
Semat -- Three Year Vision
Ivar Jacobson
Ivar Jacobson
International

ivar@ivarjacobson.com

Shihong Huang
Computer Science &

Engineering
Florida Atlantic

University
USA

shihong@fau.edu

Mira Kajko-
Mattsson

Royal Institute of
Technology

Sweden
mekm2@kth.se

Paul McMahon
PEM Systems

USA
pemcmahon@acm.org

Ed Seymour
Apt Methods & Tools

Fujitsu
United Kindom

Seymour Ed
Ed.Seymour@uk.fujitsu.com

Advisors of the paper: Semat Advisory Board (Bertrand Meyer, Richard Soley), Arne Berre, Donald Firesmith, Capers Jones,
and Harold “Bud” Lawson

The purpose of writing this Three Year Vision paper is three-
fold. Firstly, it briefly recaps the progress Semat has made
thus far; secondly, it lays out the future directions for people
working actively within the Semat community; thirdly, it
provides the background for seeking funding support from
agencies, such as the European Community and the like.
Funding support is necessary to sustain the ongoing activities
of Semat and its growth into a broader community effort, as
most people working within Semat are volunteers.

As such, the paper may be both too much and too little for the
wider supporter base. However, we intend to make our work
fully transparent, hence, we publish it widely. We seek
feedback and comments from supporters and signatories in
order to improve the vision. In this context, other companion
papers are being written to better address the specific needs for
the practitioners, the industry and the academia.

Abstract— At the end of 2009, Ivar Jacobson, Bertrand Meyer
and Richard Soley started a new initiative called Semat (Software
Engineering Method and Theory) with the aim of refounding
software engineering as a rigorous discipline. They recognized
that the natural tendency in our field is to perturb systems
minimally into approximate correctness, but this path cannot be
sustained any longer if we are to support the computing industry
and help it meet the demands of society. They established a need
to restart on a solid basis, taking advantage of all that has been
learned in software engineering theory and practice over the past
five decades.

The objective of this paper is to present how far we have come in
realizing the vision for the first year, and to give a picture of
where we want to be within three years, i.e., early 2014. The
realization plan will be presented in separate documents.

Keywords-Software engineeirng, method, theory, practices,
kernel, common ground

I. GRAND VISION
The original call for action [3], as formulated in

September of 2009, pinpointed the paramount
concerns and issues that challenge the field of
software engineering such as the reliance on fads

and fashions, the lack of theoretical basis, the
abundance of unique methods that are hard to
compare, the dearth of experimental evaluation and
validation, and the gap between academic research
and its practical application in industry (see
Appendix 1).

Against this backdrop, a solution was envisioned
- the Grand Vision [4], which would be based on a
solid theory, proven principles and best practices. At
its heart it would be a kernel of widely agreed
elements. The Kernel would provide the common
ground reference to among other things help
practitioners (e.g., architects, designers, developers,
testers, developers, requirements engineers, process
engineers, project managers, etc.) to compare
methods and make better decisions of their practices.

The Grand Vision is defined as a multi-year
effort, certainly more than three years. The work
started in early 2010. The first step toward the Grand
Vision [4] is described in Section II, ‘First Step –
Creating the Basis for Semat’. In Section III,
‘Beyond the First Step – Moving Forward with
Semat’, the products of Semat are discussed, and
how we will move forward and realize substantial
and measurable value to the software community are
set out.

II. FIRST STEP – CREATING THE BASIS FOR SEMAT
To refound software engineering we knew we

needed to do something that had never been done
before: to discover “a kernel of widely-agreed
elements” – the common ground of software
engineering.

A. The common ground of software engineering
The software community has developed software

for more than 50 years. Irrespective of the code
being written, the software system being built, the
solution being constructed, the methods employed,
or the organizations involved, there is a common
ground – a kernel of elements that are pervasive
concepts and qualities – always prevalent in any
software endeavors. Examples of essential elements
include: work, team, requirement, software system,
opportunity and stakeholder. The kernel provides the
essence of software engineering.

Establishing this kernel provides software
practitioners with the tools needed to better
understand, compose and compare individual
practices and methods, and to do their job more
effectively. Companies can realize a consistent,
identifiable framework for governance, whilst
allowing their developers the freedom to use their
preferred practices. It will provide a learning
roadmap to help form new curricula and personal
development goals, and it will support research by
providing context and agreed subjects of value.
Moreover, it will reduce the fashions and fads
prevalent in the software industry today, and usher
in a more pragmatic and objective era.

Finding the constituents of the kernel is crucial.
We are uncovering universal, significant and
relevant elements guided by the notion that, “You
have achieved perfection not when there is nothing
left to add, but when there is nothing left to take
away.1” We are also ensuring that these constituents
– “nothing left to take away” -are widely agreed
upon.

Thus, a widely agreed upon kernel is the essence
of Software Engineering. When we use the phrase
“common ground” in this paper it refers to achieving
consensus on the essentials of software engineering.
When we use the term “kernel” it means the
realization of common ground – common ground
being the specification and kernel its realization.
B. Semat applies Separation of Concerns

A key principle of the Semat initiative is to be
inclusive of all relevant work in software

1 Antoine de Saint-Exupéry

engineering and not excluding anything that is or
will be beneficial to any of its interest groups. For
instance, even though a key target group is the
practitioner, through extension we also address the
process engineer; even though the primary subject
area is software engineering, we also support
systems engineering through extension; even though
we focus on the essentials of software engineering,
we also allow people to add details; even though our
definitions are generic, we also allow them to
expand and be more specific. Our approach to
achieve this dualism is through the principle of
Separation of Concerns
(http://en.wikipedia.org/wiki/Separation_of_concern
s). This principle allows us to specify a core, and
then through extensions without changing or
complicating the core add what is needed for the
more specific cases (see Appendix 2).

In particular making the practitioner the target
group is fundamental. Projects come in different
scales. There is a huge amount of software
development that occurs in small to mid-sized
companies that do not have process engineers.
Moreover, without getting the practitioners to adopt
the result of this initiative, it will frankly just be an
intellectual exercise.
C. Requirements

1) Getting to the requirements
Until now different methods2 have primarily been

described as isolated islands. Every method is
basically a unique phenomenon described in its own
language and vocabulary, not standing on any
widely accepted kernel. A kernel of essentials will
allow methodologists to describe new approaches
without reinventing what is already known and
agreed to.

Related to method but different is the concept of
practice. It has been used frequently in software
engineering for the last 50 years. The intuitive
understanding is that a team usually has one method
but many practices. Thus a method is perceived as
larger and more complex than an individual practice.

2 Here we don’t distinguish between the term method and terms like

methodology or process.

Basically every software development team, with
some exceptions, has its own method. Thus we
expect that today there to be probably over 100,000
methods in existence, with many of them never
being described. This is perfectly right. We should
expect a huge number of methods, but the number of
relevant separate practices in use should be much
smaller. In the software engineering literature there
have only been a couple of hundred practices
identified.

Thus, being able to design a method from a set of
relevant practices, all described using a kernel of
essential elements are key requirements of Semat.
In Appendix 3 the relationship among method,
practice, kernel and language is described.

2) The one-line goal
The goal is to create a kernel and a language that

are scalable, extensible, and easy to use, and that
allow people to describe the essentials of their
existing and future methods and practices so that
they can be composed, compared, evaluated,
tailored, used, adapted, simulated and measured by
practitioners as well as taught and researched by
academics and researchers.

3) Key requirements
With some repetition of what already have

described, this section specifies the key
requirements associated with the first step of Semat.
They have not changed in any significant directions
since they were first laid out in the first-year vision
statement in February 2010 [4].

One of the key requirements is to identify and
specify a kernel including the essential elements of
software engineering. This kernel would then serve
as a vocabulary - a map of the software engineering
territory. The map would be used as a base on top
of which we can define any method or practice in
existence or are foreseen in the near future. This
kernel should also be extensible to care for new
technologies, new social working patterns, and new
research. Note that this requirement is also an
application of the principle of separation of
concerns: separating the kernel from the specifics of
the different methods.

Though every practice will be described using the
kernel, it is also a separate concern allowing a
practice to be merged with other relevant practices

to form a composed practice. A method can be
thought of as a higher-level practice that can be
instantiated and used. We have sufficient evidence
from many experiments that several such
compositions results in a method and that every
existing method in fact could be described as a
composition of complementary practices. The
kernel supports a way of defining methods allowing
for reuse of practices (see Appendix 3).

However, being able to define methods in a
practical way with high level of reuse was not all we
intended to get. The methods defined using the
kernel also have a dynamic aspect to support the
practitioner in using the practices to do what they
want to do, and after being done (for instance at the
end of an iteration or a sprint) they are expected to
retrospectively exam the method and adapt the
method for what they have learnt. This changes the
traditional understanding of a method.

Traditionally, a method definition is thought of as
being instantiated, and the activities -- created from
the definition -- are executed by practitioners
(analysts, developers, testers, project leads, etc.) in
some order to get result, specified by the definition.
This view – “the team is the computer, the process is
the program” - is not suitable for creative work like
software engineering, which requires support for
work, which is agile, trial-and-error based and
collaboration intensive.

In effect, the kernel is defined using a domain-
specific language, which has a static base (syntax
and well-formed-ness rules) to let us define methods
effectively, and with an additional dynamic concern
(operational semantics) to let us use, adapt and
simulate them.

The kernel and the language are small and light at
their base but extensible to cover more advanced
uses, such as dealing with life-, safety-, business-,
mission-, security-critical systems.
D. Realizing the kernel

These requirements are ambitious, but we had
enough evidence that the goal could be achieved.
Many of the leading supporters of the Semat
initiative told us when joining that they had the
kernel we were looking for, or had seen examples of
kernels that had been developed in other companies.
Moreover, there is evidence that a kernel can be

developed on top of which practices can be defined
(see
ftp://ftp.ivarjacobson.com/outgoing/kernel/Software
_Development_Kernel.pdf). This work only serves
as evidence that the requirements are reasonable and
can be implemented.

While each of these existing kernels may provide
part of the answer Semat seeks for, none of these
existing kernels have been widely agreed upon,
which is critical to the ultimate success of our
initiative.

Developing the kernel is not just a technical
problem. It is primarily a matter of reaching an
agreement on which the essential elements of the
kernel should be and what they should contain, such
as states and criteria for state transitions.

1) The concept of kernel
The kernel should neither be a new unified

methodology, a new software process meta-model, a
new body of knowledge, a new modeling language,
nor is a trick to get people to build or buy more
tools. The kernel should be as simple as a map of
what we already have (e.g. teams and projects), what
we already do (e.g. specify and implement), and
what we already produce (e.g. software systems)
when we develop software, irrespective of the way
we work, whether we write documentation, or even
if the result is good or bad. The kernel should be
concrete, focused and light. For more detailed
explanation of the concepts please see Appendix 3.

2) The governance of the kernel development
Recently, in order to provide the necessary

governance of the work on developing the kernel,
the responsibility for this work has been moved to
the Object Management Group (OMG,
http://www.omg.org/). This move to OMG ensures
the openness and fairness of the selection process
and that the results benefit the entire community. A
Request for Proposal (RFP) titled “A Domain-
Specific Language and a Kernel of Essentials For
Software Engineering (ESSENSE)” has been
prepared by a group of OMG members and
presented to OMG. The RFP solicits submissions
for a language and a kernel allowing people to in a
light way describe the essentials of their current and
future practices and methods so that they can be
composed, simulated, applied, compared, tailored,
used, evaluated, measured, taught and researched.

This allows the methods, practices and the essential
elements of the kernel to be described in the
language.

The RFP is based on the Semat vision statement
presented a year ago [4]. The next step is that
OMG will review the RFP proposal and when
approved (expected to happen in June 2011), any
organization or team can respond with an initial
submission for the RFP.

A group of about 20 people within Semat, who
has been working on a candidate kernel since March
2010, will be one of the submitters. This group has
members coming from around the world
representing practitioners, executives, instructors
and researchers.

3) Current status of kernel development
A working group within Semat has today a first

version of a candidate kernel defined. It will be
ready for a small number of potential users to test
and to give them feedback indicating if the work is
on the right track. As of today, this candidate kernel
includes a map of the territory including an initial
version of “things we always produce and progress”,
“things we always do”, and “skills we always need
to have”. For example, the following elements are
now rated as essential elements of this candidate
kernel: opportunity, requirements, software system,
team, work, way-of-working and practice (Figure.1).
These elements contain well-defined states.

Figure 1. The current set of suggested kernel elements. (Work is in progress

and subject to change).

As an example, requirements move through the
states of conceived, shared, stable, correct, testable,
and fulfilled. We are still working on “things we
always do”, and “skills we always need to have”.
This candidate kernel will eventually provide
guidance during the usage of a method to assist
practitioners in assessing the progress and health of
their project in comparison to desired target states.
Practitioners will employ this kernel to evaluate
their current practices, and to extend their practices
to fit specific circumstances.

However, it is expected that other parties will
also provide their candidate kernels. In case there
are several proposals, it is a standard procedure that
OMG requests the different proponents to work
together to come up with a joint proposal, which
eventually will be adopted. The kernel finally
adopted by OMG is expected to be stable but not
static. It will continue to evolve as our
understanding of software engineering improves and
the field grows.

4) Continuing existing work
Since we today don’t have a widely agreed upon

kernel (which the OMG adopted kernel is expected
to become), and since the existence of a kernel is the
basis for Semat, how can we then today create a
three-year vision for Semat?

Continued work in Semat will of course be
dependent on the outcome of the OMG effort, but
there is a significant amount of work that will have
to occur just based on the fact that we are moving
towards getting a widely agreed upon kernel.

For example the following kind of work, of
which some already have started, are not really
dependent on a detailed kernel being available: 1)
Formulating the requirements on Semat from
different users needs (work already started). 2)
Assessing that the work of OMG meets the needs of
the user groups. 3) Dealing with feedback from the
user groups. 4) Keeping definitions available. 5)
Developing practice-related theories covering
societal and technical needs that support the
concerns of industry, academia and practitioners,
and can be validated and verified both empirically
and formally. 6) Certifying practices. (Semat will
not approve and disapprove the ideas of a practice
but ensure that the definition of the practices allow
for reuse.)

It is also very important for the success of any
OMG adopted kernel that work goes on outside the
standard forum that OMG sets up; this is to ensure
that what comes out of OMG is also what users
request.

5) Work after OMG’s adoption of a kernel
After the OMG makes their adoption of a kernel,

there will still be more work to do since we
anticipate the kernel to be stable, but not static as we
continue to move forward. Thus, we see it as
imperative to work in parallel with the realization of
the kernel as well as applying any versions of the
kernel on real cases.

There is other work that is dependent on the
kernel, for instance specification of reusable
practices. Practices are expected to be defined both
in textual form, which of course can be done already
today, and in the language being developed. Thus
some work has to wait until the language is
specified. As we know more about the details of the
kernel, we will need to update parts of the results,
but at the end of the three-year period we anticipate
that we will have settled on the products of Semat,
as further discussed in Section 3.1.
E. Using the kernel with varying level of detail

The kernel is lightweight so it is easy to
understand and use as a vocabulary or a map for
defining practices and entire methods. Practices can
be defined at any level of detail with two extreme
uses – very light and very rigorous. In many cases a
middle ground will be used.

For small teams it is sometimes perfectly right to
keep the practice definitions as tacit knowledge
developed through conversations within the team.
For teams working with business-, mission-, safety-
and security-critical systems, more rigor is required
and the practices have to be defined in a language
with a formal foundation. Thus the kernel language
should support several such styles to define
practices.

III. BEYOND THE FIRST STEP – MOVING FORWARD
WITH SEMAT

A widely accepted kernel and the language are
fundamental basic components and critical tools to
refound software engineering and to establish a
common ground. “Now this is not the end. It is not
even the beginning of the end. But it is, perhaps, the

end of the beginning.”3 It is the first step that allows
us to widen the work, even before their
implementation will be generally available.

The paramount goal is to make successful the
software community as a whole. This community is
huge and to reach our objectives we will have to
focus on the most important user groups, namely the
practitioners, the industry, and academia (Figure 2).
We need to make them successful individually and
as “partners”. In simple and not exhaustive words:
the practitioners and the industry drive what needs to
be taught and researched. The academics teach and
formalize what needs to be better understood. The
practitioners are the doers in the industry and the
industry leads the practitioners in creating business
value.

Figure 2. The software engineering community and its most important user
groups

These are broad user groups with a variety of
diverse interests within the field of software
engineering. Nevertheless, Semat has been, and
shall always be, an open and inclusive initiative. The
simplification of the user groups is intended to aid
the discussion and elaboration of key objectives and
measures.

Over the course of the next three years Semat
will through its participants develop a set of
products in order to be successful.
A. Products

The Semat community is through its participants
expected to develop a whole spectrum of products to

3 Sir Winston Churchill, Speech in November 10, 1942

support its vision. These products are expected to be
released separately and at different points in time
over the next three years.

The Kernel and the Language. Through the work
of OMG a kernel and a language based on the
agreed common ground for software engineering
will be established. Its publication will promote and
enable a new ecosystem for methods & practices
based on an open standard. It will not be large.
This kernel will encapsulate what we all agree is
essential and used by practitioners on every project
when delivering software. It will include
terminology in a way that aids understanding and
communication with respect to what we all agree
about requirements, teams, software system,
stakeholder, work, opportunity, and measurement.

Tools. A collection of tools (including open
source) – either as stand alone or plug-ins for
existing tools – will become available that enable
people to author, browse, compose, compare,
question, measure and use practices and methods.
Tools for different areas of concern in software
development become interoperable through the use
of the kernel and the language. The focus of these
tools will be the needs of the practitioner whose
primary concern is developing quality software
leading to satisfied customers.

The Practice Market Place. The open standard
kernel and the language will enable the publication,
cataloguing and exchange of practices. The
marketplace will provide an environment where
developers are given appropriate freedom to use
their preferred ways of working within their specific
context. It will be a place where proven practices as
well as new innovative ideas are easily accessible.

Curricula. A new and more systematic
foundation for teaching software engineering will
emerge, which supports learning in academic and
professional environments. Curricula based on the
kernel, the language, practices and methods will be
developed and used both in computer science and
software engineering programs in our universities,
and in education given by research scientists,
electrical engineers, mechanical engineering and
others whose primary field of expertise are in varied
disciplines.

Text Books and Papers. New textbooks and
reference material to support curricula and personal

development based on the kernel and the language
will be authored and made publically available.
Many books on practices defined using the kernel
that target at different level of users will be written
to support practitioners in improving their way of
working.

Research. The objective comparable nature and
ability to tailor, use, adapt and simulate practices
will result in a renaissance of software engineer
research. Researchers have a common infrastructure
serving as a test-bed and fast deployment of new
ideas (extensible practices).
B. An illustrative usage scenario: a team in a small

company developing a single application
The following scenario illustrates the usages of

Semat products:
Imagine a project lead is just about to set up a

new project to develop a major release on an
existing product.

Her team has a way of working but it is not
documented. All have learnt about the Semat
kernel. They want to change their way of working
to become more agile, in particular they want to
improve the way they work with requirements and
test.

The project lead and her team start to work from
the kernel. They sketch (e.g., do something similar
to a use case model) some of their existing practices,
which they want to keep. Since they know their way
of working, this is done quickly. Basically they just
work through their old terms and synch them up
with the names of kernel elements.

Then they go to their companies practice library
and select the practices, which best meet their needs.
They download a tool assisting them to understand
the new practices (maybe their existing practices
will be briefly sketched as well). If needed, they
will tailor the practices to fit their specific needs (in
this scenario very limited tailoring). The tool also
helps them to use the practices in the project,
iteration (or sprint) after iteration. They also need
(other) tools to support their new practices, but the
old tools will still work for their existing practices.

A positive side effect of the practices is that the
training material is very effective. The practices in
the practice library are actually coming from the

Semat marketplace for practices, so its training
material has been developed, has been used around
the world, and it has been improved over and over
again. Some training may also have e-learning
facilities.

The team is supportive of the changes because
they can grasp more easily the health of the project;
at any moment they know where they are and where
they are going; they know exactly when something
is done. The team was also happy because they had
very little overtime.

The project lead is satisfied because she sees that
the outcome is better, the time to market is shorter
and predictable, the costs are lower than estimated,
and her customers are happy. And, now other teams
want to reuse her experience, so she is also happy.

For illustration purpose, some selected scenarios
for the primary user groups --- practitioners, industry
and academia -- are presented in Appendix 4.

C. Success factors for users
Semat’s success will be measured in its ability to

positively affect the course of software engineering
with the practitioners, the industry and academia.
Better, Faster and Happier (BFH) are metrics
addressing both common objectives and specific
concerns of these individual groups.

In the broad sense, ‘better’ implies lower defect
potentials, less rework, and higher levels of defect
removal efficiency than today's norms; ‘faster’
implies quicker development cycles than today's
norms; whereas ‘happier’ implies improved
customer and employee satisfaction throughout a
multi-year period that encompasses total cost of
ownership.

In a specific situation, the BFH has distinctive
meanings for the three user groups we focus on:

1) For the practitioner better means your
competitive value is higher, you develop better
software, and you have experience of more
practices. Faster means you learn faster, and you get
your job done faster. Happier means you are more
self-confident and you can easily move from one
organization to the other.

2) For industry better means you are
innovative, you deliver software with high quality
and you have objective measures of project health.

Faster means reduced delivery time. Happier means
satisfied customers and satisfied employees.

3) For academia better education means
competent students equipped with solid concepts
and theory meeting industry needs and instructor's
employing a consistent teaching roadmap
independent of fads but open to innovations. Faster
means faster learning and faster transition of
students to industry. Happier means more motivated
students and a more enjoyable education experience.

For academia better research means researchers
focusing on areas more relevant to real-world
problems. Faster means faster technology transfer
from laboratory to industry and faster feedback from
industry to research. Happier means research has
impacts on the quality of software products.

D. Measuring success
Semat is set up to refound software engineering;

a goal, which of course is hard to measure,
nevertheless we must do it. Eventually we want to
measure the impact our products have on the
community building better software. The impact
can be measured from two aspects that complement
each other and yet perhaps overlap in some cases:
qualitative measurements and quantitative
measurements.

1) Qualitative Measurements
We need to identify how Semat products can be

related clearly to the objectives of practitioners,
industry and academia. These objectives can be

qualitatively measured by using BFH – more
precisely by using the BFH attributes.

The BFH are the objectives we wish to
accomplish within the software community. They
have attributes that are more concrete and conducive
to measurement (see Figure 3). We will as Semat
goes forward select and agree on these potential
attributes, and we will identify, describe and specify
how to measure these attributes. We will – apply the
principle of separation of concerns – separate those
attributes that are common to all our target user
groups from those representing specific needs
requested by the diverse users.

Some of the means of conducting qualitative
measurements include gathering feedback using for
instance interviews and questionnaires of comments,
opinions, evaluations, and views on our products.
For instance, we will collect opinions on how our
products influence the attributes for each user group
(practitioner, industry and academia). As an
example we may measure how much more
competitive a practitioner becomes using our
products.

To illustrate our BFH approach, we have outlined
a set of attributes and placed them within the BFH
objectives in Figure 3. The example, however,
should not be perceived as a fully-fledged and ready
to use framework. We suggest that three of these
attributes are essential: Objective Measures of
Health, Competiveness, and Satisfaction. They will
therefore be further elaborated in Appendix 5.

Figure 3: The BFH objectives illustrated with potential attributes

2) Quantitative Measurements
The impact of the Semat product can also be

measured quantitatively by measuring the direct
impact of our products on the software being built.
For example, measuring quicker development cycle,
better ROI, fewer defect and rework, better
reliability, and improved customer satisfaction.
These quantitative measurements provide objective
evaluation and assessment of success. Assessing the
long-term value requires to conduct empirical
studies within the organizations after the adoptions
of the results, which will be an ongoing task for the
initiative.

Another quantitative measurement of this
initiative’s impact is measuring the adoption of its
products by the software community. Whether or
not this is an acceptable approximation will remain
for discussion as the initiative moves forward, it
certainly is an interesting measure and an important
one as wide acceptance of its products is critical to
success. The actual number of adoption shouldn’t
come from thin air, but from the successes that
practitioners, industry and academia experience with
its products.

We project (but are open to other suggestions)
that within three years’ period of time:

1) More than 30,000 practitioners use Semat
inspired products in their day-to-day work;

2) More than 50% of all universities with
computer science departments use the kernel
and the language as part of software
engineering curricula, students’ senior
projects and theses;

3) 80% of the companies in the Fortune 500
have at least one active project deploying the
kernel and the language;

4) The Semat tools’ open source project has
more than 100 committers;

5) More than one major software vendor
supports Semat’s kernel and language;

6) More than two major outsourcing service
companies have adopted the Semat kernel
and language to host its practices.

We have suggested the numbers based on an
anticipation of what is needed to declare a success.

Although they are not based on any empirical study,
they are not coming from random speculation either.
These numbers are achievable, since two of the
leading vendors have significantly more users of
products in the process space. The major
differences are that these products have no common
ground (or kernel) and use vendor-specific
languages – both being critical objectives of Semat.
Clearly, getting support from major vendors is
important, but such support will only come through
support from major customers of these vendors. We
have gained some support from several major
corporations in the world, and we still need to do
much more here going forward.

IV. FINAL WORDS
Semat is now on its path to implement the Grand

Vision that initiated the community. The road ahead
will be filled with the challenges of a frontier
expanding community. Challenges are also
opportunities. When succeeded, Semat will
significantly change the software engineering
community and give it a new platform from which
to build software better, faster and happier. Watts
Humphrey may have shown real forethought ahead
of the first Semat meeting in Zurich, March 2010,
when he said: “This meeting in Zurich is likely to be
an historic occasion much like the 1968 NATO
session in Garmish.” Semat results are a collective
effort from the community for the community.
Working together, we can refound software
engineering.

ACKNOWLEDGEMENT
The authours would like to thank the following

people who have contributed to the paper and given
valuable feedback: Dave Cuningham, Brian
Elvesæter, Michael Goedicke, Winifred Menezes,
and Ian Spence.

REFERENCES
Below are some seminal documents of Semat

history:
[1] Ivar Jacobson and Bertrand Meyer: “Methods need theory” Dr.

Dobb's Journal, August 06, 2009. Online at
http://www.drdobbs.com/architecture-and-design/219100242

[2] Ivar Jacobson and Ian Spence: “Why we need a theory for
software engineering” Dr. Dobb's Journal, October 02, 2009.
Online at http://www.drdobbs.com/architecture-and-
design/220300840

[3] Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Call for
Action: The Semat Initiative” Dr. Dobb's Journal December 10,
2009. Online at http://www.drdobbs.com/architecture-and-
design/222001342

[4] Ivar Jacobson, Bertrand Meyer, and Richard Soley: “The Semat
Vision Statement” online at
http://www.semat.org/pub/Main/WebHome/SEMAT-vision.pdf

[5] Shihong Huang, the 1st Semat Workshop report, online at:
http://www.semat.org/pub/Main/SematZurichMarch2010/Zurich
_meeting_report.pdf

[6] Shihong Huang, the 2nd Semat Workshop Report, online at:
http://www.semat.org/pub/Main/WebHome/2nd_Semat_Worksh
op_Report.pdf

[7] Shihong Huang and Paul McMahon, the 3rd Semat Workshop
Report, online at:
http://www.semat.org/pub/Main/WebHome/3rd_Semat_Worksh
op_Report.pdf

APPENDICES
The five appendices below detail some of the topics in the main body of this paper.

Appendix 1: Brief Semat history
At the end of 2009, Ivar Jacobson, Bertrand Meyer and Richard Soley (known informally as the “troika”)

started a new initiative with the aim of re-founding software engineering as a rigorous discipline. They
recognized that the natural tendency in our field is to perturb systems minimally into approximate
correctness, but this path cannot be sustained any longer if we are to support the computing industry and help
it meet the demands of society. They established a need to restart on a solid basis, taking advantage of all that
has been learned in software engineering theory and practice over the past five decades. In a ‘call for action’
statement they described the challenges and a path going forward – The Grand Vision.

The troika were pleased, honored and gratified to find that in a short period of time, a dozen corporate and

academic organizations, and some three dozen well-known individuals from the field of software engineering
and computer science, became signatories to support the vision. In addition, more than 1400 other supporters
agreed to the call.

The Semat Vision Statement (http://www.Semat.org/pub/Main/WebHome/SEMAT-vision.pdf) captured
the troika’s understanding of the problem, the potential, and a vision for its first step. Since its publication in
February 2010, more than twenty people from a cross section of industry & academia have volunteered

Call for Action
Software engineering is gravely hampered today by immature practices. Specific problems

include:

• The	
 prevalence	
 of	
 fads	
 more	
 typical	
 of	
 fashion	
 industry	
 than	
 of	
 an	
 engineering	

discipline.	

• The	
 lack	
 of	
 a	
 sound,	
 widely	
 accepted	
 theoretical	
 basis.	

• The	
 huge	
 number	
 of	
 methods	
 and	
 method	
 variants,	
 with	
 differences	
 little	

understood	
 and	
 artificially	
 magnified.	

• The	
 lack	
 of	
 credible	
 experimental	
 evaluation	
 and	
 validation.	

• The	
 split	
 between	
 industry	
 practice	
 and	
 academic	
 research.	

We support a process to refound software engineering based on a solid theory, proven
principles and best practices that:

• Include	
 a	
 kernel	
 of	
 widely-­‐agreed	
 elements,	
 extensible	
 for	
 specific	
 uses	

• Addresses	
 both	
 technology	
 and	
 people	
 issues	

• Are	
 supported	
 by	
 industry,	
 academia,	
 researchers	
 and	
 users	

• Support	
 extension	
 in	
 the	
 face	
 of	
 changing	
 requirements	
 and	
 technology	
 	

significant amounts of time and effort to help bring that vision to life. That is to support a shared idea of
software methods based on rigorously well-understood and comparable practices that are defined through a
kernel set of elements and a domain-specific language.

- o -

Appendix 2: Separation of Concerns
Semat relies on the principle of Separation of Concerns (for general discussion see

http://en.wikipedia.org/wiki/Separation_of_concerns).

1. It separates its support for software systems from its support for systems (including hardware) and

solutions (including hardware and peopleware). Thus the kernel and the language must be extensible
additionally to support systems and solutions without complicating their usage for people who are
software practitioners.

2. It separates at least two different views of the process: the process engineers’ view and the
practitioners’ view. The primary users of methods and practices are project practitioners (developers,
testers, project leads, etc.). Semat result should be accessible to both practitioners and process
engineers, but should target the practitioners first and foremost. Through extensions the result should
also support process engineers efficiently without complicating its usage for the practitioners.

3. It separates the essentials from the non-essentials, such as key guidance from detailed guidance, or
explicit knowledge from tacit knowledge. This allows process engineers to create lightweight
methods with scalability. In other words, this work is about the essentials only – the smallest
common denominator that is present in all successful software efforts.

4. It separates the generalized definitions of terms from specialized definition details, allowing for the
inclusion, rather than the exclusion of earlier work on methods. In other words, we are looking for
the common ground upon which all existing methods can build.

- o -

Appendix 3: Key concepts
The kernel and its elements will be precisely defined using the domain-specific language (the domain

being practices for software development). Additionally, the language will also be used to define practices
and entire methods.

The result will satisfy these requirements:
1. A method is a composition of practices (as opposed to an interconnection of process/method

components, disciplines, or similar).
2. A practice is an approach to doing something with a specific purpose in mind. There are several kinds

of practices, but the basic and most important kind of practices are the concrete practices. A concrete
practice is a complete end-to-end activity with a clear beginning and end supporting software
practitioners in getting their job done. These practices give value one-by-one, they are what users
want to make lean, and they are what you want to measure and provide metrics for, all of which are
critical differentiators.

3. All methods have something in common – ‘the common ground’ or ‘the essence of software
engineering’ – the kernel. Examples of essential elements are: work, team, requirements, software
system, opportunity, stakeholder community, etc.

4. Methods need theory–our work must stand on a solid theoretical basis. Methods being composed of
practices, practices being described in terms of the essential elements and in terms of other elements
such as activities and work products. All formalized into a language is the beginning of such a theory.
Moreover, many practices can be formalized or supported by formal techniques. They can for
instance be measured using statistical methods.

5. Methods are dynamic and used. Methods are not just descriptions for developers to read, they are
dynamic, supporting their day-to-day activities. This changes the conventional definition of a method.
A method is not just a description of what is expected to be done, but a description of what is actually
done.

- o -

Appendix 4: Some usage scenarios of the kernel and the Language
A4. 1 A Practitioner Scenario

When a student leaves college today and enters industry, they can directly apply certain skills they have
learned (such as JAVA, or C++), but there is a great deal they still must learn. While some of this is
unavoidable, such as terminology unique to a given industry, today the use of terms as fundamental as
requirements, and team can vary widely from one company to the next.

Today we live in a very mobile society where people change employers often throughout their career.
When a software engineer moves from one job to another in a different company -- or even in a different part
of the same company -- she can take her experience with her, but there is a great deal that must be relearned
within that new environment. This can discourage the software practitioner even to the point of making a
decision to seek a different career path.

Establishing a kernel is not about creating a standard that excludes certain users. A kernel based on
common ground encourages new approaches appropriate to the job at hand, and established on essentials we
all agree to.

So what does this mean for the software practitioner? Software practitioners of the future will have more
opportunities for employment, as they will experience the freedom of knowing they have greater mobility
without jeopardizing job satisfaction.

They will know that what they learn in the university can be counted on when they move into industry and
as they move from one company to another within industry-- or from one project to another within a

company. Knowing they have learned the essentials will also bring greater self-confidence and self-
fulfillment, as the software practitioner will be able to focus more of their limited time on the unique aspects
of the job that brings greater value to themselves, their employer and their customer.

A4.2 An Industry Scenario

Key to all organizations is an accurate understanding of the health of their projects, and knowing what
actions to take in the face of trouble. Effective objective measures are relied upon today to help managers
know when action is needed. Mounting objective data exists indicating root causes of most troubled projects
are traceable to a failure of organizations to enact appropriate ways of finding problems early.

Companies frequently adopt or develop methods with a one-size-fits-all view hoping corporate standards
hold the answer. Unfortunately this approach has little chance of success as it fails to consider critical and
varying factors between teams, projects, products, organizations, etc. Is it possible a better approach exists?

To the program manager working in the software industry the kernel provides a means to establish a
consistent non-controversial framework of essential concerns across all her projects, irrespective of their size
or shape. Distributed development is fairly common in many large companies. The kernel will among other
things make communication easier across different geographies.

To the team leader establishing a way of working suited to her new project, the kernel is her means to
select appropriate ways of working to support her team and meet her corporate goals. Another benefit is that
it will be easier to assign people to projects (even if the domain is different) because they will have a
common basis to build their work on.

To the process professional the kernel provides a means to communicate how an organization works in a
format easily digestible by established employees and new recruits alike. It improves adoption, facilitates
reuse, and provides teams with a means to integrate what we all know works into appropriately tailored
approaches.

A4.3 An Academia Scenario

Looking at today’s software engineering education, different universities and professors have different
requirements and interpretations related to how software engineering should be taught, and what should be
taught. Some accreditation guidelines exist. For examples, the Accreditation Board for Engineering and
Technology (ABET) in the U.S, and SWEBOK Curriculum Guidelines for Undergraduate Degree Program in
Software Engineering. However, these tend to provide guidelines at a very high principle level leaving the
implementation details to individual schools and professors. Lacking a core fundamental kernel of software
engineering, results in a wide range of education approaches without a clear theoretical basis.

This situation leads to students from different education backgrounds having different skill sets, which fail
to meet industry’s need. It also leads to research chasing fads rather than following a clear balanced roadmap.

To academia a kernel based on common ground means a foundation to a) teach software engineering, b)
design software engineering curricula, and c) demonstrate to students the pros and cons of different ways of
working. A kernel based on common ground ensures the essentials of software engineering are taught in a
uniform way across different universities and education programs.

From a research perspective, a kernel provides a reference for the conduct of experiments on different
software engineering approaches relevant to real world problems, and a solid foundation to aid the separation
of hypes from reality.

- o -
Appendix 5: Some example BFH attributes

As shown in Figure 3, we have initially come up with ten Better attributes, nine Faster attributes and six
Happier attributes. Moving forward we will most likely find that several attributes may impact more than one
of our BFH objectives, but for now our example serves as an illustrative approximation.

In Table 1 we discuss our three selected attributes and what they could mean for our user groups:
practitioner, industry and academia.

TABLE 1: OBJECTIVE MEASURES OF HEALTH, COMPETIVENESS, AND SATISFACTION

Objective Measures of Health
Practitioner
• You, as a practitioner, will have the means to form objective opinions on your work, the way you work, and your own personal
development. By having a common ground, you will be capable of making informed decisions regarding the design and reuse of
the practices. You will be able to take a critical view of the innovative ideas, and, thereby, be able to look objectively at industry
innovations - to evaluate whether they are beneficial or detrimental to your work. Your experience, from a basis of informed,
sound practice, will feed you with new, innovative ideas for improving your ways of working.
Industry
• You, as an organization, will be able better to govern your company. The common ground will enable you to support your teams
in focusing on the opportunity through choices in the way they work, whilst you retain consistent corporate oversight. You will be
able to take a critical view of the innovative ideas, and, thereby, be able to look objectively at industry innovations, evaluating the
benefits or detriments. Your experience, from a basis of informed, sound practice, will feed you with new, innovative ideas for
improving your ways of working.
Academia
• You, as a researcher, educator, teacher or student, will be able better to take control of your research, teaching, pedagogical
approach or your approach to study respectively. By having a common ground, you will be capable of making informed decisions
regarding the direction of your work. You will be able to take a critical view of the innovative ideas, and thereby, be able to look
objectively at industry innovations. This implies that you will be able to evaluate whether ideas are beneficial or detrimental to
your work. Your experience, from a basis of informed, sound practice, will feed you with new, innovative ideas for improving
your work results.

Competitiveness
Practitioner
•You, as a practitioner, are more competitive because you are faster when doing your work and you produce high-quality results.
Therefore, you will find it easier to frame your skills and achievements along with your colleagues so you can better work together
and grow as a team.
Industry
•You, as a company, are more competitive because you can get up to speed faster, shorten lead-time and thereby be first on the
market.
Academia
•Because your research is based on a common ground, you, as a researcher, create rock-solid and robust research results, are more
competitive within research, and more attractive to your future/current sponsor.
•Because your teaching is based on a common ground, you, as an educator, provide quality education, are more competitive, and
more attractive to both students and teachers.
•Because your knowledge is based on a common ground, you, as a student/teacher, possess a stable foundation with which you can
evolve, explore, and convey new ideas in an objective and persuasive way. Therefore, you are more competitive, and more
attractive to your future/current employer.

Satisfaction
Practitioner
• You, as a practitioner, are confident that you have the requisite knowledge to perform well, and be judged consistently within the
market place. Your well-being is substantially improved because your competency is understood and recognized within your
organization and others, providing better job mobility,
Industry
•You, as an organization, are confident that you have developed your products and peoples’ competencies with better results and a
recognized consistency. Your organization’s interests are aligned with those of your customers, partners, and employees.
Therefore you enjoy improved customer and employee satisfaction.
Academia
•You, as a student, are confident that what you have learnt is derived from a stable, consistent, and recognized foundation, and that
you are employable at any software company in the world

