in Perl, as in Listing 4. Instead,
we develop new command types. In command declaration,

70

we write Type=HTMLPairedTag instead ofType=Perl.
Commands of this type are executed by the Thorn compiler
itself, without launching the Perl compiler. It improves per-
formance greatly, since the major time of Thorn work lies in
passing parameters between the compilers.

The second library is a library for producing Wordprocess-
ingML [1]. WordprocessingML is an XML dialect for text
processors. This standard is supported by Microsoft Word,
Open Office Word Processor and other text processors. Output
in WordprocessingML format allows using all features of
text processors. However, WordprocessingML files are not
easy to type. The first reason is XML being redundant. The
second reason is that WordprocessingML reflects the logic of
a word processor, but not of a human. For example, items
of multi-level lists are not really nested within each other,
as in HTML or TeX. Instead, each item is a paragraph, and
its level is determined by a style. Bold and italic words are
not embedded in a plain text. Instead, the plain text ends,
then a text with bold style starts and ends, and then plain text
continues. There are many other similar inconveniences. We
have developed the Thorn library, which allows to write Thorn
documents in a habitual way (very much like TEX) and then
to transform them into WordprocessingML. Not all features of
WordprocessingML are currently supported.

A special extension for both these libraries (and potentially
for any library that produces text documents) is created. This
extension allows to create not only a document, but also a
program that produces this document. Consider the code in
Listing 6.

Listing 6 A document with a variable inside.
\document \html \body

\p Variable equals
\variable[name=Var type=Int default=5]

Commands\document and\variable are defined in
two libraries: lib.programmer and lib.makerup. In lib.makerup,
\document does nothing, it only returns its entry. The
command\variable returns default value (’5’ in Listing 6).
Therefore, the maker-up sees an example of a document,
which will be created by a program. In lib.programmer, these
commands are defined differently. Command\variable
is transformed into a marker, which separates the text into
variable and invariable parts. Command\document assem-
bles parts and produces methods, which take all variables as
arguments, and store a resulting document in a stream. There
are two versions of lib.programmer: PHP version for web sites
and C# version for offline software.

IV. FUNCTIONAL GENERATORS

When a code generator becomes more complicated, pa-
rameters of each command become numerous and hard to
remember. We need to divide one command into several. This
can be done by using relations. The relation is a set of records.

In each record, some fields are specified. Instead of producing
output, Thorn commands fill a relation in global variables. In
many cases, a generator that translates a relation description
into source code can be represented as a following function
(which we call functional generator):

p(A) = h(g1[f1(A1), . . . , f1(Am)],
g2[f2(A1), . . . , f2(Am)],
. . .

gn[fn(A1), . . . , fn(Am)]).

Hereh produces the source code. In an object-oriented pro-
gram, h typically produces one class. Functionsg1, . . . , gn
produce parts of code, for example, methods inside the class.
Functionsf1, . . . , fn produce parts of methods, correspond-
ing to one record in the relation.A1, . . . , Am are records
of the relation. Usually,gi are concatenation functions, i.e.
gi(x1, . . . , xn) = x1·. . .·xn, where· denotes the concatenation
operation. Also,h can usually be represented as

h(x1, x2, . . . , xn) = a0 · x1 · a1 · x2 · a3 · . . . · an · xn · an+1,

whereai are string constants.
A simple way of representing relations in global variables

is chosen. A value of fieldField in a record with num-
ber N in a relationRelation is stored in global variable
Relation#N#Field. This representation is supported by a
new type of Thorn commands, as with HTML commands. We
have also developed a Perl module that provides user-friendly
way to access relation in global variables. A set of methods
to implement functional generators in Thorn and Perl is called
Fungi (functional generator interface).

Based on Fungi, we have developed BibThorn, an analogy
to BibTeX. BibTeX is a flexible and widespread technology
for storing bibliographic data. However, TeX can generate only
a small set of formats. TeX cannot produce HTML files to
place bibliography on a web site, or a plain text to include in
a scientific report. Using Fungi, we may describe bibliography
as a relation. A simplified example is placed in Listing 7.

Listing 7 A bibliography information on Thorn.
\bibliography

\item[book]
\author John Smith
\title My book

...
\print

Command\item adds a new record in a relation. Com-
mands\author and\title fill corresponding fields. The
logic of \author command could be encoded on Perl as in
Listing 8.

Module db.pm is a Fungi implementation for Perl. Is
allows easy access to relations in global variables. Since such
commands are required for authors, title, publisher and other
fields, their logic is stereotyped. Command\author may
therefore be described as in Listing 9.

71

Listing 8 Perl implementation of\author
#Blocks=Author;Free=yes;
#Parents=item;Type=Perl;
require ’db.pm’;
$db=db->new(\%GLOBAL);
$db->SetFieldInCurrentRow

("Authors",$TEXT{Author});

Listing 9 Fungi implementation of\author
#Blocks=Author;Free=yes;
#Parents=item;Type=FungiSetter;

Command\print actually prints the bibliography. The
prototype of the\print command is shown in Listing 10.

Listing 10 Using Fungi in Perl command to create a bibliog-
raphy.
#Type=Perl;
require ’db.pm’;
sub MakeItem {

%h=@_;
$STRING.="$h{Author}. $h{Name}\n";
}

$db=db->new(\%GLOBAL);
$db->RunOver(\&MakeItem);

RunOver method looks through records, copies each
record into a hash, launchesMakeItem method and passes
the hash to the method.

V. THORNADO FRAMEWORK

Thornado is a framework that allows fast creation of busi-
ness software [12]. The main aim of Thornado is assistance
in input and output of data. It contains a code generator for
data description, and a .NET library with useful templates.
Listing 11 demonstrates a description of one field.

Listing 11 Description of one field in the extended system for
data description.
\field[string Email]
\desc E-mail address
\io TypeIO.String
\gui Text
\check
\err.W v==""

-- Address must be entered
\err.W v.Length<5

-- Address is too short
if (!v.Contains(’@’))

list.Add("Address is not valid");

Command\field specifies the type of the field and its
name. Command\desc specifies the commentary for this
field in the generated code. It also specifies the caption for
this field in graphic user interfaces.

Command\io specifies an object that transforms a field
into a string and parses it from string. In C#, primitive types
(int, double, etc.) can be written and parsed from a string
by .NET means. Unfortunately, many types do not support
parsing and writing in human-readable forms. The way to
specify how exactly the object should be converted is often
entangled and inconvinient. There is also no way to read
and write null value. Therefore, we introduceTypeIO
classes for input and output objects. For example, methods
TypeIO.Int.Write and TypeIO.Int.Parse convert
int value into a string and vice versa.TypeIO.Int is
a predefined object ofIntIO class. Many formats for the
same type may exist: for example,double can be pro-
cessed withTypeIO.Double, TypeIO.Double.Money
or TypeIO.Double.Percent. ManyTypeIO classes are
developed, including those for classes that are not usually
converted to string (like colors, pens and brushes). In addition,
eachTypeIO objectX has propertiesX.Nullable that may
process null andX.InArray that may process arrays.

Command\gui specifies a type of graphic user interface.
Several types are available.TextBox option allows input
of an arbitrary string with following conversion into a value
with specifiedTypeIO object.ListBox means selecting one
value from a list. In this case,\values command allows to
specify items of the list, which is arbitraryIEnumarable
object. Note that it is impossible to specify an object as an
attribute in C#.

Finally, \check command describes the business logic of
this field. The logic can be described by Thorn commands
(\err, for example). It is also possible to place pure C# code
into \check command with predefined variablesv (a new
value of the field) andlist (a list that stores errors). This
code will be placed in corresponding location of a generated
source code. Business logic for one field is to be inserted into
corresponding property. Business logic for the whole classis to
be placed into a methodCheckConsistancy. The method
is called before input-output procedure begins and after ithas
been completed.

Thornado can generate a class with required fields and
business logic. Each field of generated class is associated with
FieldInfo object.FieldInfo contains all the information
we specify in Thorn file: caption for a field, a type of
graphic user interface, etc. Thorn can generateIOProvider,
which stores a collection ofFieldInfo objects and can
manipulate fields of generated class. Other classes perform
various operations by usingIOProvider: input and output
into INI- and XML-files, interconnection with ADO.NET,
generating of graphic user interface widgets, etc. Therefore,
we can generate a substantial part of an application from Thorn
description.
IOProvider performs some sort of reflection. It is

more convenient than traditional C# reflection. Names of

72

FieldInfo objects are C# variables and are checked in
compile time, unlike string values that are used in reflection.
FieldInfo objects carry all additional information in their
fields, and there is no need to read attributes to access them.
Finally, it is impossible to write in attributes neither the
arbitrary business logic nor the references to other classes and
objects.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented Thorn language, studied its
differences from other approaches to DSL creation and de-
scribed its basic programming techniques. Thorn is a fully
operable software product, available under GPL v3 licence.
Its area of usage is creation of small code generators for
simple code patterns. Due to its simplicity, Thorn seems to be
more preferable than other tools for DSL creation, or manual
writting DSL compilers.

We consider following ways to improve our product:

• *nix version of Thorn
• Plug-ins for Microsoft Visual Studio, Eclipse and other

popular integrated development environments
• More languages will be supported ”from the box” for

command development
• BibThorn will be extended and integrated with LATEX

editors
• Thornado framework will be further developed

REFERENCES

[1] Standard ecma-376. http://www.ecma-international.org/publications/
standards/Ecma-376.htm.

[2] Windows forms designer. http://msdn.microsoft.com/en-
us/library/e06hs424(VS.80).aspx.

[3] E. M. Burke. Java and XSLT. O’Reilly, 2001.
[4] S. Cook, G. Jones, S. Kent, and A. C. Wills.Domain-Specific Devel-

opment with Visual Studio DSL Tools. Addison-Wesley Professional,
2007.

[5] K. Czarnecki and U. Eisenecker.Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, June 2000.

[6] S. Dmitriev. Language oriented programming: The next
programming paradigm. http://www.jetbrains.com/mps/docs/
LanguageOriented Programming.pdf, 2004.

[7] K. Fertalj and M. Brcic. A source code generator based on uml
specification.International journal on computers and communications,
2(1), 2008.

[8] J. Harrington.Code Generation in Action. Manning, 2003.
[9] J. Levine.Flex and Bison. Text processing tools. O’Reilly Media, 2009.

[10] B. Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall, 1997.

[11] Y. Okulovsky and D. Deyev. System of generation of documents in
html, mht and wordprocessingml formats (russian).Bulletin of Saint
Petersburg State University of Information Technologies,Mechanics and
Optics: Mechatronics, Technologies and Computer-aided design, (70),
2010.

[12] Y. Okulovsky, D. Deyev, V. Popov, and V. Chasovskikh. Code-generation
system thornado and its application to creation of business-software
(russian). Bulletin of Saint Petersburg State University of Information
Technologies, Mechanics and Optics, (87), 2008.

[13] A. Troelsen.Pro C# 2010 and the .NET 4 Platform. APress, 2010.
[14] A. van Deursen, P. Klint, and J. Visser. Domain-specificlanguages: An

annotated bibliography.SIGPLAN Notices, 35(6):26–36, 2000.

73

// An aspect consisting of a named pointcut

// and an advice.

aspect Logging {

 // A named pointcut that matches a join

 // points set of method calls.

 pointcut move():

 call(void FigureElement.setXY(int,int)) ||

 call(void Point.setX(int)) ||

 call(void Point.setY(int));

 // An advice performing some actions before

 // execution of a matched by the given named

 // pointcut program point.

 before(): move() {

 System.out.println("about to move");

 }
}

One Approach to Aspect-Oriented Programming

Implementation for the C programming language

Eugene Novikov

Institute for System Programming

Russian Academy of Sciences

Moscow, Russian Federation

Email: joker@ispras.ru

Abstract—The given paper introduces an approach for aspect-

oriented programming implementation developing intended for

the C programming language. Key features of C and a common

C program build process are considered and it’s shown how they

influence on a supposed C AOP implementation. The last is

described in details and after all its practical application is

demonstrated. It’s shown that the supposed C AOP

implementation works well enough although it possesses some

shortcomings. Some improvements required to overcome the

given shortcomings are discussed.

Keywords-aspect-oriented programming; join point; pointcut;

advice; aspect; weaving; the C programming language;

implementation

I. INTRODUCTION

Aspect-Oriented Programming (AOP) is a rather fresh
programming paradigm that is intended to increase program
modularity by means of cross-cutting concerns separation.
Generally speaking cross-cutting concerns mean functionality
or features that cannot be easily decomposed from so-called
core concerns. The last in depend on a programming paradigm
used is implemented as corresponding functions, classes and
modules while cross-cutting concerns scatter through them and
tangle a program source code. The typical example of cross-
cutting concerns is logging. Also some more complex fields
like errors handling, some sort of testing, security, and database
operations can be treated as cross-cutting concerns. AOP
provides programmers with opportunity to extract cross-cutting
concerns into separate modules called aspects. To understand
better let us consider other major AOP conceptions since
they’ll be widely used at the rest of the given paper.

The basic AOP conception is a join point. In general join
points are those elements of the programming language
semantics which the aspects coordinate with [1]. The given
paper takes a join point to be a program construction connected
with its context. The typical example of a join point is a
function/method call because of such a construction can be
found almost in any programming language. But generally
speaking join points depend on and even in some degree are
determined by a programming language used. A pointcut is a
set of join points satisfying a given condition. For instance, all
memory allocating function (like malloc, calloc and so on)
calls may be treated as a pointcut. Next AOP conception is an
advice. An advice consists of a pointcut and a body. The last

represents some actions to be executed in matching between a
join point corresponding to a given pointcut and a program
construction related with some context. Moreover an advice
contains information on whether these actions should be
executed before, instead of (around) or after a matched
program point execution. Usually an advice body is written in a
given programming language although some special AOP
constructions (e.g. a matched entity name) may be also
available. An aspect already mentioned above is a separate
module that consists of a number of advices implementing
some part of cross-cutting concerns. More exactly an aspect
also can contain some other constructions, e.g. named pointcuts
that is pointcuts associated with identifiers for following usage.
At last, the process of aspects with main program integration is
referred to as weaving. Weaving can be done at any stage of a
program processing (at compile time, at post compile time, up
to run time) that is exhibited by different approaches.

An AOP implementation depends on a programming
language used as was said. Generally an AOP implementation
represents a programming language superset required to write
aspects and some tool(s) to weave aspects with programs. Let
us consider the most advance and popular AOP implementation
AspectJ [2] intended for the Java programming language. Note
that even though the goal of this paper is the C programming
language, nevertheless AspectJ is well suited because of C and
Java programming languages have many similar constructions
and almost all AOP implementations are more or less based on
AspectJ ideas.

Figure 1. Example of an AspectJ aspect for a graphical system logging

74

In using an AspectJ extension for Java a logging
functionality for a graphical system can be extracted into an
aspect showed in Fig. 1 [3]. In whole this means that before
execution of each called method from the specified ones the
given log message will be printed to a screen. The AspectJ
weaver deals with Java program bytecode and after its work
such the object code is obtained. This weaver is implemented
as a part of a special compiler. The given example shows that
an AOP implementation really strongly depends on a
programming language and a program build process. Indeed
there are more than 20 different AOP implementations just for
the Java programming language. So the main goal, to separate
cross-cutting concerns from the core ones for a given
programming language, can be reached in the different ways.

The rest of the paper is structured as follows. Section II
considers features of the C programming language and a
typical build process of programs written in the given
language. On the basis of these features and demands of the
Linux driver verification project (it’s considered there)
requirements to an AOP implementation for the C
programming language are collected. Section III describes
related work and shows how different approaches meet the
requirements pointed out in Section II. A suggested approach
of an AOP implementation for the C programming language is
introduced in Section IV. Section V estimates an application of
the suggested approach. Section VI summarizes the work done
and considers future work directions.

II. REQUIREMENTS TO AN AOP IMPLEMENTATION FOR THE

C PROGRAMMING LANGUAGE

Let us consider a typical workflow in building of a common
C program and estimate how AOP conceptions may be related
with different C constructions. It’s worth while noticing that
during the given consideration we won’t restrict a C AOP
implementation to represent just AOP constructions similar to
the AspectJ ones as it’s done by the most of AOP
implementations. On the contrary we will try to describe an
AOP implementation specific for the C programming language.
Generally speaking it’s assumed that such the implementation
won’t have any fundamental limitations for C cross-cutting
concerns separation.

Fig. 2 illustrates 3 stages of a common C program build
process, preprocessing, compilation and linking. Note that
rectangles having dash line borders represent third-party
components used by a program considered.

A. Preprocessing

At the first stage a preprocessor in depend on passed
preprocessor options includes necessary header files (both
program’s h1.h, h2.h, h3.h, … and libraries’ lib1.h, lib2.h,
lib3.h, …) into a program source code files a1.c, a2.c, a3.c, …
and expand macros there. More exactly it’s the two main
actions performed by a preprocessor but the rest ones aren’t
touched in the given paper. Both header files including and
macro expansion may be related with AOP conceptions in the
following way. Each file included to a given program source
code file and even that source code file itself can be treated as a
corresponding join point. Therefore the including process can

be modified by adding needed instructions before, after or
instead of a given file. For instance, this helps to add some
auxiliary preprocessor directives, function prototypes and so
on. Macro expansion also can be altered in the similar way. So
instead of (or before, or after) a substituted code we may put
our own code that may deal with macro arguments as well as
perform some required actions. Preprocessing is the essential C
feature because of there is just few programming languages
through all that supports it.

Figure 2. Common C program build process

B. Compilation

Then at the second stage a compiler parses a preprocessed
program source code files a1.i, a2.i, a3.i, … and produces
corresponding object files a1.o, a2.o, a3.o, … Compilation
may be affected by some build options. Traditionally AOP
conceptions are developed for constructions of the given stage.
For instance, AOP conceptions are related with
function/method definitions and calls, type/class declarations
and variable and field manipulations. Here is indeed the large
area for AOP to be involved. As for the given work it’s
suggested that there should be implemented at least support for
such join points as a function definition and call, a type
declaration, a local and global variable, field and function

h1.h h2.h h3.h …

a1.c a2.c a3.c …

lib1.h lib2.h lib3.h …

preprocessing

A program source code and header files of libraries:

a1.i a2.i a3.i …

A preprocessed program source code:

Object files of a program and libraries:

compilation

a1.o a2.o a3.o …

lib1.o lib2.o lib3.o …

linking

An executable file (or a library):

a.out

75

parameter set and get. The most of current AOP
implementations support just the given or even a smaller set of
join points (see Section III). Moreover C is a programming
language having pointers and a lot of operations with them.
The most popular operations like a pointer dereference and
vice versa a taking of a variable/field/parameter address and a
taking of an array element should be supported as
corresponding join points. Also it’s required that for each
mentioned join point some actions written as advice bodies can
be performed before, instead of and after a corresponding
program construction execution. Of course it isn’t a complete
list of different program join points, e.g. loop and specific
condition statements as well as a lot of different expressions
weren’t described. But indeed they also may be taken into
account sooner or later.

Both the first and the second stages weaving should
produce a correct source code or/and a corresponding compiler
internal representation. For example, advice bodies should be
substituted and be compliable as well as a given program
source code. Also for these stages a considered construction
scope (either some file or some function) plays a significant
role because of some action like a function call may be
performed either in one file or in another one, in one function
or in another one. It is important to notice that among advice
body instructions there may be some specific AOP instructions.
In the given paper they are referred to as body patterns. For
instance, there may be such body patterns as:

• a matched construction name and type (for a function
call and definition, for a variable declaration, etc.);

• matched construction argument names and types (for a
function call and definition);

• a matched construction size (for entities having an
array type or strings);

• and even a matched construction itself (e.g. to have
ability to call a matched function from inside a
corresponding advice body).

C. Linking

Linking performed at the third stage by a linker with
corresponding build options assembles given program object
files a1.o, a2.o, a3.o, … together with libraries object files
lib1.o, lib2.o, lib3.o, …. After all an executable file or a library
a1.out is obtained. It’s worth while mentioning that C program
object files to be linked shouldn’t contain the same defined
symbols such as function definitions having the same names.
So if some shared functions and global variables are required to
separate cross-cutting concerns they should be contained just in
one object file. For instance, this may help to use different
counters or flags, i.e. to save a shared context or state, and to
efficiently execute the same code by means of special auxiliary
functions (one can see an example in Section V). Interaction of
AOP directly with object files and a running program is beyond
of the given paper.

So the common C program build process, the most of key C
constructions and their influence on an AOP implementation
were considered. But the goal of the given paper isn’t to

introduce some AOP implementation for the C programming
language but is to suppose the one that can be used for real
programs. To the author’s knowledge unfortunately the most of
C AOP implementations are used just for artificial simple
examples and isn’t widely used in practice (there is some
discussion about the given issue in Section III). So the AOP
implementation concerned at this paper was strongly affected
by the Linux driver verification (LDV) project [4][5]. The goal
of that project is to provide an industrial quality toolset that
allows to use different static code analysis tools to verify
whether drivers satisfy correctness rules or not. The appropriate
way to formalize these correctness rules in the manner being
independent on a static verifier used and than to instrument a
driver source code to be checked is to use AOP. Therefore this
constrains some extra circumstances on a C AOP
implementation:

• Support of the C programming language with all GNU
extensions as an input language (it’s a standard
language for drivers writing) as well as all support of
standard and GNU build options.

• Offering of a well set of AOP constructions
corresponding to the C programming language. This is
required since correctness rules refer to different C
constructions used in different contexts. But
nevertheless aspects development should be rather
easy.

• An output should be also a correct program in C
equivalent to the original one except it may be
extended with corresponding cross-cutting concerns.
This is required by the following application of static
code analysis tools.

• An AOP implementation should be quite easy
maintained and extended with new features. This
comes because of new correctness rules are constantly
appearing, so an extra AOP constructions support is
required.

Note that nevertheless the most of these requirements are
suitable for any program written in the C programming
language (may be with allowance that this is done on the Linux
platform). So a supposed C AOP implementation appears to be
used both in the LDV project and in developing of a rather
random C program. Moreover the requirement for an output to
be a C program is useful for an AOP implementation
debugging, because of by means of this output one can easily
observe how a given AOP implementation behaves.

III. RELATED WORK

AOP for the C programming language that is the goal of the
given paper is considerably less developed in comparison with
the one for Java. At present the most interesting C AOP
implementation is ACC (AspeCt-oriented C) [6]. Fig. 3 shows
that its superset for C likes the one for Java made in AspectJ
[7]. That aspect means that after function foo2 is called its
result will be printed to a screen. ACC weaving differs from
the one of AspectJ. For a given preprocessed C file ACC
produces a corresponding C file extended with cross-cutting
concerns. Despite of ACC supports a rather large set of AOP

76

static void instrument_malloc_calls() {

 /* Construct a pointcut that matches calls

to: void *malloc(unsigned int). */

 struct aop_pointcut *pc =

aop_match_function_call();

 aop_filter_call_pc_by_name(pc, "malloc");

 aop_filter_call_pc_by_param_type(pc, 0,

aop_t_all_unsigned());

 aop_filter_call_pc_by_return_type(pc,

aop_t_all_pointer());

 /* Visit every statement in the pointcut. */

 aop_join_on(pc, malloc_callback, NULL);

}

state { int zero_cnt = 0; }

put.entry {

 if ($1 == 0) {

 if (zero_cnt == 4)

 abort "Queue has 4 zeroes!";

 else
 zero_cnt = zero_cnt + 1;

 }
}
get.exit {

 if ($return == 0)

 zero_cnt = zero_cnt - 1;
}

// An advice printing a message after a

// given function call is performed.

after (int res): call(int foo2(int)) &&

result(res) {

 printf(“ after call foo2, return %d\n”, res);
}

constructions it cannot deal with preprocessor ones since it
takes already preprocessed source code. Also it is intended just
for one file processing and there isn’t ability to specify some
shared variables and auxiliary functions. ACC has its own
closed C parser that fails to process some GNU extensions.
Maintenance of ACC by its developers isn’t active and due to
its core component is closed it isn’t so easy to deal with it.

Figure 3. Example of an ACC aspect

InterAspect is a more recent AOP implementation intended
for the C programming language [8]. It was developed almost
at that time when the given work was done. This tool is
interesting because of it’s based on GCC plugins [9], so it is
most likely to support all GNU extensions. Unfortunately the
InterAspect tool after all produces an object code (in fact this is
done by GCC itself) like AspectJ so it cannot be directly used
for static verification. At present the given tool supports rather
limited number of AOP constructions and preprocessor
constructions aren’t supported as well as state variables and
auxiliary functions. Instead of a C superset it provides a special
C AOP library allowing to write aspects like an usual C
program. But as one can see in Fig. 4 it seems to be even a
more complex task to write such an aspect. In fact there only a
joint point for malloc function call is defined. The tool was
actively developed recently. However its development was
stopped at the end of 2010. Nevertheless its progress should be
tracked and correlated with the suggested approach.

Figure 4. Example of a part of an InterAspect aspect

Another good approach is SLIC (Specification Language
for Interface Checking (of C)) [10]. To the author’s knowledge
it’s the only C AOP implementation that is widely used in
practice. However it has just one field of application, it’s used
during a process of static verification of Microsoft Windows
operation system drivers. SLIC allows to use state variables
and has a simple syntax for aspect writing. A SLIC
specification is indeed some kind of an aspect. The example of
a SLIC specification is demonstrated in Fig. 5. This artificial
specification states that it is an error to have more than four
zeroes in a queue. A SLIC preprocessor weaves driver source

code with a specification and after all produces equivalent C
program to be checked by means of a static verifier. A
shortcoming of the given approach is that there just few join
points are implemented (in fact just a function call and
definition). Also the given project is completely closed.

Figure 5. Example of a SLIC specification

A lot of other AOP implementations for C like C4,
Aspicere2, Xweaver project, WeaveC and so on posses a less
number of useful features than the ones described above, so
they aren’t considered in this paper. Also AOP tools dealing
with C++ even though they may be adapted in some way for
the C programming language aren’t introduced because of
usually they produce output in C++ while C is required by
static code analysis tools.

IV. OVERVIEW OF SUGGESTED C AOP IMPLEMENTATION

ARCHITECTURE

A suggested approach tends to implement all the
requirements described in Section II in the most complete way.
So after thorough investigation it was decided to base it on the
LLVM compiler infrastructure [11]. In turn this infrastructure
is built on top of GCC, it has so-called LLVM GCC Front End
binding GCC with LLVM tools. So the LLVM compiler
infrastructure inherits a GCC parsing of both C constructions
and GNU extensions and supports all GCC build options
almost as InterAspect described above. The suggested C AOP
implementation is built on top of a GCC parser itself. Because
of GCC includes preprocessing the given C AOP
implementation can deal with both preprocessing and
compilation join points. Next the LLVM tools include its own
linker and a C backend tool. The first allows to link several
object files of the whole program together, so some set of
source code files can be woven instead of an alone file. The C
backend tool is used to produce a C source code file to be
verified by a static code analysis tool. To write aspect files it
was decided to use a superset of C like AspectJ, ACC and
SLIC do. Section V contains an example of such an aspect that
is used in practice. Below the overall architecture of the
suggested C AOP implementation is considered in more
details. It’s shown how program source code files, libraries’
header files and aspect file are used and modified to weave
cross-cutting concerns with a program.

Different constructions matching and weaving are
performed through 4 stages by means of LDV GCC Front End
invocation on each stage. Then linking and a C source code file
generation are done. First of all it’s necessary to mention that

77

there are usually 2 aspect files. The first is intended for
weaving with all program source code files. The second aspect
file is required to define auxiliary function definitions and
global variable declarations shared between all other source
code files. The second aspect file is applied just to one program
source code file of those forming a final executable file or a
library. To make the further description more general * is used
instead of corresponding names. For instance a first aspect file
is denoted as *.aspect, and a second as *.aspect.common.

A. Aspect preprocessing

At the first stage comments of both C and C++ styles are
eliminated from both aspect files. So *.aspect.nc and
*.aspect.common.nc (where nc means “no comment”) are
obtained. Then at every stage such the modified aspect files are
parsed by means of a special parser (that is later referred to as
aspect parser) implemented as a patch for LLVM GCC Front
End. In an aspect file parsing lexical, syntax and semantic
correctness is checked. Advice bodies are looked through just
to determine body patterns. In case of some error an exact
place and an error type are reported. If a given aspect file is
correct it’s translated into own internal representation used
during matching and weaving later.

At the first stage required modifications are done for a
program source code file processed, *.c. Either before or after
or instead of it some additional source code is inserted. This is
done to process further these modifications as soon as possible,
i.e. even by means of a preprocessor because of they may
contain some preprocessor directives. By analogy with a
preprocessor a file obtained after this stage is called *.c.p (p
means “preprocessed”) and the given stage is named aspect
preprocessing. At the moment there isn’t weaving for included
files but it can be implemented in the similar way.

B. Macro weaving

At the second stage during the standard preprocessing of a
*.c.p file performed by LLVM GCC Front End using
corresponding build options (e.g. to find all included files)
macro matching and weaving are performed. So this stage is
referred to as macro weaving. When a corresponding to a given
pointcut macro directive is matched a macro body is extended
in a way required by an advice. After all there is a *.c.p.mw
(mw means “macro woven”) file that is the both aspect
preprocessed and preprocessed one.

C. Advice weaving

The third and the fourth stages correspond to the
compilation phase. Here is important to notice that we don’t
restrict an advice body source code with C constructions usage
and we don’t parse it by ourselves. Instead, advice bodies are
substituted to a given source code file as unique auxiliary
function bodies on advice pointcut matching. And then the
LLVM GCC Front End powerful parser processes them. So at
the third stage auxiliary functions required to implement advice
body actions are created in depend on join points matching and
advice requirements. Also to perform parsing of type
declaration extensions as well as to allow using of given
extensions in auxiliary functions type declarations weaving is
done at the third stage. At this stage the LLVM GCC Front End

C parser deals with a preprocessed file *.c.p.mw and produces
step by step its intermediate representation in the form of the
GCC internal representation, called later as a parsing tree. Also
parsed entities (in fact, type declarations and function bodies)
are looked through to find matches with pointcuts defined in a
given aspect file. It’s kept where matched entities are placed (to
insert either auxiliary function prototypes or to extend
corresponding type declarations later), what exact types and
names are matched to replace body patterns used in
corresponding advice bodies. After all required type
declaration extensions as well as auxiliary function definitions
with substituted body patterns and their prototypes are directly
inserted into corresponding places of an initial source code file
*.c.p.mw and a *.c.p.mw.aw (aw means “advice woven”) file is
obtained. The stage is called advice weaving.

D. Compilation

After that at the fourth final stage the inserted source code
is checked for correctness and translated into a parsing tree as
well as an initial source code. Also at the third stage matching
and weaving are performed in parsing. Here function
definitions and function body expressions are modified directly
at the level of the parsing tree and some relations with auxiliary
functions are established if it’s necessary. After the parsing is
completed LLVM GCC Front End behaves in its standard
mode and obtains an object file as well as a compiler does.

All four stages described above are summarized in Table 1.
The table shows how input data is modified and used and what
output is obtained in depend on a given stage.

TABLE I. DATAFLOW OF MATCHING AND WEAVING STAGES

Stage *.aspect *.c Build options

Aspect

preprocessing

Comments

elimination

(*.aspect.nc)

and parsing

Include join point

weaving (*.c.p)

Aren’t used

Macro

weaving

Parsing Macro weaving and

preprocessing

(*.c.p.mw)

Preprocessor

options are

used

Advice

weaving

Parsing Auxiliary functions and

declarations direct

including (*.c.p.mw.aw)

Compiler

options are

used

Compilation Parsing Function definitions and

bodies weaving,

compilation

Compiler

options are

used

E. Linking and C source code file generation

Further required object files are linked together by means
of the LLVM linker tool. As it was already mentioned for a
resultant file just one object file woven with both aspect files is
taken. For an assembled object file the LLVM C backend tool
produces a C source code file that can be processed by a static
verifier. Although the last action is optional. For example,
instead of this there is ability to produce an executable file for a
given program that is intended for some architecture supported
by the LLVM compiler infrastructure.

V. APPLICATION OF SUGGESTED C AOP IMPLEMENTATION

The suggested AOP implementation for the C programming
language is already included into a LDV project toolset. It’s

78

model0032a-blast.aspect
before: file ("$this") {

#include <linux/kernel.h>

#include <linux/mutex.h>

extern void ldv_mutex_lock(struct mutex *lock);

}

around: define(mutex_lock(lock)) {

ldv_mutex_lock(lock)

}

before: call(extern void mutex_lock(struct

mutex *)) {

ldv_mutex_lock($arg1);

}

model0032a-blast.aspect.common
after: file ("$this") {

#include <linux/kernel.h>

#include <linux/mutex.h>

#include "engine-blast.h"

int ldv_mutex = 1;

void ldv_mutex_lock(struct mutex *lock) {

 ldv_assert(ldv_mutex == 1);

 ldv_mutex = 2;

}

void mutex_unlock(struct mutex *lock) {

 ldv_assert(ldv_mutex == 2);

 ldv_mutex = 1;

}

void ldv_check_final_state(void) {

 ldv_assert(ldv_mutex == 1);

}

}

used to formalize few correctness rules and in driver source
code instrumentation intended for a further verification by
means of static code analysis tools.

Fig. 6 shows an example of aspect files used in verification
of the “Locking a mutex twice or unlocking without prior
locking” correctness rule. Note that these aspect files are
simplified in comparison with the actually used ones since
some extra lock functions aren’t presented. Syntax is most
likely to be rather intuitively clear. It’s worth while noticing
that there are 2 join points as for macro mutex_lock and for
function mutex_lock. This is required because of Linux kernel
can define either a macro or a function in depend on its
configuration. Function mutex_unlock is always declared as
extern, so it doesn’t require instrumentation since it can be
explicitly defined. Global variable ldv_mutex is an example of
shared state variables while ldv_mutex_lock is an auxiliary
shared function. Function ldv_check_final_state is executed at
the end of checking to ensure that nothing is locked then.

Figure 6. Example of aspect files of the supposed C AOP implementation

To estimate quality of the proposed C AOP implementation
2 experiments were performed. The first one used a specially
prepared Linux kernel configuration and corresponding kernel
function implementations (like mutex_unlock showed in Fig. 6)
while the second one used aspect files like presented in Fig. 6
and following instrumentation. Later the first experiment is
called plain and the second one is called aspect. During
experiments all drivers of Linux kernel 2.6.31.6 [12] that can
be represented as kernel modules (there are 2160 such the
drivers) were examined against the correctness rule about
mutex lock/unlock described above with help of BLAST static

code analysis tool [13]. The most interesting results
demonstrating verdict changes between plain and aspect
approaches are shown in Table II (a first verdict belongs to the
plain experiment, and the second one belongs to the aspect
one). Safe verdict means that a given driver satisfied the given
correctness rule, unsafe is the reverse one, unknown verdict
means that a static verifier used failed to check a given driver
(e.g. because of time or memory shortage or due to some
parsing error).

TABLE II. COMPARISON OF THE SUGGESTED C AOP IMPLEMENTATION

WITH ANOTHER APPROACH

Safe →

Unsafe

Safe →

Unknown

Unsafe →

Unknown

Unknown

→ Safe

Unknown

→ Unsafe

4 95 18 82 3

As one can see from Table II the supposed C AOP
implementation behaves rather well because of the number of
“bad” transitions (i.e. from safe/unsafe to unknown) almost
equals to the number of “good” transitions. There are 95 + 18 =
113 “bad” transitions and 82 + 3 = 85 “good” ones. Their
difference is just 28, that is less then 1.3% of the total number
of kernel modules.

In fact it requires more memory for a generated file
verification to be performed in the aspect experiment in
comparison with the plain one. So, 62 modules were not
checked because of memory shortage. Also in the aspect
experiment some produced by LLVM C backend C
constructions are rather complex for the static verifier used (31
modules were not checked due to the given reason). Although
the plain experiment showed that even more drivers confuse a
BLAST C parser because of complex constructions coming
from initial driver source code as is. There are 68 such
modules. The rest transitions from/to unknown verdict are
concerned with either some bugs in the supposed C AOP
implementation (20 modules for the aspect experiment) or
time/memory shortage in the plain experiment (17 modules).
Unfortunately, all additionally found unsafes (7 modules for
which safe or unknown verdict was exchanged with unsafe
one) are false positives because of either generated C file
shortcomings (like generation of big unsigned integer numbers
instead of negative ones that is demonstrated later) or
incomplete correctness rule implementation and some static
verifier lacks.

But nevertheless the most significant shortcoming of the
supposed C AOP implementation consists in a generated code
itself. Fig. 7 illustrates an example of how a driver source code
is modified after the given implementation invocation. As it
was already mentioned sometimes this prevent a static verifier
from check performing due to complex constructions
generated. As Fig. 7 shows there is a lot of variables having
prefix blast_must. This is a special workaround made as a
corresponding LLVM C backend patch. It is required to
designate so-called must-aliases, that is the aliases that alias
only one known memory location (all artificial temporary
variables are must-aliases). The suggested approach application
leads to more memory requirement for a testing to be executed.
Such the generated source code scares users trying to see on it,
for example, in analyzing unsafes or in debugging the given C
AOP implementation. In fact the LLVM compiler

79

drivers/pci/hotplug/fakephp.c (preprocessed)

if (strict_strtoul(buf, 0, &val) < 0)

 return -22;

if (val)

 pci_rescan_bus(slot->dev->bus);

fakephp.ko.linked.cbe.c

blast_must_tmp__85 = *(&llvm_cbe_buf_addr);

blast_must_tmp__86 =

strict_strtoul(blast_must_tmp__85, 0u,

(&llvm_cbe_val));

if ((((signed int)blast_must_tmp__86) <

((signed int)0u)))

 goto llvm_cbe_bb;

else

 goto llvm_cbe_bb1;

llvm_cbe_bb:

 *(&llvm_cbe_tmp__73) =

18446744073709551594ull;

 goto llvm_cbe_bb5;

llvm_cbe_bb1:

 blast_must_tmp__87 = *(&llvm_cbe_val);

 blast_must_tmp__88 = *(&llvm_cbe_slot);

 blast_must_tmp__89 = *((&blast_must_tmp__88-

>field1));

if ((blast_must_tmp__87 != 0ull))

 goto llvm_cbe_bb2;

else

 goto llvm_cbe_bb3;

llvm_cbe_bb2:

 blast_must_tmp__90 = *((&blast_must_tmp__89-

>field1));

 blast_must_tmp__91 =

pci_rescan_bus(blast_must_tmp__90);

llvm_cbe_bb3:

infrastructure used is responsible for this shortcoming. First of
all it deals with a GCC internal representation called GIMPLE
that already rather differs from a source code pure
representation. Next it is intended for machine independent
source code generation. So one can see large positive numbers
instead of small negative ones in Fig. 7.

Figure 7. Comarison of a driver source code with the generated one

Another big shortcoming is connected with the fact that
LLVM GCC Front End is based on the rather old GCC
compiler (of 4.2.1 version, nowadays 4.5.2 is a stable release)
while the modern Linux kernel drivers already posses such new
constructions that aren’t processed with it. So different
workarounds are required to overcome this.

After all let us imagine how different approaches
introduced in Section III could meet aspect files presented in
Fig. 6, driver source code instrumentation, following static
analysis and obtained verification results examination. First of
all none of them supports the join point concerned with the
preprocessor construction define(mutex_lock(lock)).

Then, step by step, ACC fails to parse driver source code
because of unsupported fresh GNU extensions to the C
programming language and that tool cannot be adjusted
because of it uses a closed parser. InterAspect deals with
GIMPLE representation of source code and, if we had some C
backend tool for GCC, InterAspect would produce
instrumented source code too dissimilar to the original one
almost as well as LLVM C backend. Both ACC and

InterAspect doesn’t support state variables and functions like

ldv_mutex and ldv_mutex_lock correspondingly. Most
likely that we could verify the given model by means of SLIC,
except the preprocessor issue, but in fact this is one of the
simplest model from the LDV project. Other models require
more complex join points and advice bodies, so what can we
do if SLIC supports just function calls and definitions and it is
the closed project.

VI. CONCLUSION

This paper describes an approach of how to implement
aspect-oriented programming in the way specific for the C
programming language. It considers features and shortcomings
of current implementations. After all a new implementation
that tends to cover all major features of the C programming
language as well as to take into account those features that
come from the C programs build process is considered. It’s
shown how the given C AOP implementation behaves to reach
the required intention.

For the supposed C AOP implementation its real
application for the Linux driver verification process is
demonstrated. An example of real aspect files implementing a
correctness rule associated with the mutex lock/unlock problem
is given. Also the supposed approach is compared with another
one that doesn’t use AOP. It’s shown that the given C AOP
implementation is rather good except a generated source code
is too complex for further analysis and it’s quite unlike the
original one. Mental comparison with another AOP
approaches, such as ACC, InterAspect and SLIC, is done.
Finally it becomes clear that the given approaches can not meet
all requirements imposed on the suggested C AOP
implementation by a number of reasons.

The current development of the supposed approach of the
AOP implementation for the C programming language tends to
overcome the restrictions specified above. To keep all
advantages of the supposed approach as well as to eliminate the
given shortcomings it was decided to develop our own C
backend tool intended directly for GCC itself. It’s assumed that
it’ll be built on top of stable GCC “from svn” that is it’ll parse
all modern constructions and GNU language extensions. Also
the given C backend tool should work at the low-level GCC
internal representation even before GIMPLE. Thus far a
produced source code will most likely to be very similar to the
original one. We believe that this will allow to combine
abilities of both the supposed C AOP implementation and
powerful GCC compiler to process C source code and to use
AOP.

One can obtain the current AOP implementation for the C
programming language from a LDV development site [14].
There it can be found as a part of rule-instrumentor. It’s planed
that an updated C AOP implementation will also be there soon.

REFERENCES

[1] Definitions of key AOP concepts.

http://www.aosd.net/wiki/index.php?title=Main_Page

[2] AspectJ: an aspect-oriented extension to the Java programming
language. http://www.eclipse.org/aspectj/

[3] An AspectJ example.

80

http://eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

[4] A. Khoroshilov, V. Mutilin, V. Shcherbina, O. Strikov, S. Vinogradov,
and V. Zakharov, “How to cook an automated system for Linux driver
verication,” 2nd Spring Young Researchers' Colloquium on Software
Engineering, vol. 2, pp. 10-14, 2008.

[5] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov,
“Establishing Linux driver verification process,” Perspectives of
Systems Informatics, vol. 5947 of Lecture Notes in Computer Science,
pp. 165-176, 2010.

[6] M. Gong, C. Zhang, and H.-A. Jacobsen, “AspeCt-oriented C,”
Technology Showcase, CASCON 2007, Markahm, Ontario, 2007.

[7] W. Gong and H.-A. Jacobsen, “AspeCt-oriented C Language Spefication
Version 0.8,” University of Toronto, 2008.

[8] J. Seyster, K. Dixit, X. Huang, R. Grosu1, K. Havelund, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Aspect-Oriented Instrumentation with

GCC,” Procedings of the First International Conference on Runtime
Verification, pp. 405-420, 2010.

[9] GCC plugins. http://gcc.gnu.org/wiki/plugins

[10] T. Ball and S.K. Rajamani, “SLIC: a Specification Language for
Interface Checking (of C),” Technical Report MSR-TR-2001-21,
Microsoft Research, 2002.

[11] The LLVM Compiler Infrastructure. http://llvm.org/

[12] Linux kernel 2.6.31.6. http://www.kernel.org/

[13] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker Blast: Applications to software engineering,” Int. J.
Softw. Tools Technol. Transf. 9(5), pp. 505-525, 2007.

[14] The LDV project. http://forge.ispras.ru/projects/ldv

81

Abstract—The component-based approach to software
engineering, its current implementations and their limitations
are discussed. A new extended architecture for such systems is
presented. Its main architectural concepts and principles are
considered.

Index Terms—Runtime environment, software architecture,
software engineering, software reusability

I. INTRODUCTION

OFTWARE ENGINEERS have always pinned their hopes on
the idea of reusable code [8]. In their urge towards

eliminating code duplication, simplifying code maintenance,
making it less error-prone and streamlining the development
process programmers have gone a long way from a
completely unstructured code through procedures and
program libraries to object-oriented technologies and
application frameworks. Taking the code reuse idea one step
further, the component-based software engineering [9], [14]
is a very promising approach to software development.

The term “component instance” usually refers to a
program entity holding data and offering some functionality
that are hidden by a well-defined interface (cf. [10], [11]).
The concept of interface, however, varies from one
technology to another: a number of “properties” (attributes,
member variables etc.) [13], a number of member
functions/methods (as in most object-oriented programming
languages) or even an entity whose nature may be left out of
scope of the component technology itself [1]. The process of
combining components into a working system is considered
to be relatively simple (e.g. [2]). Nevertheless, this process
is implemented differently in various technologies.

In order to propose an optimal way for organizing
component interaction, that would introduce a good balance
between flexibility and ease of use, let us concisely consider
main aspects of component-based models and technologies
and their limitations (detailed comparative analysis is
beyond the scope of this work, see in [12] and [14]).

II. LIMITATIONS OF COMPONENT-BASED TECHNOLOGIES

Despite the many advantages of the component approach
its currently existing implementations have a number of
substantial limitations. The most difficult goal to achieve
here is probably to find a way of designing components that
will provide the necessary functionality without exceeding
it. The necessary functionality is determined by
requirements, and these are bound to change with the lapse
of time. There’re three options to consider. First of all, it is
possible to introduce software with somewhat wider
capabilities, so that it would still be adequate when
requirements change. This approach, however, demands
remarkable architectural design skills and foresight and has
the risk of bloating the program under development making
it unsuitable for system with limited memory resources.
Second of all, one can adapt the software with the course of
time. This would result in the most appropriate as well as
the most expensive software. The third option is to
introduce a component framework that would allow in-place
modification of component’s functionality without stepping
over the bounds of the component model.

Let as consider an example. ZigBee specification [15]
offers a suite of high level communication protocols for
low-rate, low-cost, low-power-consumption wireless
personal-area networks. It is implemented, for instance, by
communicational parts of microelectromechanical systems
in wireless sensor networks. At the same time, the
specification is subject to frequent changes. This makes
manufacturers renew and release sensor firmware, which is a
difficult process due to the lack of high-level development
tools for such systems.

ZigBee specification introduces network and application
layers (in addition to the PHY and MAC layers defined by
the IEEE standard 802.15.4 [5]) to the protocol stack. The
topmost application layer (which is subject to frequent
changes) is comprised of a number of components: ZigBee
device objects, their management procedures, application
objects. Requirements to these components are not changed

Component-Based Software Engineering and
Runtime Type Definition

A. R. Shakurov
Business Informatics Department,

Higher School of Economics,
Moscow, Russia

amir-shak@yandex.ru

S

82

at the same time (application objects, for example, are
provided by the manufacturer and thus aren’t managed by
the ZigBee alliance). Nevertheless, every new release of the
specification implies a new release of the whole firmware. It
would be more cost-efficient to modify only those
components specification for that have changed and make
the system reconfigure to make use of their instances
without rewriting a binary firmware image to devices’
memory.

To add, remove or modify certain functionality of a
component’s instance means to introduce a new component,
because it is the component that defines functionality of its
instances. That is, we’re essentially dealing with the task of
defining a new type of data. This can be done either by
deducing new type from existing one or creating it from
scratch using a number of predefined low-level components.
We believe it’s this operation that must be available at
runtime in order to ensure software flexibility.

This problem can be tackled in a number of bypass ways
such as source code, bytecode or binary code
generation/transformation, runtime compiler calls or taking
advantage of programming language’s ability to modify its
low-level runtime data structures (Java Reflection being a
graphic example). These, however, aren’t always an option.
Reflection mechanisms are primarily meant to be used to
build IDEs, source code analysis tools and GUI designer
applications. Using them indiscriminately to build any
garden-variety software lays exceedingly high claim to
developer and is therefore error-prone. Furthermore, many
programming languages don’t support reflection at all. And
embedded systems often lack compilers and code
modification frameworks. Therefore an alternative system
capable of building new types from user-configured
instances without stepping over the bounds of its model is
needed.

To conclude the section, let us look at another simple
example. We’re designing a GUI application and we want to
change a button’s label (the button has already its
functionality attached to the application). The change is
supposed to be permanent: the button won’t be renamed at
runtime. Although obvious, the necessary procedure is
implemented in various frameworks with a distressing flaw:
the variable property is left variable for the lifetime of the
component’s instance regardless of developer’s intentions.
In other words, the fact that the button’s text isn’t meant to
be mutable at runtime (should this be the designer’s
intention) cannot be expressed by a developer.

The designtime work with an instance of a component
and the runtime work with it are basically two different
contexts of its use. However, these cannot be fully separated
by existing frameworks (see [13] e.g.), because one has to
start (execute) a component (i.e. instantiate it) in order to
either configure it or take advantage of its functionality.
This is the source of the troubles one encounters when

adjusting a component’s instance.
To summarize, a new component system capable of

introducing new data types by either modifying existing
ones or creating them from scratch using a number of
predefined low-level components is needed in order to
create flexible (adaptable to changing requirements and
contexts of use) software for systems with limited resources.

III. CORE PRINCIPLES

To achieve the goal of designing such a system, we have
analyzed advantages and limitations of existing object-
oriented programming languages and component
technologies. This has allowed us to infer the core principles
of the suggested component model described in the next
section.

The model is based on a general object-oriented idea, and
is extended by other technologies’ traits when necessary
since the need to define data types at runtime makes
designtime and runtime essentially indistinguishable.
Omitting a detailed consideration of specific technologies
here (see [12] and [14] for such review), we are going to
summarize the core principles that underlie the model in
question.

The two primary characteristics of any development and
execution environment are the principles and mechanisms of
data organization and control flow management. Looking
for those characteristics in the object-oriented paradigm, one
will find the hierarchical data organization principle and
the concept of method as the means of control flow
management. And while the first characteristic gives us a
well-balanced solution for managing ever growing
complexity of software systems, we find the second one to
be too complex and cumbersome. We believe that the very
concept of object method (see [3] e.g.) isn’t suitable for
adopting it in a component model, because of its
overwhelming versatility: a method can have variable
number of parameters and (in certain languages) return
values, or it can have none of those; arguments can be
passed by either value or reference; methods can be
overloaded and overridden (in which case a complicated set
of resolution rules takes the stage). The list can be
continued. The concept of method, therefore, doesn’t
provide intended ease of use (though it does handle software
complexity well).

In contrast, the concept of property introduced in some
frameworks (C#, JavaBeans) is more suitable to our needs.
The property-based interaction model is simple and formal
because of the limited number of aspects describing the
“property” concept: its type and applicable operations
(usually reading and writing). However, to become a perfect
rival (to efficiently implement callback routine, for
example) the concept needs to be extended with the binding
operation (described in following section).

83

To summarize, we have adopted the principle of
hierarchical data organization and the property concept as
the means of organizing execution flow to create a
component model with a runtime data type definition
capability. We will now proceed to describe the model.

IV. THE MODEL

The model we’re going to discuss has its prototype
implemented in the Java programming language. Therefore
let us start with describing the model from the user’s point
of view.

While working with the application, a user interacts with
three categories of objects, viz. components, components’
instances and containers (which are used as both runtime
and new type definition environments).

A. Components and instances

An instance of a component is an aggregate of data and
behavior hidden behind an interface, the latter being the
only way to interact with this kind of entity. We shall refer
to the hidden part of an instance as its implementation, as
opposed to the interface.

Like objects in object-oriented paradigm have classes,
instances have components that describe the way these kinds
of instances are created and function. Every instance has a
single component associated with it and this association is
immutable during the lifetime of an instance. Every
component can be instantiated without providing any
additional information. This means that primitive types of
data (numerical, boolean, string etc.) aren’t actually
components. These are usually called value-types and to
instantiate them one has to provide at least a value of the
instance to create.

In addition to contextless instantiation, components allow
instantiation in a certain context (e.g. as part of a composite
instance, see below).

Interface

Let us focus on an interface of a component’s instance. It
is comprised of a number of properties each of which is
characterized by:

• name (used to identify a property),

• value type,

• access permissions; any property may be accessible
for reading, writing and binding.

Read/write operations need no explanation. Binding S
property of a particular instance to D property of another
instance ensures that whenever the value of S is changed the
new value will be written to B. The binding operation, as it
was mentioned earlier, is needed to efficiently implement
callback routine and is similar to that of the Java Beans
model, except that there’s only one event type (property

value change event) whereas in Java Beans a property can
have multiple event types associated with it.

B. Container

A container is an execution environment that allows the
following operations to be performed in its context (“within
it”):

• instantiate any components,

• change values of properties of instances created at
the previous step,

• bind instances’ properties to each other.

Apart from that, a container can be used to create new
components. Its contents are considered to be a prototype of
an implementation part of a future component. To create a
new component, one has to complete this information with
interface specification and connect these two parts together.
Above that, a user is able to edit metadata of instances
constituting future implementation. All this can be achieved
with the following operations:

• restricting access to instances’ properties,

• adding properties (with specified metadata: name,
access permissions etc) to the interface part of the
component,

• adding sharing connections between a property of
an instance that is a part of the implementation and
a property of the interface.

The “sharing connection” between two instances’
properties makes those instances share memory cell
(therefore changing the value of one property is immediately
reflected on the value of the other property). This behavior
requires a custom memory model, which we’ll focus on
later.

Once the user has provided all the necessary data to a
container, he can create a new component that will
correspond to the prototype currently in the container in the
sense that all of its future instances shall have the same
structure.

While a user is working with a container, the latter
gathers all the necessary information about future
component. It is to be noted that some of this information
can be deduced from the runtime structure of instances the
user have created. For example, bindings between instances’
properties are analyzed only when a new type is being
created. Other pieces of information, however, can’t be
stored within the runtime structure. For example, restricting
access to a property of an instance won’t actually modify
that instance because that implies changing metadata (i.e.
data type) of an existing instance and there’s no sense in
doing that. In other words, not every user action can be
directly reflected on the runtime structure of instances, and
it’s container who makes the process of editing both data
and metadata transparent to a user.

84

It wouldn’t be possible to define new types at runtime,
however, if it wasn’t for a specially designed internal
structure of components, which will be discussed in the
following section.

C. Internal structure

Let us focus on the internal architecture of the prototype
application we’ve developed that provides the previously
described functionality. As it was mentioned above, the
application is implemented Java, but it can be easily
rewritten in any other strongly-typed object-oriented
programming language.

All the instances in the system implement common
Instance interface that provides methods to access
instance’s type and properties. Similarly, all the types
implement the Type interface that provides methods to
instantiate the type and also extends the Instance interface.
Therefore, any type (and any component which is a kind of
type) is an instance whose data are metadata describing its
future instances. There is also a TypeType type, which is a
type of any type (including itself).

Let us consider the following scenario. A user defines a
new component with no bindable properties. Than the whole
event–listener infrastructure (that supports bindings’
functionality) becomes redundant and should not be
included in corresponding instances. This kind of deep
context adjustment is crucial when dealing with runtime
type definition and we pay great attention to it.

To implement the smart adjustment described, we’ve
introduced indirect access to instances’ properties. They’re
accessed via special PropertyGetter, PropertySetter and
PropertyBinder objects. If there’re no bindable properties
in a component then its instances end up having their
PropertyBinder object uninitialized. And if there’s at least
one bindable property, then the binder object will be created
(but it still won’t be granting access to unbindable
properties, of course).

Memory model

As it was mentioned above, the custom memory model is
required in order to consistently handle binding and sharing
connections between properties.

The memory model introduces traditional kinds of
“memory cells” (viz. constants and variables) that store
instances as their values. The value can be read and (in case
of a variable) written. The memory cell can also have no
value (it is said to be null in this case). Finally, memory
cells are strongly typed, which means that every cell knows
its type and an attempt to store an instance of mismatching
type in it produces an error.

There’s also an unconventional kind of variable –
listenable variables. As the name suggests, listenable
variables (in addition to having all the features of regular
variables) allow special objects (called listeners) to

subscribe to the variable value change event.

Data types
We’ve already mentioned that the system supports

primitive value-types which are a kind of instance types.
Another kind of instance types is components, but there’re
two different kinds of them. The first one is compiled
components. These are components whose implementation
is not analyzed by the system in any way. This permits the
system to handle various components implemented using a
third-party means (e.g. java bean components).

The second kind of components is composite
components. These are components implemented by means
of the system itself. The implementation part of a composite
component is a structure of other components.

Since it is a composite component that is built whenever
user defines a new type, this kind of components is of
greatest interest.

Composite components

We are going to focus on the structure of metadata stored
in composite components. Since these metadata determine
the structure of data in corresponding instances, we will
discuss that structure incidentally.

Composite type (like any other type) describes interface
and implementation parts of its instances (Figure 1). These
parts are interconnected via mechanism described below.

Figure 1. Composite type.

An interface of an instance is a set of its properties, so the
metadata stored in the interface part of a component are a
set of property descriptors (Figure 2) each of which
specifies:

• property value type,
• access permissions,
• default value (optional).

Figure 2. Interface part of a composite type.

85

Finally, implementation part of a composite type is
metadata that describe a structure of instances with
interconnected properties that will result from instantiation
the type. These metadata are represented in the following
way (Figure 3).

Figure 3. Implementation part of a composite type.

To every connection between two instances that
constitute an implementation of the future component
corresponds an object of the EventRoute class that holds
two objects of the SubcomponentPropertyQualifier class
(for the beginning and the ending of the connection). These
objects simply specify a source and a destination of a
property change event: they hold respective components’
IDs and their property names.

For every instance that is a part of an implementation of
the future component there’s a descriptor, an object of class
SubcomponentDescriptor. This object specifies:

• instance type,
• for every property of the instance, context

adjustment of that property to its use as a part of
another instance’s implementation. This
adjustment defines modified default value (if
any) of the property (the DefaultValueModifier
class) as well as restricts access to it
(PermissionsModifier).

A default value of a property can be modified in a number
of different ways.

• “Void” modification, the value is left intact.
• Explicitly specified value (the object of the

DefaultValueModifier class holds this value).
• Value is another instance that’s present in the

same context (implementation of the same
instance). In this case the modifier object holds
the name of that instance.

• The property is shared. In this case not the value
of the property, but the property itself is
changed: instead of creating a new memory cell
for storing the value, an existing (provided from
elsewhere) cell is used by the instance.

The last option is used to provide an instance (via its
instantiation context) with references to its parent instance’s
properties, thus creating sharing connections between these
properties. These connections glue interface and
implementation parts of a composite instance together.

Composite component instantiation

To demonstrate described structure at work, let us go
through the process of composite type instantiation. The
following algorithm implements the process.

1) Memory cells for storing values of properties are
established (one for every property descriptor). If
there’s an instantiation context, a reference for an
existing cell is used. Otherwise a new memory cell is
created, its kind (constant, variable or listenable
variable) being determined by respective access
permissions, and is initialized with either default
value (if any) or a new instance of the corresponding
type.

2) Instances constituting the implementational part of
the future component are created. This involves
evaluating their instantiation contexts. Every
property descriptor is merged with corresponding
subcomponent property context adjustment object
giving a new set of adjusted access permissions and
default value.

3) Binding connections (i.e. event routes) are
established.

4) Proxy objects for accessing new instance’s properties
are created (property getters, setters and binders).
These objects receive references to relevant
properties only (e.g. a setter object only holds
references to writable properties) and if there aren’t
any, the object is not created at all.

After all the steps have taken place, a new object of class
CompositeInstance is constructed. The constructor is
provided with the type (an object of the CompositeType
class) and proxy objects. This results in a new instance of
the component.

The described internal structure of composite components
ensures great flexibility. Since data types are defined by the
(runtime) structure of regular (java) objects (as opposed to
compiled binary or bytecode), it gives us an opportunity to
easily manipulate that structure at runtime thus creating new
types.

V. RESTRICTIONS AND FUTURE WORK DIRECTIONS

Let us discuss certain limitations to the described

86

solution. First of all, flexibility comes at a price. The ability
to reconfigure software results in overhead computational
costs. This means that the proposed model should be
adopted only when implementing systems that either have
no severe restrictions on computational resources or do not
require very high performance. Aforementioned
microelectromechanical sensors offer a graphics example:
while having limited memory capacity, they carry no
considerable performance limitations (they usually stay idle
for hours between sending a signal and going idle again).
This is why the availability of remote reconfiguration means
takes precedence over elevated performance here.

Second of all, while the property-based interaction is
simple and quite flexible, it has its limitations, too. For
example, implementing intricate algorithms this way is
possible though burdensome, making a traditional
imperative-scripting style far more suitable choice. In other
words, the described solution should be adopted when
there’re a great number of objects (instances) with a
relatively simple interaction. In addition, it’s possible to
incorporate complex logic via compiled components, though
this still requires implementing it in a third-party language.

The described system being only a prototype, our first
and foremost goal is to turn it into a complete, feature-reach
production-quality platform. This requires both evolving the
component model and improving development tools to
make use of it. This also implies optimization to guarantee
acceptable performance.

As for the practical applications, we’re planning to make
use of the platform in question to introduce software
solutions for 2D (GUI development) and 3D (VRML [6],
[7] implementation) design, reconfigurable wireless sensors
firmware and possibly for some other purposes.

VI. CONCLUSION

We have described the main ideas and the core principles
of internal organization of the new component architecture
with extended capabilities. The ease of manipulating both
data and metadata structure of software is not to be
underestimated. We believe that formalized, simple yet
powerful component model with runtime data type
definition capability will allow creating most configurable
software that will be able to evolve and adapt to changing
requirements easily.

REFERENCES

[1] Bruneton, E., Coupaye, T., Stefani, J.B., The Fractal Component
Model specification. Version 2.0-3, The ObjectWeb Consortium,
2004.

[2] Costa Seco, J., Silva, R., Piriquito, M., “ComponentJ: A Component-
Based Programming Language with Dynamic Reconfiguration”,
Computer Science and Information System, ComSIS Consortium,
Novi Sad, Serbia, 2008, pp. 63-86.

[3] Gosling, J., Joy, B., Steele, G., The Java™ Language Specification.
3rd ed., Addison Wesley, 2005.

[4] Heineman, G.T., Councill W.T. Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley
Professional, 2001.

[5] IEEE Std 802.15.4-2003 – Wireless Medium Access Control (MAC)
and Physical layer (PHY) for Low-Rate Wireless Personal Area
Networks (WPANs).

[6] ISO/IEC 14772-1:1997 — Virtual Reality Modeling Language
(VRML).

[7] ISO/IEC 14772-2:2004 — Virtual Reality Modeling Language
(VRML).

[8] Krueger, C.W., “Software reuse”, ACM Comput. Surv. Vol. 2, ACM,
New York, 1992, pp. 131-183.

[9] McIlroy, M.D., “Mass produced software components”, Naur P.,
Randell B., “Software Engineering, Report on a conference
sponsored by the NATO Science Committee, Garmisch, Germany,
7th to 11th October 1968”, Scientific Affairs Division, NATO,
Brussels, 1969, pp. 138-155.

[10] Object Management Group, The Common Object Request Broker:
Architecture and Specification. Version 3.1. Part 3 - Components,
OMG document formal/2008-01-08, 2008.

[11] Redmond, F.E., DCOM: Microsoft Distributed Component Object
Model, IDG Books Worldwide, Inc., Foster City, 1997.

[12] Stiemerling, O., Component-Based Tailorability, Bonn University,
Bonn, 2000.

[13] Sun Microsystems Inc. The JavaBeans™ API specification. Version
1.01-A, Sun Microsystems Inc., 1997.

[14] Szyperski, C. Component Software: Beyond Object-Oriented
Programming, 2nd ed, Addison-Wesley Professional, Boston, 2002.

[15] ZigBee Alliance, ZigBee Specification, ZigBee Document
053474r17, 2007.

87

Educational tests in “Programming” academic

subject development

Maksimenkova Olga

National Research University Higher School of

Economics

Moscow, Russia

e-mail: omaksimenkova@hse.ru

Vadim Podbelskiy

National Research University Higher School of

Economics

Moscow, Russia

e-mail: vpodbelskiy@hse.ru

Abstract—Educational tests are quite popular as a type of

learning outcomes checking in public education and in

commercial education nowadays. This work is devoted to test

for students, who study programming in Universities.

Educational tests in “Programming” academic subject

development and statistical analysis principles are described

and accumulated here.

Keywords: software engineering education,educational tests,

tests, programming academic subject

INTRODUCTION

Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering recommends such
courses as “Computer Science”, “Programming basics”,
“Programming” etc. to be taught to train an undergraduate
in Software Engineering. Nowadays in Russia syllabuses
of subjects, which are widely connected with programming
(for example, “Programming” or “Information
Technologies”, etc.), obligatory contain a part about one or
another programming language. The most popular
programming languages: C++, C# and Java are taught all
over the Universities.

The problem of checking theoretical knowledge of
syntax and semantic of a programming language and
practical skills is significant and quite complicated. Well-
prepared educational test can help in resolving all these
problems by checking all of them. It should be said that
educational testing is widely applied practically in
specialists’ certification by such firms as Microsoft, Cisco,
1C etc.

This work is devoted to common questions of
educational tests statistical analysis and development for
students, who study programming in Universities. The
research which is described in this work is based on tests in
C# programming language which are given to the students
who study programming within the academic subject
“Programming” which is contained in the discipline of the
Software Engineering.

ESTIMATING OF LEARNING OUTCOMES

Desire learning outcomes of a process of learning are
formulated by the academic staff, preferably involving
student representatives in the process, on the basis of input
of internal and external stakeholders. Competences are
obtained or developed during the process of learning by the
student.

Learning outcomes are statements of what a learner is
expected to know, understand and/or be able to
demonstrate after completion of learning.

Competences represent a dynamic combination of
knowledge, understanding, skills and abilities. Fostering
competences is the object of educational programmes.
Competences will be formed in various course units and
assessed at different stages [9].

Tests, which are used to estimate students training level
in a current academic discipline, are criterion-referenced
(or should be such). Their goal is to reveal an examinee’s
level of required knowledge, abilities and skills. Thus, the
main goal of testing is establishing minimum number of
points, achievement of which is enough to give a student a
good mark.

A level of dynamic constituent parts of competence
measurement is a difficult to create an algorithm and
ambiguous in checking works problem. It needs to describe
conceptual models, which are different to present.

Nowadays three dimensions model is certified and
widespread.

First part of this model is a content, which is provides a
content validity of a tool set, or to be more precise its
compliance with educational programmes. Second part of
the model are the process requirements – a type of test
questions in a general case. Third part of the model is a
level of a cognitive activity [5].

COMMON PRINCIPLES OF TEST’S CONTENT SELECTION

Recommendations in educational tests in programming
development are given in this work. Collected common
principles of tests in programming creation are based and
correlated with common principles of content selection.

Content selection common principles provide high
content validity support. Content validity is the estimate of
how much a measure represents every single element of a
construct [6, 12, 5].

1. Representativeness principle. This
establishes a procedure of test content
selection to provide optimum completeness
and correctness of test content proportions.

2. Significance principle. This orders to put on
the test the most significant content items,
which are connected with the key topic of the
course. The key topic extraction needs
course content to be structured before its
putting on the test.

88

3. System principle. This means that content
items are put in order, and are connected
with each other with a special hierarchy and
a common knowledge structure. Following
this principle test may be used not only to
check educational achievements but to
estimate knowledge structure of students’
quality as well.

TYPES OF TEST QUESTIONS

Before describing tests in programming structure and
separating questions types, which allowed estimating
learning outcomes, we will give a brief test questions
review. To make further narration more convenient we’ll
use symbols.

Test questions are divided into several types. Using
different kinds of questions in a test can improve its quality
and make it more flexible.

Question types:

1. Multiple choice questions (MCQs) – student
should choose one from a list possible
answers.

2. Multiple response questions (MRQs) –
student should choose one or more from a
list possible answers, one or more (even all)
options can be the keys.

3. Text/Numerical question (Short answer
questions – SAQ) – student should input text,
numbers or both into a special empty text
field.

4. Matching questions involve linking items in
one list to items in a second list.

5. True/False questions require a student to
assess whether a statement is true or not.

6. Author’s type of questions [5, 6].

7. etc. [2, 5, 6]

Traditionally a MCQ or a MRQ consists of:

• a stem – question text;

• options – the choices are given after the stem.

The correct answer (or answers for MRQs) in the
options list is called “the key”. The incorrect (but
verisimilar) answers in the options list are called
“distracters” [2].

Example 1. MRQ question

System class String static methods which are
returned a string are:

1) Join()

2) Equals()

3) Copy()

4) CompareOrdinal()

5) Intern()

Example 2. MCQ question

Example 3. SAQ question

Compilation and running of this code:
int a = 7;

int i = 0;

while (a == 7)

{

 if (i < 4)

 Console.Write(i++);

 else

 Console.Write(++i);

 break;

}

will output: ___

TEST IN PROGRAMMING COMMON STRUCTURE

Test consists of a number of questions (test problems).
Besides dividing test questions into listed classical
question types it is desirable to use another one
classification. Each test problem consists of question’s
body which can contain whole programs or code
fragments.

Types and features of the test problems

A-type: Questions for checking a programming
language syntax and semantic theoretical knowledge. This
type of questions is represented by both the MCQs and
MRQs. Questions of this type do not contain code of whole
programs of all-in-one blocks of code.

B-type: Applied questions for checking practical skills;
functionality skills analysis, and development programs
according to a given functionality skills. This type of
questions is represented by MCQs, MRQs or (the better
one) SAQs. Questions of this type may contain program’s
code or all-in-one blocks of code.

B-type question’s features

• Program functionality or all-in-one code block
functionality analysis. Test problem is designed as
MCQ. Student is asked to resolve what the code
that is given in a stem execution result is. Source
data are defined by the program or by a user. In
the last case their values should be given in a
stem. If a syntax error is intentionally added to the
code the option is given (Example 2, 3).

• Analysis if a program meets requirement
functionality. Test problem is designed as MCQ
or MRQ. Student is provided with the whole
description of a program or a code block purpose,
which is given with gaps. One or more options

Compilation and running of this code:
int dif;

char ch1 = ‘A’;

char ch2 = ‘c’;

dif=Char.ToUpper(ch2).CompareTo(ch1);

Console.Write(dif);

will output:

1) -1

2) 1

3) 2

4) 34

5) 0

options

key

distracters

stem

89

should provide requirement functionality if they
are put in the gaps.

• Causes of departure from predefined behavior
analysis. Test problem is designed as MCQ or
MRQ. Stem contains a program (block of code)
purpose description, a whole program or all-in-
one code block and a result of its execution.
Student finds out presence of deviation of the
program’s result from the predefinition. Student
detects how far result of a program deviates from
the predefinition one of defines changings which
make program meeting requirement functionality.

Test questions which are connected with syntax errors
in a program’s code should be designed as MCQs or
MRQs with concrete clear options. This means that the
given options shouldn’t contain compiler’s messages.
Questions like “Which message will be generated by a
compiler as a result of compilation?” are also
unacceptable.

Quantity of A- and B-type questions in a structure of a
test should be balanced and can’t be changed by a test-
developer of in a concrete test. Topic’s contents
distribution by question’s types is free and is defined by a
test-developer.

Test decoration requirements

Test, for example, can be prepared as separate MS
Word file and contain 30 - 40 items.

Questions should be formed as a table, left column for
a number of question and keys. Key for a short-answer
question is indicated as a value, for MCQs and MRQs
numbers of right options are enumerated (see Table 1).

Each stem of MCQ or MRQ is followed by five
options. For MRQs even all of the options can be keys.

A stem and the options shouldn’t be more than 24 text-
strings long.

TABLE 1. TEST QUESTIONS DECORATION (FRAGMENT)

9 In the given code block which determines if a string

length and digits sum in it are equal

35 string str = Console.ReadLine();
int sum = 0;

for(int i = 0; i < str.Length – 1; i++)
 if(str[i] > ‘0’ – 1 && str[i] < ‘9’ + 1)
 sum += str[i] – 0;
Console.WriteLine(sum == str.Length);

programmer made mistakes:

 1) only 1..8 digits summs up
2) a string char is addressed by index
3) digits codes are summed up

4) variable sum is called in for
5) the last char of string isn’t analyzed

10 Mark commands after adding which into the following
code block execution will output 6

1345 using System;
class Program
{
 static void Main()
 {
 // TODO add your code here
 }
}

 1) Console.WriteLine(12 >> 1);

2) Console.WriteLine(2 & 4);

3) Console.WriteLine(5 ^ 3);

4) Console.WriteLine(6 | 4);

5) Console.WriteLine(7 >> 1 << 1);

11 Compilation and running of this code

1:0:True string s1 = "Cat", s2 = "cat", s3 = "Cat";
Console.Write(s1.CompareTo(s2)+":");
Console.Write(s1.CompareTo(s3));
Console.Write(":" + (s1 == s3));

will output:____

Tests which are developed according to given
specification are suitable to be used in two cases:

• Paper-and-pencil testing (blanks);

• Computer testing.

The time to complete a test (ex. 30 - 40 questions) is
limited (ex. from 40 to 60 minutes). Results are assigned
using a binary scale (dichotomous appraisal plan).

SAQs of B-type can be redesigned into MCQs or
MRQs for the computer testing needs.

THE RESEARCH

A group of 88 first-year students of Software
engineering department was given an exam in a test-form
after a first semester of the “Programming” academic
subject. Test’s questions were designed according to the
structure was given above. Test consisted of 30 questions;
time was limited by 30 minutes. This test we will call in
short “the test” here and below. The test was given in a
computer-based form.

Examinee’s results were put in a table – response
matrix. We used a dichotomous scale, for the items.
Response matrix was used as a base in calculating primary
scores and in visualizing the distribution of scores in a
diagram (Fig. 1).

Figure 1

The mean is the average of all of the scores on the test.
For the current test it was calculated as:

�� � �� �����	

where xi are the individual scores, N – a number of
examinees.

 There is a downfall in the middle of a diagram, near
the mean (�� = 10, 47). This means that we have got a
bimodal deviation curve. Besides that we can draw a
conclusion that all the examinees are divided into two
level-groups. It seems to be quite reasonable because of
peculiarity of the academic subject “Programming”. It is
learnt by the first-year undergraduates, former
schoolchildren, whose base knowledge in programming is
quite different. Some of them are lyceums-graduates and

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25

90

well-trained in IT and programming, the others finished
secondary schools and haven’t got much special
knowledge [3].

Item analysis statistics

The item difficulty (or item difficulty index) (p-value)
is a measure of the proportion of examinees who answered
the item correctly. The difficulty of an item j is calculated
as:

�� �
�

where Nj – number of examinees with a score 1 on item
j, and N – number of examinees [10].

TABLE 2. ITEM DIFFICULTY (FRAGMENT)

Item

number
11 12 13 14 15 16 17

pj 0,736 0,31 0,057 0,483 0,598 0,552 0,391

The middle p-value for our test is 0,353, minimum
value is p13 = 0,057, maximum p11=0,736. The test hasn’t
got very difficult and very easy items. On the whole, the
test is corresponded to the examinees’ level.

The item discrimination index is a measure of how well
an item is able to distinguish between examinees who are
knowledgeable and who are not [10]. High values of this
index correspond to good items and low – to bad ones. The
item discrimination index for item j is calculated as:

� � ���
� �
���
�

where ���– number of examinees from the best group

with a score 1 on item j, ���– number of examinees from

the worst group with a score 1 on item j, N
b
 – number of

examinees in the best group, N
w
 – number of examinees in

the worst group.

In short, item discrimination indexes which are
calculated for the test show that it works quite well for this
scope of students. All of item discrimination indexes are
positive, so better examinees did test better then worse
examinees. Items 9, 10, 13, 28, 30 have Dj < 0,19. Items 1
and 22 have 0,19 < Dj < 0,3. These items should be
reviewed or altered.

The point-biserial correlation is the correlation between
right (wrong) scores that students receive on a given item
and the total scores that the examinees receive when
summing up their scores across the remaining items [11].
The point-biserial correlation index is calculates as:

����� � ���
� � ����� ��� ���

where ��� – the average total score for those students

who answered item j correctly, �� – the average total score
for the whole group of examinees, �� – the standard
deviation of the total score for the whole group of
examinees, pj – the difficulty index for item j, qj = 1 – pj
[12].

The point-biserial correlation indexes for the all test’s
items are positive (Table 2). High negative value means
that examinees who scores well on the test have a lower
probability of answering this item correctly.

TABLE 3.THE POINT-BISERIAL CORRELATION

Item

number

1 2 3 4 5 6

rpbjs 0,405 0,286 0,223 0,34 0,269 0,585

Item

number

7 8 9 10 11 12

rpbjs 0,448 0,333 0,038 0,225 0,263 0,473

Item

number

13 14 15 16 17 18

rpbjs 0,383 0,549 0,409 0,385 0,575 0,366

Item

number

19 20 21 22 23 24

rpbjs 0,596 0,572 0,619 0,324 0,456 0,526

Item

number

25 26 27 28 29 30

rpbjs 0,572 0,562 0,374 0,29 0,539 0,282

The retest for the same examinees on this test is
impossible. Thus the split-half method or the KR-20 may
be used in estimating reliability of the test.

The KR-20 (Kuder-Richardson 20) was developed to
handle only dichotomously scored items [12]. So far as we
used dichotomous scale for the items of the test we apply
the KR-20:

��� !" �

 � #$# �

� �������	
� %

where N – number of test items, pj – the difficulty
index for item j, qj = 1 – pj, Dx – the total test variance.

For the test rKR-20 = 0,826.

Using the standard deviation of the total score (��=
5,38) and the reliability of the test we can calculate �& –
standard error of measurement (SEM) to estimate how
close to the true score the obtained score is [12].

�& � ���'# � ��� !"= 2,242

Prediction interval with the 5% level is:

��� � (�&) �� * (�&� � ��� � +)+,+) �� * +)+,+�
According to the test theory and practice such

reliability is quite acceptable and the test can be considered
professional enough.

THE RESULTS SCALING

It will be recalled that the main goal of testing is
establishing minimum number of points, achievement of
which is enough to give a student a good mark.

The lifetime of study programs of the modern academic
subjects is quite short. Besides that, groups of examined
students are small. Usually they count one or two students’
groups (25-30 persons in each), four-five groups are
infrequent occurrence. Thus, there is impossible to get
regulations which widely demonstrate a test quality and
global scores of examinees, because of absence a huge
representative sampling of examinees in the University.

It is also almost impossible to organize a peer review of
all the tests, because a number of lecturers who are familiar
with a content of each current test is limited and this kind
of activity isn’t traditionally contained into their
syllabuses. The same troubles take place in setting a
minimum number of points using a posteriori examination
of a test and the results of it.

91

So, in spite of requirement of criterion-referenced type
of interpretation of the test, we have to resort to norm-
referenced type of interpretation. This gives a chance to
determine an examinee’s relative position within the
specified group, to rank examinees according to their
scores and to estimate indirectly difficulty of a test.

Reverting to the test, we used two approaches to
interpret individual scores of the examinees.

First of all, we reduced individual scores to a standard
Z-score. A mark of an examinee is calculated as:

where xi – an individual score, – the average total
score for the whole group of examinees, – the standard
deviation of the total score for the whole group of
examinees.

z-values lies between -3 and +3, so they can’t be
directly use as marks in the ten-point score [3]. To
transformation from z-values to ten-point values we use the
following ratio:

where xi – an individual score, Zi – a mark in z-score,
Zmax – maximum mark in z-score, Zmin – minimum mark in
z-score.

For the test Zmin = -1,95, Zmax = 2,89.

The threshold value for the ten-point score is 3,5.
Marks less than this value are unsatisfactory, marks from
3,5 to 4,5 are satisfactory, from 4,5 to 7,5 are good, more
than 7,5 – excellent [3].

To compare ten-point score with the traditional scores,
we made a transformation from z-values to t-score:

Figure 2. Total scores

Ti = 50 + 10Zi

Limit values of t-score marks are 30,54 and 78,89. To
make comparison easier results of calculating is put into a
graph which is given on Figure 2. T-score values on Figure
2 were decreased in ten times.

CONCLUSION

Computer testing in “Programming” and “Algorithmic
languages” is an effective method of impartial assessment

of student’s achievement at the different stages of
educational process. Testing is reasonable in preliminary
examination to find out groups of students whose further
education needs additional consultations or adaptation
courses. Testing can provide self-control in learning
academic disciplines which are connected with
programming. Testing is effective as intermediate test-
check and very useful then using as a part of total test-
check, exam for example.

It should be noted that some factors prevent from
regular and multi-faced usage of computer testing in
institutions of higher education.

• Test development is a high work content
activity, which isn’t taken in consideration in
lecturers’ syllabuses.

• Occurring everywhere absence of licensing
computer testing software with a special
functionality to collect individual scores of
examinees and items.

• Neediness of tests’ approbation. Primary
contingent of examinees is absent (tests are
prepared to small groups of students; they
can’t be approved before their application).
There are no administrative facilities to attract
experts to analyze tests’ questions and to
interpret results.

Recommendations in development of educational tests
in programming which are given in this work can be used
as based ones in different universities where disciplines
which are connected with algorithmic languages and
programming are taught.

REFERENCES

[1] H. Gulliksen, “Theory of mental tests”, New York: John Willey &
Sons, Inc., 1950.

[2] C. McKenna, J. Bull, “Designing effective objective test
questions: an intoructory workshop”, CAA Centre, June 1999

[3] V.V. Podbelskiy, O.V. Maksimenkova. “Programming as a part of
the Software Engineering education” // Proceedings of the 4-th
Spring/Summer Young Researchers' Colloquium on Software
Engineering (SYRCoSE 2010), 2010. 165 – 168 pp.

[4] T. Dawson, “Basic concepts in classical test theory: relating
variance partitioning in substantive analyses to the same process
in measurement analyses”, URL:
http://www.eric.ed.gov/PDFS/ED406443.pdf

[5] В.И. Звонников, М.Б. Челышкова. Современные средства
оценивания результатов обучения. – М.: Издательский центр
«Академия», 2009. – 224 с.

[6] В.И. Звонников, М.Б. Челышкова. Контроль качества
обучения при аттестации: компетентностный подход. – М.:
Университетская книга; Логос, 2010. – 272 с.

[7] Sun Haiyang “An application of Classical test theory and
Manyfacet Rasch measurement in analyzing the reability of an
English test for non-English major graduates”, Chinese Journal of
applied linguistics (Bimonthly). China, vol. 33, pp. 87 – 102,
April 2010.

[8] Т.П. Хлопова, Т.Л. Шапошникова, М.Л. Романова, А.Р.
Ушаков. Математические модели дидактического процесса //
Научно-теоретический журнал «Ученые записки». – 2010 –
№ 2. с. 107 – 112.

[9] J. Gonzalez, R. Wagenaar, “Universities’ contribution to the
Bologna Process. An introduction”, Spain: Publicaciones de la
Universidad de Deusto, 2008.

[10] URL: http://www.proftesting.com/test_topics/pdfs/steps_9.pdf

T-score / 10

Ten-point score

Pass mark

92

[11] S. Varma “Preliminary item statistics using point-biserial
correlation and P-values”, URL:
http://www.eddata.com/resources/publications/EDS_Point_Biseria
l.pdf

[12] P.V. Engelhardt “An Itroduction to Classical Test Theory as
Applied to Conceptual Multiple-choice Tests”

93

To The Parallel Composition of Timed Finite State
Machines

Olga Kondratyeva, Maxim Gromov
Radiophysics Faculty

Tomsk State University
Tomsk, Russia

kondratyeva.olga.vic@gmail.com, gromov@sibmail.com

Abstract—This paper deals with the problem of the parallel
composition construction for two Timed Finite State Machines
(TFSMs). As a key to the solution of this problem we use parallel
composition of common Finite State Machines (FSMs). We
transform given TFSMs to FSMs and prove theorem, that
obtained FSMs correctly describe behaviour of the given TFSMs.
Then we build parallel composition of these FSMs, which being
transformed back to TFSM, gives desired parallel composition of
the given TFSMs

Keywords-Finite State Machine; Timed Finite State Machine;
parallel composition

I. INTRODUCTION
The Timed Finite State Machine (TFSM) is a model based

on well-known Finite State Machine (FSM), which allows
explicit description of a time aspects of system behaviour. For
example, reaction of a system can be different depending on
the time moment an input action is applied to it. In the last few
years the interest to the various problems of TFSM has
increased. The main lines of researches covered by the post
papers are the analysis problems: relations between
TFSMs [1, 2] and test generation methods against those
relations [3, 4].

In our paper we consider a problem of synthesis, namely
the problem of parallel composition construction of two
TFSMs. This procedure gives an instrument to build complex
systems from simple ones, each described by a TFSM. Also,
the approach we used in this paper to describe a parallel
composition construction procedure opens the way for solving
various problems of TFSMs.

II. PRELIMINARIES
In this section we give some notions and definitions, which

we shall use all over the paper.

A. Language
An alphabet is a finite non-empty set of symbols and as

usual, given an alphabet X, we denote X* the set of all finite
sequences (words) of symbols from X including the empty
word . The number of symbols in a sequence we shall call
length of this sequence; by definition, length of the empty
word is zero. A subset L  X* is a language over alphabet X.

Let language L be defined over alphabet Y and X be a
non-empty subset of Y. The X-restriction LX of the language
L is derived by deleting from each sequence of L each symbol
of the set Y\X. When the language L is defined over alphabet
X, and Y is some alphabet that is disjoint with X, consider the
mapping φ: X  2(XY)* such, that φ(x) = {x : ,   Y*}.
This mapping can be extended over sequences from X* as
follows. Let  be a sequence from X* and x be a symbol from
X, then φ() = Y* and φ(x) = φ(x)φ(), where the sign “”
stands for concatenation of sequences. We shall call the
language LY = {φ() :   L} the Y-expansion of language L.

B. Finite automata
There exists a special set of languages which can be

described by the use of finite automata; those are regular
languages, which are closed under union, concatenation,
complementation, intersection and also under restriction and
expansion.

A finite automaton (FA) is a 5-tuple S = S, A, s0, δS, Q,
where S is a non-empty finite set of states with the
designated initial state s0, A is a finite alphabet of actions,
δS  S  A  S is a transition relation, and Q  S is a set of
final (accepting) states. If (s1, a, s2)  δS, then we say, that
automaton S in the state s1 takes action a, and changes its
state to the state s2; the state s2 is called an a-successor of
the state s1 and we denote by sucS(s1, a) the set of all
a-successors of the state s1. Function sucS can be extended
over sequences from A* as follows:

sucS(s1, a) = {sucS(s2, a) : s2  sucS(s1, )}.

By the definition sucS(s1, ) = s1.

Finite automaton S is called deterministic if for each pair
(s1, a)  S  A there is at most one state s2  S such that
(s1, a, s2)  δS, i.e. |sucS(s1, a)|  1, otherwise, the finite
automaton is non-deterministic.

Finite automaton S is called complete if for each pair
(s1, a)  S  A there is at least one state s2  S such that (s1, a,
s2)  δS, i.e. |sucS(s1, a)|  1, otherwise, the finite automaton
is partial.

Let us consider a word   A*. Automaton S recognizes
or accepts  if there exists an accepting state q  Q such that
q is a -successor of the initial state, i.e. q  sucS(s0, ). The

This paper is partially supported by Russian Foundation for Basic
Research (Grant 10-08-92003-ННС_а)

94

set LS of all sequences, which are accepted by S, is the
language accepted by the automaton or simply the language
of the automaton S. The language of a finite automaton is a
regular language [5].

C. Finite State Machines
To describe behaviour of a system, which transforms

sequences over one (input) alphabet into sequences over
another (output) alphabet, special kind of automata, called
Finite State Machine, is usually used [6].

A finite state machine (FSM) is a 5-tuple
S = S, I, O, s0, S, where S is a non-empty finite set of
states with initial state s0, I and O are disjoint finite input
and output alphabets, S  S  I  O  S is the transition
relation. If (s1, i, o, s2)  S, then we say, that the FSM S in
the state s1 gets the input action i, produces the output action
o and changes its state to s2; the state s2 is called an
i/o-successor of the state s1. The set of all i/o-successors of
the state s1 is denoted sucS(s1, i, o), while

sucS(s1, i) = {s2  S:  o  O such that s2  sucS(s1, i, o)}

is the set of all i-successors of the state s1.

Functions sucS(s1, i, o) and sucS(s1, i) can be extended to
the sequences   I* and   O*, where lengths of  and 
are equal, as follows:

sucS(s1, i, o) = {sucS(s2, i, o): s2  sucS(s1, , )}

and

sucS(s1, i) = {sucS(s2, i): q  sucS(s1, )}.

By the definition sucS(s1, ) = sucS(s1, , ) = s1.

FSM S is deterministic if for each pair (s1, i)  S  I there
is at most one pair (o, s2)  S  O such that (s1, i, o, s2)  S,
i.e. |sucS(s1, i)|  1, otherwise, FSM S is non-deterministic.

FSM S is complete if for each pair (s1, i)  S  I there is at
least one pair (o, s2)  S  O such that (s1, i, o, s2)  S, i.e.
|sucS(s1, i)|  1, otherwise, FSM S is partial.

FSM S is observable if for each triple
(s1, i, o)  S  I  O there is at most one state s2  S such that
(s1, i, o, s2)  S, i.e. |sucS(s1, i, o)|  1, otherwise, FSM S is
non-observable.

A sequence  = (i1, o1)(i2, o2)…(in, on)  (I  O)* is
called a trace of given FSM S if the set of /-successors,
where  = i1i2…in and  = o1o2…on, of the initial state of S is
non-empty, i.e. sucS(s0, , ) ≠ . The set of all traces of the
FSM is the language LS of the FSM S. Further, talking about
traces of an FSM, we assume that a sequence  and the
corresponding pair / are equivalent notions.

Given FSM S = S, I, O, s0, S, the automaton Aut(S) is a
5-tuple S  (S  I), I  O, s0, S, S, where for each
transition (s1, i, o, s2) in S there are two transitions
(s1, i, (s1, i)), and ((s1, i), o, s2) in S. Since the language LS

aut
of the automaton Aut(S) is the language of the FSM [7] it

holds that LS
aut  (IO)*, where IO is concatenation of

alphabets I and O.

D. Timed Finite State Machines
A timed finite state machine (TFSM) is a 6-tuple

S = S, I, O, s0, S, ΔS, where the 5-tuple S, I, O, s0, S is
an FSM and ΔS: S  S  (  {}) is a time-out function.
If ΔS(s1) = (s2, n), then the TFSM S in the state s1 will wait
an input action for n time units (ticks), and if none arrives it
will move to the state s2 (possibly the same as s1), without
producing any output. If ΔS(s1) = (s2, ), then we require
s2 = s1 and the TFSM can stay in the state s1 infinitely long,
waiting for an input. Definitions of a deterministic,
complete and observable TFSM are based on the
corresponding definitions for underlying FSM.

A special timed or clock variable can be associated with
a TFSM; this variable counts time ticks passed from the
moment when the last transition has been executed and is
reset to 0 after each transition (input-output or time-out). In
this paper, for the sake of simplicity, we assume that the
output is produced immediately after a machine gets an
input, i.e., we do not consider delays when executing
transitions.

A pair (i, t)  I  (  {0}) is a timed input meaning that
the input i is submitted to the TFSM t ticks later than the
previous output has been produced. A sequence of inputs is
a timed input sequence.

We also define a special function timeS [1] as follows:

1. timeS(s, t) = s for all t {0} if ΔS(s) = (s, ).

2. timeS(s1, t) = s1 for all t < T and ΔS(s1) = (s2, T).

3. timeS(s1, t) = s2 for t = T and ΔS(s1) = (s2, T).

4. for t > T and ΔS(s1) = (s2, T) define recursively
timeS(s1, t) = timeS(s2, t – T), i.e. there is a sequence s1, s2,…
sk such that for each j = 1…k – 1 it holds ΔS(sj) = (sj + 1, Tj)
and T1 + T2 + … + Tk-1 ≤ t < T1 + T2 + … + Tk-1 + Tk, then
timeS(s1, t) = sk.

The function sucS is defined similar to that defined for
an FSM and is extended to timed inputs as follows:
sucS(s, (i, t), o) = sucS(timeS(s, t), i, o).

A sequence

 = (i1, t1, o1)(i2, t2, o2)…(in, tn, on)  [I  ({0})  O]*

is called a functional trace of a TFSM S, if the following
holds sucS(s0, , )  , where  = (i1, t1)(i2, t2)…(in, tn) and
 = o1o2…on. The set LS of all functional traces of the TFSM
S is the f-language of the TFSM S. Here we again assume,
that the pair / and the sequence  are the equivalent
notions, when speaking about f-language of a TFSM.

E. Equivalence of automata, FSMs and TFSMs
Two finite automata S and P with languages LS and LP

are said to be equivalent if LS = LP.

95

Two FSMs S and P with languages LS and LP are said to
be equivalent if LS = LP.

Two TFSMs S and P with f-languages LS and LP are said
to be equivalent if LS = LP.

III. PARALLEL COMPOSITION
In this paper we propose definition of parallel composition

for two TFSMs. This definition relies on the definition of FSM
parallel composition and the latter is defined in terms of
parallel composition of corresponding automata. For that
reason we also describe the conversion procedure [8] of a
TFSM into an FSM, which then is used for the parallel
composition construction. We also prove, that built FSM
correctly reflects the language of a given TFSM.

A. Parallel composition of languages
Given pairwise disjoint alphabets X, Y, Z, languages L1

over X  Y and L2 over Y  Z, the parallel composition of
languages L1 and L2 is the language

L = [(L1)Z  (L2)X] XZ,

defined over X  Z and denoted L1 XZ L2 or just L1  L2
when the union X  Z is clear from context.

B. Parallel composition of automata
Given two finite automata S = S, I  U, s0, δS, QS and

P = P, U  O, p0, δP, QP, the automaton
C = С, I  O, c0, δC, QC is a parallel composition of
automata S and P, denoted C = S  P, iff LC = LS  LP. To
obtain composition of automata define expansion and
restriction over automata as follows.

Given disjoint alphabets I and O and an automaton
S = S, I, s0, δS, QS. O-expansion of S is an automaton
SO = S, I  O, s0, δS  µS, QS, where µS  S × O × S
contains all triples (s, o, s), such that o  O and s  S, i.e. to
expand an automaton we add loops marked with all symbols
of alphabet O for each state.

Given disjoint alphabets I and O and an automaton
S = S, IO, s0, δS, QS. I-restriction of S is an automaton
SI = S, I{}, s0, µS, QS, where for each transition
(s1, a, s2)  δS we add transition (s1, a, s2) into µS in case
a  I, while we add transition (s1, , s2) into µS in case
a  O, i.e. to restrict an automaton we replace all symbols
of alphabet O by special symbol . An automaton without
-moves can be derived by the determinization procedure [9].

Now, the procedure of parallel composition construction of
two given automata S and P can be described by the formula:

C = [S O  PI] IO.

C. Parallel composition of FSMs
Following [7], we define the parallel composition of two

FSMs (Fig. 1) based on their corresponding automata.
However, the language of the parallel composition of two
automata is not necessary an FSM language. For this reason,

the obtained language should be intersected with the language
(IO)*, where I and O are external input and output alphabets of
composition, to ensure that each input is followed by some
output.

Given FSMs S = S, I1  V, U  O1, s0, λS and
P = P, I2  U, V  O2, p0, λP, the parallel composition
C = S  P is derived in the following way. We first derive
corresponding automata Aut(S) and Aut(P) and the parallel
composition Aut(S)  Aut(P). The obtained automaton then
is intersected with the automaton that accepts the language
(IO)* and is transformed to the FSM C coupling inputs with
the following outputs. FSM C = С, I, O, c0, λC is the
parallel composition of S and P, where I = I1  I2 and
O = O1  O2.

Figure 1 – Parallel composition of FSMs S and P.

It is proven [7], that parallel composition describes
following interaction of composed FSMs S and P (Figure 1).
The system starts it work, when both S and P are in their
initial states, i.e. composition C = S  P is in its initial state.
External environment applies input action either on channel I1
or I2, but only one at a time, and then waits for an external
output reaction of the system through the one of the output
channels O1 or O2. The component FSM, which just have got
an input action, processes this input and produces either an
external output (and so external environment can apply its
next input action), or an internal output action that is internal
input action for another component FSM. In the latter case, the
second component FSM processes a submitted internal input
and produces either an external output or an internal output
applied to the first component FSM. The dialog between
component FSMs continues until one of them produces an
external output. When an external output is produced the
system is ready to accept the next external input. Here we
notice that there can be an external input initiating an infinite
dialog between component FSMs. Such infinite cycles of
internal actions are called livelocks. However, in practical
situations, except of some special cases, input sequences
inducing livelocks are usually forbidden.

D. Correspondence between Timed Finite State Machine and
Finite State Machine
Before we propose how to construct the parallel

composition of timed finite state machines, we introduce the
transformation procedure of a TFSM into an FSM and back,
and then prove, that obtained FSM correctly describes
f-language of the TFSM.

I1

P

S

I2 O2

O1

С

U V

96

Given TFSM S = S, I, O, s0, λS, ΔS, we can build an
FSM with similar set of functional traces by adding
designated input 1  I and output N  O [8]. Corresponding
FSM AS = S  St, I {1}, O {N}, s0, λS

  can be built by
adding T – 1 copies for each state s  S with defined a finite
time-out T > 1. There is a chain of transitions between these
copies marked with special input-output symbol 1/N. All
other transitions are preserved for each copy. Formally,
constructing of AS can be done by the use of the following
rules:

1. St contains all such states s, t, t = 1, ..., T – 1 where
s  S and ΔS(s) = (s', T), 1 < T < .

2. For each s  S and s, t  St and for each i/o, i  I,
o  O, there are transitions (s, i, s', o), (s, t, i, s', o)  λS


iff there is a transition (s, i, s', o)  λS.

3. For each s  S such that ΔS(s) = (s, ) there is a
transition (s, 1, s, N)  λS

 .

4. For each s  S such that ΔS(s) = (s', T), T = 1, there is
a transition (s, 1, s', N)  λS

 .

5. For each s  S such that ΔS(s) = (s', T), 1 < T < ,
there are transitions (s, 1, s, 1, N)  λS

 ; for each j = 1, …,
T – 2 there are transitions (s, j, 1, s, j + 1, N)  λS

 and
(s, T – 1, 1, s', N)  λS

 .

We use SA to denote S  St, IA to denote I {1} and OA to
denote O {N}.

By construction, when a given TFSM S has n states, a
corresponding FSM AS has ()

s S
n s


 states, where n(s) = 1 for

ΔS(s) = (s, ) and n(s) = T for ΔS(s) = (s', T).

Consider an example in Figure 2. State q of TFSM has
timeout 2 and therefore, we add one copy of q, 1 (denoted
“q1”) which is 1/N-successor of the state q while its
1/N-successor is s. The sets of successors of q and q, 1 for
all other I/O pairs coincide.

Figure 2 – TFSM S (top figure) and corresponding FSM
AS (bottom figure)

An FSM AS = SA, IA, OA, s0, λS
  such that there are no

transitions marked with 1/o or i/N where o  N and i  1 can
be transformed to TFSM S = S, I, O, s0, λS, ΔS using the
following rules:

1. ΔS(s) = (s, ) iff (s, 1, s, N)  λR
 .

2. Define ΔS(s) = (sT, T) for all such s that there is a
chain of transitions

1/ 1/ 1/ 1/
1 1...N N N N

T Ts s s s    , s, sT  SA,
T  1 and for each i/o  I  O and 1  j  T – 1 it holds that

Ssuc (sj, i, o) = Ssuc (s, i, o), but for some i/o  I  O it
holds that Ssuc (s, i, o)  Ssuc (sT, i, o).

3. For each s  SA, i  I and o  O, if (s, i, s', o) λS


then (s, i, s', o)  λR.

Notice that transformation from a given TFSM to an
FSM according to the above rules is unique whereas the
back transformation from an FSM to a TFSM could be made
in different ways; however all such TFSMs are pairwise
equivalent, i.e. their f-languages are the same (see the
Corollary 2 to Proposition 1).

The following statements establish the relationship
between a TFSM and the corresponding FSM built by the
above rules.

Proposition 1. FSM AS has a trace
1

1/ ... 1/
t

N N i1/o1 …

1/ ... 1/
mt

N N im/om iff TFSM S has a functional trace

i1, t1/o1… im, tm/om.

Proof. According to the rules of constructing AS, for each
two states s1 and s1, j and each i  I and o  O, the set of
i/o-successors of s1, j coincides with the set of
i/o-successors of state s1 in S. Thus if there exists such s2
that (s1, i, s2, o)  λS, then there is a transition /

1 2
i os s in

both machines S and AS and there is a transition
/

1 2, i os j s in AS. Therefore, it is enough to show that AS
is moving from state s1 to some state q  S  St under the
sequence 1/ ... 1/

t
N N with t > 0, and the set of i/o-successors of

q in AS coincides with the set of i/o-successors of the state
timeS(s1, t) in S.

If ΔS(s1) = (s1, ), then timeS(s1, t) = s1 holds for each
value of t; therefore, there is a transition (s1, 1, s1, N)  λS


and AS remains at state s1 under the sequence1/ ... 1/

t
N N .

Consider now ΔS(s1) = (sT, T). If t < T, then
timeS(s1, t) = s1 and the sequence 1/ ... 1/

t
N N moves AS from

s q

a/x, 1

2

 b/x

s q

a/x, 1/N
b/x

1/N

 b/x
1/N

q1

97

s1 to s1, t. The set of i/o-successors of s1, t in AS coincides
with the set of i/o-successors of s1 in S. If t  T, then
timeS(s1, t) = timeS(timeS(s1, T), t – T) = timeS(sT, t – T). By
construction, the sequence 1/ ... 1/

T
N N moves AS from s1 to

sT, and the sequence 1/ ... 1/
t T

N N


 is applied to AS at state sT,

i.e., this case is inductively reduced to the previous case
t < T.�

Corollary 1. TFSMs S and P are equivalent iff
corresponding FSMs AS and AP are equivalent.

Corollary 2. If TFSMs S and P both are built by the
above procedure from an FSMs AS, then S and P are
equivalent.

Proposition 2. TFSM S is deterministic (complete or
observable) iff the corresponding FSM AS is deterministic
(complete or observable).

Proof. The property to be deterministic, observable and
complete is specified by the cardinality of sets of i/o- and
i-successors. FSM AS has one and only one transition with
pair 1/N at each state, that is why properties of FSM AS to be
deterministic, observable and complete depend on
transitions with other I/O pairs.

By construction it holds that

Ssuc (s, t, i, o) = Ssuc (s, i, o) = sucS(s, i, o) for each state
s, ΔS(s) = (s', T), and for any value of t < T. Hence
| Ssuc (s, t, i, o)| = | Ssuc (s, i, o)| = |sucS(s, i, o)| and
| Ssuc (s, t, i)| = | Ssuc (s, i)| = |sucS(s, i)|. �

E. Parallel composition of TFSMs
Parallel composition of two TFSMs S and P is a TFSM

C = S  P obtained from the FSM AS  AP.

Let us illustrate our approach by constructing the parallel
composition of TFSMs.

Figure 3 - Parallel composition of TFSMs as a parallel

composition of corresponding FSMs

The parallel composition of FSMs that corresponds to
the parallel composition of TFSMs is shown in Figure 3. In
this case, port 1 is a common port for both machines as it
corresponds to a counter of ticks and this accepts the
designated input 1 that is an input for both component FSMs
and can be considered as an input that synchronizes time

behaviour of component FSMs. The designated output N is
observed, when there are no outputs at ports O1 and O2 (it is
observed at both of the ports). Each component FSM has its
own time variable, which increments every moment when
component gets the designated input 1, and since this signal
is applied via a common port for both components the
global time is used, and thus, we can say that it
synchronizes the behaviour of component FSMs.

As an example, consider the composition of TFSM S in
Fig. 2 and P in Fig. 4 where corresponding FSMs are shown
as bottom figures. Consider symbols a and o to be external
input and output respectively, x and b are internal symbols.

Figure 4 – TFSM P (top figure) and corresponding FSM

AP (bottom figure)

To derive the parallel composition of FSMs, we firstly
construct the related automata which are shown in Figure 5.
Double lines denote accepting states.

Figure 5 – Automata Aut(AS) (top figure) and

Aut(AP) (bottom figure)

a

s, 1

q1

s, a s q

 q1, 1 q, 1

x

b
b N

N

N

1

1

1

x

h, x

g1

g h

 g, 1 h, 1

b

x 1 N

o

N

x

1

 g, x

1

g h

x/b, 2

1

x/o

g h

x/b
x/o,
1/N

1/N

 1/N

1/N,
x/b

h1

I1

Q

S

1

I2 O2

O1

С

U V

98

The second step is to derive the intersection of expended
automata that is shown in Figure 6. This intersection should
be restricted onto external alphabet (I {1}O {N}) and
this restriction intersected with an automaton that accepts the
language [(I {1})(O {N})]* and it is shown in Figure 7.

Figure 6 – Intersection of Aut(AS) and Aut(AP)

Figure 7 – an automaton accepting language

[{a, 1}{o, N}]*

We then derive a corresponding FSM coupling inputs and
the following outputs (Figure 8) and transform this FSM to a
corresponding TFSM (Figure 9) that is the parallel
composition of TFSMs S and P.

Figure 8 – Composition of S and P (FSM)

The state (q1, h) is copy of the states (q, h) and (q, g1), so

there is a time-out equals 2 in the states (q, h) and (q, g1).

Furthermore, the states (q, h) and (q, g1) are (f-)equivalent
likewise the states (s, g) and (s, h). That is why we keep only
two states in TFSM, shown in Figure 9.

Figure 9 – Composition of S and P (TFSM)

IV. CONCLUSION AND FUTURE WORK
The propositions 1 and 2 with corollaries give an approach

for solving different problems of TFSMs: first, the
corresponding FSMs should be constructed, then appropriate
methods of FSM theory can be applied to solve the problem of
interest and, finally, the result should be converted back to a
TFSM. In this paper we used this approach to define, but more
importantly, to construct parallel composition of given TFSMs.
However, there is a weak point in the presented work. We have
not given a proof of the fact, that such a way to construct
parallel composition gives a TFSM which describes a system,
combined from two TFSMs, operating in the slow environment
setting, as it is done for FSM parallel composition [7]. But
Propositions 1 and 2 give confidence, that such a proof can be
obtained.

Another direction of research with proposed approach,
which we want to designate, is solving the TFSM equations.
This line of researches is not covered enough in works on
timed finite state machines and we believe that known methods
for solving the FSM equations can be adapted to TFSMs easily
enough.

REFERENCES
[1] М. Громов, Н. Евтушенко, “Синтез различающих экспериментов

для временных автоматов,” Программирование, № 4,
Москва: МАИК, 2010, с. 1–11.

[2] M. Gromov, K. El-Fakih, N. Shabaldina and N. Yevtushenko,
“Distinguishing non-deterministic timed finite state machines,” in
FMOODS/FORTE-2009, LNCS, vol. 5522, Berlin: Springer, pp. 137–
151, 2009.

[3] M. G. Merayo, M. Nunez and I. Rodrigez, “Formal testing from timed
finite state machines,” in Computer Networks, vol. 52(2), 2008,
pp. 432–460.

[4] K. El-Fakih, N. Yevtushenko and H. Fouchal, “Testing finite state
machines with guaranteed fault coverage,” in TESTCOM/FATES-2009,
LNCS vol. 5826, Berlin: Springer, pp. 66–80, 2009.

[5] A. V. Aho and J. D. Ulman, “The theory of parsing, translation and
compiling: Parsing,” New Jersey:Prentice-Hall, 1002 p., 1973.

[6] A. Gill, “Introduction to the theory of finite-state machines,” New-
York:McGraw-Hill, 207 p., 1962.

[7] Спицына Н. В. Синтез тестов для проверки взаимодействия
дискретных управляющих систем методами теории автоматов:
Диссертация на соискание ученой степени канд. технических наук.
– Томск, 2005. – 158 c.

[8] М. Жигулин, Н. Евтушенко, И. Дмитриев, “Синтез тестов с
гарантированной полнотой для временных автоматов,” Известия
Томского политехнического университета, Т. 316, № 5, Томск:
Издательство ТПУ, с. 104–110, 2010.

[9] J. Tretmans, “Test geniration with inputs, outputs and repetitive
quiescence,” Software–Concepts and Tools, vol. 17(3), pp. 103–120,
1996

s, g q, h
a/o, 1

2

s, g

q, h

s, h q1, h

 q, g1

1/N

1/N

1/N

1/N

a/o

a/o,
1/N

s, g

(s, a), g (s, a), (g, 1)

 q, g1

 (q, 1), (h, 1)

 q, (g, x)

(s, a), h

q, h

q, (h, x)

q1, h

 (q1, 1), (h, 1)

s, h

 (s, 1), (h, 1)

a

a

b

x

x

o

N

N

N

N

1

1

1

1

1

n m

a, 1

o, N

99

Separating Non-Determinisic Finite State Machines
with Time-Outs

Rustam Galimullin, Natalia Shabaldina
Radiophysics department
Tomsk State University

Tomsk, Russia
nihilkhaos@gmail.com, NataliaMailBox@mail.ru

Abstract— In this paper we consider one of the classical finite
state machine (FSM) model modifications - FSM with time-outs
(or timed FSM). In this model in addition to the ordinary
transitions under inputs there are transitions under time-outs
when no input is applying. The behavior of many modern
systems includes time-outs, for example, mobile phones, etc. In
the past few years some work have been carried out on studying
different relations between timed FSMs. Non-separability
relation is very attractive for non-deterministic classical FSMs
and FSMs with time-outs course for this relation we don’t need
«all weather conditions» while testing. In this paper we present
and compare two approaches for building a separating sequence
for two separable FSMs with time-outs. One of them is using a
conversion to classical FSMs, while another one is dealing
directly with timed FSMs.

Keywords - finite state mashines with time-outs, non-
deterministic finite state machines, non-separability relation, timed
input sequence, separating sequence

I. INTRODUCTION

 Most of the modern discrete systems, such as digital
circuits, telecommunication protocols, logical games, etc., can
be described as Finite State Machines (FSM). The entry of
FSM receives one of the enabled inputs and returns an output.
On condition it is necessary to take into account time aspects
of discrete system, time function is interposed[1-4]. FSMs
with introduced time function are called FSMs with time-outs
or timed FSM (TFSM). Provided that input is being handled
uniquely, TFSM is named deterministic, otherwise – non-
deterministic. To distinguish correct and invalid TFSMs
distinguishing sequences are generated. They claim exhaustive
search of all TFSM’s reactions to the input sequence, i.e. it is
necessary to input every sequence from test suite enough times
to observe all outputs of the system. Practical implementation
of this assumption is almost impossible, and it’s mostly used
to check non-separability relation[5,6]. FSMs are separable[5],
if there is an input sequence (called separating sequence), such
that the sets of output sequences to this sequence doesn’t
intersect. In this paper two different approaches for building
separating sequence for FSMs with time-outs are suggested.

II. PRELIMINARIES

 Formally, Finite State Machine (FSM) is a quintuple
S = 〈S, I, O, s0, λS〉, where S is a finite nonempty set of states
with initial state s0, I and O – finite non-intersecting sets of
inputs and outputs, λS ⊆ S × I × S × O – transition relation. If
for each pair (s, i) ∈ S×I there is at least one pair (o, s′) ∈
O×S such that (s, i, o, s′) ∈ λS, FSM is called comlete. FSM
with time-outs is a sextuple S = 〈S, I, O, s0, λS, ∆S〉, where S
is a finite nonempty set of states with initial state s0, I and O –
finite non-intersecting sets of inputs and outputs,
λS ⊆ S × I × S × O – transition relation and
∆S: S → S × (N ∪{ ∞}) – time-outs function, that defines
time-out for every state. The time reset operation resets the
value of the TFSM’s clock to zero at the execution of the
transition. If TFSM, being in certain state s1, doesn’t receive
input for a certain time t such that (s1, t, s2) ∈ ∆S, it transfers to
the state s2. FSM is called observable, if for each triple (s, i,
o) ∈ S×I×O there is not more, than one state s’ such that (s, i,
o, s’) ∈ λS. FSM could be considered as FSM with time-outs
where for each state s ∈ S ∆S(s) = (s, ∞). Timed input is a
pair <i, t> ∈ I × Z.

Similar to [3], in order to extend transition relation to

timed inputs we add a function timeS: S × 0
+Z → S that

allows to determine TFSM’s state when the clock value is
equal to t based on the current state. Let’s consider the
sequence of time-outs ∆S(s) = (s1, T1), ∆S(s1) = (s2, T2), …,
∆S(sp-1) = (sp, Tp) such that T1 + T2 + … + Tp-1 ≤ t, but T1 + T2 +
… + Tp > t. In this case timeS(s, t) = sp-1. If ∆S(s) = (s, ∞), then
timeS(s, t) = s for each t. For each timed input 〈i, t〉 we add a
transition (s, 〈i, t〉, s', o) to λS, if and only if
(timeS(s, t), i, s', o) ∈ λS.

Sequence of timed inputs is called timed input sequence.
Pair α/β, where α = <i 1, t1>,…, <ik, tk> , β = o1,…,ok is called
timed input/output (I/O) sequence (or timed trace), if λs
defines a sequence of transitions (s0, <i1,t1>, o1, sr1), (sr1,
<i2,t2>, o2, sr2)…, (sr(k-1), <ik,tk> ok, srk).

As usual, the TFSM S is connected if for each state s
there exists a timed trace that can take the machine from the
initial state to state s.

100

State s' is called 〈i, t〉 -successor of state s, if there
exists o∈O such that (s, 〈i, t〉, s', o) ∈ λS. The set of all
〈i, t〉-successors of state s will be denoted by sucS(s, 〈i, t〉), in
case of t = 0 we denote it as sucS(s, i).

 An example of TFSM that describes mp3-player behavior
is given below:

 Figure 1. The TFSM that describes mp3-player

behavior

 The machine consists of the following states:
 Play – the music is playing, player isn’t in energy-saving
mode (display’s on);
 Play\Energy Saving – the music is playing, but player is in
energy-saving mode (display’s off);
 Pause – the music is stopped, display’s on;
 Hold – the music isn’t playing, player’s off (hold mode).
 Inputs and outputs:
 i1 – player’s controller is used;
 i2 – play/pause button;
 i3 – hold button;
 o1 – display’s on;
 o2 – display’s off.
Let us observe TFSM’s behavior on timed input sequence α =
<i1,5><i2,3><i1,4>. In that case the output sequence is β = o2
o1 o2.
A TFSM S = <S, I, O, s0, λS> is a submachine of TFSM P =
<P, I, O, p0, λP > if S ⊆ P, s0 = p0 and each timed transition (s,
<i, t>, o, s′) of S is a timed transition of P.

III. INTERSECTION OF TWO TIMED FSMS

 Intersection S ∩ P of two TFSMs S = 〈S, I, O, s0, λS, ∆S〉
and P = 〈P, I, O, p0, λP, ∆P〉 is the most connected sub-TFSM
of Q = (Q, I, O, q0, λQ, ∆Q), where Q = S × K × P × K, K =
{0 , ..., k} , k = min(max ∆S(s)↓N , max ∆P(p)↓N), initial state —
quadruple (s0, 0, p0, 0). Transition relation λQ and time-outs
function ∆Q are defined according to the following rules[3]:

1. Transition relation λQ contains quadruple [(s, k1, p,
k2), i, o, (s', 0, p', 0)], if and only if
(s, i , s', o) ∈ λS and (p, i , p ', o) ∈ λP.

2. Time funct ion is def ined as ∆Q((s, k1, p, k2)) =
[(s′, k'1, p′, k'2), k], k = min(∆S(s)↓N - k1, ∆P(p)↓N - k2).
State (s′, k1′, p′, k2′) = (∆S(s)↓S, 0, ∆P(p)↓P, 0), if
∆S(s)↓N = ∞ or ∆P(p)↓N = ∞ or (∆S(s)↓N -
 k1) = (∆P(p)↓N - k2). If (∆S(s)↓N - k1), (∆P(p)↓N -
 k2) ∈ Z+ and (∆S(s)↓N - k1) < (∆P(p)↓N - k2), then state
(s′, k1′, p′, k2′) = (∆S(s)↓S, 0, p, k2 + k). If (∆S(s)↓N -
 k1), (∆P(p)↓N - k2) ∈ Z+ and (∆S(s)↓N - k1) > (∆P(p)↓N -
 k2), then state (s′, k1′, p′, k2′) = (s, k1 + k, ∆P(p)↓P, 0).

 Algorithm 1: Constructing an intersection of two
TFSMs
Input: TFSMs S = 〈S, I, O, s0, λS, ∆S〉 and
P = 〈P, I, O, p0, λP, ∆P〉
Output: TFSM Q = (Q, I, O, q0, λQ, ∆Q), Q = S ∩ P
Step 1: add initial state q0 = (s0, 0, p0, 0) into Q.
Step 2: while set of states of TFSM Q has non-considered
states, consider next in turn non-considered state q, step 3.
Otherwise, End.
Step 3: for each input i find state q'=(s', 0, p', 0) that is i-
successor of state q. If the set Q doesn’t include q' – add q'
into the set Q, add transition [(s, k1, p, k2), i, o, (s', 0, p', 0)]
into λQ if (s, i , s', o) ∈ λS and (p, i , p ', o) ∈ λP.
Step 4: if there is a finite delay for state q = (s, k1, p, k2),
then:
k:= min(∆S (s) ↓ N – k1, ∆P (p) ↓ N – k2)
If (∆S(s)↓(N ∪ {∞}) = ∞ or ∆P(p)↓(N ∪ {∞}) = ∞ or (∆S(s)↓ N -
 k1) = (∆P(p)↓N - k2)), then q'= (∆S (s), 0, ∆P (p), 0);
Else

if (∆S(s)↓ N - k1) < (∆P(p)↓ N - k2),
then q' := (∆S(s)↓S, 0, p, k2 + k);

 if (∆S(s)↓ N - k1) > (∆P(p)↓ N - k2),
then q' := (s, k1 + k, ∆P(p)↓P, 0);

Extend function ∆Q: ∆Q(q) = (q', k);
If the set Q doesn’t include q', then add q' into Q. Step 2.
The intersection of two TFSMs S and P (Figures 2,3) is
presented in Figure 4.

Figure 2. TFSM S

Figure 3. TFSM P

101

Figure 4. TFSM S ∩ P

IV. SEPARATING SEQUENCE FOR TWO TFSMS

We suggest algorithm for constructing a separating sequence
for two TFSMs.
Algorithm 2: Constructing a separating sequence of two
TFSMs
Input: Complete observable TFSMs S = 〈S, I, O, s0, λS, ∆S〉
and P = 〈P, I, O, p0, λP, ∆P〉
Output: separating sequence for S and P (if exists)
Step 1: construct the intersection of S and P with the help of
Algorithm 1. If TFSM S ∩ P is complete, S and P couldn’t be
separated. End.
Step 2: Derive a truncated successor tree of S ∩ P. The
root of the tree is the pair 〈q0, 0〉, other nodes – sets of the
pairs 〈q, t〉, where q is the state of S ∩ P.
k: = 0;
Edge: = ∅;
Qk0: = {〈q0, 0〉};
Qk: = {Qk0}.
Until
 (Rule 1: for the set Qk j ∈ Qk, j ≥ 0, there is an input i-sep
such that each state q, 〈q, t〉 ∈ Qk j , has no i-sep-successors in
TFSM S∩P

 or
 Rule 2: for each set Qk j ∈ Qk there exists

Qam ∈ Qa, a < k, such that Qk j ⊇ Qam)
Do:
For each input i construct the set of successors M: =

Υ
kjQq

QQ iqsuc
∈

↓ × }0{),(, add M to Qk+ 1 and add triple

(Qkj, i, M) to the set Edge.

If there exists q, 〈q, t〉 ∈ Qk j , such that
(∆Q(q))↓(N ∪ {∞}) = ∞, define minimum time-out T and set

of successors R for the set Qk j = {〈q1, t1〉,
〈q2, t2〉,…,〈qr, tr〉}as follows:

}{min:
1

uu
ru

tTT −=
≤≤

, Tu = (∆Q(qu))↓(N ∪ {∞}) ;

R := { 〈q1', t1'〉, 〈q2', t2'〉,…,〈qr', tr '〉}, qu' = timeQ(qu,
tu + T) and either tu' = 0 if (Tu = ∞ or Tu = tu + T), or tu'
= tu + T if Tu > tu + T.
Add R to Qk+1 and add triple (Qkj, T, R) to the set Edge.

Step 3: If the tree was terminated according to the Rule 1,

then construct the sequence of edges (Q0 0, g1,
11 jQ),

(
11 jQ , g2,

22 jQ), …, (
1

)1(
−

−
kjkQ , gk,

kjkQ) such that

(
1

)1(
−

−
ljlQ , gl,

ljlQ) ∈ Edge for each l ∈ {1, …, k} and gl ∈

{ I ∪ N }.
Collect the separating sequence α = <i1, t1> … <im, tm>:
j := 0;
Tj := 0;
r := 0;
While (j ≤ k) execute:
 If gj ∈ I,
 Then ir := gj , tr := Tj , r := r+1, Tj := 0;
 Else Tj := Tj + gj ;
 j := j+1;
 m := r;
 ir := i-sep , tr := Tj .
If all branches of the tree were terminated according to
the Rule 2, then TFSMs S and P are unseparable.
End.
The truncated tree for TFSMs S and P is presented in Figure 5:

Figure 5. Truncated successor tree of S ∩ P

So, the separating sequence is α = <i1, 0><i2, 2>.

102

Algorithm 2 is the modification of the algorithm from [6],
of deriving a separating sequence for two untimed FSMs. The
modifications are associated with time-outs, because the only
way to reach some states is to wait for a while. Thus in
Algorithm 2 each node of the tree is not the set of states of the
intersection, but the set of pairs <state, time>. For the set in
the node we determine the minimal delay and the set of
successors under this delay is derived in the same way as
when deriving the intersection. We need the edges labeled by
delay because for the timed FSMs the separating sequence is
timed input sequence, so we need to wait some time before
applying another input.

Rule 2 is inherited from [6] and in this case we can’t
separate given timed FSMs.

Since Rule 1 is also inherited from algorithm [6], and
transitions under time-outs are derived according to the rules
that specify the common behavior of timed systems, the
sequence α = <i1, t1> … <im, tm> derived according to
Algorithm 2 will be a separating sequence for two timed
separable FSMs.

It is known [6], that for given two complete separable
untimed FSMs S and P, |S| = n and |P|= m, the length of a
shortest separating sequence of S and P is at most 2mn−1, and
this estimation is reachable. Since untimed FSM is a particular
case of timed FSM the estimation will be the same.

V. CORRELATION BETWEEN FSMS AND TFSMS

 To transform TFSM S = 〈S, I, O, s0, λS, ∆S〉 into FSM AS
with the same behavior [3] we add to TFSM a special input
1 ∉ I and a special output N ∉ O. FSM

AS = 〈S ∪ St, I ∪{1}, O ∪{ N}, s0, λS
∆
〉 is constructed by

adding T – 1 copies of each state s ∈ S with finite time delay
T, T > 1. Formally, AS is constructed in the following way:

1) For each s ∈ S, ∆S(s) = (s', T), 1 < T < ∞, the set St

contains each state 〈s, t〉, t = 1, ..., T – 1.
2) For each s ∈ S, 〈s, t〉 ∈ St and for each pair i/o, i ∈

I, o ∈ O, (〈s, t〉, i, s', o) ∈ λS
∆ , if and only if

(s, i, s', o) ∈ λS.
3) For each s ∈ S such that ∆S(s) = (s, ∞) there is a

transition (s, 1, s, N) in AS.
4) For each s ∈ S such that ∆S(s) = (s', T), T = 1 there

is a transition (s, 1, s’, N) in AS.
5) For each s ∈ S such that ∆S(s) = (s', T), 1 < T < ∞,

there are transitions (s, 1, 〈s, 1〉, N), (〈s, j〉, 1, 〈s, j
+ 1〉, N), j = 1, …, T – 2, and transition (〈s, T –
1〉, 1, s', N) in AS.

Hence, on condition, that timed FSM S includes n states and
maximal delay is Tmax, AS can include up to n⋅Tmax states. Be

more precise, number of states in AS is ()
s S

n s
∈
∑ , n(s) = 1, if

∆S(s) = (s, ∞), and n(s) = T, if ∆S(s) = (s', T).
Thus, in order to derive a separating sequence for two

TFSMs, we transformed TFSMs into FSMs. Intersection of

two FSMs could be constructed with the help of Algorithm 1
without taking into account time-outs. To construct truncated
successor tree we use Algorithm 2 without time-outs [6], and
then collect the sequence (if exists) with the help of step 3
(Algorithm 2). One can assure that the separating sequence for
AS and AP (Figures 6 and 7) will be the same, i.e., α = <i1,
0><i2, 2>.

Figure 6. FSM AS

Figure 7. FSM AP

CONCLUSIONS

 In this paper we suggested two approaches to separate
TFSMs. The idea of the first approach is that we construct an
intersection of two TFSMs and then find separating sequence.
The main advantage of this approach is comparative simplicity
due to small amount of states in intersection. Disadvantage –
weak theoretical basis of complete test suites derivation for
TFSMs. The second approach is based on “TFSM to FSM”
transformation. As a result of this transformation we have
enormous increasing of states in intersection. Thus this way is
hardly applicable to TFSMs with great time delays. But
theoretical basis for complete test suites derivation is much
more stronger for classical FSMs. In the future we’re planning

103

to compare program implementations of these two approaches
in order to find out the range of applicability of each one.

REFERENCES

[1] R. Alur, C. Courcoubetis, M. Yannakakis. Distinguishing tests for

nondeterministic and probabilistic machines // STOC’95, NewYork:
ACM, 1995. P.363-372.

[2] M. G. Merayo. Formal Testing from Timed Finite State Machines / //
Computer Networks. – 2008. – Vol. 52 №2. – P. 432-460.

[3] M. Zhigulin, S.Maag, A.Cavalli, N.Yevtushenko. FSM-based test
derivation strategies for systems with time-outs // Presented to
QSIC’2011.

[4] M. Gromov, D. Popov, N. Yevtushenko. Deriving test suites for timed
Finite State Machines // Proceedings of IEEE East-West Design & Test
Symposium 08, Kharkov: SPD FL Stepanov V.V., 2008. P.339-343.

[5] Starke, P.: Abstract automata, American Elsevier, 3–419 (1972).

[6] N. Spitsyna, K. El-Fakih, N. Yevtushenko Studying the Separability
Relation between Finite State Machines // Software Testing, Verification
and Reliability. –2007. – Vol. 17(4). – P. 227-241.

104

Model Based Conformance Testing for Extensible
Internet Protocols

Nikolay Pakulin
ISP RAS

npak@ispras.ru

Anastasia Tugaenko
ISP RAS

tugaeko@ispras.ru

Abstract—Many contemporary Internet protocols are extensi-
ble. Extensions may introduce new functionality, alter the format
of protocol messages, affect basic functionality or even modify
the protocol modus operandi. Model based testing of extensible
protocols faces a number of problems, the most challenging one
is that extensions altering basic functionality require changes
in the protocol model. It is highly desirable to have a flexible
protocol’s model which would let test developers to extend the
model without rewriting existing parts of the model. The article
presents the method for model based conformance testing for
extensible Internet protocols which satisfies this requirement.
Each extension is specified in a separate unit, the method presents
facility to combine those units into entire model for testing
the protocol’s implementations. The method uses Java language
to formalize the requirements. As an example of the method
application article presents test suite development for a number
of SMTP extensions.

Index Terms—model based testing, conformance testing, ex-
tensible protocols.

I. INTRODUCTION

A lot of protocols for different applications are functioning
in the contemporary Internet. Many protocols were developed
more than a decade ago. Often while developing a protocol
specification it is not easy to foresee all variants of protocol’s
usage in the future. Protocol application reveals new tasks,
makes new demands for the utilizing protocol. The simplest
way to update the protocol for new tasks is to develop and
publish a new version of the protocol’s standard. However
for popular protocols this solution may results in necessity
of frequent publications of standards’ revisions. The high
frequency of protocol updates requires much effort for redac-
tion and agreement of the standard’s text; it is fraught with
injection of indeliberate mistakes and may violate the protocol
stability. Also it may hamper the developers of protocols
implementations.

To solve the problem of frequent renewal of the protocol
specifications nowadays protocol designers follow the pattern
that one might call as “extensible protocol”. The pattern
implies that new protocol features emerging after publication
of the protocol standard are specified in separate documents
as “extensions”. That is, the description structure of extensible
protocols consists of the following parts:

• the basic protocol functionality which must be supported
by all implementations is specified in a fixed number of

RFC1 documents, and
• new functions (extensions) are specified in separate RFC

documents. For consistent work of extensions with the
basic standards developers publish the special RFCs
describing general extensions methods.

The history of SMTP protocol [1], [2], [3] illustrates this
pattern. Since its inception in 1982 the SMTP protocol went
very well with its tasks on sending messages between hosts
in computer networks. But the protocol restrictions became
apparent in 1990-ies. Then SMTP developers decided to
improve some SMTP protocol functions instead of replacing
the standard with a new one. It was considered to keep the
basic SMTP specifications “as is” and specify new functions
in new RFCs. To accomplish this goal in 1995 the RFC 1869
“SMTP Service Extensions” [4] was published. The document
specified the method for extending SMTP capabilities.

The SMTP extension mechanism proved to be successful,
and the SMTP community agreed to integrate it into the main
SMTP specification. In 2001 the revision RFC 2821 [2] was
published, it includes the specification of basic functionality
and also the specification of extensions mechanisms. Since
then all new features, even the fundamental ones – security and
authentication, are published in separate documents, leaving
SMTP specification intact. The SMTP specification in effect,
RFC 5321 [3], contains editorial and clarification changes to
RFC 2821 and maintains the extensible architecture of the
protocol.

In general protocol extensions may be classified as follows:
• extensions specifying new functionality (e.g., new com-

mands, new types of messages and responses);
• extensions altering the format of protocol messages;
• extensions altering the basic protocol functionality or

operations of other extensions;
• extensions altering modus operandi of the protocol.
The classification of the extensions provided above shows,

that extensions shouldn’t be considered as independent – they
may affect each other or the basic protocol. This observation
leads to a conclusion that a model of an extensible protocol
is not a plain composition of the basic protocol model and
models of extensions. Modeling of extensible protocols re-
quires a specialized composition that takes into consideration

1RFC – Request for Comments – the normative document for the Internet
standards

105

dependencies between extensions.
Another important aspect of protocol extensibility is op-

tional support of extensions in various implementations. Im-
plementors are not obliged to support all published extensions;
as a result, implementations of the same protocol might
provide different sets of protocol extensions. This observation
and the fact that extensions may change the basic protocol’s
functionality hampers testing of extensible protocols. To test
extensible protocols test developer must know the exact set of
extensions supported by Implementation Under Test (IUT, also
we will call it “target implementation”) and take into account
the profile of those extensions to assign the right verdict
concerning IUT conformance to the protocol specification.

As a consequence, model based testing (MBT) of extensible
protocols faces a number of problems. First of all, the protocol
model must be coherent with the IUT, i.e. the model must
reflect the extensions, provided by the IUT, and leave all
other extensions beyond the scope. Furthermore, the model
must take into account that extensions may alter basic protocol
functionality. Obviously, it is unwise to develop independent
models for each thinkable set of protocol extensions. A more
realistic scenario is to construct models of the protocol and its
extensions separately and to combine them into the model of
IUT depending on the actual extensions profile of that IUT. To
implement this scenario the test development method should
provide facilities for modular specification development, and
facilities to combine the specification modules either statically
or dynamically to match the list of supported extensions of
arbitrary IUT. Despite the challenge with modular specification
of extensible protocol it is highly desirable to have modular
test specification, when test actions for extensions are specified
in separate units and the actual test is composed from test
specifications of extensions provided in IUT.

The article presents the method for model based confor-
mance testing for extensible Internet protocols. Within the
proposed method basic protocol functions and extensions are
modeled as state machines with common state. Each state
machine is specified in a separate unit, the whole model
of IUT is composed from basic protocol specification and
extensions before test execution starts. Authors has developed
a composition facility that makes possible modular specifica-
tion of extensions that introduce new functions, alter protocol
specification and, to some extent, extensions that modify
protocol message format. The proposed method does not allow
specification of extensions that change modus operandi of a
protocol (such as PIPELINING extension of SMTP [5]). The
method supports modular development of test actions. Test is
treated as a finite state machine and the method implies specifi-
cation of test transitions for extensions separately. The method
provides a facility that combines test specifications of different
extensions into a single test state machine dynamically before
test execution.

The paper is structures as follows. Section II presents
existing approaches to model-based conformance testing and
discusses their applicability to testing of extensible protocols.
Section III describes our previous work on model based testing

of electronic mail protocols. Section IV presents a new model
based method for testing protocols with extensions. Section V
consists of two parts, the first part describes SMTP protocol
and a few extensions, and the second part presents an example
of new method application – the development of a test suite
prototype for SMTP protocol with extensions. Section VI
discusses the applicability of a presented method. Section VII
presents results of the work and describes directions for future
work. And Section VIII is a conclusion.

II. RELATED WORKS

Internet protocols contain multitude of states, those states
may be divided into groups with similar behavior inside
each group. Manual test suite development for such kind
of protocols seems very laborious and redundant because of
similar checks in similar states. Tools for automated testing
which allow re-use of a protocol model for verdict assignment
become more frequent in use for developing test suites for
Internet protocols.

In general, it is convenient to use tools possessing the
following properties for testing Internet protocols:

• formal relation between requirements and tests;
• automated verdict assignment about the correctness of

IUT behavior.
• automated tests generation depending on IUT responses;
Testing of protocol’s extensions brings in supplementary

requirements:
• the ability to easily change a protocol’s model. Some

extensions add new commands, new response codes, new
states thereby changing the protocol’s model. To develop
test suites for protocols extensions test developer must
have an opportunity to choose the right model: either
basic or modified by a number of supported extensions;

• the ability to develop specifications and tests as separate
units, one unit per extension, basic specification should
be specified in separate units. This requirement is dictated
by the fact that extensions are optional and not all
implementations must support all extensions.

The majority of listed above requirements are satisfied by
application of the model based approach and tools.

We don’t consider the JUnit [7] and TTCN-3 [8] as they are
not model based, the test suites written with these tools contain
a lot of redundant code, test sequences must be constructed
manually and all the verifications also must be specified
manually. The whole process of test suite development for
extensible protocols with these tools is very laborious because
of a greater part of the basic test suite (test suite for testing
the basic protocol’s functionality) must be changed.

The UPPAAL [9] is a popular tool suite for model checking
of real-time systems. It provides checking of models with
hundreds of states, has some facilities to detect deadlocks.
But testing of Internet protocols deals with black-box state
machines, so test developers need a tool for automated test
suites generator, and the UPPAAL doesn’t provide such gen-
erator.

106

Tools NModel [10] and SpecExplorer [11] may be suc-
cessfully used for developing test suites for simple small-
scale protocols but they require development of considerable
supplementary libraries to test large-scale protocols and ex-
tensions. Toolkit Conformiq Qtronic [12] doesn;t provide tests
generation, as a result it generates TTCN-3 scripts.

III. PREVIOUS WORK

In works [13], [14] the method for automated testing of
e-mail protocols was presented. That method uses Java spec-
ification extension JavaTESK [15]. We used that method to
develop test suites for basic functionality of implementations
of mail protocols SMTP, POP3 and IMAP4 [14]. Developed
test suites were applied to implementations and detected a
number of noncompliances in well-known open-source mail
servers.

But that method isn’t suited for conformance testing of
extensible protocols since it does not support modular models
and tests and implied adaptation of the protocol model and
test for each extension.

IV. METHOD FOR EXTENSIBLE PROTOCOLS TESTING

This section presents a method for model-based confor-
mance testing of extensible Internet protocols’ implementa-
tions. The primary target of the method is to provide test
developers facilities for modular modeling and test specifi-
cation. As stated in the introduction, protocol extensions are
not independent. On the contrary, protocol extensions may
affect each other; furthermore, extensions may even alter the
basic functionality of the protocol. These observations lead to
a conclusion, that a model of an extensible protocol can not
be presented as a plain composition of separate models.

The method consists of two parts:
1) All the extensions are specified in separate units, in

general one unit represents one extension. The structure
of the model state is specified in the separate classes
and all test units use this global shared state. Every unit
may change the current state according to extension’s
specification. Basic functionality is also specified in
one or several units (e.g. connect and disconnect may
be specified in one unit and transaction commands –
in the different unit). To model implementations with
extensions the structure of general shared state may
be changed by the following actions: addition of new
symbols of the states introduced by the extensions; spec-
ifying new actions; specifying or changing precondition
for actions from different states.

2) All test state machines for extensions are specified
separately in different units. Whole test is constructed
as a composition of test state machines for extensions
supported by IUT. Note that this is not a true “compo-
sition” because of general test utilizes the shared state.
Abstract test description for each extension is specified
in a separate unit.

Application of this method defines the following actions
to test extensible protocols. For adding new extension test

developers add specification and test units into the project. If
an extension adds new command then this command should be
added to the commands (actions) register. Also the availability
of this command in the set of states should be added to the
states register. If extension changes the basic functionality then
test developers should rebind old aspect with new specification
unit. The comprehensive test is constructed as a composition
of units specifying the extensions supported by the IUT.

The proposed method contains the following main aspects:
• simplification of the development and maintenance of

model and tests for protocol’s implementations. Specifi-
cations and tests for the protocol’s extensions are defined
in separated modules. This allows easily changing the
protocol models for new protocol’s extensions;

• construction of specification for IUT in accordance with
set of extensions supported by target implementation;

• construction of general test as a composition of test
modules for extensions supported by the target imple-
mentation.

The method utilizes the library for model based automated
testing [16]. The protocol’s model presented as a finite state
machine. The implementation’s requirements presented in
contract specification notation: for each operation pre and
postconditions are defined, precondition restricts the opera-
tion’s availability in different states, postcondition specifies
the required behavior. Also the library grants the following
useful tools:

• test sequence iterator. The test sequence generates au-
tomatically from test model and contract specifications.
Test model is presented as a finite state machine, each
impact to the IUT contains precondition which specifies
the acceptability of this impact in the current state;

• automated coverage calculation. States and transitions
may be labeled with marks and branches, in this case
they will be represented in the test report. Such labels
allow defining the formal relation between requirements
and tests;

• automated verdict assignment concerning the implemen-
tation under test behavior.

The presented method contains the following steps:
1) Creation of requirements catalogue for basic specifica-

tion of the protocol. This catalogue contains only re-
quirements from basic protocol specification and doesn’t
include the requirements from extensions’.

2) Creation of requirements catalogues for protocol ex-
tensions. These catalogues contain requirements from
extensions specifications.

3) Designing of the extensible model for the basic specifi-
cation. The extensibility of the model will be necessarily
in the next steps;

4) Designing of units for extensions’ specification. Gener-
ally, one unit represents one extension. These units may
be easily included into protocol’s model developed in
the previous step;

5) Designing of formal specification for basic protocol and

107

extensions. The basic functionality specification is de-
veloped as self-sufficient. The extensions’ specifications
are developed as separate units which may be added into
the basic specification.

6) Formalization of requirements. At this step the require-
ments of basic specification and the requirements of
extensions are formalized as pre and postconditions.

7) Developing of test scenarios for basic functionality.
8) Developing of units with test scenarios for protocol

extensions.
9) Constructing of the comprehensive test for the target im-

plementation. This test includes the scenarios for basic
functionality and the scenarios for extensions supported
by implementation under test.

10) Execution of test suites and analyzing the results. Test
suite improvement when necessary.

Not all steps in the method are mandatory. Also note that
this method may be used not only for extensible protocols and
for extensions, it may be easily utilized for testing other kinds
of Internet protocols. If in the last step not all requirements
are covered by the constructed test than steps 6-10 may be
repeated as many times as needed.

V. METHOD CASE STUDY

This section presents the method case study on testing
the extensible Simple Mail Transfer Protocol (SMTP). First
subsection contains the description of SMTP protocol and its’
extensions; second subsection presents the description of test
suite development.

A. SMTP Protocol Extensions

Protocol SMTP is a text based protocol of the upper layer
of the TCP/IP stack. The protocol consists of two parties: a
client and a server. After establishing a connection the client
issues commands to the server and the server executes them
and returns responses to the client. The response depends on
success of the command execution.

Simple mail transfer protocol is used to send messages. This
protocol has a following feature: each physical server could
operate as both SMTP server and SMTP client. Being a server
it accepts incoming emails and then became a client to forward
these received messages to the next hops. To forward messages
between various domains SMTP uses its own overlay network
over TCP/IP. When an SMTP implementation being a server
identifies itself as the final destination of the message it
stops forwarding the message and places it into internal
implementation-specific storage. To retrieve emails from the
storage end-users utilize other protocols: POP3 (Post-Office
Protocol, version 3 [17]) or IMAP4 (Internet Mail Access
Protocol version 4 [18]).

SMTP protocol is extensible. To identify what extensions
are supported by a server implementation a client should issue
the EHLO command. To this command the server replies with
multiline response, lines provides information about supported
extensions. Response lines include extension-specific keyword
and also may contain any supplementary information.

The basic protocol model consists of the following states:
DISCONNECTED, CONNECTED, AFTER HELLO (after is-
suing EHLO or HELO commands), AFTER MAIL FROM
(after issuing MAIL command), AFTER RCPT TO (af-
ter issuing RCPT command), AFTER DATA (after issuing
DATA command), AFTER DOT (after issuing the sequence
〈CRLF 〉.〈CRLF 〉 in the AFTER DATA state). With respect
to specification states AFTER EHLO and AFTER DOT are
the same, we divide them in model to test implementations to
conform to this requirement.

Lets consider a few examples of SMTP extensions and
categorize them according to extensions classification pro-
posed in Introduction I. The DSN extension described in RFC
3461 [19] specifies the Delivery Status Notifications (DSNs).
For example, the client may specify that DSN should be
generated under certain conditions (e.g. when the mail has
reached the recipient) and sent to the initial client. To use
this option initial client should add new parameters in the
transaction commands. This extension is of type 1 – bringing
in new functionality.

The AUTH extension specified in RFC 4954 [20] adding
new state to the protocol model. If an implementation supports
this extension then the basic set of commands would not be
enough to send a message: server may require client’s authen-
tication. This extension also introduces new command AUTH,
new parameters for MAIL command and new response codes.
For example, a server may response to the transaction com-
mands with new code 530. In this case such response means
that authentication is required. The STARTTLS extension
described in RFC 3207 [21] specifies the TLS usage which
helps SMTP agents to protect all or few interactions from
interceptions and attacks. This extension also adds new state
into the protocol model, specifies new command STARTTLS
and new response codes. If a server supports this extension
the transaction commands are not allowed before the command
STARTTLS. These extensions are of type 3 – altering the basic
protocol’s functionality.

The PIPELINING extension specified in RFC 2920 [5]
provides a facility to group several commands to send them
in one transfer operation. If a server supports this extension it
may response to the group of commands as a whole instead
of sending responses to separate commands. This extension
changes the protocol’s structure and is of type 4 – altering the
protocol’s modus operandi.

Protocol SMTP has a long history. Nowadays the basic
specification [3] includes the mechanisms of extensions and
provides different optional parameters in basic commands.
So protocol SMTP has no extensions of type 2 (extensions
altering the format of protocol’s messages), all extensions
which provides new parameters are fitted into the extensible
messages format.

B. Test Suite Development for SMTP Protocol Implementa-
tions with Extensions

The authors have developed a prototype of test suite for
SMTP protocol using the presented method. For basic specifi-

108

cation we used the requirements catalogue from the previous
works [14]. Also we made new requirements catalogues for
two extensions: the AUTH extension [20] and the DSN [19]
extension which cover two types of extensions (new function-
ality and altering basic functionality). For these extensions we
develop new separate units with specifications (one unit for
one extension) and new separate units with tests (one unit for
one extension as well) .

The structure of the protocol model is organized as follows.
We have a set of states and a set of actions. We define two
maps from states to actions (we name them allowed and
denied) which define policy which commands are allowed
or denied in particular states. If an extension adds a new
command we add this command to the actions set and define
allowed/denied policy for this action. If an extension adds
a new state we add this state to the states set and extend
allowed/denied policy of the protocol commands for this state.
Note, the pair state-action may be undefined in both allowed
and denied maps. In this case we can provide two types
of testing: the conformance testing, in which we consider
undefined pair as denied; and the robustness testing when
undefined pair is considered as allowed. In the latter case we
try to send the command from pair in the state from this pair
and looks whether the target implementation is down.

For testing the AUTH extension we defined a new state
AFTER AUTH and updated the allowed/denied policies for
transaction commands (MAIL FROM, RCPT TO and DATA).
If the implementation supports the AUTH extension the trans-
action commands may be issued only in authorized states. Also
we added new command AUTH and the parameter AUTH for
MAIL FROM command – the AUTH extension provides two
authentications mechanisms. Then we updated maps allowed
and denied to contain the information about allowed and
denied transitions.

For testing the DSN extension we used methods for MAIL
and RCPT commands with optional parameters. Since this
extension adds only new parameters we didn’t change the
protocol model.

We defined a configuration file with a list of extensions
supported by IUT. Then we used tool [16] to construct the
whole model of IUT (from units specified above) and generate
a test suite. Generated test allow detecting the following types
of noncompliances:

• missing required commands;
• protocol rules violation, such as accepting commands in

illegal states;
• wrong reply codes to the protocol commands.

VI. DISCUSSION

Presented method is applicable for synchronous message
based protocols. In such protocols clients send commands to
the servers and servers executes them and returns the responses
to each command. Responses contain the code which defines
the success of the command execution.

Protocol model consists of few parts: basic part which
represents the model of the basic protocol’s specification and

supplementary parts for protocol’s extensions. Novelty of this
method is the ability to easy altering the protocol’s model and
adding new tests.

The method was assayed by the development of test
suites for SMTP protocol implementations with extensions.
The SMTP extensions may add or alter the protocol’s basic
functionality, bring in new states, new commands and new
response codes. The prototype of test suite for testing SMTP
implementations with extensions shows the applicability of the
method for testing extensible Internet protocols.

VII. RESULTS AND FUTURE WORK

The particular method for testing extensible Internet proto-
cols is presented. The development is in progress, currently
we have a method for testing a few types of extensible proto-
cols. Protocol’s extensions which we can test with developed
method possess the following characteristics: they may add
new commands, new responses, new model states but they
must not alter the protocol’s structure (modus operandi) and
also they must not bring in new encodings of symbols of
sending messages.

Using this method we have developed the prototype of
test suite for testing SMTP implementations with a number
of extensions. The current version of method isn’t applica-
ble for all types of extensions. For example, the extension
PIPELINING [5] for protocol SMTP changes the structure
of the protocol. If this extension is supported implementation
from message-based became stream-based and requires other
testing methods.

Most Internet protocols possess a command for identify-
ing the list of supported extensions. The current version of
presented method utilizes a configuration file to construct
the modified model of IUT. In future versions we plan to
add a feature of dynamic composing of the model and test
state machine depending on implementation responses to the
capabilities command.

After the tests has been executed test developers got a
test trace. This trace contains the log of test execution, so
it contains important information on what is wrong with
implementation under test. Separately of this method we have
a report generator, generated reports presents the test trace
demonstrably but not obviously. Currently test developers
should manually find the places in the test which shows
the noncompliances with the specification. To operate with
obtained information more easily we plan to improve the
report generator.

VIII. CONCLUSION

The paper presents a method for automated model-based
conformance testing of implementations of extensible Internet
protocols. The modeling approach uses state machines to
express functional specifications as a formal definition of
textual requirements elicited from normative sources. Test is
a traversal of some simplified (compared to the model) state
machine; the sequence of test stimulus is generated depending
on IUT responses.

109

The main idea of the method is modular approach to test
suite development: both functional specifications (models) and
test specifications of basic protocol functionality and each ex-
tension are developed in separate units. Models of extensions
are expressed as state machines over common extensible set;
the method provides facilities to combine such partial models
into a complete state machine, depending on the exact set of
extensions supported by a specific IUT. Test is constructed as
composition of test state machines of the extensions supported
by the specific IUT.

The characteristic feature of the proposed method is the
choice of notations for models and test specification. We use
programming language Java, pure, without any extensions
(such as Java Modeling Language, JML [6]), while model
composition is partially defined in XML. The selection of
Java as the primary notation gives the full power of Java
expressiveness, rich toolkits for model and test development
and, potentially, has more chances to attract attention of
industry since the method does not require experts in formal
description languages.

Using this method the prototype of test suite for testing
SMTP protocols with some extensions was developed. Test
suite covers the following types of protocol’s extensibility:
adding new functionality and altering the basic protocol’s
functionality. The extensions which are altering the protocol’s
modus operandi have not been tested yet. The development
of new method is ongoing project and extending this tool to
test the extensions altering the protocol’s modus operandi is
one of the tasks to decide. Also we plan to improve the report
generator and to extend the method and tool for testing more
types of Internet protocols’ extensions.

ACKNOWLEDGMENT

The authors would like to thank Victor Kuliamin for kindly
provided Java library for automated model based testing.

REFERENCES

[1] IETF RFC 821. Jonathan B. Postel. Simple Mail Transfer Protocol. 1982.
[2] IETF RFC 2821. J. Klensin. Simple Mail Transfer Protocol. 2001.
[3] IETF RFC 1869. J. Klensin. Simple Mail Transfer Protocol. 2008.
[4] IETF RFC 1869. J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker.

SMTP Service Extensions. 1995.
[5] IETF RFC 2920. N. Freed. SMTP Service Extension for Command

Pipelining. 2000.
[6] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.

Beyond Assertions: Advanced Specification and Verification with JML
and ESC/Java2. In Formal Methods for Components and Objects (FMCO)
2005, Revised Lectures, pages 342-363. Volume 4111 of Lecture Notes
in Computer Science, Springer Verlag, 2006.

[7] Unit testing framework, http://www.junit.org.
[8] ETSI ES 201 873-1 V3.1.1. Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. Sophia-Antipolis, France: ETSI (2009).

[9] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal 4.0. http://www.uppaal.com/

[10] Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software
Testing and Analysis with C#. Cambridge University Press, Cambridge
(2008).

[11] http://research.microsoft.com/pubs/77383/bookChapterOnSE.pdf
http://research.microsoft.com/en-us/projects/specexplorer/

[12] End-to-End Testing Automation in TTCN-3 environment using Con-
formiq Qtronic and Elvior MessageMagic. 2009.

[13] A. Tugaenko, N. Pakulin. Test suite development for conformance
testing of email protocols. // Proceedings of Spring/Summer Young
Researchers’ Colloquium on Software Engineering, pp. 87-91, Nizhniy
Novgorod (2010).

[14] N. Pakulin, A. Tugaenko. Specification Based Conformance Testing for
Email Protocols. // Proceedings of ISoLA 2010, pp.371-382. Heraclion,
Greece, 2010.

[15] JavaTESK: getting started. Moscow, 2008.
[16] V. Kuliamin. Component architecture of model-based testing environ-

ment. Programming and Computer Software, 36(5):289-305, 2010.
[17] IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol – Version

3. 1996.
[18] IETF RFC 3501. M. Crispin. Internet Message Access Protocol – version

4rev1. 2003.
[19] IETF RFC 3461. K. Moore. Simple Mail Transfer Protocol (SMTP)

Service Extension for Delivery Status Notifications (DSNs). 2003.
[20] IETF RFC 4954. R. Siemborski, A. Melnikov. SMTP Service Extension

for Authentication. 2007.
[21] IETF RFC 3207. P. Hoffman. SMTP Service Extension for Secure SMTP

over Transport Layer Security. 2002.

110

Developing test systems for multi-modules

hardware designs

Mikhail Chupilko

Institute for System Programming of RAS

Moscow, Russia

chupilko@ispras.ru

Abstract—The paper proposes the approach of creating test

systems for complex hardware designs. The designs can be

subdivided into modules and verified separately. The proposed

architecture of separated verification systems and the way to

combine them into a complex test system are based on

simulation-based verification of hardware designs. The

components of test systems are connected in a TLM-like way that

allows to use high-level model of commutation based on messages

and thereby to simplify merging of several test systems into a test

system for the complex component.

Keywords-complex hardware designs; simulation-based

verification;combination of test systems

I. INTRODUCTION

The importance of hardware verification has been urgent
for many years. There are several techniques to conduct it but
there is still not unified solution. Hardware designs are
developed by means of languages of hardware behavior
description (hardware description languages, HDLs, e.g.,
Verilog [1]). Even relatively simple modules (i.e., parts of
complex designs or very simple designs) can hardly be checked
by means of a code inspection, to say nothing of complicated
designs. Therefore, the verification, i.e. checking of designs’
behavior and their specification to mutual consistency, is of
importance and attention. There are some estimates talking that
about 70% total amount of development efforts are spent on the
verification [2]. The real practice shows that usually at least
half of total design development time is spent on this aim. The
code written in HDLs called HDL-model can be translated into
a net-list and then on this base the real device will be created. If
no modifications of a net-list take place, the functionality of the
produced device will be the same as of the HDL-model. Even
if the corrections took place, the equivalence can be checked by
means of special tools, e.g. [3]. Therefore, to reveal and correct
functional errors is possible at the stage of HDL-model
development. It should be noticed that the correction of
functional errors on later stages and, in particular, after chip
manufacturing requires more efforts and time, because
necessity to pass all stages of manufacturing again.

Complicated designs are usually developed by means of
abstraction and decomposition techniques. The common
approach is to develop the whole system abstractly and then to
create the subparts (modules) more carefully. Usually the test
system for the whole design under verification (DUV) is
created but it is rather abstract one. As some parts of the system

can be critical for the total system behavior, the module-
oriented test systems are developed. If these “little” test
systems can help to improve the common test system for the
whole DUV, it will be good for code reuse and debugging
abilities of the common test system.

This work is organized as follows. First, the review of
works related to verification of complicated hardware designs
is given. In the following section, the architecture of test
systems formerly proposed in [4] is described. Next section
introduces the architecture of multi-module test system.
Section 5 includes case studies. Section 6 concludes the paper.

II. RELATED WORKS

There are two common ways of hardware verification.
First, we could use formal methods, e.g. to prove satisfiability
of a logical constructions in a formal model based on hardware
design in model checking [5]. All corrections are made over
static hardware designs. They are applicable well in case of
module-level verification but their scalability is insufficient [6]
to use them in case of the whole designs. To improve the
scalability, the hardware designs can be checked dynamically
during the simulation process. Simulation-based verification
allows checking the designs in real cases of their work.
Usually, simulation-based approaches possess the high level of
scalability and the thoroughness of verification varies
according to available resources and time. Below, when we are
talking of verification we are meaning only simulation-based
verification.

Typical components of the test systems are test sequence
generator (stimuli generator), reaction checker (or oracle), test
completeness estimator. The generation of sequence or stimuli
can be made manually and explicitly by means of test cases
description. Other stimuli generators produce test actions self-
automatically requiring manual description of variables set in
each stimulus with restrictions for their values. To generate
stimuli, special mechanism selects subset of available stimuli,
solves constraints in their variables assigning fit numbers to the
fields and start stimuli. This approach is called constrained-
driven verification (CDV) [7]. Another well-distinguished way
of stimuli generation is FSM traversing [8], where states of the
FSM are states of system under test and transitions between
them are applied operations. The reaction checker always
knows the correct behavior of DUV, e.g. utilizing a reference
model. Test completeness estimator usually works on the base

111

of source code coverage or functional model code or aspects
coverage.

The main subject of the article is the possibility for
developing test systems allowing reuse in the multi-module
complex design case. To reduce extra problems we suggest
using a uniform architecture for all test systems. When merging
test systems the question about merging of each component
from their structure arises. Consequently, the parts should be
intended for easy merging initially, their architecture should
provide such possibilities.

Among well-spread approaches of verification, we selected
Open Verification Methodology (OVM [9]) as the most spread
and seemed to be most suitable for our purposes to observe its
abilities of merging. Test systems according to OVM are
developed in accordance to the given architecture and
subdivision of test system’s components into several layers
[10]. The test system for each single module is named Open
Verification Component (OVC) (see Figure 1). Each OVC
contains basic means of creating CDV stimuli flow
(transaction sequencers, where transaction is a abstract
message containing information about test situation) and
delivering the flow to the DUV (so called transactors, i.e.
components which make direct and reverse transformation of
transactions and DUV’s wire signals). OVC can be connected
to each other when they are put under control of the united test
controller or in other words virtual generator [7]. In this case,
all the OVCs will generate stimuli flows. Developer of test
system modifies the redundant generators connected with
unavailable DUV’s wires to switch them off. The OVCs with
turned off generators check their target modules correctness
regarding to the stimuli flow to the components influence their
target modules work. Components checking correctness (or
scoreboards) continue checking using only available data from
DUV. Summarizing, test systems made according to OVM
satisfy many tasks usually arising in verification including
connection of several test systems. It should be noticed that
OVM is oriented to programming in SystemVerilog so that
connection with other languages is possible but knotted with
development of intermediate components.

Figure 1. Open verification component

We developed new approach and presented some aspects of
it in [4]. That paper touched upon only the problems of oracles’
development for single test systems. We will shortly review the

approach in this section and thoroughly in the next. The
method utilizes simulation-based verification and implies the
subdivision of test system components generally into stimuli
generator and oracle (or reaction checker). The generator
should create a flow of stimuli and apply them into the oracle
usually based on a reference model developed on selected level
of abstraction. Test is complete when the generator indicates it
according to a strategy of generation.

This approach has a distinctive feature when compared with
OVM: the reference models used in reaction checkers can be
originally written at a high level of abstraction and then can be
specified according to a progress of DUV development. To
make it possible, there are several techniques in the approach
such as model reactions’ arbitration mechanism, DUV
reactions’ detection mechanism, etc. After all, while DUV is
developed, the verification engineers usually develop the
software simulator of the total DUV. As they usually do it by
means of C++, to use exactly this language is useful to reuse
parts of simulators to create reference models with no extra
efforts. As the approach described in [4] uses C++, it has a
certain advantage over OVM while task of system simulator
reuse is conducting.

III. ARCHITECTURE OF SINGLE TEST SYSTEM

The architecture described in [4] was based on UniTESK
technology [11] developed in Institute for System
Programming of RAS. The architecture includes stimuli
generators (including FSM-based one), oracle (reaction
checker), and after all coverage tracker and verification report
generator (see Figure 2). The stimuli generator produces
sequence of messages and sends them as a parameter while
calling interface operations of the reference model. These calls
are named sending model stimuli:

dut.start(&DUT::pop_stimulus, dut.iface1, msg);

Reaction checker processes messages and makes model
reactions. Then it sends stimuli (which now are called design
stimuli) to the target design and receives its design reactions.
At last, reaction checker checks correspondence between
model and design reactions and returns a verdict about
correctness of DUV at the current cycle. The coverage tracker
saves the information about functional coverage at the current
cycle. The report generator dumps important information about
the verification process such as called operations, reached
functional coverage and verification result.

Figure 2. Single test system architecture

112

The most complex component requiring and allowing reuse
is reaction checker (see Figure 3). The reaction checker
supplies the reference model with all the necessary functions,
which make it possible for the stimuli generator (or other
reaction checker) to utilize the reference model and model
adapter.

Reaction checker

Precondition checkers

MS

Failed

Stimuli generator

Model adapter

Ref. model

Input interfaces models

Functional model

Control logic

Datapath

Commutation

Output interfaces models

Reactions queues

Reaction matchers

Postcondition checkers

Input interfaces adapters

Reaction detectors

Output interfaces adapters

MR MR

MR MR

MR

MR

CR

DS

Input interface

Target design

DR

Output interface

Verdict

Stimuli generator

MS - Model stimulus (abstract message)

DS - Design stimulus (cycle- and pin-accurate serialization of MS)
MR - Model reaction (reference message or constraint)
DR - Design reaction (cycle- and pin-accurate series)

CR - Checked reaction (deserialization of DR)

Primary arbiters

Secondary arbiters

Figure 3. Reaction checker architecture

The messages sent into the checker are called model stimuli
(MS). The generator (or other reaction checker) addresses the
MS flow to one of the input interfaces models.

On having received the MS, pre-condition checkers check
if the MS can be started. The MS, which staring requirements
are not satisfied at the current state of the functional model, is
rejected. In the other case they proceed both to the DUV via
input interface adapters (in this step processed MS is called
design stimuli, DS) and to the functional model via input
interface models set by the generator.

The functional model produces model reactions (MR) and
places them into one of the output interface models according
to rules included into the functional model.

The output interface models contain reaction queues
keeping MR and primary arbiters selecting MR subset at the
current simulation cycle. The arbiters work according to a
strategy selected by the test developer. The MR subset is sent

into reaction detectors to help recognizing DUV’s reactions
(DR).

The reaction matchers fetch the MR sub-subset from the
output interfaces models and then start expecting the
corresponding reactions from the DUV. The restrictions are
made by the second arbiters and customized by test developer.
There are certain time restrictions for the waiting. If they are
violated, the test system shows the timeout error and stops
working.

When the DR are found, they are put into one of the output
interface adapters (corresponding MR, if it is found, helps to
select which one). If some of DR does not have the
corresponding MR, the test system shows an unexpected
reaction error and stops working.

The output interfaces adapters send the checked reactions
(CR) into the reaction matcher to find the corresponding MR
satisfied the restrictions made by secondary arbiters. After all,
post-condition checkers check equivalence between
corresponding MR and CR. If the MR and CR are equal, the
test process goes on. If there is a problem with messages, the
test system shows a given error and stops working.

Test successfully finishes when the stimuli generators
makes everything it was asked to do by the test developer (like
visiting all reachable states of the FSM, etc.).

IV. ARCHTECTURE OF MERGED TEST SYSTEM

The proposed TLM-based approach to develop single test
system can be used while the task is to make test system for a
total DUV on the base of test systems for the components of
the DUV. To reuse test systems for components is convenient
when parts of test systems can be connected to each other be
means of the interfaces they have. Therefore, the selected
TLM-based way of interface development has a certain
advantage: it allows reusing components of test systems as they
are, not taking only parts from components or using copy-paste
method. To develop complex test system is possible by means
of the following steps.

When there are several test systems to connect some of
them will miss their connection with DUV. We propose to
create common test system and inject all small reaction
checkers from earlier developed test systems connected to each
other (see Figure 4). Therefore, input and output interfaces
adapters and reaction detectors should be modified to connect
with other reaction checkers. Fortunately, their separation from
the reference model allows us to do without huge reference
model modifications.

 When merging the reaction checkers, we create the
common test system and place sub reaction checkers into it.
The common test system possesses its own stimuli generator,
reaction checker and coverage tracker. While developing all
these parts, to reuse some parts of test systems previously
developed would be great achievement.

.

113

Figure 4. Architecture of multi-module test system

The stimuli generator can inherit scenario functions from
sub generators but only if the part of message prepare and call
of original reaction checkers were split from each other to
different functions. In this case, the reaction checker used can
be easily changed to a common by means of overloading the
appropriate functions.

The coverage tracker is a common component for all test
systems. To use it, a coverage structure should be described
and registered in a tracker. The registration is identical in cases
of single or multi-module test systems. To refresh the coverage
information, some functions from functional models are
usually used. Since the models have been inserted into the
common test system, the reuse of the coverage becomes free of
charge. The common test system just calls all of them at every
cycle to make them collect data. It should be noticed, that
coverage structures from single test systems in some cases do
not provide important information for the case of combined
DUV and in this case either cross-coverage is created or new
coverage structures for the whole DUV are developed.

The combined reaction checkers is one of the most difficult
parts of combined test systems. The common reaction checker
looks like the single reaction checker but it should use included
reaction checkers functionality. Only the common reaction
checker is allowed to change values of DUV’s wires while sub
reaction checkers’ input and output interfaces adapters are
switched off. To switch them off is possible by means of
overloading to make them send model message not in the
absent DUV but to the other reaction checkers (see Figure 5).

To facilitate the connection between reaction checkers we
propose to use channels. Channel is a way to connect an output
interface model and an input interface model together. To do it
the message from the input interface should be translated into a
form applicable to the output interface to put into it. The
channel can also broadcast message into several input
interfaces. Usage of channels is given in Figure 6.

Figure 5. Architecture of multi-module reaction checkers

Figure 6. Architecture of multi-module reaction checkers

The overloaded input interfaces models usually contain
precondition checkers so that they check protocols of the
communications between sub modules. It can help to reveal
problems, which can be found if the reference model takes
input stimuli only from stimuli generator: the input variables
values have wide variance and this variance usually
corresponds to the real work situation for the DUV’s parts.

The most distinctive feature of the approach, as it has been
said before, is that it uses C++ and can use some parts of
system simulators usually written in C++. Moreover, the
reference models due to their architecture can be reused in
development of Verilog-models. In this case, input and output
interface adapters do not work as usual: input interface adapters
should take the messages from the DUV, process them in
functional model and send the messages to the DUV by means
output interface adapters (see Figure 7).

114

Reaction checker

Precondition checkers
MS

Failed

Model adapter

Ref. model

Input interfaces models

Functional model

Control logic

Datapath

Commutation

Input interfaces adapters

Output interfaces adapters

MR

DS

Input interface

Target design

DR

Output interface

MS - Model stimulus (abstract message)

DS - Design stimulus (cycle- and pin-accurate serialization of MS)
MR - Model reaction (reference message or constraint)

DR - Design reaction (cycle- and pin-accurate series)

Figure 7. Architecture of reaction checker built into DUV

Common test system controls the reaction checkers built in
DUV. The checkers help Verilog-model developer in
accelerated development of the model as code in C++ with the
same functionality as in Verilog is usually written quicker.

Summing up, the approach allows developing test systems,
which can be reused as parts of common test system. These test
systems check not only the output data of DUV but input data
from, say, stimuli generator (by means of precondition
checkers). When the test systems are connected to each other
not to DUV, they can check the behavior of their neighbors, i.e.
they check the interconnection protocol of DUV’s components.
The test system supports special means to make the
interconnection such as interfaces and channels. After all, to
reduce the time spent to make the first version of DUV for
system-level verification, the test systems can be inserted into
the Verilog code of DUV while the last is still under designing.
The approach is supported by a library developed in C++, so
that test systems being developed according to the approach,
are also based on C++. It gives wide range of opportunities to
use all means of C++ to facilitate the development of the test
systems. It should be noticed, that C++ is usually used in
system level simulators of DUV, so that parts of the simulators
can be easily reused as reference models in the test systems and
vice versa. At last, the library is compatible with UniTESK
approach, which means the opportunity to develop high-quality
tests based on FSM-traversing even for the system-level case
and to spread test systems among clusters of computers.

V. CASE STUDY

The approach to develop single test systems has shown its
effectiveness in several projects [4]. The most interesting cases
are generalized in Table 1.

TABLE I. APPLICATIONS OF THE SUGGESTED APPROACH

Design under

verification

Depth of

verification

Source code,

KLOC

Labor costs,

man-months

Translation lookaside

buffer (TLB)
Up to cycle-accurate 2.5 2.5

Non-blocking L2 cache Up to detailed-timed 3 6

Northbridge data switch Up to cycle-accurate 3 3

Memory access unit

(MAU)
Up to cycle-accurate 1 1

The labor costs in Table 1 include verification plan writing,
test system development, as well as verification process and
debug of the developed test system. In case of non-blocking L2
cache the costs also include test system maintaining due to
permanent modifications in the DUT. Table 1 shows that time
spent to the verification can be roughly estimated to be one
man-month per one KLOC. The L2 cache case is an exception
from this rule, but it required additional supporting as it has
been already said.

A comparison between our results and the second approach
(OVM) could be worth knowing. Very little estimations of the
OVM application efforts prevented us from doing it. We
suggested those spent to the development of test systems with
close functionality to be similar to the proposed methodology.
It is because OVM also utilizes object-oriented language and
the set of test system components looks like proposed.
Nevertheless, there is a certain difference between approach
given in this article and OVM: our approach provides
additional means of FSM-based stimuli flow creation.
Actually, this question has not been thoroughly analyzed by us.
It is a point of the following research.

The proposed way of merging is a new revealed ability of
the basic approach. Only some experiments were conducted to
estimate the possibility of merging. First, the test system for a
simple FIFO module was developed. It took about two men-
days including efforts spent for documenting of the project.
Then this FIFO module was multiplied to become three FIFO-
modules into one envelop. Two of them were input buffers and
the third one was output buffer. We placed between them an
arbiter to select which one of the input buffers sends data to the
output one. It always selected the first FIFO if it contained any
data. To test this combination we combined three test systems
for original FIFO-module and added functionality of the arbiter
in a very simple way: functional model always reads data from
the first FIFO if it contained any data and in other case read the
second FIFO. Stimuli generator used original scenario
functions like “pop” and “push” but with a little modification
as now two FIFO played role of the input and the last one did
of the output. The interface adapters of sub test systems were
overloaded. Formerly, to make pop and push operations only
two interfaces had been used: one input and out output. In case
of input FIFOs, input interfaces were not changed (the
functionality of setting values to the DUV’s wires from sub
reaction checkers had been removed before). Output interfaces
were overloaded to send messages into output FIFO’s input
interfaces. Initially, the registration of adapters of interfaces
had looked like:

CPPTESK_SET_OUTPUT_ADAPTER(iface3,

 FIFOMediator::deserialize_iface3);

where deserializer is a function which translates DUV’s
wires signals into message. As the output interface iface3 was
not already output one, we overloaded this adapter:

115

CPPTESK_SET_INNER_IFACE_ADAPTER(FIFOMediator,

fifo0, fifo0.iface3, MM::deserialize_inner_iface0);

New deserializer calls the output FIFO fifo2:

CPPTESK_DEFINE_PROCESS(

 MM::deserialize_inner_iface0)

{

 …

 if(!fifo2.is_full()) {

 …

 fifo2.start(&FIFO::push_msg,

 fifo2.iface1, data);

 }

}

The output interface model of output FIFO just gave the
messages into common reaction checker’s output interface
model. To create the common test system we spent about half a
day accounting the time to research of merging possibility. The
time could have been spent for developing of complex test
system from scratch is expected to be about 2 days, but it is not
the most important. The time to connect sub test systems
slightly correlates with complexity of DUV’s sub part. Mostly,
it depends on amount of input and output interfaces and efforts
to connect them together. We have an estimate that to connect
exactly one input interface to one output is possible in about
one hour. This time will be spent to develop channel between
them that will translate messages between channels. The
average DUV’s part, by our estimates, consists of about ten
input and ten output interfaces, so that to connect two average
DUV’s parts is possible in one-two men-days, according to the
productivity of the verification engineer.

VI. CONCLUSIONS

This approach gives us a useful way to develop test systems
for separated parts of DUVs and then to merge the test systems
with high level of reuse. The main advantages of the approach
are the check of interconnection behavior with no additional
code and special means to facilitate reuse. The architecture is

supported by a library developed in C++ that allows using the
great opportunities of the language while developing test
systems. The fact that usually system level simulators are based
on C++ points to the ability of reusing parts of system-level
reference models and reference models of the developed test
systems and vice versa. There are two bonuses: the test systems
can control communications between functional models inside
the DUV as its parts, especially when the DUV is still under
construction, and that the library supporting the approach
supports UniTESK technology which allows developing high-
quality tests based on FSM-traversing and spreading test
systems among clusters of computers.

REFERENCES

[1] IEEE 1364-2005, Verilog Standard.

[2] J. Bergeron, Writing testbenches: functional verification of HDL
models. Kluwer Academic Publichers, 2003.

[3] Tool called Formality by Synopsys (http://www.synopsys.com/Tools/
Verification/FormalEquivalence/Pages/Formality.aspx)

[4] M. Chupilko, A. Kamkin. A TLM-based approach to functional
verification of hardware components at different abstraction levels. 12th
Latin-American Test Workshop, 2011.

[5] E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999.

[6] R. Kneuper. Limits of Formal Methods. Formal Aspects of Computing
(1997) 3: 1-000, 1997.

[7] S. Iman. Step-by-step Functional Verification with SystemVerilog and
OVM. Hansen Brown Publishing Company, 2008.

[8] V. Ivannikov, A. Kamkin, V. Kuliamin, A. Petrenko. Application of the
UniTESK technology to functional verification of software.
http://citforum.ru/SE/testing/unitesk_hard/, 2006 (in Russian)

[9] Open Verification Methodology, http://www.ovmworld.org.

[10] Y. Gubenko, A. Kamkin, M. Chupilko. Comparative analisys of modern
technologies of hardware designs test development.
http://citforum.ru/SE/testing/hardware_models/, 2009 (in Russian)

[11] A. Barancev et al. UniTesK approach to the software development:
achievements and prospects. http://citforum.ru/SE/testing/unitesk/, 2004.
(in Russian)

116

Programming for Modular Reconfigurable Robots
Anna Gorbenko

Department of Mathematics and
Mechanics

Ural State University
Ekaterinburg, Russia, 620083

Email: gorbenko.aa@gmail.com

Vladimir Popov
Department of Mathematics and

Mechanics
Ural State University

Ekaterinburg, Russia, 620083
Email: Vladimir.Popov@usu.ru

Abstract—Composed of multiple modular robotic units, self-
reconfigurable modular robots are metamorphic systems that
can autonomously rearrange the modules and form differ-
ent configurations for dynamic environments and tasks. Self-
reconfiguration is to solve how to change connectivity among
modules to transform the robot from the current configuration
into the goal configuration within the restrictions of physical
implementation. The existing reconfiguration algorithms used
different methods, such as divide-and-conquer, graph matching
etc, to reduce the reconfiguration cost. However, the optimal
solution with least reconfiguration steps has never been reached.
The optimal reconfiguration planning problem of finding the
least number of reconfiguration steps to transform between two
configurations is NP-complete. In this paper we describe an
approach to solve this problem. This approach is based on
constructing a logical models for considered problem.

I. I NTRODUCTION

Modular robotics has been the subject of much interest
in the research community [1]. Using large numbers of
simple modules to replace one complicated, special-purpose
device provides benefits in terms of flexibility, robustness, and
manufacturing cost. The challenge in these systems lies in
controlling large numbers of low-powered, unreliable modules.
Motion planning and shape formation for these systems is the
main problem of such a difficult challenge.

Metamorphic robotic systems [2] can be viewed as a large
swarm of connected robots which collectively act as a single
entity. Potential applications of metamorphic systems com-
posed of a large number of modules include:

• obstacle avoidance in highly constrained and unstructured
environments;

• growing structures composed of modules to form bridges,
buttresses, and other civil structures in times of emer-
gency;

• envelopment of objects, such as recovering satellites from
space;

• performing inspections in constrained environments such
as nuclear reactors.

Self-reconfiguring robots were first proposed in [3]. In
this planar system modules were heterogeneous and semi-
autonomous. Other research focused on homogeneous systems
with non-autonomous modules in two dimensions [4] – [7]
and three dimensions [8] – [10]. In this type of system the
modules are not capable of acting independently, and thus

must remain connected. Five types of modular reconfigurable
robotic systems have been proposed in the literature:

• robots in which modules are reconfigured using external
intervention, e.g. [11] – [14];

• cellular robotic systems in which a heterogeneous collec-
tion of independent specialized modules are coordinated,
e.g. [15] – [18];

• swarm intelligence in which there are generally no phys-
ical connections between modules, e.g. [19] – [22];

• modular robots composed of a few basic elements which
can be composed into complex systems and used for
various modes of locomotion, e.g. [23] – [25];

• fractal systems composed of modules with zero kinematic
mobility, but which can walk over each other in discrete
quanta due to changes in the polarity of magnetic fields,
e.g. [5], [26].

In the present work, a metamorphic robotic system is a
collection of independently controlled mechatronic modules,
each of which has the ability to connect, disconnect, and climb
over adjacent modules, e.g. [6]. A metamorphic system can
dynamically reconfigure by the locomotion of modules over
their neighbors. Thus they can be viewed as a collection of
connected modular robots which act together to perform the
given task. Composed of multiple modular robotic units, self-
reconfigurable modular robots are metamorphic systems that
can autonomously rearrange the modules and form different
configurations for dynamic environments and tasks.

Modular reconfigurable robot programming can be substan-
tially more challenging than normal robot programming due
to:

• scale / number of modules;
• concurrency and asynchronicity, both in physical interac-

tions and potentially at the software level;
• the local scope of information naturally available at each

module.

For modular reconfigurable robots it is developed several
specialized programming languages (e.g. [27], [28]). However,
existing programming methods show relatively poor perfor-
mance for reconfiguration planning problems. Note that recon-
figuration planning problems play a central role for modular
robots (e.g. [29] – [40]). Solutions for such problems lies at the
heart of any control system of modular robots. Performance

117

of such solutions is the base factor for the performance of the
whole control system. So, the main challenges for modular
robotic systems is an efficient planner. It has long been
recognized that traditional methods are unsuitable due to the
large search space and the blocking constraints imposed by
realizable module design. To ease the planning problem, many
groups have proposed different kinds of metamodules, groups
of modules that act as a unit for planning or motion execution
purposes, each specific to a particular module design [7], [38],
[41], [42].

Poor performance for reconfiguration planning problems is
not surprising, since such problems are computationally hard.
In particular, in proved that the optimal reconfiguration plan-
ning problem of finding the least number of reconfiguration
steps to transform between two configurations (ORP) isNP-
complete. Therefore, we need some intelligent solution for
this problem. However, the applying of distributed algorithms
or any iterative procedure requires a great exchange of infor-
mation between modules. This leads to the loss of solution
accuracy and reduce performance. Therefore, it is desirable
to solve ORP in a separate intelligent module which would
generate a final solution represented by simple instructions.
Note that the centralization of ORP solution allows to use
some remote computing resources and makes the performance
independent from computing resources of modules. When
using such approach, programming of individual modules
consists in

• processing of sensory information;
• transmission of sensory information;
• motor control;
• receiving instructions for actuators.

In this paper we describe an approach to solve ORP
problem. This approach is based on constructing a logical
models for considered problem.

II. OPTIMAL RECONFIGURATIONPLANNING PROBLEM

Self-reconfiguration is to solve how to change connectivity
among modules to transform the robot from the current con-
figuration into the goal configuration within the restrictions of
physical implementation. Depending on the hardware design,
reconfiguration algorithms fall into two groups:

• reconfiguration for lattice-type modular robot and recon-
figuration for chain-type modular robot. In lattice-type
robot, modules lie in 2D or 3D grids;

• the reconfiguration is achieved through discrete move-
ments of modules detaching from the current lattice
location, moving along and surface of the robot and
docking at the adjacent cells.

Example reconfiguration work includes [32] – [40] etc. In
chain-type robots, modules can form moving chains and loops
of any graph topology, and the reconfiguration is achieved
through “connect” and “disconnect” operations between mod-
ules along with the joint motion of chains composed of several
modules. Due to its difficulty, the chain-type reconfiguration
has received less attention. Existing algorithms include [43] –

[47] etc. The different geometric arrangement of modules
between lattice-type and chain-type modular robots makes
their reconfiguration planning mechanisms fundamentally dif-
ferent. The work in this paper is more focused on chain-
type reconfiguration. For simplicity, we will use the term
“modular robots” or simply “robots” to denote “the chain-type
modular robots”, and use “reconfiguration” to denote “chain-
type reconfiguration” in the following.

The existing reconfiguration algorithms used different meth-
ods, such as divide-and-conquer [43], graph matching [44] etc,
to reduce the reconfiguration cost. However, the optimal solu-
tion with least reconfiguration steps has never been reached.
In [48] proved that the optimal reconfiguration planning prob-
lem of finding the least number of reconfiguration steps to
transform between two configurations isNP-complete.

A. Configuration Representation

Before defining the optimal reconfiguration planning prob-
lem, we would describe representation of robot’s configuration
first. Two robots with the same graph topology can function
differently if the modules are connected via different con-
nectors (see e.g. [48]). To fully represent a robot’s configu-
ration, a special graph called C-Graph (Connector-Graph) is
proposed in [48]. C-Graph is the extension of normal graph
with differentiated connecting points. Each node has a finite
number of ports that are internally labeled corresponding to
the connectors of a module. A connection between module
u’s connectori and modulev’s connectorj corresponds to an
edge(i, j) betweenu andv.

In principle we could represent a robot’s configuration as a
C-Graph

G = (V,E),

V = {v[1], v[2], . . . , v[n]},

E = {e[1], e[2], . . . , e[m]},

where:

• each nodev[i] ∈ V represents the set

v[i] = {v[i, 1], v[i, 2], . . . , v[i, pi]}

of connecting points ofith module, wherepi is the
number of connecting points ofith module;

• each edge

e[j] = (v[i1, l1], v[i2, l2]) ∈ E

represents a connection between modulei1’s connector
l1 and modulei2’s connectorl2, where

1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n,

1 ≤ l1 ≤ pi1 , 1 ≤ l2 ≤ pi2 .

118

B. Reconfiguration Actions

The two elementary reconfiguration actions are:

• making new connections;
• disconnecting current connections between modules for

connectivity rearrangement.

The robot can bend its body through module joints, so any
two modules with free connectors can potentially be aligned
and dock with each other.

C. Optimal Reconfiguration Planning Problem

The reconfiguration planning problem is defined as how
modules in one configuration rearrange into another using
several sets of reconfiguration actions. Basically, what con-
nections to make and what connections to disconnect so as
to reconfigure from arbitrary one shape to another? Without
loss of generality, we will always assume that the number of
modules in the initial configuration is the same as that in the
goal configuration.

During the reconfiguration process, the reconfiguration ac-
tions are most time- and energy-consuming, so it is a common
practice to aim at minimizing the number of reconfiguration
steps, i.e. the number of connect actions plus the number
of disconnect actions. Therefore, the optimal reconfiguration
planning problem is to find the least number of reconfiguration
steps to transform from the initial configuration into the goal
configuration.

Since the number of physical connections is predefined in
the initial and goal configurations, the number of connect
actions is fixed once the number of disconnect action is known,
and vice versa. So we get that the optimal reconfiguration
planning problem is to find the either one of the following
metrics:

• least number of connect actions;
• least number of disconnect actions;
• least number of reconfiguration steps (i.e., the number of

connect actions plus the number of disconnect actions).

For given two connected C-Graphs

I = (V,E1)

and
G = (V,E2)

we say that there exists a reconfiguration plan with at mostk
reconfiguration steps if and only if there exists a sequence of
r ≤ k connect and disconnect actions such that starting fromI
we obtainG and applying each of this connect and disconnect
actions we obtain a connected C-Graph. The decision version
of optimal reconfiguration planning problem is formulated as
the following problem.

OPTIMAL RECONFIGURATION PLANNING PROBLEM

(ORP):
INSTANCE: C-Graphs I = (V,E1) and G = (V,E2), a

given integerk.
QUESTION: Whether there exists a reconfiguration plan for

C-GraphsI andG with at mostk reconfiguration steps?

III. L OGICAL MODEL OF ORP

The propositional satisfiability problem (PSAT) is a core
problem in mathematical logic and computing theory. Propo-
sitional satisfiability is the problem of determining if the
variables of a given boolean function can be assigned in such
a way as to make the formula evaluate to true. PSAT was the
first knownNP-complete problem, as proved by Stephen Cook
in 1971 [49]. Until that time, the concept of anNP-complete
problem did not even exist. Considered also different variants
of the satisfiability problem. For instance, Satisfiability (SAT)
is the problem of determining if the variables of a given
boolean function in conjunctive normal form can be assigned
in such a way as to make the formula evaluate to true. In
practice, the satisfiability problem is fundamental in solving
many problems in automated reasoning, computer-aided de-
sign, computer-aided manufacturing, machine vision, database,
robotics, integrated circuit design, computer architecture de-
sign, and computer network design. Traditional methods treat
the satisfiability problem as a discrete, constrained decision
problem.

A. Reduction toPSAT

Consider a set of C-Graphs

{G[q] = (V,E[q] | 0 ≤ q ≤ k},

where

E[q] = {e[q, 1], e[q, 2], . . . , e[q,mq]},

each edge

e[q, j] = (v[i1, l1], v[i2, l2]) ∈ E[q]

represents a connection between modulei1’s connectorl1 and
modulei2’s connectorl2, where

1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n, 1 ≤ l1 ≤ pi1 , 1 ≤ l2 ≤ pi2 .

Let G[0] = I, G[k] = G. Now consider a set of boolean
variables

{x[q, i1, i2, i3, i4] | 0 ≤ q ≤ k, 1 ≤ i1 ≤ n,

1 ≤ i2 ≤ pi1 , 1 ≤ i3 ≤ n, 1 ≤ i4 ≤ pi3}.

Suppose that relation

x[q, i1, i2, i3, i4] = 1

means that

(v[i1, i2], v[i3, i4]) ∈ E[q].

119

Consider following boolean function:

ψ[q] ⇀↽
∨

1 ≤ s1 ≤ n,
1 ≤ s2 ≤ pi1 ,
1 ≤ s3 ≤ n,
1 ≤ s4 ≤ pi3

∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
i1 6= s1,
i2 6= s2,
i3 6= s3,
i4 6= s4,
i1 6= s3,
i2 6= s4,
i3 6= s1,
i4 6= s2

x[q, i1, i2, i3, i4] =

x[q + 1, i1, i2, i3, i4].

It is easy to see that boolean functionψ[q] is satisfiable if and
only if G[q] = G[q + 1] or C-GraphG[q + 1] obtained from
G[q] by one connect or disconnect action. Therefore, it is easy
to see that boolean function

(
∧

(v[i1, i2], v[i3, i4]) ∈ E[0]
x[0, i1, i2, i3, i4] = 1)∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[0]
x[0, i1, i2, i3, i4] = 0)∧

(
∧

(v[i1, i2], v[i3, i4]) ∈ E[k]
z[k, i1, i2, i3, i4] = 1)∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[k]
z[k, i1, i2, i3, i4] = 0)∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
n2∨

j=1

w[j, i1, i2, i3, i4]))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
∧

1 ≤ j1 ≤ nn2
,

1 ≤ j2 ≤ nn2
,

j1 6= j2

(¬w[j1, i1, i2, i3, i4]∨

¬w[j2, i1, i2, i3, i4])))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ pi1 ,
1 ≤ i7 ≤ n,
1 ≤ i8 ≤ pi3 ,
(i1, i3) 6= (i5, i7),
(i1, i3) 6= (i7, i5)

n2∧
j=1

(¬w[j, i1, i2, i3, i4]∨

¬w[j, i5, i6, i7, i8]))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3

n2∧
j=1

w[j, i1, i2, i3, i4] =

w[j, i3, i2, i1, i4])∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

w[(i5 − 1)n+ i6, i1, i2, i3, i4] →

x[k, i1, i2, i3, i4] = z[k, i5, i2, i6, i4])∧

(
∧

0 ≤ q ≤ k − 1
ψ[q])

is satisfiable if and only if there exists a reconfiguration plan
for C-GraphsI andG with at mostk reconfiguration steps.

Note that

(α = β) ⇔ ((α ∨ ¬β) ∧ (¬α ∨ β)).

Therefore,ψ[q] ⇔ ψ′[q], where

ψ′[q] ⇀↽
∨

1 ≤ s1 ≤ n,
1 ≤ s2 ≤ pi1 ,
1 ≤ s3 ≤ n,
1 ≤ s4 ≤ pi3

∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
i1 6= s1,
i2 6= s2,
i3 6= s3,
i4 6= s4,
i1 6= s3,
i2 6= s4,
i3 6= s1,
i4 6= s2

((x[q, i1, i2, i3, i4]∨

¬x[q + 1, i1, i2, i3, i4])∧

120

(¬x[q, i1, i2, i3, i4]∨

x[q + 1, i1, i2, i3, i4])),∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3

n2∧
j=1

w[j, i1, i2, i3, i4] =

w[j, i3, i2, i1, i4] ⇔∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3

n2∧
j=1

((w[j, i1, i2, i3, i4]∨

¬w[j, i3, i2, i1, i4])∧

(¬w[j, i1, i2, i3, i4]∨

w[j, i3, i2, i1, i4])).

Sinceα→ β ⇔ ¬α ∨ β,∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

w[(i5 − 1)n+ i6, i1, i2, i3, i4] →

x[k, i1, i2, i3, i4] = z[k, i5, i2, i6, i4] ⇔∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

x[k, i1, i2, i3, i4] = z[k, i5, i2, i6, i4] ⇔∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

(¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

((x[k, i1, i2, i3, i4]∨

¬z[k, i5, i2, i6, i4])∧

(¬x[k, i1, i2, i3, i4]∨

z[k, i5, i2, i6, i4]))).

So, using only¬, ∧, and∨, we obtain a boolean function

ξ1 ⇀↽ (
∧

(v[i1, i2], v[i3, i4]) ∈ E[0]
x[0, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[0]
¬x[0, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) ∈ E[k]
z[k, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[k]
¬z[k, i1, i2, i3, i4])∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
n2∨

j=1

w[j, i1, i2, i3, i4]))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
∧

1 ≤ j1 ≤ nn2
,

1 ≤ j2 ≤ nn2
,

j1 6= j2

(¬w[j1, i1, i2, i3, i4]∨

¬w[j2, i1, i2, i3, i4])))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ pi1 ,
1 ≤ i7 ≤ n,
1 ≤ i8 ≤ pi3 ,
(i1, i3) 6= (i5, i7),
(i1, i3) 6= (i7, i5)

n2∧
j=1

(¬w[j, i1, i2, i3, i4]∨

¬w[j, i5, i6, i7, i8]))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3

n2∧
j=1

((w[j, i1, i2, i3, i4]∨

¬w[j, i3, i2, i1, i4])∧

(¬w[j, i1, i2, i3, i4]∨

w[j, i3, i2, i1, i4])))∧

121

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

(¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

((x[k, i1, i2, i3, i4]∨

¬z[k, i5, i2, i6, i4])∧

(¬x[k, i1, i2, i3, i4]∨

z[k, i5, i2, i6, i4]))))∧

(
∧

0 ≤ q ≤ k − 1
ψ′[q])

such that ξ1 is satisfiable if and only if there exists a
reconfiguration plan for C-GraphsI and G with at most
k reconfiguration steps. It is easy to see that the size of
boolean functionξ1 polynomially depends from the size of C-
Graphs. Therefore, we obtain an explicit reduction from ORP
to PSAT.

Clearly, ξ1 is not in conjunctive normal form. Using the
distributive law, we can obtain fromξ1 a boolean function
in conjunctive normal form but this function will be have
exponential size. In some sense it is a good news. The
propositional satisfiability problem seems to become easier if
boolean functions are restricted to those in disjunctive normal
form. This is because such a formula is satisfiable if and
only if some clause is satisfiable, and a conjunctive clause
is satisfiable if and only if it does not contain bothx and
¬x for some variablex. This can be checked in polynomial
time. Correspondently, the propositional satisfiability problem
seems to become harder if boolean functions are restricted to
those in conjunctive normal form. From this point of view the
impossibility of polynomial reduction fromξ1 to a boolean
function in conjunctive normal form is a good news.

B. Reduction toSAT

It is easy to see thatψ[q] ⇔ ψ′′[q], where

ψ′′[q] ⇀↽
∧

1 ≤ s1 ≤ n,
1 ≤ s2 ≤ pi1 ,
1 ≤ s3 ≤ n,
1 ≤ s4 ≤ pi3

1 ≤ t1 ≤ n,
1 ≤ t2 ≤ pi1 ,
1 ≤ t3 ≤ n,
1 ≤ t4 ≤ pi3 ,
(s1, s2, s3, s4) 6= (t1, t2, t3, t4),
(s1, s2, s3, s4) 6= (t3, t4, t1, t2),

(x[q, s1, s2, s3, s4] =

x[q + 1, s1, s2, s3, s4]∨

x[q, t1, t2, t3, t4] = x[q + 1, t1, t2, t3, t4]).

Since
(α = β) ⇔ ((α ∨ ¬β) ∧ (¬α ∨ β)),

it is clear thatψ′′[q] ⇔ ψ′′′[q], where

ψ′′′[q] ⇀↽
∧

1 ≤ s1 ≤ n,
1 ≤ s2 ≤ pi1 ,
1 ≤ s3 ≤ n,
1 ≤ s4 ≤ pi3

1 ≤ t1 ≤ n,
1 ≤ t2 ≤ pi1 ,
1 ≤ t3 ≤ n,
1 ≤ t4 ≤ pi3 ,
(s1, s2, s3, s4) 6= (t1, t2, t3, t4),
(s1, s2, s3, s4) 6= (t3, t4, t1, t2),

((x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]))∨

((x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4])).

Note that
((x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]))∨

((x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4])) ⇔

(((x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]))∨

(x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4]))∧

(((x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]))∨

122

(¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4])) ⇔

(x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4]∨

x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]∨

x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4]∨

¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]∨

¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4]).

Therefore,ψ′′′[q] ⇔ ψ′′′′[q], where

ψ′′′′[q] ⇀↽
∧

1 ≤ s1 ≤ n,
1 ≤ s2 ≤ pi1 ,
1 ≤ s3 ≤ n,
1 ≤ s4 ≤ pi3

1 ≤ t1 ≤ n,
1 ≤ t2 ≤ pi1 ,
1 ≤ t3 ≤ n,
1 ≤ t4 ≤ pi3 ,
(s1, s2, s3, s4) 6= (t1, t2, t3, t4),
(s1, s2, s3, s4) 6= (t3, t4, t1, t2),

(x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4] ∨ x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]∨

x[q, t1, t2, t3, t4]∨

¬x[q + 1, t1, t2, t3, t4])∧

(x[q, s1, s2, s3, s4]∨

¬x[q + 1, s1, s2, s3, s4]∨

¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4])∧

(¬x[q, s1, s2, s3, s4]∨

x[q + 1, s1, s2, s3, s4]∨

¬x[q, t1, t2, t3, t4]∨

x[q + 1, t1, t2, t3, t4]).

Note that ∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

(¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

((x[k, i1, i2, i3, i4]∨

¬z[k, i5, i2, i6, i4])∧

(¬x[k, i1, i2, i3, i4]∨

z[k, i5, i2, i6, i4]))) ⇔∧
1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

((¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

x[k, i1, i2, i3, i4]∨

¬z[k, i5, i2, i6, i4])∧

(¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

¬x[k, i1, i2, i3, i4]∨

z[k, i5, i2, i6, i4])).

So, we obtain a boolean function

ξ2 ⇀↽ (
∧

(v[i1, i2], v[i3, i4]) ∈ E[0]
x[0, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[0]
¬x[0, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) ∈ E[k]
z[k, i1, i2, i3, i4])∧

(
∧

(v[i1, i2], v[i3, i4]) /∈ E[k]
¬z[k, i1, i2, i3, i4])∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
n2∨

j=1

w[j, i1, i2, i3, i4]))∧

123

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,

(
∧

1 ≤ j1 ≤ nn2
,

1 ≤ j2 ≤ nn2
,

j1 6= j2

(¬w[j1, i1, i2, i3, i4]∨

¬w[j2, i1, i2, i3, i4])))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ pi1 ,
1 ≤ i7 ≤ n,
1 ≤ i8 ≤ pi3 ,
(i1, i3) 6= (i5, i7),
(i1, i3) 6= (i7, i5)

n2∧
j=1

(¬w[j, i1, i2, i3, i4]∨

¬w[j, i5, i6, i7, i8]))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3

n2∧
j=1

((w[j, i1, i2, i3, i4]∨

¬w[j, i3, i2, i1, i4])∧

(¬w[j, i1, i2, i3, i4]∨

w[j, i3, i2, i1, i4])))∧

(
∧

1 ≤ i1 ≤ n,
1 ≤ i2 ≤ pi1 ,
1 ≤ i3 ≤ n,
1 ≤ i4 ≤ pi3 ,
1 ≤ i5 ≤ n,
1 ≤ i6 ≤ n

((¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

x[k, i1, i2, i3, i4]∨

¬z[k, i5, i2, i6, i4])∧

(¬w[(i5 − 1)n+ i6, i1, i2, i3, i4]∨

¬x[k, i1, i2, i3, i4]∨

z[k, i5, i2, i6, i4])))∧

(
∧

0 ≤ q ≤ k − 1
ψ′′′′[q])

such thatξ2 is satisfiable if and only if there exists a re-
configuration plan for C-GraphsI and G with at most k
reconfiguration steps. It is easy to see that the size of boolean
function ξ2 polynomially depends from the size of C-Graphs.
Since ξ2 in conjunctive normal form, we obtain an explicit
reduction from ORP to SAT.

IV. CONCLUSION AND EXPERIMENTAL RESULTS

In recent years, many optimization methods, parallel al-
gorithms, and practical techniques have been developed for
solving the satisfiability problem (see [50]). In particular,
proposed several genetic algorithms [51] – [54]. Considered
hybrid algorithms in which the approach of genetic algorithms
combined with local search [55].

Modern propositional satisfiability solvers are usually de-
signed to solve SAT formula encoded in conjunctive normal
form (CNF). Stochastic local search techniques have been suc-
cessful in solving propositional satisfiability problems encoded
in CNF. Recently complete solvers have shown that there are
advantages to tackling propositional satisfiability problems in
a more expressive natural representation, since the conversion
to CNF can lose problem structure and introduce significantly
more variables to encode the problem. CNF solvers can
be disadvantageous for problems which are more naturally
encoded as arbitrary propositional formula. The conversion to
CNF form may increase the size of the formula exponentially,
or significantly reduce the strength of the formulation. The
translation may introduce many new variables which increases
the size of the raw valuation space through which the solver
must search. Recently, interest has arisen in designing non-
clausal satisfiability algorithms (see e.g. [56] – [63]).

Relatively high efficiency demonstrated by algorithms based
solely on local search. Of course, these algorithms require
exponential time at worst. But they can relatively quick receive
solutions for many boolean functions. Therefore, it is natural
to use a reduction to different variants of the satisfiability
problem to solve computational hard problems.

Encoding problems as Boolean satisfiability and solving
them with very efficient satisfiability algorithms has recently
caused considerable interest. In particular, local search algo-
rithms have given impressive results on many problems. For
example, there are several ways of SAT-encoding constraint
satisfaction [64] – [73], clique [74], planning [75] – [95],
and colouring problems [74], [96] – [98]. The maximum cut,
vertex cover and maximum independent set problems can be
reduced to MAX-2-SAT [99] – [101]. There are a number of
implicit reductions from the Hamiltonian cycle problem to the
satisfiability (SAT) problem (see [74], [102], [103]).

In previous section we obtain an implicit reduction from
the optimal reconfiguration planning problem of finding the
least number of reconfiguration steps to transform between
two configurations to some variants of satisfiability: PSAT,
SAT. We create a generator of special hard and natural
instances for the optimal reconfiguration planning problem of
finding the least number of reconfiguration steps to transform
between two configurations. We use algorithms from [104].
Also we design our own genetic algorithm for SAT which
based on algorithms from [104]. We use heterogeneous cluster
based on three clusters (Cluster USU, Linux, 8 calculation
nodes, Intel Pentium IV 2.40GHz processors; umt, Linux, 256
calculation nodes, Xeon 3.00GHz processors; um64, Linux,
124 calculation nodes, AMD Opteron 2.6GHz bi-processors)

124

[105]. For computational experiment we create special hard
test sets and natural test sets. Special hard test sets based on
ideas from [106]. Natural test sets based on ideas from [48]. In
tests we consider systems consisted from approximately 400
of modular robots.

Each test was run on a cluster of at least 100 nodes. For
special hard test sets: the maximum solution time was 16
hours; the average time to find a solution was 33.2 minutes; the
best time was 116 seconds. For natural test sets: the maximum
solution time was 9 hours; the average time to find a solution
was 9.8 minutes; the best time was 9 seconds. Based on our
experiments we can say that considered model can be used as
an efficient planner.

ACKNOWLEDGMENT

The work was partially supported by Grant of President
of the Russian Federation MD-1687.2008.9 and Analytical
Departmental Program ”Developing the scientific potential of
high school” 2.1.1/1775.

REFERENCES

[1] Rus, D., and Chirikjian, G., Eds.,Special Issue on Self-Reconfiguring
Robots, Autonomous Robotics, 2001, 10(1).

[2] Chirikjian, G.S. Kinematics of a Metamorphic Robotic System.Pro-
ceedings of the 1994 IEEE International Conference on Robotics and
Automation, pages 449–455, San Diego, 1994. IEEE Computer Society
Press.

[3] Fukuda, T., and Nakagawa, S. A Dynamically Reconfigurable Robotic
System (Concept of a System and Optimal Configurations).Proceedings
of the 1987 IEEE International Conference on Industrial Electronics,
Control, and Instrumentation, pages 588–595, Los Alamitos, 1987. IEEE
Computer Society Press.

[4] Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y.,
and Endo, I. Self-Organizing Collective Robots with Morphogenesis in a
Vertical Plane.Proceedings of the 1998 IEEE International Conference
on Robotics and Automation. Vol. 4, pages 2858–2863, Leuven , 1998.
IEEE Computer Society Press.

[5] Murata, S., Kurokawa, H., and Kokaji, S. Self-Assembling Machine.
Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, pages 442–448, San Diego, 1994. IEEE Computer Society
Press.

[6] Pamecha, A., Chiang, C., Stein, D., and Chirikjian, G. Design and
implementation of metamorphic robots.Proceedings of The 1996 ASME
Design Engineering Technical Conference and Computers in Engineering
Conference, pages 1–10, Irvine, 1996. ASME Press.

[7] Rus, D., and Vona, M. Crystalline Robots: Self-reconfiguration with Unit-
compressible Modules.Autonomous Robots, 10(1):107–124, 2001.

[8] Kotay, K., and Rus, D. Locomotion versatility through selfreconfiguration.
Robotics and Autonomous Systems, 26(2-3):217–232, 1999.

[9] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K.,
and Kokaji, S. M-TRAN: Self-Reconfigurable Modular Robotic System.
IEEE/ASME Transactions on Mechatronics, 7(4):431–441, 2002.

[10] Suh, J., Homans, S., and Yim, M. Telecubes: Mechanical Design of a
Module for Self-Reconfiguring Robotics.Proceedings of the 2002 IEEE
International Conference on Robotics and Automation, pages 4095–4101,
Washington, 2002. IEEE Computer Society Press.

[11] Benhabib, B., Zak, G., and Lipton, M.G. A Generalized Kinematic
Modeling Method for Modular Robots.Journal of Robotic Systems,
6(5):545–571, 1989.

[12] Cohen, R., Lipton, M.G., Dai, M.Q., and Benhabib, B. Conceptual
Design of a Modular Robot.ASME Journal of Mechanical Design,
114:117–125, 1992.

[13] Sciaky, M. Modular Robots Implementation. In Nof, S., editor,Hand-
book of Industrial Robotics, pages 759–774. John Wiley and Sons, 1985.

[14] Wurst, K.H. The Conception and Construction of a Modular Robot
System. In Van Brussel, H., editor,16th International Syposium On
Industrial Robots. 8th International Conference On Industrial Robot
Technology: Proceedings, pages 37–44, Brussels, 1986. Springer-Verlag.

[15] Beni, G. Concept of Cellular Robotic Systems.Proceedings of the IEEE
International Symposium on Intelligent Control, pages 57–62, Arlington,
1988. IEEE Computer Society Press.

[16] Beni, G., and Wang, J. Theoretical Problems for the Realization of
Distributed Robotic Systems.Proceedings of the 1991 IEEE Conference
on Robotics and Automation, pages 1914–1920, Sacramento, 1991. IEEE
Computer Society Press.

[17] Fukuda, T., and Nakagawa, S. Dynamically Reconfigurable Robotic
Systems.Proceedings of the 1988 IEEE Conference on Robotics and Au-
tomation, pages 1581–1586, Philadelphia, 1988. IEEE Computer Society
Press.

[18] Fukuda, T., and Kawauchi, Y. Cellular Robotic System (CEBOT) as One
of the Realization of Self-organizing Intelligent Universal Manipulator.
Proceedings of the 1990 IEEE Conference on Robotics and Automation,
pages 662–667, Cincinnati, 1990. IEEE Computer Society Press.

[19] Beni, G., and Hackwood, S. Stationary Waves in Cyclic Swarms.
Proceedings of IEEE International Symposium on Intelligent Control,
pages 234–242, Los Alamitos, 1992. IEEE Computer Society Press.

[20] Beni, G., and Wang, J. Swarm Intelligence.Proceedings of Seventh
Annual Meeting of the Robotics Society of Japan, pages 425–428, Tokyo,
1989. RSJ Press.

[21] Hackwood, S., and Beni, G. Self-organizing Sensors by Deterministic
Annealing.Proceedings of IEEE/RSJ International Conference on Intel-
ligent Robot and Systems — IROS’91, pages 1177–1183, Los Alamitos,
1991. IEEE Computer Society Press.

[22] Hackwood, S., and Beni, G. Self-organization of Sensors for Swarm
Intelligence.Proceedings of IEEE International Conference on Robotics
and Automation, pages 819–829, Nice, 1992. IEEE Computer Society
Press.

[23] Yim, M. A Reconfigurable Modular Robot with Many Modes of
Locomotion. Proceedings of the 1993 JSME International Conference
on Advanced Mechatronics, pages 283-288, Tokyo, 1993. JSME Press.

[24] Yim, M. Locomotion with a unit-modular reconfigurable robot. PhD
thesis, Department of Mechanical Engineering, Stanford University, Stan-
ford, 1994.

[25] Yim, M. New Locomotion Gaits.Proceedings of the 1994 IEEE Inter-
national Conference on Robotics and Automation, pages 2508–2524, San
Diego, 1994. IEEE Computer Society Press

[26] Murata, S., Kurokawa, H., and Kokaji, S. Self-Organizing Machine.
Video Proceedings, 1995 IEEE International Conference on Robotics and
Automation, Nagoya, Japan, May 1995.

[27] M. Ashley-Rollman, S. Goldstein, P. Lee, T. Mowry, and P. Pillai.Meld:
A declarative approach to programming ensembles, Proceedings of the
IEEE International Conference on Robots and Systems, 2007. pp.2794–
2800.

[28] Charron-Bost, B., Delporte-Gallet, C., and Fauconnier, H.Local and
temporal predicates in distributed systems, ACM Transactions on Pro-
gramming Languages and Systems, 17(1):157–179, 1995.

[29] DeRosa, M., Goldstein, S., Lee, P., Campbell, J., and Pillai, P.Scalable
shape sculpting via hole motion: Motion planning in lattice constrained
modular robots, Proceedings of the IEEE International Conference on
Robotics and Automation, 2006. pp.1462–1468.

[30] Dewey, D., and Srinivasa, S.S.A planning framework for local metamor-
phic systems, Technical Report CMU-RI-TR-XX, The Robotics Institute,
Carnegie Mellon University, 2007.

[31] Ashley-Rollman, M.P., De Rosa, M., Srinivasa, S.S., Pillai, P., Gold-
stein, S.C., Campbell, J.Declarative Programming for Modular Robots,
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Workshop on Self-Reconfigurable Robots and Systems and Applications,
2007. pp.1–6.

[32] Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G. Useful metrics for
modular robot motion planning.IEEE Transactions on Robotics and
Automation, 13(4):531–545, 1997.

[33] Vassilvitskii, S., Kubica, J., Rieffel, E.G., Suh, J.W., and Yim, M.
On the General Reconfiguration Problem for Expanding Cube Style
Modular Robots.Proceedings of the 2002 IEEE International Conference
on Robotics and Automation, pages 801–808, Washington, 2002. IEEE
Computer Society Press.

[34] Kurokawa, H., Tomita, K., Kamimura, A., Yoshida, E., Kokaji, S., and
Murata, S. Distributed Self-reconfiguration Control of Modular Robot
M-TRAN. Proceedings of the Twenty-Seventh Annual International Con-
ference on Cement Microscopy, pages 254–259, Victoria, 2005. IEEE
Computer Society Press.

125

[35] Hosokawa, K., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., and Endo,
I. Self-organizing collective robots with morphogenesis in a vertical
plane.JSME International Journal Series C Mechanical Systems Machine
Elements and Manufacturing, 42:195–202, 1999.

[36] Butler, Z., Murata, S., and Rus, D. Distributed Replication Algorithms
for Self-Reconfiguring Modular Robots.Proceedings of 6th International
Symposium on Distributed Autanomous Robotic Systems (DARS’02),
pages 25–27, Fukuda, 2002.
http://groups.csail.mit.edu/drl/wiki/images/c/c5/dars02.pdf

[37] Walter, J., Tsai, E., and Amato, N. Algorithms for Fast Concurrent
Reconfiguration of Hexagonal Metamorphic Robots.IEEE Transactions
on Robotics, 21(4):621–631, 2005.

[38] Ünsal, C., and Khosla, P.K. A Multi-layered Planner for Self-
Reconfiguration of a Uniform Group of I-Cube Modules.IEEE Inter-
national Conference on intelligent Robots and Systems. Vol. 1, pages
598–605, Maui, 2001. IEEE Computer Society Press.

[39] Reif, J.H., and Slee, S. Optimal Kinodynamic Motion Planning for 2D
Reconfiguration of Self-Reconfigurable Robots. Robotics: Science and
Systems, Conference, Georgia Institute of Technology, Atlanta, GA, June
27-30, 2007.
http://www.roboticsproceedings.org/rss03/p20.pdf

[40] Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V.,
and Wuhrer, S. Reconfiguration of Cube-Style Modular Robots Using
O(log n) Parallel Moves. In Hong, S.H., Nagamochi, H., Fukunaga, T.,
editors, Proceedings of the 19th Annual International Symposium on
Algorithms and Computation — ISAAC 2008, pages 342–353, Gold Coast,
2008. Springer-Verlag.

[41] Christensen, D., Ostergaard, E., and Lund, H.H.Metamodule control
for the atron self-reconfigurable robotic system, Proceedings of the The
8th Conference on Intelligent Autonomous Systems, Amsterdam, 2004.
pp.685–692.

[42] Dewey, D., Srinivasa, S.S., Ashley-Rollman, M.P., De Rosa, M., Pillai,
P., Mowry, T.C., Campbell, J.D., and Goldstein, S.C.Generalizing Meta-
modules to Simplify Planning in Modular Robotic Systems, Proceedings
of IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems, 2008. pp.1338–1345.

[43] Casal, A., and Yim, M. Self-Reconfiguration Planning For a Class of
Modular Robots.Proceedings of SPIE. Vol. 3839. Sensor Fusion and
Decentralized Control in Robotic Systems. Vol. II, pages 246–257, Boston,
1999. SPIE Press.

[44] Nelson, C.A. A framework for self-reconfiguration planning for unit-
modular robots. Phd Thesis, Purdue University, Department of Mechan-
ical Engineering, Purdue, 2005.

[45] Gay, S. Roombots: Toward Emancipation of Furniture. A Kinematics-
Dependent Reconfiguration Algorithm for Chain-Type Modular Robots.
Master Thesis, Ecole Polytechnique, Department of Computer Science,
Ecole, 2007.

[46] Shen, W.-M., Salemi, B., and Will, P. Hormone-Inspired Adaptive
Communication and Distributed Control for CONRO Self-Reconfigurable
Robots.IEEE Transactions on Robotics and Automation, 18(5):700–712,
2002.

[47] Hou, F., and Shen, W.-M. Distributed, Dynamic, and Autonomous
Reconfiguration Planning for Chain-Type Self-Reconfigurable Robots.
Proceedings of 2008 IEEE International Conference on Robotics and
Automation, pages 3135–3140, Pasadena, 2008. IEEE Computer Society
Press.

[48] Hou, F., Shen, W.-M. On the Complexity of Optimal Reconfiguration
Planning for Modular Reconfigurable Robots.Proceedings of 2010 IEEE
International Conference on Robotics and Automation, pages 2791–2796,
Anchorage, 2010. IEEE Computer Society Press.

[49] Cook, S.A. The Complexity of Theorem Proving Procedures. In Harri-
son, M.A., Banerji, R.B., Ullman, J.D., editors,STOC ’71 Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–
158, New York, 1971. Association for Computing Machinery Press.

[50] Gu, J., Purdom, P., Franco, J., and Wah, B. Algorithms for the Satisfia-
bility (SAT) Problem: A Survey. In Johnson, David, and Trick, Michael,
editors, Cliques, Coloring and Satisfiability: Second DIMACS Imple-
mentation Challenge, pages 19–152. American Mathematical Society,
Providence, Rhode Island, 1996.

[51] Fleurent, J. Genetic algorithms and hybrids for graph coloring.Annals
of Operations Research, 63(3):437–461, 1996.

[52] Hao, J., and Dorne, R. A new population-based method for satisfiability
problems. In Cohn, A.G., editor,Proceedings of 11th European Confer-

ence on Artificial Intelligence, pages 135–139, Amsterdam, 1994. John
Wiley & Sons.

[53] Jong, K., and Spears, W. Using genetic algorithms to solve np-complete
problems.
In Schaffer, J.D., editor,Proceedings of the 3rd International Conference
on Genetic Algorithms, pages 124-132, Fairfax, 1989. Morgan Kaufmann
Publishers Inc.

[54] Voorn, R., Dastani, M., and Marchiori, E. Finding simplest pattern
structures using genetic programming. In Spector, L., Goodman, E.D.,
Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M.,
Pezeshk, S., Garzon, M.H., Burke, E., editors,Proceedings of the Genetic
and Evolutionary Computation Conference, pages 3–10, San Francisco,
2001. Morgan Kaufmann Publishers Inc.

[55] Hao, J., Lardeux, F., and Saubion, F. A hybrid genetic algorithm for the
satisfiability problem.Proceedings of the 1rst International Workshop on
Heuristics, pages 102–109, Beijing, 2002. Springer-Verlag.

[56] Armando, A., and Giunchiglia, E. Embedding complex decision proce-
dures inside an interactive theorem prover.Annals of Mathematics and
Artificial Intelligence, 8(3-4):475–502, 1993.

[57] Giunchiglia, E., and Sebastiani, R. Applying the Davis-Putnam proce-
dure to nonclausal formulas. In Lamma, E., Mello, P., editors,AI∗IA 99:
Advances in Artificial Intelligence, 6th Congress of the Italian Association
for Artificial Intelligence, pages 84–94, Bologna, 2000. Springer-Verlag.

[58] Kautz, H., Selman, B., and McAllester, D. Exploiting variable depen-
dency in local search.Proceedings of the International Joint Conference
on Artificial Intelligence, pages 7–9, Nagoya, 1997. Morgan Kaufmann
Publishers Inc.

[59] Muhammad, R., and Stuckey, P.J. A Stochastic Non-CNF SAT Solver. In
Yang, Q., Webb, G.I., editors,PRICAI 2006: Trends in Artificial Intelli-
gence, 9th Pacific Rim International Conference on Artificial Intelligence,
pages 120–129, Guilin, 2006. Springer-Verlag.

[60] Sebastiani, R. Applying GSAT to non-clausal formulas.Journal of
Artificial Intelligence Research, 1:309–314, 1994.

[61] Selman, B., Kautz, H., and Cohen, B. Noise strategies for improving
local search. In Hayes-Roth, B., Korf, R.E., editors,AAAI’94 Proceedings
of the twelfth national conference on Artificial intelligence (vol. 1), pages
337–343, Seattle, 1994. American Association for Artificial Intelligence.

[62] Stachniak, Z. Going non-clausal.5th International Symposium on Theory
and Applications of Satisfiability Testing: SAT 2002, pages 316–322,
Cincinnati, 2002. Springer-Verlag.

[63] Thiffault, C., Bacchus, F., and Walsh, T. Solving non-clausal formulas
with DPLL search. In Hoos, H.H., Mitchell, D.G., editors,Theory and
Applications of Satisfiability Testing: 7th International Conference: SAT
2004, pages 663–678, Vancouver, 2004. Springer-Verlag.

[64] Bessiere, C., Hebrard, E., and Walsh, T. Local Consistencies in SAT.
Theory and applications of satisfiability testing: SAT 2003: international
conference on theory and applications of satisfiability testing N 6, pages
400–407, Santa Margherita Ligure , 2003. Springer-Verlag.

[65] Davis, M., Logemann, G., and Loveland, D. A Machine Program for
Theorem Proving.Communications of the ACM, 5(7):394–397, 1962.

[66] Frisch, A., and Peugniez, T. Solving Non-Boolean Satisfiability Prob-
lems with Stochastic Local Search. In Nebel, B., editor,Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence,
pages 282–288, Seattle, 2001. pp. 282 - 288. Morgan Kaufmann Publish-
ers Inc.

[67] Frisch, A.M., Peugniez, T.J., Doggett, A.J., and Nightingale, P.W. Solv-
ing Non-Boolean Satisfiability Problems with Stochastic Local Search:
A Comparison of Encodings.Journal of Automated Reasoning, 35(1-
3):143–179, 2005.

[68] Genisson, R., and Jegou, P. Davis and Putnam Were Already Forward
Checking. In Wahlster, W., editor,Twelfth European Conference on
Artificial Intelligence, pages 180–184, Budapest, 1996. John Wiley and
Sons.

[69] Gent, I. Arc Consistency in SAT. In van Harmelen, F., editor,Proceed-
ings of the Fifteenth European Conference on Artificial Intelligence, pages
121–125, Lyons, 2002. IOS Press.

[70] Kasif, S. On the Parallel Complexity of Discrete Relaxation in Constraint
Satisfaction Networks.Artificial Intelligence, 45(3):275–286, 1990.

[71] Prestwich, S.D. Local search on SAT-encoded colouring problems.
Theory and applications of satisfiability testing: SAT 2003: international
conference on theory and applications of satisfiability testing N 6, pages
105–119, Santa Margherita Ligure , 2003. Springer-Verlag.

[72] Sabin, D., and Freuder, G. Contradicting Conventional Wisdom in
Constraint Satisfaction. In Cohn, A.G., editor,Proceedings of the Eleventh

126

European Conference on Artificial Intelligence, pages 125–129, Amster-
dam, 1994. John Wiley and Sons.

[73] Walsh, T. SAT v CSP. In Dechter, R., editor,Sixth International
Conference on Principles and Practice of Constraint Programming, pages
441–456, Singapore, 2000. Springer-Verlag.

[74] Iwama, K., and Miyazaki, S. SAR-variable complexity of hard combina-
torial problems.IFIP Transactions A: Computer Science and Technology,
1:253–258, 1994.

[75] Büttner, M., and Rintanen, J. Improving parallel planning with con-
straints on the number of operators. In Biundo, S., Myers, K., and Rajan,
K., editors, Proceedings of the Fifteenth International Conference on
Automated Planning and Scheduling, pages 292–299, Monterey, 2005.
AAAI Press.

[76] Ernst, M., Millstein, T., and Weld, D. Automatic SAT-Compilation
of Planning Problems.Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1169–1176, Nagoya, 1997.
Morgan Kaufmann Publishers Inc.

[77] Kautz, H. SATPLAN04: Planning as Satisfiability. In Edelkamp, S.,
Hoffmann, J., Littman, M., and Younes, H., editors,Proceedings of the 4th
International Planning Competition at the 14th International Conference
on Automated Planning and Scheduling, pages 44–45, Whistler, 2004.
AAAI Press.

[78] Kautz, H., McAllester, D., and Selman, B. Encoding Plans in Proposi-
tional Logic. In Aiello, L.C., Doyle, J., Shapiro, S.C., editors,Proceedings
of the Fifth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 374–384, Cambridge, Massachusetts,
1996. Morgan Kaufmann Publishers Inc.

[79] Kautz, H., and Selman, B. Planning as Satisfiability. In Neumann,
B., editor, Proceedings of the 10th European Conference on Artificial
Intelligence, pages 359–363, Vienna, 1992. John Wiley & Sons.

[80] Kautz, H., and Selman, B. Pushing the envelope: planning, propositional
logic, and stochastic search. In Brewka, G., editor,Proceedings of the
Thirteenth National Conference on Artificial Intelligence and the Eighth
Annual Conference on Innovative Applications of Artificial Intelligence,
pages 1194–1201, Portland, 1996. AAAI Press.

[81] Kautz, H., and Selman, B. Unifying SAT-based and graph-based plan-
ning. In Dean, T., editor,Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pages 318–325, Stockholm, 1999.
Morgan Kaufmann Publishers Inc.

[82] Mattmüller, R., and Rintanen, J. Planning for temporally extended
goals as propositional satisfiability. In Veloso, M., editor,Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pages
1966–1971, Hyderabad, 2007. AAAI Press.

[83] Rintanen, J. Compact representation of sets of binary constraints. In
Perini, A., Penserini, L., and Peppas, P., editors,Proceedings of the 17th
European Conference on Artificial Intelligence, pages 143–147, Trento,
2006. IOS Press.

[84] Rintanen, J. Evaluation strategies for planning as satisfiability. In Lopez
de Mantaras, R., and Saitta, L., editors,ECAI 2004: Proceedings of
the 16th European Conference on Artificial Intelligence, pages 682–687,
Valencia, 2004. IOS Press.

[85] Rintanen, J. Heuristic Planning with SAT: Beyond Uninformed Depth-
First Search. In Li, J., editor,AI 2010: Advances in Artificial Intelligence,
pages 415–424, Adelaide, 2010. Springer-Verlag.

[86] Rintanen, J. Heuristics for Planning with SAT. In Cohen, D., editor,
Principles and Practice of Constraint Programming: 16th International
Conference, pages 414–428, St. Andrews, 2010. Springer-Verlag.

[87] Rintanen, J. Planning graphs and propositional clause-learning. In
Brewka, G., and Doherty, P., editors,Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Eleventh International
Conference, pages 535–543, Sydney, 2008. AAAI Press.

[88] Rintanen, J. Symmetry reduction for SAT representations of transition
systems. In Giunchiglia, E., Muscettola, N., and Nau, D., editors,Pro-
ceedings of the 13th International Conference on Automated Planning
and Scheduling, pages 32–40, Trento, 2003. AAAI Press.

[89] Rintanen, J. A planning algorithm not based on directional search. In
Cohn, A.G., Schubert, L.K., and Shapiro, S.C., editors,Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth In-
ternational Conference, pages 617–624, Trento, 1998. Morgan Kaufmann
Publishers Inc.

[90] Rintanen, J. Partial implicit unfolding in the Davis-Putnam procedure
for quantified Boolean formulae. In Nieuwenhuis, R., and Voronkov, A.,
editors, International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, pages 362–376, Havana, 2001. Springer-
Verlag.

[91] Rintanen, J., Heljanko, K., and Niemelä, I. Planning as Satisfiability:
Parallel Plans and Algorithms for Plan Search. Technical Report 216,
Institute of Computer Science, University of Freiburg, Freiburg, Germany,
2005.

[92] Rintanen, J., Heljanko, K., and Niemelä, I. Planning as satisfiability:
parallel plans and algorithms for plan search.Artificial Intelligence,
170(12-13):1031–1080, 2006.

[93] Rintanen, J., Heljanko, K., and Niemelä, I. Parallel encodings of classical
planning as satisfiability. In Alferes, J.J., and Leite, J., editors,Logics in
Artificial Intelligence: 9th European Conference, pages 307–319, Lisbon,
2004. Springer-Verlag.

[94] Rintanen, J., and Jungholt, H. Numeric state variables in constraint-
based planning. In Biundo, S., and Fox, M., editors,Recent Advances
in AI Planning: 5th European Conference on Planning, pages 109–121,
Durham, 2000. Springer-Verlag.

[95] Wehrle, M., and Rintanen, J. Planning as satisfiability with relaxed∃-
step plans. In Orgun, M., and Thornton, J., editors,AI 2007 : Advances
in Artificial Intelligence: 20th Australian Joint Conference on Artificial
Intelligence, pages 244–253, Surfers Paradise, Gold Coast, Australia,
2007. Springer-Verlag.

[96] van Gelder, A. Another Look at Graph Coloring via Propositional
Satisfiability. In Mehrotra, A., Johnson, D.S., and Trick, M., editors,
Computational Symposium on Graph Coloring and its Generalizations,
pages 48–54, Ithaca, New York, 2002. Springer-Verlag.

[97] Bouhmala, N., Granmo, O.-C. Stochastic Learning for SAT- Encoded
Graph Coloring Problems.International Journal of Applied Metaheuristic
Computing, 1(3):1–19, 2010.

[98] Velev, M.N. Exploiting hierarchy and structure to efficiently solve graph
coloring as SAT. In Gielen, G., editor,Proceedings of the 2007 IEEE/ACM
international conference on Computer-aided design, pages 135–142, San
Jose, 2007. IEEE Computer Society Press.

[99] Poljak, S., and Tuza, Z. Maximum cuts and largest bipartite subgraphs.
In Cook, William, Lovasz, Laszlo, Seymour, Paul, editors,Combinatorial
Optimization, pages 181–244. American Mathematical Society, Provi-
dence, Rhode Island, 1995.

[100] Cheriyan, J., Cunningnham, W.H., Tuncel, L., and Wang, Y. A linear
programming and rounding approach to Max 2-Sat. In Johnson, David,
and Trick, Michael, editors,Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, pages 395–414. American Mathe-
matical Society, Providence, Rhode Island, 1996.

[101] Mahajan, M., and Raman, V. Parameterizing above guaranteed values:
MaxSat and MaxCut.Journal of Algorithms, 31(2):335–354, 1999.

[102] Hoos, H.H. SAT-Encodings, Search Space Structure, and Local Search
Performance. In Dean, T., editor,Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence, pages 296–302,
Stockholm, 1999. Morgan Kaufmann Publishers Inc.

[103] Plotnikov, A.D. A Logical Model of HCP.International Journal of
Mathematics and Mathematical Sciences, 26(11), 2001.

[104] http://people.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html
[105] http://parallel.imm.uran.ru/mvcnow/hardware/supercomp.htm
[106] Navarro, J.A., and Voronkov, A. Generation of Hard Non-Clausal

Random Satisfiability ProblemsProceedings of the Twentieth National
Conference on Artificial Intelligence, pages 436–442, Pittsburgh, 2005.
AAAI Press.

127

Towards a real-time simulation environment on the

edge of current trends

Eugene Chemeritskiy

The Faculty of Computational Mathematics and

Cybernetics, Moscow State University,

Moscow, Russia

tyz@lvk.cs.msu.su

Konstantin Savenkov (advisor)

The Faculty of Computational Mathematics and

Cybernetics, Moscow State University,

Moscow, Russia

savenkov@cs.msu.su

This paper is devoted to renewing of the simulation project that

has been undoubtedly a successful one and has endured a wide

range of tasks, but is slowly and inevitable getting obsolete. In

attempt to stay in the top, the development of the new runtime is

started taking into account some historical regularities and

currents trends in the distributed real-time simulation and some

adjoining areas. The paper describes the problem scope resulted

from application of the considered technologies, analyzes its

possible solutions and estimates the related labor cost.

General Terms: Simulation Runtime, Distributed Real-time and

Embedded Systems, High Level Architecture.

I. INTRODUCTION

In the 1990s the Computer Systems Laboratory (CS Lab) at
Computational Mathematics and Cybernetics department of the
Moscow State University developed a parallel modeling and
simulation system called DYANA [1]. This simulation system
has been used a lot as a basis for researches and development
of a number of specialized simulation tools. One of these tools
called STAND [2] is a hardware/software environment for
hardware-in-the-loop simulation of the distributed real-time
and embedded systems (DRE).

The STAND environment has been applied to a number of
DRE simulation projects and proved its efficiency. To remain
at the same high advantageous level in the context of fast
progress in the whole IT area, it was decided to construct new
runtime following the current trends to standardization in the
simulation fields.

The standard-compliant runtime subsystem automatically
guarantees model compatibility. Models written in accordance
with the standard specifications could be always executed with
use of this runtime. Similarly, natively developed models could
be executed by any other certified system. This compatibility
could result in product popularization and the formation of user
community, and a large number of users, in its turn, could
accelerate the project development and lead to its further
improvement.

Replacement of the STAND native runtime raises a number
of problems that could be separated into the following groups
in accordance with their nature.

A. Designing of DRE-supporting runtime in pursuance of the

latest simulation trends

Being quite a specific simulation case, DRE simulation
imposes some additional requirements to the runtime.
Currently, there is no any off-the-rack and well-fitted
simulation standard. Thereby some adjoining simulation areas
have been explored. In attempt to mark the current trends in
these areas, the third section of this paper gives a brief concept
of the simulation historical path and its progress regularities.
For each of the adverted innovations, the application goals and
prospects are described in context of the considered project
development.

Once the runtime is conceptually designed, the time comes
to its implementation. Despite the considered technologies are
relatively new, all of them have certain users and it is possible
to learn from their experience. The refinement of the existing
solutions and their adaptation to the purposes of the considered
project is far less labor-intensive than the development from
scratch. Thereby, the paper describes some possibilities for the
adoption of the turnkey solutions.

B. Integration to the STAND environment and maintenance

of the legacy projects

The next aspect of STAND runtime replacement is reuse of
the other STAND components. STAND software package
includes a number of additional assistance subsystems such as
trace collector, dynamic visualizer, version control system,
integrated model development environment and so on. All
listed subsystems are interconnected and have certain
dependencies from each other. Due to the runtime is not a rule
exception, replacement of this subsystem generates a large
amount of integration problems.

The integration problems are compounded by the necessity
of legacy project maintenance. The STAND environment
provides a highly specialized C-based model development
language. This language includes some functionality to

This work was supported in part by the Ministry of education and science

of the Russian Federation under Grant “Development of an integrated
environment and complex analysis methods for distributed real-time computer

systems functioning”.

128

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su

simplify DRE simulation (e.g. integrated support of the DRE
data transmitting channels). These features are often
implemented as low-level functions integrated deeply inside
the runtime. Because of the interface limitations imposed to the
new simulation runtime by specifications of the selected
simulation standard, the effective implementation of the
mentioned functionality becomes a serious research challenge.

II. THE STAND SIMULATION ENVIRONMENT

Modern DRE systems consist of multiple devices
connected by data transfer network which contain dozens of
channels. Development of DRE devices and of the DRE itself
is a distributed process performed by several workgroups and
the device prototypes become ready for integration in different
points of time. To meet the deadlines for DRE development,
the integration testing operations should begin in advance,
when some of the components are not implemented yet [2].

STAND enables incremental DRE gradual integration the
DRE according to the schedule of incoming devices. On early
stages of the DRE integration, most (or all) of the devices are
represented by the simplest simulation models reflecting only a
basic schedule of data exchanges. Then the detail level is
gradually increased upto full-scale models that include
software of real devices and generate appropriate data
matching the one generated by the device prototypes. On the
next step of integration the models are step-by-step replaced by
real devices that perform data exchange through the real
channels.

On every listed stage of the DRE integration, the available
set of devices and models could be analyzed and validated.
This approach provides the abilities to detect and fix existing
device errors in the earliest development phases and to reduce
the DRE development cost subsequently.

The considered simulation environment contains tools
intended to solve the following simulation-related tasks [2]:

1. Development of simulation models of DRE devices
and auxiliary synthetic simulation models (e.g. model of the
external environment);

2. Support for real-time execution of the available DRE
component set including the model-device interactions through
hardware channels;

3. Dynamic visualization of the simulation state and
results in graphical and tabulated form and abilities for human-
assisted control of the simulation;

4. Recording and processing of the simulation results,
interaction with hardware monitors for data exchange channels.

III. TRACING CURRENT TRENDS

A. Interface standardization

Simulation as a method for exploration of diverse object
properties and regularities among them outruns the advent of
computers for many years. However, its rapid development
started after the complex mathematical calculations had been
assigned to fast and reliable computers. In the beginning of the

1950s, the term simulation acquired the default meaning of
digital computer simulation. Subsequently the simulation was
defined as a combination of designing of the observed system
model and holding the necessary experiment set on digital
computers [3].

The observed system here means a separated part of the
world corresponding to the domain of researcher interests. This
world view is isolated during the experiment and consists of a
component set. Each of these components is characterized by
its property set and the dynamics of their change. Such a
system could exist in reality or be imagined, can receive
information and/or transmit it to its environment [4].

Abstraction that holds a subset of the observed system
properties is called a model. The selected property subset
should meet the objectives of the simulation. The result of
simulation has any sense only in case of the simulation goals
were properly identified and the constructed model is adequate
to these goals [4].

From the very beginning of the simulation history the
observed systems always tended to be represented in deeper
detail level. This tension results in the increasing size and
complexity of developed simulation model. This growth
required a respective performance increase from computer
systems, and this fact resulted in emergence of parallel
simulation systems. These systems share the simulation task
across multiple computing nodes. Typically such systems were
implemented locally within the organization that wanted to use
it (in accordance with this classification STAND is a parallel
system created in the CS Lab) [5].

The complexity of the models was not the only factor
leading to computer simulation tool evolution. The scope of
simulation has been growing either. After new simulation
problem types appeared, the related requirements were
imposed to modeling and simulation tools. For instance,
distributed simulation is often required in case of joint product
development when different product component are produced
by a number of workgroups located in different organizations.
This type of simulation intends encompassing of several
geographically separated simulation systems, which in turn
may consist of a single compute node, or be a parallel system.
Historically, the appearance of this task type led to the creation
of distributed simulation systems that provide an essential set
of services to the simulation participants and ensure its
consistent behavior [5].

The next and the latest commonly recognized step in the
modeling and simulation tool evolution is a standardizing of
the distributed system interfaces. Using of this principle results
in possibility to combine among a variety of independent
simulation systems and create a general model that can be
handled by every distributed system corresponding to the
standard specifications [6].

B. DRE simulation specific

The above classification groups existing simulation tasks
and tools according to node configuration of the underlying
computer system. There are lots of other features that could
serve as a classification criterion. The one that is important in

129

context of this paper is a range of supported participant types:
syntactic (could be completely represented by its model) or live
participants (represented by external entities). Generally live
simulation type is further separated into human-in-the-loop and
hardware-in-the-loop simulation depending weather the
experiments requires the human presence or the external entity
is a fully automated one.

Hardware-in-the-loop simulation often includes a number
of physical devices, which require their data to be delivered
with the respect to a given period of time (deadline), as the
participants. A meeting of the deadlines in such systems is a
focus of the of real-time system problematic, which are defined
as those systems in which a correctness of the system depends
not only on the logical results of computation, but also on the
time at which these results are produced. Thereby model time
must be synchronized with the astronomical one when the
model interacts with hardware.

A real-time application is usually comprised of a set of
cooperating tasks and they need a reliable prediction of the
worst-case scenario. Apart from satisfying the timing
constraints, another important characteristic of real-time
systems is the notion of predictability.

Real-time systems are usually classified into two categories
based on the nature of deadline, namely, hard real-time
systems, in which the consequences of deadline breaking may
be catastrophic and soft real-time systems, in which the utility
of results produced by a task with a soft deadline decreases
over time after the deadline expires. Examples of hard real-
time systems are avionic control and nuclear plant control.
Telephone switching system and video streaming applications
are examples for soft real-time systems [6].

Besides the support of hard and soft real-time simulation,
the simulation system intended to be used in DRE development
should interact with additional tools providing the following
capabilities:

1. Verification of the DRE devices compliance to the
technical specification;

2. Integrated testing and debugging of distributed DRE
software;

3. Performance and robustness evaluation of the DRE
architecture;

4. Scheduling of data transfers and validation of the
constructed schedules.

IV. DESIGNING THE RUNTIME

The High Level Architecture (HLA) is the conventional
standard in the field of distributed simulation and de facto is
supported by the most of non-distributed simulation tools and
by the community of distributed model developers. This
standard is acceptable for DRE simulation, so it was chosen as
a base standard.

Despite its initial focus on distributed simulation, using the
HLA standard results in some benefits in case of the parallel
simulation system (the nodes are located closely) development
either. The system based on this standard can become a

member of the distributed simulation and supports a range of
polytypic simulation models (e.g. as-fast-as-possible synthetic
models and any other types supported by the HLA standard)
out of the box. In addition, the operational power of utilities
devoted to distributed simulation enables easy setup of parallel
simulation system node set.

The HLA standard does not currently address real-time
simulation and HLA compliant simulation could not require
any Quality of Service (QoS) from the underlying middleware
(RTI). Indeed, there are several problems that should be solved
to enable it [8]:

1. No interfaces provided to specify end to end
prediction requirements for federate;

2. Management of underlying operating system(s) is
unavailable;

3. In distributed case, HLA supports two transportation
types only: the reliable one and the best-effort one (usually
encoded with the TCP and UDP network protocols) which are
not suitable for real-time constraints.

These different limitations have crucial impact for real-time
simulation systems where the amount and predictability of RTI
overhead is an important design factor. Thereby the considered
project requires development of an additional data transmitting
layer with a real-time support. Fortunately, there exist a
number of related standards and associated implementations.
One of the most widespread standards in this domain is the
OMG Data Distribution Service (DDS) [9].

The DDS standard defines a large number of QoS policies
for inter-process connection. Considering the need to meet the
constraints of real time, the represented project implementation
should follow the HLA standard specifications in context of
inter-process communication semantics and be based on DDS
standard in context of data transmission protocols.

To summarize the above, the new simulation runtime is
conceptually formed around the HLA simulation standard.
Because of the DRE simulation requires from the runtime some
extra features (such as QoS enabled connections) not specified
by HLA, the additional data transmitting middleware level
(specified by the DDS standard) should underlay the usual
HLA middleware (RTI) and possibly extend its functionality.
STAND consists of a number of computational nodes and this
imposes the resulting combined middleware to be deployed on
each of them.

A. The High Level Architecture standard

The roots for the HLA stem from distributed virtual
environments into which users, possibly at geographically
distant locations, can be encompassed. The HLA standard is a
conceptual heir of Distributed Interactive Simulation (DIS)
[10], which is a highly specialized simulation standard in the
domain of training environments, and is used mostly for
military purposes. The primary mission of DIS is to enable
interoperability among separated modeling and simulation
systems and to allow the joint simulation with the merged
systems participation.

130

HLA standard remains the DIS principle relevant and
extends it to the idea of polytypic model merging. Thus the
HLA development began in 1993 when the Defense Advanced
Research Projects Agency (DARPA) designated an award for
developing of an architecture that could combine all existing
modeling and simulation system types into one federation
providing the reuse of existing models and simulation utilities.

There are several federation types (so called proto-
federations) in accordance to the encompassed participant set
[11]:

1. The Platform federation type includes DIS-style
training simulations (that is real-time human-in-the-loop
training simulations);

2. The Joint Training federation type stands for as-fast-
as-possible time-driven and event-driven simulation (e.g.
command-level military trainings);

3. The Analysis federation includes as-fast-as-possible
event-driven simulations such as those that might be used in
acquisition decisions;

4. The Engineering federation including hardware-in-
the-loop simulations with hard real-time constraints.

The standard already has a pretty reach history and several
HLA versions have been published since its appearance. Most
of commercial tools currently support HLA version 1516-2000
specification. Some long term projects have being developed
less intensively since of their appearance before this version
have been published and are still specialized in DMSO 1.3
version. The most advanced tools are compatible with the latest
IEEE 1516-2010 (Evolved).

Middleware in computing terms is used to describe a
software agent acting as an intermediary between different
distributed processes. It is connectivity software which allows,
usually, several applications to run on one or several
computational nodes and to interact across a network [6].

The middleware involved in HLA is named the Run Time
Infrastructure (RTI). The RTI is the software implementation
of the HLA Interface Specification. It is a middleware for the
proper functioning of distributed simulation in accordance with
the principles and specifications from HLA standard [11].

B. The Data Distribution Service standard

OMG DDS specifications set the standard of inter-process
communication, which is applicable to a broad class of
distributed real-time and embedded systems (DRE). The basis
of DDS is a data-centric model with the publisher-subscriber
architecture (DCPS). The DCPS model forms layer, which
allows the integrated processes to set a typed shared data or get
the latest its version. As parts of DCPS, the global data space
and namespace are created. The publisher process (the one who
wants to create a shared object) should make the appropriate
entries in the global data and name spaces. Similarly, the
subscriber process can find the proper objects in the global
namespace and access to relevant data. It is important that the
announcement of the need to use the shared data and its direct
use are time separated, and this approach enables the quality of
service connection [7].

TABLE I

RTI IMPLEMENTATIONS

RTI Developer License type

ARTIS GAIA University of Bologna Open Source
1

CERTI ONERA GPL v2 or later

EODiSP P&P Software GPL
2

MAK MAK Technologies Commercial

NCWare Nextel Commercial

Portico Portico CDDL
3

pRTI Pitch Technologies Commercial

RTI NG Raytheon Commercial
1Full license text is available http://pads.cs.unibo.it/
2General Public License
3Common Development and Distribution License

C. Evaluating of a suitable turnkey RTI implementation

There are a lot of off-the-rack RTI implementations (Table
I) and this fact gives a hope to get some developments from
other projects, learning from their mistakes. Thereby, it was
decided to explore the area in more details. The study was
conducted among the tools, satisfying (at least partially) to the
following criteria:

1. The description of the architecture and principles of
implementation are available;

2. The source code of the product is available.

3. The product continues to maintain and develop;

4. The implementation is used for real-time simulation;

5. The implementation is based on the DDS standard;

Most of the examined tools are commercial, and their
source code is unavailable. Thereby, benefits from the use of
these implementations, taken by the developers of the target
simulation system, are limited to the theoretical base. For
example it is known that NCWare implementation conforms to
DDS standard, and this scheme corresponds to the architectural
ideas founded into the basis of considered project. The study
found a number of open source systems also, and it was
decided to build the target simulation system on the basis of the
most suitable of them.

Unfortunately, all of the listed systems have a certain
drawbacks in accordance with the purposes of the submitted
project. The ARTIS GAIA implementation attracts by its
advanced load balancing mechanism supplementation, but the
license for this product does not allow the free use of its source
code (although it is stated that the project will be fully open in
future) [12]. The open source project EODiSP stopped the
development in 2006 [13]. Accordingly, there is no one to
assist in solving of possible development difficulties
encountered. Portico project RTI is implemented using Java
and, due to the language specific, it is badly compatible with
the real-time simulation that is a primary goal of considered
project.

Thereby the best base RTI realization for the development
of the considered simulation system a priori is the CERTI one.
CERTI is distributed under the GPL license, continues to

131

http://pads.cs.unibo.it/dokuwiki/doku.php?id=pads:download

evolve, and is implemented in C++ (a number of extra bindings
including Java, Python, Fortran and even MATLAB is
currently available). In addition, CERTI could be deployed on
several combinations of platforms (Windows and Linux,
Solaris, FreeBSD…) and compilers (gcc, MSVS, Sun Studio,
MinGW…).

D. CERTI

For years, the French Aerospace Laboratory (ONERA)

develops its own HLA compliant RTI called CERTI. The

project started in 1996 and its primary research objective was

the distributed simulation itself whereas the appeared HLA

standard was the project experiment field. CERTI started with

the implementation of the small subset of RTI services, and

was used to solve the concrete applications of distributed

simulation theory [6].

Since the CERTI project was open sourced in 2002, a large

distributed simulation developer community has been formed

around the project. In many ways due to contributions of

enthusiasts, the CERTI project has grown from basic RTI into

a toolset including a number of additional software

components that may be useful to potential HLA users.

The CERTI project has always served a base for researches

in the domain of distributed simulation, and a number of

innovative ideas have been implemented with its use. Thus,

the problem of confidential data leak was solved in context of

CERTI RTI architecture, and the considered RTI guarantees

secure interoperation of simulations belonging to various

mutually suspicious organizations [14]. The certain interest for

the considered project is a couple of application devoted to

high performance and hard real-time simulation.

In spite of HLA is initially designed to support fully

distributed simulation applications, it provides a framework

for composing not necessarily distributed simulations.

Thereby there was created an optimized version of CERTI

devoted to simulation deployed on the same shared memory

platform and composed simulation running on high-

performance clusters [15].

Some experience could also be adopted from ONERA

project on simulation of satellite spatial system. Each federate

in this federation is a time-stepped driven one. It imposes an

additional requirement of hard real-time: the simulation

system should meet the deadlines of each step and synchronize

the different steps of the different federates [16].

Despite the distribution of commercial products, the project

development is still continuing in accordance with the HLA

simulation standard progress. Thus, CERTI supports HLA

IEEE 1516-2000 version since 2010 in addition to previous

DMSO 1.3 version.

V. WORK SCOPE ANALYSIS

During the searches of the turnkey projects, the well
suitable open source RTI implementation (CERTI) was found.
To meet the real-time system requirement the internal of this
middleware should gain the property of predictability and an
acceptable performance.

The first problem could be solved by RTI refining in
according with DDS specifications. During the constructing of
the considered RTI to the DDS middleware, it is important to
remain the ability of usual distributed simulation. The possible
solutions are to implement the optional real-time support or
provide the usual RTI-internal interface to the external
simulation participants whereas staying the real-time simulator
inside.

Test results show that the selected RTI loses to its
commercial analogues [17], and this is largely resulted from its
centralized architecture. Also the centralized architecture could
be a barrier during the refinement related to DDS-compliance.
Devoid of the central component the federated architecture
seems to be more suitable one. However, the best suitable
architecture should be identified in a separate study.
Nevertheless, the architectural changes are necessary and
justified. Fortunately, the CERTI RTI has been already served
as a basis for creating a hard real-time simulator and some
experience could be learned from that project.

There is an extra problem caused by high specialization of
the STAND runtime. In some cases the functionality of the
current STAND runtime could not be simulated even by the
combined HLA&DDS middleware, thereby it should be
injected into the middleware. Integrated support of physical
data transmitting channels is a good example of this case.

Besides the mere building of a new runtime, its replacement
results into a number of integration problems related to other
components of the STAND environment. Each subsystem
provides a certain interface to the others whereas the HLA-
compliant runtime has completely different interface set. The
best and the easiest way to solve the incompatibility problem is
a development of appropriate interface wrappers.

The history of highly specialized standards (and HLA in
particular) demonstrates a certain interface steadiness. Even if
the interface has changed, the modifications are usually related
to the service names and signatures whereas their semantic is
the same. This solution provides an ability to replace the
runtime again to the better HLA-compliant one or disintegrate
some other STAND subsystems into runtime independent
separated projects.

Unfortunately, there are some peculiar cases that could not
be solved in the described manner. These cases require an
embedding the additional hooks into RTI and lead to partial
loss of benefits considered above.

The problem of the legacy project maintenance can also be
considered as an integration problem, but it deserves more
detailed consideration. HLA defines a set of common service
devoted to a wide range of simulation tasks. This service set is
redundant and inconvenient to be used with the usual DRE
simulations whereas the absence of functionalities that could be
useful in this particular task.

Despite all the reasoning related to common integration
problems remains relevant, the legacy project maintenance
problem could be solved with use of another principle. There
could be some STAND subsystems requiring renewal, besides
its runtime. Thereby if there exists any programming language
which is acceptable to DRE simulation, there is a sense in

132

constructing the HLA-compliant binding for this language and
develop an additional translator for old projects.

In summary, the replacement of the current STAND
runtime with the concept designed reduces to the following
problem set:

1. Replacement of RTI architecture with more complex
and productive one;

2. Development of the acceptable interface wrappers for
other subsystems;

3. Injecting of some additional functionality and
required low-level services.

VI. CONCLUSION

Using of the HLA distributed simulation standard for
building DRE simulation systems gives a certain benefits to the
developers, namely, automatic ability to execute any HLA-
compliant models and to participate in distributed simulation.
Building of the DRE simulation runtime raises a number of
development problems. The specific of DRE simulation
imposes some additional requirement to the runtime, and
specifications of the HLA standard do not satisfy the
appropriate product. There are two possible solutions: addition
of QoS policies to existing CERTI implementation and using
of the HLA standard over the DDS standard. The considered
solutions were analyzed and a second one was chosen.

Due to existence of some more or less suitable turnkey RTI,
the upcoming development promises to be easier than the
development from scratch. It reduces to refinement of the RTI
architecture, injecting the RTI with some new functionality and
developing of interface wrappers.

REFERENCES

[1] R.L. Smeliansky, A.G. Bakhmurov, and V.A. Kostenko, "DYANA - an

environment for simulation and analysis of distributed multiprocessor
computer systems," Moscow State University, Computational Math. and
Cybern. Dept., 1999.

[2] V.V. Balashov et al., "A hardware-in-the-loop simulation environment
for real-time systems development and architecture evaluation," in

International Conference on Dependability of Computer Systems, 2008,
pp. 80-86.

[3] R.G. Sargent, "Requirements of a modeling paradigm," in Winter
Simulation Conference, Arlington, USA, 1992, pp. 780- 782.

[4] E.H. Page, "Simulation modeling methodology: principles and etiology
of decision support," Department of Computer Science, Virginia Tech,
Blacksburg, USA, Ph.D. Dissertation 1994.

[5] R.E. Nance, A history of discrete event simulation programming
languages. Blacksburg, USA, 1993.

[6] E. Noulard, J.Y. Rousselot, and P. Siron, "Spring Simulation
Interoperability Workshop," in CERTI, an open source RTI, why and
how, San Diego, USA, 2009.

[7] Object Management Group; Object Interface Systems, Inc; Real-Time
Innovations, Inc; THALES, Data Distribution Service for Real-time
Systems, version 1.2., 2007.

[8] M. Adelantado, P. Siron, and Chaudron J.B., "Towards an HLA run-
time infrastructure with hard real-time capabilities," in International
Simulation Multi-Conference, Ottava, Canada, 2010.

[9] Real-Time Innovations, Inc. (RTI), "OMG Data-Distribution Service
(DDS): architectural overview," 2004.

[10] Richard D. Fujimoto, Parallel and distributed simulation systems, 2000.

[11] IEEE Std 1516.1-2000, "IEEE standard for modeling and simulation
(M&S) High Level Architecture (HLA) - federate Interface
specification," 2001.

[12] L. Bononi, M. Bracuto, D’Angelo G., and Donatiello L., "A new
adaptive middleware for parallel and distributed Simulation of
dynamically interacting systems," in Distributed Simulation and Real-
Time Applications, 2004, pp. 178 - 187.

[13] I. Birrer, B. Carnicero-Dominguez, M. Egli, B. Carnicero-Dominguez,
and A. Pasetti, "EODiSP – an open and distributed simulation platform,"
in International Workshop on Simulation for European Space
Programmes, Noordwijk, the Netherlands, 2006.

[14] P. Bieber, D. Raujol, and P. Siron, "Security architecture for federated
cooperative information systems," in Annual Computer Security
Applications Conference, New Orleans, USA, 2000.

[15] M. Adelantado, J.L. Bussenot, J.Y. Rousselot, P. Siron, and Betoule M.,
"HP-CERTI: towards a high performance, high availability open source
RTI for composable simulations," in Fall simulation interoperability
workshop, Orlando, USA, 2004.

[16] B. d’Ausbourg, P. Siron, and E. Noulard, "Running real time distributed
simulations under Linux and CERTI," in European Simulation
Interoperability Workshop, Edimburgh, Scotland, 2008.

[17] L. Malinga and WH. Le Roux, "HLA RTI performance evaluation," in
European Simulation Interoperability Workshop, Istanbul, Turkey, 2009,
pp. 1-6.

133

The problem of placement of visual landmarks
Anna Gorbenko

Department of Mathematics and
Mechanics

Ural State University
Ekaterinburg, Russia, 620083

Email: gorbenko.aa@gmail.com

Maxim Mornev
Department of Mathematics and

Mechanics
Ural State University

Ekaterinburg, Russia, 620083
Email: max.mornev@gmail.com

Vladimir Popov
Department of Mathematics and

Mechanics
Ural State University

Ekaterinburg, Russia, 620083
Email: Vladimir.Popov@usu.ru

Abstract—Many robotic problems are computationally hard.
Implementation of various heuristics for solving such problems
greatly complicates the development of efficient software for
robotic systems. In recent years among developers of robotic
software formed a direction of the development of individual
solvers. Such solvers are designed for specific hard problems.
It should be noted that developed specialized programming
languages for robotic logic. These languages allow efficient scale
logic circuits produced by the solver for large robotic complexes.
On this basis it can be argued that now the main problem in this
area consists in the developing efficient solvers themselves. In this
paper we consider an approach to design of an efficient solver
for the problem of placement of visual landmarks. In particular,
we present a formalization of the problem of placement of
visual landmarks for navigation of mobile robots. We show that
this problem is NP-complete. Also we propose an approach to
solve this problem. Our approach based on the construction
of a logical model. In our construction we give an explicit
polynomial reduction from the problem of placing of visual
landmarks to the maximum satisfiability problem. Such approach
provides effective solution of the considered problem using a high
performance computing.

I. I NTRODUCTION

Many robotic problems are computationally hard. In partic-
ular, we can mention planning problems, pattern recognition,
pattern matching, localization problems, mapping problems,
SLAM (simultaneous localization and mapping) and many
others. Implementation of various heuristics for solving such
problems greatly complicates the development of efficient
software for robotic systems. In recent years among developers
of robotic software formed a direction of the development
of individual solvers. Such solvers are designed for specific
hard problems [1] – [4]. It should be noted that developed
specialized programming languages for robotic logic [5], [6].
These languages allow efficient scale logic circuits produced
by the solver for large robotic complexes. On this basis it can
be argued that now the main problem in this area consists in
the developing efficient solvers themselves. In this paper we
consider an approach to design of an efficient solver for the
problem of placement of visual landmarks.

Visual navigation is extensively used in contemporary ro-
botics (see e.g. [7] – [11]). In many cases methods of the
visual navigation based on some algorithms of the selection
of visual landmarks. Note that even for other approaches (e.g.
reactive motion (see, in particular, [12] – [14]) or topological

navigation [15] – [19]) appliance of visual landmarks as an
additional method allow significantly increase performance of
a navigation system. We can use not only artificial landmarks
[20] – [22] but also different objects from environment (see
e.g. [23] – [30]).

Navigation systems based on landmarks are most simple
and efficient method of orientation. An appliance of artificial
landmarks provides a reliable way of autonomous operations.
But for appliance of artificial landmarks we need either initial
equipment of coverage area of the robot or the robot itself
should have a function of self-installation of landmarks. In
both cases decreasing of the number of landmarks have signif-
icantly influences on improvement of the robot performance.
Another way consist in an implementation of natural land-
marks. It is allows to avoid a cost of the landmarks installation.
But in this case we need essentially more effective methods of
visual information processing than for artificial marks (see e.g.
[31], [32]). In particular, for search even a simple regularity
we need to solve someNP-hard problem (see e.g. [33], [34]).
When we do not have sufficiently fast algorithms for solving
such problems, we use some self-learning navigation systems
(see e.g. [25]). This leads to fast growth of landmarks data
base and, finally, to dramatic drop of performance of on-
board computer systems. Therefore, problem of minimizing
of interest for both artificial and natural landmarks. In the
first case we need to minimize the cost of installation of
landmarks. In the second case we minimize an expense of
computational resources for the new landmarks search and for
the identification of available landmarks. A question about
a minimization of the number of used landmarks can be
formalized as some algorithmic problem where we need to
find an explicit placement of landmarks. This placement must
safeguard a navigation of mobile objects in a specified area.

II. PROBLEM DEFINITION

Usually, a problem of placement of visual landmarks in a
three dimensional space can be reduced to such problem in a
two dimensional space. Frequently, an appropriate reduction
can be obtained using the fact that range of heights is too
small in compare with horizontal coordinates (an underwater
navigation) or by a sampling with a large step (an aero-
space navigation). In both cases we can place a set of points,
which corresponds to different heights in the one cell of

134

sampling. When the range of heights is too large and horizontal
coordinates have a small variation (a navigation inside a
skyscraper), usually, space is divided on horizontal layers lying
in one plane. Thus, without loss of generality, we can consider
a problem of placement of visual landmarks in the discrete
spaceZ2, whereZ is the set of integers. Also we identify
every elementx of Z2 with a square with sides equal to one
and the center inx. A set of points inZ2 which of interest to
navigation we denote byN . Note thatN is not necessarily
a connected area. For instance, we can be interested only
in surface facilities and a part of the surrounding area can
be covered by water. LetS be a set of points inZ2 which
permissible to placement of landmarks. It is natural to assume
that we are dealing with some limited regionR such that
N ⊆ R, S ⊆ R. Since the deployment regionR can contain
obstacles or visual landmarks can be visible not from all points
of space, it is natural to assign for each point of the setS its
own field of vision which is defined by the function

F : S → 2R.

We can suppose thatF is given by the sequence of pairs
consisting of elements ofS and corresponding subsets. We
also consider some constantd which determines a minimal
number of necessary landmarks. Note that the value ofd,
usually, does not exceed 4. In the form of a satisfiability
problem the considering problem can be formulated as follows:

THE PROBLEM OF PLACEMENT OF VISUAL LANDMARKS

(VL):
INSTANCE: A finite setR, S ⊆ R, N ⊆ R, F : S → 2R, a

natural parameterk, and a natural constantd.
QUESTION: Is thereT ⊆ S such that|T | ≤ k and for all

y ∈ N there isD ⊆ T such that
y ∈ F (x) for all x ∈ D;
|D| ≥ d?

III. C OMPLEXITY OF VL

Theorem. VL is NP-complete.
Proof. Note thatT ⊆ S. Therefore, the number of elements

in T is limited by the number of elements inS. A size ofF (x)
for x ∈ T is limited by the size ofN . It is evident that the
value

∪x∈T F (x)

is computable in polynomial time from the number of elements
in T and the size ofF (x). So, for the problem VL there is a
polynomial algorithm of checking. Therefore, VL is inNP.

Now to prove the theorem it is sufficient to show the
hardness of VL. We reduce the 3-set exact cover problem to
VL. The 3-set exact cover problem is a well knownNP-hard
problem [35]. Initial data of this problem is the set

U = {1, 2, . . . , n}

and the set

Σ = {Xi | 1 ≤ i ≤ r, Xi ⊂ U, |Xi| = 3}.

In this problem we need to find out whether there isΠ ⊆ Σ
such that for allX, Y ∈ Π we have a following

X ∩ Y = ∅,

∪X∈ΠX = U.

When n is not divisible by three, the answer is trivially
negative. So, without loss of generality, in the 3-set exact cover
problem we can assume thatn is divisible by three.

Let d = 1, k = n
3 ,

N = {((n + r − 1)(2(r − 1) + 2i− 1), 0) | i ∈ U},

S = {((n + r − 1)(n + r − 1 + 2(j − 1)),

(n + r − 1)(n + r − 1)) | 1 ≤ j ≤ r}.

For any point

Sj = ((n+r−1)(n+r−1+2(j−1)), (n+r−1)(n+r−1))

from S consider the triangleTj with vertices in this point and
points

Aj = (2(n + r − 1)(j − 1), 0)

and
Bj = (2(n + r − 1)(n + r + j − 2), 0).

Suppose that for anym, 1 ≤ m ≤ n+r−1, the segment with
vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2)),

represents a tight space of zero width if and only ifm−r+j 6∈
Xj . Assume that the signal propagates rectilinear and define
F (Sj) as a set of pointsx of triangleTj such thatx is visible
from Sj . As R we consider rectangle, the bottom left corner
of which is located at the point(0, 0) and a upper right corner
of which is located at the point

(2(n + r − 1)(n + 3r − 3), 2(n + r − 1)(n + r − 1)).

It is easy to see that values ofR, S, N , F , k, d is defined
correctly and their size polynomially depends from the initial
data. LetT ′

j be a triangle with verticesSj ,

A′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2),

(n + r − 1)(n + r − 2)),

and

B′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r),

(n + r − 1)(n + r − 2)).

Note that

~AjSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

135

2(n + r − 1)(j − 1), (n + r − 1)(n + r − 1)) =

((n + r − 1)(n + r − 1), (n + r − 1)(n + r − 1)),

~A′
jSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(j − 1)− (n + r − 1)(n + r − 2),

(n + r − 1)(n + r − 1)− (n + r − 1)(n + r − 2)) =

(n + r − 1, n + r − 1).

So, ~AjSj = (n + r − 1) ~A′
jSj . Therefore,

~AjSj ‖ ~A′
jSj .

In this caseA′
j ∈ AjSj . Since

~BjSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(n + r + j − 2), (n + r − 1)(n + r − 1)) =

(−(n + r − 1)(n + r − 1), (n + r − 1)(n + r − 1)),

~B′
jSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(j − 1)− (n + r − 1)(n + r),

(n + r − 1)(n + r − 1)− (n + r − 1)(n + r − 2)) =

(−n− r + 1, n + r − 1),

it is easy to see thatB′
j ∈ BjSj . Clearly, in this case

AjBj ‖ A′
jB

′
j .

Thus, trianglesTj andT ′
j are similar with the similarity ratio

n + r − 1.

It is easy to see that for allj segments with vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2)),

1 ≤ m ≤ n + r − 1, give us a partition of the segmentA′
jB

′
j

into n+ r−1 equal parts. It is evident thatA′
j+1 = B′

j where
j < r,

A′
j = (2(n+r−1)(j−1)+(n+r−1)(n+r−2)+2(m−1),

(n + r − 1)(n + r − 2))

wherem = 1 and

B′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2))

wherem = n + r − 1. From this and from the similarity of
trianglesTj andT ′

j we obtain that points of the segments with
vertices

(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0)

and
(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)

is visible from the pointSj if and only if points of the
segments with vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2))

not form an obstacle. Therefore, the segments with vertices

(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0)

and
(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0),

is visible from the pointSj if and only if

m− r + j ∈ Xj .

Consider the point

Ni = ((n + r − 1)(2(r − 1) + 2i− 1), 0).

It is easy to see that the pointNi belongs to the segment

[(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0);

(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)]

if and only if

2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1) ≤

(n + r − 1)(2(r − 1) + 2i− 1) ≤

2(n + r − 1)(j − 1) + 2m(n + r − 1).

Hence,
(n + r − 1)(2(r − 1) + 2i− 1)−

2(n + r − 1)(j − 1)− 2(m− 1)(n + r − 1) ≥ 0,

2(n + r − 1)(j − 1) + 2m(n + r − 1)−

(n + r − 1)(2(r − 1) + 2i− 1) ≥ 0.

Therefore,

2(r − 1) + 2i− 1− 2(j − 1)− 2(m− 1) =

2r − 2 + 2i− 1− 2j + 2− 2m + 2 =

2r + 2i− 2j − 2m + 1 ≥ 0,

2(j − 1) + 2m− 2(r − 1)− 2i + 1 =

2j − 2 + 2m− 2r + 2− 2i + 1 =

2j + 2m− 2r − 2i + 1 ≥ 0.

Let i = m− r + j + a. In this case we have

2a + 1 ≥ 0,

136

−2a + 1 ≥ 0.

So, a = 0. Therefore,i = m − r + j. Clearly,Ni belongs to
the segment

[(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0);

(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)]

if and only if
i = m− r + j.

Therefore, the pointNi is visible from the pointSj if and
only if i ∈ Xj .

IV. A L OGICAL MODEL FORVL

Since the problem VL isNP-complete, there is no polyno-
mial time algorithm for finding a solution for this problem.
However, since the considered problem is of significant prac-
tical use, we need to find a fast algorithm for solving this
problem.

Well known, many problems with practical applications
belong to the class of computational complexityNP. Also
all problems from theNP can be polynomially reduced to
the problem of satisfiability of a Boolean function (SAT) (see
e.g. [36]). This problem can be formulated as follows

BOOLEAN SATISFIABILITY PROBLEM IN CONJUNCTIVE

NORMAL FORM (SAT):
INSTANCE: A Boolean function

g(x1, x2, . . . , xn)

in conjunctive normal form.
QUESTION: Is there an assignment of the set of variables

such that
g(x1, x2, . . . , xn) = 1?

The satisfiability problem is a core problem in mathematical
logic and computing theory. In practice, SAT is fundamental
in solving many problems in automated reasoning, computer-
aided design, computer-aided manufacturing, machine vision,
database, robotics, integrated circuit design, computer ar-
chitecture design, and computer network design. Traditional
methods treat SAT as a discrete, constrained decision problem.
Many optimization methods, parallel algorithms, and practical
techniques have been developed for solving SAT. Recently,
in the domain of development of fast algorithms to solving
SAT was achieved a substantial progress (see, in particular,
[37]). Most studies have focused on genetic algorithms and
algorithms of local search. Note that significant attention is
focused both on SAT and its optimization version MAXSAT
(see e.g. [36]) which can be formulated as follows.

MAXIMUM SATISFIABILITY PROBLEM IN CONJUNCTIVE

NORMAL FORM (MAXSAT):
INSTANCE: A Boolean function

g(x1, x2, . . . , xn)

in conjunctive normal form.

QUESTION: Is there an assignment of the set of variables
such that in the function

g(x1, x2, . . . , xn)

the maximum number of clauses is true?
Recently, proposed several genetic algorithms [38] – [41].

Considered also hybrid algorithms based on combinations of
genetic algorithms and local search algorithms [42]. Relatively
high efficiency can be achieved for algorithms based solely on
the local search. Of course, these algorithms run in exponential
time in worst case. But they can relatively fast obtain a solution
for many Boolean functions arising in practice. So, a reduction
from hard problems to SAT and MAXSAT for its solving
acquires a practical sense. For example, such approach was
considered for hamiltonian path problem in [43], [44].

Consider a reduction the problem VL to the MAXSAT. For
all i, 1 ≤ i ≤ n, consider a set

Mi = {p | bi ∈ F (ap)}.

It is easy to see that the system of setsMi, 1 ≤ i ≤ n, can be
constructed in polynomial time. Obviously, if for somei we
have a following inequality|Mi| < d, then the solution for
the problem VL is negative.

Thus, in further, without loss of generality, we assume that
for all i it is true that|Mi| ≥ d. Therefore, for alli we can
consider the system

Mi,1,Mi,2, . . .

from
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!

pairwise different subsets of the setMi each of which consists
from |Mi| − d + 1 elements.

Directly from the definition ofMi,j follows that if for some
i and arbitraryj each of setsMi,j contains at least one number
of a point of a landmark location, then from the pointbi is
visible at leastd landmarks.

We interpretxl = 1 as presence of some landmark in the
point with the numberl. Hence, we obtain that∧

1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)
(d−1)!

(
∨

l ∈ Mi,j

xl)

is true if and only if from the pointbi is visible at leastd
landmarks.

Now we show that

ϕ = (
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ sr))∧

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ ¬sr))∧

137

(
∧

1 ≤ t ≤ m

¬xt)

provides a reduction from VL to MAXSAT.
Note that inϕ the total number of clauses is equal to

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!
+ m.

It is easy to see if there is a required placement of landmarks,
then the Boolean function

(
∧

1 ≤ i ≤ n,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

∨
l ∈ Mi,j

xl)∧

(
∧

1 ≤ i ≤ n,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

∨
l ∈ Mi,j

xl)

is satisfiable. This obviously implies a satisfiability of the
Boolean function

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ sr))∧

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ ¬sr)).

If there is required placement of landmarks, then in the
Boolean functionϕ at least

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!

clauses is true.
Suppose, that there is no required placement of landmarks.

Then there isi and j such that the Boolean function∨
l ∈ Mi,j

xl

is false. Therefore for allr either

(
∨

l ∈ Mi,j

xl) ∨ sr

or
(

∨
l ∈ Mi,j

xl) ∨ ¬sr

is false. Thus, in the Boolean functionϕ no more then

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!
− 1

clauses is true. Therefore, we obtain a reduction from VL to
MAXSAT.

V. CONCLUSION AND EXPERIMENTAL RESULTS

In previous section we obtain an implicit reduction from
VL to MAXSAT.

New algorithms allow ordinary desktop computers to solve
boolean functions in conjunctive normal form, which has more
than 10000 conjuncts (see e.g. [43]). There is a well known site
on which posted solvers for SAT [45]. Currently on the site
published 16 implementations of algorithms for solving SAT.
They are divided into two main classes: stochastic local search
algorithms and algorithms improved exhaustive search. All
solvers allow the conventional format for recording DIMACS
Boolean function in conjunctive normal form and solve the
corresponding problem [46]. In addition to the solvers the site
also represented a large set of test problems in the format of
DIMACS. This set includes a randomly generated problems
of satisfiability.

For the computational experiments we used heterogeneous
cluster based on three clusters:

• The cluster of Ural State University (8 computational
nodes, Linux, processor Intel Pentium IV 2.40GHz);

• The cluster umt of Institute of Mathematics and Me-
chanics, Ural Branch of the Russian Academy of Sci-
ences (256 computational nodes, Linux, processor Xeon
3.00GHz) [47] (see also [48]);

• The cluster um64 of Institute of Mathematics and Me-
chanics, Ural Branch of the Russian Academy of Sciences
(124 computational nodes, Linux, dual-core processor
AMD Opteron 2.6GHz bi-processors) [47] (see also [48]).

In our experiments we used own genetic algorithm MSAT
and two standard solvers [45] (fgrasp and posit). Computa-
tional experiments were carried out on standard tests [45] and
tests, obtained by special generators creating a natural data for
the problem VL and for a number of others robotics problems.

The total was carried out 14 runs of cluster in the format of
100 nodes on 20 hours. For summarizing final statistics were
selected 200 tests. Chosen tests was countered by three solvers
in 5 modes with constraints on the limit of time

• no restriction;
• 10 seconds;
• 100 seconds;
• 500 seconds;
• 1000 seconds.

We found that all three solvers have about the same per-
formance. The best average velocity is showed by fgrasp. A
slightly lower average velocity is showed by posit. Genetic
algorithm showed a worst average velocity. From other hand
we found that algorithms of local search are more resource
demanding then the genetic algorithm. In particular, on some
tests fgrasp could not finish the execution.

From our experiments we obtain an important property
of genetic algorithm. Algorithms of local search showing
relatively smooth results on several tests but genetic algorithm
has a significant difference (from 26 seconds to 12 hours) in
time during the test execution. The total trend can be described
as follows. In many cases run time ranges from few seconds

138

Fig. 1. An artificial landmark.

Fig. 2. Semi-artificial landmarks.

to few minutes. However, on a small set of Boolean functions
a run time of genetic algorithm increased to 10-12 hours.

Our experiments have shown that our approach can be
used for design of an efficient solver for the problem of
placement of visual landmarks. Further advantages we can get
by improving our genetic algorithm.

The first author developed a software package for processing
video data to compute three-dimensional coordinates of ob-
jects [49]. This software package is designed for visual naviga-
tion on landmarks. To date, an intelligent system allowing the
use of artificial (specially designed) and semi-artificial (located
in a special way but not specifically designed) landmarks of
various types implemented (e.g. Fig. 1 and 2).

Module of visual navigation based on landmarks used as
part of the onboard control system of various modifications
of robots Kuzma-I (e.g. Fig. 3 and 4) and Kuzma-II (e.g. Fig.
5 and 6). The onboard control system with module of visual
navigation based on landmarks of a modifications of Kuzma-
II (Fig. 5) was demonstrated at the International Exhibition
INNOPROM – 2010 (15.07.2010 – 17.07.2010).

For our experiments on intelligent control systems, we use

Fig. 3. Robot Kuzma-I. Design of this robot based on the well-known
RC cars. From RC-CAR AT-10ES Thunder Tiger [50] we use only the four
wheel chassis, the high torque DC-MOTOR and a steering servo. The DC-
MOTOR drives the chassis and a steering servo controls the direction. The
electronic system based on SSC-32 microcontroller. Onboard computer based
on a motherboard with x86 compatible processor AMD Geode LX600 for
embedded systems. The robot is equipped with USB web camera Live! Cam
Video IM Pro (VF0410) [52].

Fig. 4. Another modification of Kuzma-I. The robot is equipped with
modified Lynxmotion [51] robotic arm and 2 x USB web camera Live! Cam
Video IM Pro (VF0410).

a testbed composed of these mobile robots and a stationary
monitoring system. In particular, we study different algorithms
of visual navigation based on landmarks. In general, good
results of robotic experiments do not guarantee high efficiency
of algorithms. Perhaps experiments are conducted in too
simple environments. Our theoretical results help us to select
appropriate methods as well as testbeds to demonstrate them.
Some of our robots are able to add their own landmarks
(e.g. Fig. 4 and 5). They use a wireless connection to a
supercomputer to run the solver for VL to plan their actions.

ACKNOWLEDGMENT

The work was partially supported by Grant of President
of the Russian Federation MD-1687.2008.9 and Analytical
Departmental Program ”Developing the scientific potential of
high school” 2.1.1/1775.

139

Fig. 5. Robot Kuzma-II. Design of this robot based on the well-known Johnny
5 Robot [53]. By utilizing heavy duty polypropylene and rubber tracks with
durable ABS molded sprockets the robot has excellent traction. It includes two
12vdc 50:1 gear head motors and the Sabertooth 2 x 5 R/C motor controller.
The electronic system based on SSC-32 microcontroller. Onboard computer
of this robot is Asus Eee PC 1000HE. The robot is equipped with modified
Lynxmotion robotic arm with wrist rotate and USB web camera Live! Cam
Video IM Pro (VF0410).

Fig. 6. Another modification of Kuzma-II. The robot is equipped with a 2
DOF robotic camera (USB web camera Live! Cam Video IM Pro (VF0410)).

REFERENCES

[1] Rus D., Vona M. Crystalline Robots: Self-reconfiguration with Unit-
compressible Modules. Autonomous Robots. 2001. Vol. 10(1). P. 107–
124.

[2] Ünsal C., Khosla P.K.A Multi-layered Planner for Self-Reconfiguration
of a Uniform Group of I-Cube Modules. IEEE International Conference
on intelligent Robots and Systems. 2001. Vol. 1. P. 598–605.

[3] Christensen D., Ostergaard E., Lund H.H.Metamodule control for the
atron self-reconfigurable robotic system. Proceedings of the The 8th
Conference on Intelligent Autonomous Systems. 2004. P. 685–692.

[4] Dewey D., Srinivasa S.S., Ashley-Rollman M.P., De Rosa M., Pillai P.,
Mowry T.C., Campbell J.D., Goldstein S.C.Generalizing Metamodules to
Simplify Planning in Modular Robotic Systems. Proceedings of IEEE/RSJ
2008 International Conference on Intelligent Robots and Systems. 2008.
P. 1338–1345.

[5] Ashley-Rollman M., Goldstein S., Lee P., Mowry T., Pillai P.Meld:
A declarative approach to programming ensembles. Proceedings of the
IEEE International Conference on Robots and Systems. 2007. P. 2794–
2800.

[6] Charron-Bost B., Delporte-Gallet C., Fauconnier H.Local and temporal
predicates in distributed systems. ACM Transactions on Programming
Languages and Systems. 1995. Vol. 17(1). P. 157–179.

[7] Lowe D. Object Recognition from Local Scale-Invariant Features, ICCV.
1999. P. 1150–1157.

[8] Dudek G., Jugessur D.Robust Place Recognition using Local Appearance
based Methods. Proceedings of 2000 IEEE International Conference on
Robotics and Automation. 2000. P. 1030–1035.

[9] Carneiro G., Jepson A.D.Multi-scale Phase-based Local Features.
CVPR. 2003. P. 736–743.

[10] Yang G., Hou Z.-G., Liang Z.Distributed visual navigation based on
neural Q-learning for a mobile robot. International Journal of Vehicle
Autonomous Systems. 2006. Vol. 4(2-4). P. 225–238.

[11] Visual navigation system for a mobile robot having capabilities of
regenerating of hidden images. United States Patent 4887223.

[12] Graf B. Reactive navigation of an intelligent robotic walking aid.
Proceedings of the 2001 IEEE International Workshop on Robot Human
Interaction. 2001. P. 353–358.

[13] Pal P.K., Kar A.Sonar-Based Mobile Robot Navigation Through Su-
pervised Learning on a Neural Net. Autonomous Robots. 1996. Vol. 3.
P. 355–374.

[14] Saint-Bauzel L., Pasqui V., Monteil I.A reactive robotized interface for
lower limb rehabilitation: clinical results. IEEE Transactions on Robotics.
2009. Vol. 25(3). P. 583–592.

[15] Angeli A., Filliat D., Doncieux S., Meyer J.-A.Visual topological SLAM
and global localization. Proceedings of the International Conference on
Robotics and Automation. 2009. P. 1–6.

[16] Angeli A., Filliat D., Doncieux S., Meyer J.-A.Incremental vision-
based topological SLAM. Proceedings of the 2008 IEEE International
Conference on Intelligent Robots and Systems. 2008. P. 1–6.

[17] Filliat D. Interactive learning of visual topological navigation. Proceed-
ings of the 2008 IEEE International Conference on Intelligent Robots and
Systems. 2008. P. 1–7.

[18] Goedeḿe T., Nuttin M., Tuytelaars T., Van Gool L.Omnidirectional
Vision Based Topological Navigation. International Journal of Computer
Vision. 2007. Vol. 74(3). P. 219–236.

[19] Vale A., Isabel Ribeiro M.Environment Mapping as a Topological
Representation. Proceedings of the 11th International Conference on
Advanced Robotics. 2003. P. 1–6.

[20] Kazumi O., Hidenori T., Takanori E., Takeshi T., Shigenori O.Naviga-
tion using Artificial Landmark without using Coordinate System. Nippon
Robotto Gakkai Gakujutsu Koenkai Yokoshu. 2003. Vol. 21. P. 3J11.

[21] Samuelsson M.Artificial landmark navigation of an autonomous robot.
Master Thesis.̈Orebro University, Department of technology, SE-70182.
Örebro, Sweden, 2005.

[22] Hellmann I., Siemiatkowska B.Artificial landmark navigation system.
International symposium on intelligent robotic systems N 9. 2001. P. 219–
228.

[23] Åstrand B., Baerveldt A.-J.An Agricultural Mobile Robot with Vision-
Based Perception for Mechanical Weed Control. Autonomous Robots.
2002. Vol. 13. P. 21–35.

[24] Hagras H., Callaghan V., Colley M.Prototyping design and learning in
outdoor mobile robots operating in unstructured outdoor environments.
IEEE International Robotics and Automation Magazine. 2001. Vol. 8(3).
P. 53–69.

[25] Hagras H., Colley M., Callaghan V.Online Learning and Adaptation
of Autonomous Mobile Robots for Sustainable Agriculture. Autonomous
Robots. 2002. Vol. 13. P. 37–52.

[26] Jung H.C.Visual Navigation for a Mobile Robot Using Landmarks.
Advanced Robotics. 1994. Vol. 9(4). P. 429–442.

[27] Gilg A., Schmidt G.Landmark-oriented visual navigation of a mobile
robot. IEEE International Symposium on Industrial Electronics. 1993.
P. 257–262.

[28] Zhu Z., Oskiper T., Samarasekera S., Kumar R.Precise visual navigation
using multi-stereo vision and landmark matching. Proceedings of the
SPIE. 2007. Vol. 6561. P. 656108.

[29] Murrieta-Cid R., Parra C., Devy M.Visual navigation in natural
environments: from range and color data to a landmark-based model.
Autonomous Robots. 2002. V. 13(2). P. 143–168.

[30] Sala P., Sim R., Shokoufandeh A., Dickinson S.Landmark Selection
for Vision-Based Navigation. IEEE Trans. on Robotics. 2006. V. 22(2).
P. 334–349.

[31] Basri R., Rivlin E. Localization and Homing Using Combinations of
Model Views. AI. 1995. Vol. 78(1-2). P. 327–354.

[32] Wilkes D., Dickinson S., Rivlin E., Basri R.Navigation Based on a
Network of 2D Images. ICPR-A. 1994. P. 373–378.

140

[33] Popov V.The approximate period problem for DNA alphabet. Theoret-
ical Computer Science. 2003. Vol. 304. P. 443–447.

[34] Popov V.The Approximate Period Problem. IAENG International Jour-
nal of Computer Science. 2009. Vol. 36(4). P. 268–274.

[35] Garey M.R., Johnson D.S.Computers and Intractability. A Guide to the
Theory of NP-completeness. W. H. Freeman, California, 1979.

[36] Papadimitriou C.H.Computational Complexity. Addison-Wesley Pub-
lishing Company, Reading/Menlo Park, NY, 1994.

[37] Gu J., Purdom P., Franco J., Wah B.Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. 1996. P. 19–152.

[38] Fleurent J.Genetic algorithms and hybrids for graph coloring. Annals
of Operations Research. 1996. Vol. 63. P. 437–461.

[39] Hao J., Dorne R.A new population-based method for satisfiability prob-
lems. Proceedings of 11th European Conference on Artificial Intelligence.
1994. P. 135–139.

[40] Jong K., Spears W.Using genetic algorithms to solve np-complete prob-
lems. Proceedings of the International Conference on Genetic Algorithms.
1989. P. 124–132.

[41] Voorn R., Dastani M., Marchiori E.Finding simplest pattern structures
using genetic programming. Proceedings of the Genetic and Evolutionary
Computation Conference. 2001. P. 3–10.

[42] Hao J., Lardeux F., Saubion F.A hybrid genetic algorithm for the
satisfiability problem. Proceedings of the 1rst International Workshop on
Heuristics. 2002. P. 102–109.

[43] Iwama K., Miyazaki S.SAR-variable complexity of hard combinatorial
problems. IFIP Trans. A Comput. Sci. Tech. 1994. Vol. I. P. 253–258.

[44] Plotnikov A.D. A Logical Model of HCP. International Journal of
Mathematics and Mathematical Sciences. 2001. Vol. 26(11).

[45] http://people.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html
[46] http://www.cs.ubc.ca/∼hoos/SATLIB/Benchmarks/SAT/satformat.ps
[47] http://parallel.imm.uran.ru/mvcnow/hardware/supercomp.htm
[48] http://parallel.uran.ru/node/6
[49] Gorbenko A. Software for processing video data to compute three-

dimensional coordinates of objects. Bachelor Thesis, Department of
Mathematics and Mechanics, Ural State University, Ekaterinburg, 2009.
(in russian)

[50] http://www.tiger.com.tw/
[51] http://www.lynxmotion.com/
[52] http://support.creative.com/Products/ProductDetails.aspx?%20catID=

218&CatName=Web+Cameras&subCatID=%20846&subCatName=
Live!+Cam+Series&prodID=16904&prodName=
Live!+Cam+Video+IM+Pro+(VF0410)&bTopTwenty=1&VARSET=
prodfaq:PRODFAQ16904,VARSET=CategoryID:218

[53] http://www.lynxmotion.com/c-103-johnny-5.aspx

141

Hand Recognition in Live-Streaming Video

Mikhail Belov

Department of business-informatics

Higher School of Economics

Moscow, Russian Federation

mpbelov@gmail.com

Abstract— The article describes the algorithmic component of the

pattern recognition method for extracting hand patterns from a

video stream. Methods removing excess information from

frames, localizing fragments with a hand and extracting hand

contours to classify them are described.

Keywords-pattern recognition; Hu invariants; Canny detector;

video stream processing

I. INTRODUCTION

One can input data into a computer in a form of graphical
information. There are methods for processing the graphical
information and for treating it not only as a set of dots with
color codes, but also as a container for another data. This fact
gives an opportunity to extend the number of human computer
interaction (HCI) ways. Such systems are described in [5] and
[6].

It is planned to develop a system prototype for direct and
online controlling the graphical objects displayed on a screen.
Currently this idea has been implemented in two types of
systems: sensor screens and ―smart boards‖. In the first case, a
transparent sensor pad is placed over the screen, which catches
the user’s touches and translates them into control signals to
the processor. Due to an existing technology such screens are
expensive and produced mostly in small and medium formats.
In case of the ―smart boards‖ the projector’s light is not
focused on a usual board, but aimed to a special sensor surface.
Unlike sensor screens, there are large ―smart boards‖ because
of projector, but this approach remains rather expensive and
not suitable as a mass solution. Instead, building such a HCI
system based on a video camera and a projector will reduce the
dependency of the cost from the display size.

The article describes the algorithmic component of the
pattern recognition method for extracting hand patterns from a
video stream.

II. PREPARING A FRAME

To remove excess information from a frame one can use
the Histogram Backprojection method. In this case a hand is
being searched by its color characteristics. The method can be
applied to search for pixels satisfying the histogram, or to
search a pattern (of a hand image) by shifting the pattern w.r.t.
the initial image. A frame fragment containing the hand image
should be used as a template histogram.

In Histogram Backprojection the model (target) and the
image are represented by their multidimensional color
histograms M and I as in Histogram Intersection. A ratio

histogram R, defined as

 , is computed from

the model and image histograms. It is this histogram R that is
backprojected onto the image, that is, the image values are
replaced by the values of R that they index. The backprojected
image is then convolved by a mask, which for compact objects
of unknown orientation could be a circle with the same area as
the expected area subtended by the object. The peak in the
convolved image is the expected location of the target,
provided the target appears in the image [1].

III. LOCALIZING A FRAME FRAGMENT WITH A HAND

We can locate a fragment with hand by calculating the
difference image characteristics [4]. We have to use an image
template, which contains a hand picture.

One of possible methods is a square difference matching
method. Perfect match leads to 0 result. Large result means bad
match:

Correlation matching methods multiplicatively match the
template against the image so a perfect match will be large and
bad matches will be small or 0.

Correlation coefficient matching methods match a template
relative to its mean against the image relative to its mean, so a
perfect match will be 1 and a perfect mismatch will be –1; a
value of 0 simply means that there is no correlation (random
alignments).

142

These factors may be normalized [4]. The normalized

methods are useful because they can help reduce the effects of

lighting differences between the template and the image. In

each case, the normalization coefficient is the same:

IV. EXTRACTING HAND CONTOURS

Then we extract contours from the image using the Canny

detector [2]. The Canny algorithm runs in 5 separate steps.

A. Smoothing: Blurring of the image to remove noise

It is inevitable that all images taken from a camera will
contain some amount of noise. To prevent that noise is
mistaken for edges, noise must be reduced. Therefore the
image is first smoothed by applying a Gaussian filter.

B. Finding gradients: The edges should be marked where the

gradients of the image has large magnitudes

Gradients at each pixel in the smoothed image are
determined by applying what is known as the Sobel-operator.

C. Non-maximum suppression: Only local maxima should be

marked as edges

The purpose of this step is to convert the ―blurred‖ edges in
the image of the gradient magnitudes to ―sharp‖ edges.
Basically this is done by preserving all local maxima in the
gradient image, and deleting everything else. The algorithm is
for each pixel in the gradient image:

1) Round the gradient direction θ to nearest 45 ◦ ,

corresponding to the use of an 8-connected neighbourhood;

2) Compare the edge strength of the current pixel with the

edge strength of the pixel in the positive and negative gradient

direction. I.e. if the gradient direction is north (theta = 90◦),

compare with the pixels to the north and south;

3) If the edge strength of the current pixel is largest;

preserve the value of the edge strength. If not, suppress (i.e.

remove) the value.

D. Double thresholding: Potential edges are determined by

thresholding

Edge pixels stronger than the high threshold are marked as
strong; edge pixels weaker than the low threshold are
suppressed and edge pixels between the two thresholds are
marked as weak.

E. Edge tracking by hysteresis: Final edges are determined

by suppressing all edges that are not connected to a very

certain (strong) edge

Strong edges are interpreted as ―certain edges‖, and can
immediately be included in the final edge image. Weak edges
are included if and only if they are connected to strong edges.
The logic is of course that noise and other small variations are
unlikely to result in a strong edge (with proper adjustment of
the threshold levels). Thus strong edges will (almost) only be
due to true edges in the original image. The weak edges can
either be due to true edges or noise/color variations.

V. CLASSIFYING THE FOUND CONTOUR

We classify found contours after the extraction. Hu

invariant moments of contours are used for this. Moment is a

gross characteristic of the contour computed by integrating

over all of the pixels of the contour [3]. The (p, q) moment of a

contour is defined as:

Here p is the x-order and q is the y-order, whereby order

means the power to which the corresponding component is

taken in the sum just displayed. The summation is over all of

the pixels of the contour boundary (denoted by n in the

equation).

The moment computation just described gives some

rudimentary characteristics of a contour that can be used to

compare two contours. However, the moments resulting from

that computation are not the best parameters for such

comparisons in most practical cases. In particular, one would

oft en like to use normalized moments (so that objects of the

same shape but dissimilar sizes give similar values). Similarly,

the simple moments of the previous section depend on the

coordinate system chosen, which means that objects are not

matched correctly if they are rotated.

A central moment is basically the same as the moments

just described except that the values of x and y used in the

formulas are displaced by the mean values:

where

 and

.

The normalized moments are the same as the central

moments except that they are all divided by an appropriate

power of m00:

The Hu invariant moments are linear combinations of the

central moments.

The following factors are used to detect similarity between

two contours [4]:

Here
 and

 are defined as:

143

 ,

 ,

where
 and

 are the Hu moments of A and B,

respectively.

After classification system performs the action associated
with a certain gesture.

VI. FUTURE WORK

The described image processing methods may be used with

various parameters. It is planned to implement the investigated

algorithm and to choose the best methods among the available

alternatives at the next step of the research. It is also needed to

assess the capabilities of usage Hu moments for hand contour

comparison and similarity detection. As further research of the

described method it is required to compare the contour

similarity coefficient metrics listed above based on Hu

moments by quality of classification result.

REFERENCES

[1] M. Swain, D. Ballard, ―Color Indexing‖. International Journal of
Computer Vision, 7:1, Kluwer Academic Publishers, Manufactured in
The Netherlands, 1991, pp. 11-32.

[2] J. Canny. ―A computational approach to edge detection. Pattern Analysis
and Machine Intelligence‖, IEEE Transactions on, PAMI-8(6), Nov.
1986, pp. 679–698.

[3] M. Hu, ―Visual pattern recognition by moment invariants‖ IRE
Transactions on Information Theory 8, 1962, pp. 179–187

[4] G. Bradski, A. Kaehler. ―Learning OpenCV‖. O'Reilly Media. 2008.
Pages: 576.

[5] P. Garg, N. Aggarwal, S. Sofat. ―Vision Based Hand Gesture
Recognition‖, World Academy of Science, Engineering and Technology
– 49, 2009.

[6] C. Keskin, A. Erkan, L. Akarun, ―Real Time Hand Tracking and 3D
Gesture Recognition for Interactive Interfaces Using Hmm‖,
ICANN/ICONIPP, 2003.

144

http://www.oreillynet.com/pub/au/3270
http://www.oreillynet.com/pub/au/3271

3D-Illusion Constructor

Maksim Rovkin, Evgenij Yel'chugin, Maria Filatova
dept. of Mathematics and Mechanics

Urals State University
Ekaterinburg, Russian Federation
e-mail : Maria.Filatova@usu.ru

Abstract—Madonnari, one of the kinds of street art, is very
popular in the world today. Drawings are made on a pavement
and are deliberately distorted in such a way that an illusion of a
three-dimensional object appears when the drawing is looked at
from a certain point. It is remarkable that many painters use
methods developed in the sixteenth century to make such
drawings. Some graphical packages, for example Photoshop,
allow to distort images in such a way that they can be seen
correctly from a different point. However, such packages cannot
be used to construct illusions at the junction of two plains, and a
viewing point cannot be prescribed. We present a program which
makes it possible to construct 3D illusions at the junction of two
or three plains and to select a point, viewing from which
produces a spatial effect.

Image processing; computer graphics; graphic design;
projective geometry; estimation

I. INTRODUCTION

Anamorphosis is an art of construction of deliberately
distorted images which, when looked at from a certain point,
regain their undistorted view. The art of anamorphosis was
invented in China and brought to Italy in the sixteenth century.
Probably one of the most spectacular and impressing examples
of anamorphosis is Madonnari – one of the kinds of street art.
Drawing are made on a pavement (we will call such drawings
3D-illusions) and are deliberately distorted in such a way that
an illusion of a three-dimensional object appears when the
drawing is looked at a certain angle. The central object of art in
Italy in the sixteenth century was Madonna, which is the reason
for the name “Madonnari”.

This kind of art is very popular in our time; moreover,
many businesses use 3D-illusions for advertising. Examples of
such illusions is shown in Figure 1. Recently an experiment
was started in Canada, in which the speed of vehicles is
controlled by an optical illusion made on the road. (This
experiment is conducted by the Fund of Traffic Security of
British Columbia.)

It is surprising that many painters that draw illusions on a
pavement use the same methods that were used 400 years ago
by their predecessors. Some graphical packages, such as Adobe
Photoshop, have a Perspective tool, which allows to construct
3D-illusions in a plane. However, this tool is designed to
remove perspective distortions rather than to construct illusions
that appear as a result of perspective distortions. For this reason
it is not possible to prescribe a point, viewing from which
produces an illusion. It is not possible either to construct an

illusion from a number of images (or regions of images) that lie
in different planes. Thus we are not aware of existence of a
graphical package that is designed to construct 3D-illusions in
a plane or a number of planes (although we investigate this
question specifically). Despite simplicity of realization, we
found the idea of creating such a graphical tool very
interesting.

We present a program (a 3D-illusion constructor) written in
C#, which allows to produce 3D-illusions in a plane.

Figure 1. Examples of such illusions advertizing

II. MATHEMATICAL MODEL

Suppose that, in three planes, we want to obtain an illusion
of the image in Picture. Consider a Cartesian system in the
space (see Figure 2). Thus the problem is to construct a
projection of the Picture plane to the coordinate planes.

Let (u1,u2) coordinates of a pixel in Picture plane, (v1;v2)
coordinates of a pixel in one of coordinate planes.

Our task is to obtain a projective transformation between
two planes. Such transformation is a rational function of the
form

12
4

1
3

2
2

1
1

++
++=

vkvk

dvkvk
u

ii

iii
i

, (1)

2,1=i

145

Figure 2. a projection of the Picture plane to the
coordinate planes

To find ten coefficients j
ik , 2,1=i 5..1=j we have to

know a set of five points (u1,u2) and a corresponding set of
points (v1,v2). These sets can be found using geometric view. If
we substitute these points in (1) we obtain a system of linear

equations. The variables of this system are coefficients j
ik ,

2,1=i 5..1=j se in an equation.

Figure 3. Resulting image

III. PROGRAM DESCRIPTION

The program works with raster images. The user can give
the coordinates of the point A and the size of the file, where the
illusion will be constructed. After that the images can selected,
which can placed in a 3D space, dimensions can modified, and

they can projected to a plane (or planes), where the illusion is
constructed. The output of the program is an image file. After
the output image is printed and viewed from a certain point, an
illusion appears.

The results obtained with the program are shown in Figures
3 and 4. If the image of Figure 3 is printed, cut angle and
viewed at a certain point, this produces an illusion shown in
Figure 4. We also note that this program allows to produce
cards shown in Figure 5.

Figure 4. Illusion image

Figure 5. Illusion card

[1] Richard Hartley, and Andrew Zisserman, “Multiple View Geometry in
Computer Vision,” Cambridge University Press 2000, pp. 607

146

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	06-yavorsky.pdf
	syrcose11_submission_001.pdf
	syrcose11_submission_002.pdf
	syrcose11_submission_003.pdf
	syrcose11_submission_004.pdf
	I. Introduction
	II. ARTCP and TCP
	III. ARTCP header structure
	IV. ARTCP header processing
	V. Time measurement for TI field in Linux

	syrcose11_submission_005.pdf
	syrcose11_submission_006.pdf
	syrcose11_submission_007.pdf
	syrcose11_submission_008.pdf
	syrcose11_submission_009.pdf
	syrcose11_submission_010.pdf
	syrcose11_submission_011.pdf
	syrcose11_submission_012.pdf
	syrcose11_submission_013.pdf
	syrcose11_submission_014.pdf
	syrcose11_submission_015.pdf
	syrcose11_submission_016.pdf
	syrcose11_submission_017.pdf
	syrcose11_submission_018.pdf
	syrcose11_submission_019.pdf
	syrcose11_submission_020.pdf
	syrcose11_submission_021.pdf
	syrcose11_submission_022.pdf
	syrcose11_submission_023.pdf
	syrcose11_submission_024.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

