
Background Optimization in Full System Binary
Translation

Roman A. Sokolov
MCST CJSC

Moscow, Russia
Email: roman.a.sokolov@gmail.com

Alexander V. Ermolovich
Intel CJSC

Moscow, Russia
Email: karbo@pvk13.org

Abstract—Binary translation and dynamic optimization are
widely used to provide compatibility between legacy and promis-
ing upcoming architectures on the level of executable binary
codes. Dynamic optimization is one of the key contributors to
dynamic binary translation system performance. At the same
time it can be a major source of overhead, both in terms of
CPU cycles and whole system latency, as long as optimization
time is included in the execution time of the application under
translation. One of the solutions that allow to eliminate dynamic
optimization overhead is to perform optimization simultaneously
with the execution, in a separate thread. In the paper we present
implementation of this technique in full system dynamic binary
translator. For this purpose, an infrastructure for multithreaded
execution was implemented in binary translation system. This
allowed running dynamic optimization in a separate thread
independently of and concurrently with the main thread of
execution of binary codes under translation. Depending on the
computational resources available, this is achieved whether by
interleaving the two threads on a single processor core or by
moving optimization thread to an underutilized processor core.
In the first case the latency introduced to the system by a
computational intensive dynamic optimization is reduced. In the
second case overlapping of execution and optimization threads
also results in elimination of optimization time from the total
execution time of original binary codes.

I. INTRODUCTION

Technologies of binary translation and dynamic optimiza-
tion are widely used in modern software and hardware com-
puting systems [1]. In particular, dynamic binary translation
systems (DBTS) comprising the two serve as a solution to
provide compatibility between widely used legacy and promis-
ing upcoming architectures on the level of executable binary
codes. In the context of binary translation these architectures
are usually referred to as source and target, correspondingly.

DBTSs execute binary codes of source architecture on
top of instruction set (ISA) incompatible target architecture
hardware. They perform translation of executable codes incre-
mentally (as opposed to whole application static compilation)
interleaving it with execution of generated translated codes.
One of the key requirements that every DBTS has to meet
is that the performance of execution of source codes through
binary translation is to be comparable or even outperform the
performance of native execution (when executing them on top
of source architecture hardware).

Optimizing translator is usually employed to achieve higher
DBTS performance. It allows to generate highly efficient target

architecture codes fully utilizing all architectural features
introduced to support binary translation. Besides, dynamic
optimization can benefit from utilization of actual information
about executables behavior which static compilers usually
don’t possess.

At the same time dynamic optimization can imply sig-
nificant overhead as long as optimization time is included
in the execution time of application under translation. Total
optimization time can be significant but will not necessarily
be compensated by the translated codes speed-up if application
run time is too short.

Also, the operation of optimizing translator can worsen the
latency (i.e., increase pause time) of interactive application or
operating system under translation. By latency is meant the
time of response of computer system to external events such
as asynchronous hardware interrupts from attached I/O devices
and interfaces. This characteristic of a computer system is as
important for the end user, operation of hardware attached or
other computers across network as its overall performance.
Full system dynamic binary translators have to provide low
latency of operation as well. Binary translation systems of
this class target to implement all the semantics and behavior
model of source architecture and execute the entire hierar-
chy of system-level and application-level software including
BIOS and operating systems. They exclusively control all the
computer system hardware and operation. Throughout this
paper we will also refer this type of binary translation systems
as virtual machine level (or VM-level) binary translators (as
opposed to application-level binary translators).

One recognized technique to reduce dynamic optimization
overhead is to perform optimization simultaneously (con-
currently) with the execution of original binary codes by
utilizing unemployed computational resources or free cycles.
It was utilized in a number of dynamic binary translation and
optimization systems [2], [3], [4], [5], [6], [7], [8]. We will
refer this method as background optimization (as opposed to
consequent optimization, when optimizing translation inter-
rupts execution and utilizes processor time exclusively unless
it completes).

The paper describes implementation of background opti-
mization in a VM-level dynamic binary translation system.
This is achieved by separating of optimizing translation from
execution flow into an independent thread which can then con-

currently share available processing resources with execution
thread. Backgrounding is implemented whether by interleaving
the two threads in case of a single-core (single processor)
system or by moving optimization thread to an unemployed
processor core in case of a dual-core (dual processor) system.
In the first case the latency introduced to the system by
the ”heavy” phase of optimizing translation is reduced. In
the second case, overlapping of execution and optimization
threads also eliminates the time spent in dynamic optimization
phase from the total run time of the original application under
translation.

The specific contributions of this work are as follows:

• implementation of multithreaded infrastructure in a VM-
level dynamic binary translation system;

• single processor system targeted implementation of back-
ground optimization technique where processor time shar-
ing is implemented by interleaving optimizing translation
with execution of original binary codes;

• dual processor system targeted implementation of back-
ground optimization technique where optimizing trans-
lation is being completely offloaded onto underutilized
processor core.

The solutions described in the paper were implemented
in the VM-level dynamic binary translation system LIntel,
which provides full system-level binary compatibility with
Intel IA-32 architecture on top of Elbrus architecture [9], [10]
hardware.

II. LINTEL

Elbrus is a VLIW (Very Long Instruction Word) micropro-
cessor architecture. It has several special features including
hardware support for full compatibility with IA-32 architecture
on the basis of transparent dynamic binary translation.

LIntel is a dynamic binary translation system developed for
high performance emulation of Intel IA-32 architecture sys-
tem through dynamic translation of source IA-32 instructions
into wide instructions of target Elbrus architecture (the two
architectures are ISA-incompatible). It provides full system-
level compatibility meaning that it is capable of translating
the entire hierarchy of source architecture software (including
BIOS, operating systems and applications) transparently for
the end user (Fig. 1). As is noted above, LIntel is a co-
designed system (developed along with the architecture, with
hardware assistance in mind) and heavily utilizes all the
features of architecture introduced to support efficient IA-32
compatibility.

In its general structure LIntel is similar to many other binary
translation and optimization systems described before [11],
[12], [13] and is very close to Transmeta’s Code Morphing
Software [14], [15]. As any other VM-level binary translation
system, it has to solve the problem of efficient sharing of
computational resources between translation and execution of
original binary codes.

VM-level dynamic binary translation
system LIntel

Elbrus CPU
(IA-32 incompatible)

IA-32 BIOS, OS, drivers
and libraries

IA-32 applications

Fig. 1. VM-level dynamic binary translation system LIntel.

Translation cache:
execution of

translated codes
and profiling

Optimizing region
translation

Interpretation
and profiling

Non-optimizing trace
translation

IA-32 binaries

Adaptive
retranslation

Fig. 2. Adaptive binary translation.

A. Adaptive binary translation

LIntel follows adaptive, profile-directed model of translation
and execution of binary codes (Fig. 2). It includes four levels
of translation and optimization varying by the efficiency of the
resulting Elbrus code and the overhead implied, namely: inter-
preter, non-optimizing translator of traces and two optimizing
translators of regions. LIntel performs dynamic profiling to
identify hot regions of source code and to apply reasonable
level of optimization depending on executable codes behavior.
Translation cache is employed to store and reuse generated
translations throughout execution. Run-time support system
controls the overall binary translation and execution process.

When the system starts, interpreter is used to carefully
decode and execute IA-32 instructions sequentially, with at-
tention to memory access ordering and precise exception
handling. Non-optimizing translation is launched if execution
counter of a particular basic block exceeds specified threshold.

Non-optimizing translator builds a trace which is a seman-
tically accurate mapping of one or several contiguous basic
blocks (following one path of control) into the target code. The
building blocks for the trace are templates of the corresponding
IA-32 instructions, where template is a manually scheduled
sequence of Elbrus wide instructions. After code generation
and additional corrections like actual constants and address
values patching the trace is then stored into the translation

 Cycles per one source
instruction translation

Translated code
performance

Non-optimizing translation 1600 0.18
O0 optimization 30000 0.58

O1 optimization 1000000 1.0

Fig. 3. Average translation overhead per one IA-32 instruction and the
performance of translated codes (normalized to O1).

cache. Trace translator produces native code without complex
optimizations and focuses more on fast translation generation
rather than code efficiency. It improves start-up time signifi-
cantly as compared to interpretation. At the same time non-
optimizing translation is only reasonable for executable codes
with low repetition rate.

Traces are instrumented to profile hot code for O0-level
optimizing translation. The unit of optimizing translation is
a region. In contrast to traces, regions can combine basic
blocks from multiple paths of control providing better oppor-
tunities for optimization and speculative execution (which is
an important source of instruction level parallelism for VLIW
processors).

O0-level translator is a fast region-based optimizer that
performs basic optimizations implying low computation cost,
including peephole, dead-code elimination, constant propaga-
tion, code motion, redundant load elimination, superblock if-
conversion and scheduling.

Strong O1-level region-based optimizer is on the highest
level of the system. The power of this level is comparable
with high-level language optimizing compilers1. It applies
advanced optimizations such as software pipelining, global
scheduling, hyperblock if-conversion and many others, as well
as utilizes all the architectural features introduced to support
binary optimization and execution of optimized translations.

Region translations are stored in the translation cache as
well. Profiling of regions for O1-level optimization is carried
out by O0-level translations.

Optimized translations not always result in performance
improvement. Unproven optimization time assumptions can
cause execution penalty. These include incorrect speculative
optimizations, memory mapped I/O access in optimized code
(where I/O access is not guaranteed to be consistent due to
memory operations merge and reordering), etc. Correctness
of optimizations is controlled by the hardware at runtime.
Upon detecting a failure, retranslation of the region is launched
applying more conservative assumptions depending on failure
type.

Fig. 3 compares average translation cost of one IA-32 in-
struction and the performance of translated codes for different
levels of optimization. Adaptivity aims at choosing appropriate
level of optimization throughout the translation and execution
process to maintain overhead/performance balance.

Fig. 4 shows translation and execution time distribution for
SPEC2000 tests running under Linux (operating system is

1In fact, O0/O1 notation of LIntel’s binary optimizers corresponds to
conventional 02/O3-O4 optimization levels of language compilers.

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

Non-optimized code
O0 code
O1 code

Other
Optimization (O0+O1)

Fig. 4. Profile of binary translation in case of consecutive dynamic
optimization.

being translated as well). While translated codes are executed
most of the tests’ runtime, optimizing translation overhead is
significant and equals to 7% on average.

B. Asynchronous interrupts handling
One of the run-time support system functions is to handle in-

coming external (aka asynchronous) interrupts. The method of
delayed interrupt handling allows to improve the performance
of binary translated code execution and interrupt handling
by specifying exactly where and when a pending interrupt
can be handled. When interrupt occurs, interrupt handler only
remembers this fact by setting corresponding bit in the proces-
sor state register and returns to execution. Interpreter checks
for pending interrupts before next instruction execution. Due
to efficiency reasons, non-optimized traces only include such
checks in the beginning of basic blocks. Optimizing translators
inject special instructions in particular places of a region code
(where execution context is guaranteed to be consistent) that
check for pending interrupts and force execution flow to leave
region and switch to interrupt handler if needed.

This method of pending interrupt checks arrangement sim-
plifies planning and scheduling of translated codes as there
is no need to care about correct execution termination and
context recovery at arbitrary moments of time. At the same
time it allows LIntel to respond reactively enough to external
events.

The bottleneck in this scenario is the presence of optimizing
translation phase. If an interrupt occurs when optimization is
in progress, it has to wait for optimization phase completion
to be handled (Fig. 5). Due to computational complexity of
optimizations employed, optimizing translation can consume
significant amount of processor time and as such, the delay of
response of the system to an external event can be noticeable
(see evaluation in Section III-B).

III. BACKGROUND OPTIMIZATION

To overcome the problems of performance overhead and
latency caused by optimizing translation, the method of back-

Execution Execution

New hot region
acquired

Interrupt

Interrupt delivery delay
(latency)

Interrupt
delivery

End of optimizationStart of optimization

Fig. 5. Asynchronous interrupt delivery delay (latency) due to optimizing
translation.

ground optimization was employed in LIntel.
The concept of background optimization implies perform-

ing optimizing translation phase concurrently (or pseudo-
concurrently) with the main binary translation flow of ex-
ecution of original binary codes. Application-level binary
translators usually implement this by utilizing native operating
system’s multithreading interface and scheduling service to
perform optimization in a separate thread. VM-level binary
translation systems require internal implementation of multi-
threading to support background optimization.

In this section we describe implementation of background
optimization in the VM-level DBTS LIntel. Two cases are
considered: in the first case LIntel operates on top of a single-
core target platform system; in the second case there are two
cores available for utilization.

SPEC2000 tests are used to demonstrate the effect of
background optimization implementation.

A. Execution and optimization threads

A multithreaded execution infrastructure was implemented
in LIntel, with optimizing translation capable of running inde-
pendently in a separate thread, which enabled execution and
optimization threads concurrency. Execution thread activity
includes the entire process of translation and execution of
original binary codes, except for optimizing translation (of
both O0 and O1 levels), i.e.: interpretation, non-optimizing
translation, run-time support and execution itself. Optimizing
translator is run in a separate optimization thread when new
region of hot code is identified by the execution thread. When
optimization phase completes, generated translation of the
region is returned to the execution thread, which places it into
the translation cache.

During the region optimization phase corresponding orig-
inal codes are being executed either by interpretation or by
previously translated codes of lower levels of optimization.
Selection of new hot regions for optimization will not be
launched unless current optimization activity completes.

By the end of optimization, memory pages that contain
a source code of the region under optimization can get
invalidated (due to DMA, self-modification, etc.). As such,
before placing optimized translation of the region into the
translation cache, execution thread must check region’s source
code consistency and reject the region if verification fails.
This routine is assisted by the memory protection monitoring

Execution Execution

New hot region
acquired

Interrupt
Interrupt
delivery

End of optimizationStart of optimization

Interrupt
Interrupt
delivery

Execution

Optimization

Fig. 6. Asynchronous interrupt delivery in case of interleaved background
optimization.

 Consecutive
optimization

Interleaved
(background)
optimization

O1 phase mean time 1.54 s 3 s

O1 phase max time, T01_max 8.8 s 29.5 s

interrupt delivery mean time
with no optimization in progress 54 µs

interrupt delivery max time
(with О1 phase in progress) 8.8 s (T01_max) 1.7 ms

Fig. 7. Interrupt delivery time (CPU frequency = 300 MHz; thread time slice
= 50000 cycles). O1-level optimization time is used as a reference as this
phase consumes a greater number of processor cycles per source instruction
as compared to O0-level optimization.

subsystem (introduced in the Elbrus hardware to support
binary translation [16]) which controls source and translated
(as well as translations-in-progress) codes coherency.

Separation of execution and optimization threads allows to
schedule them across available processing resources in the
same way as multitasking operating systems schedule pro-
cesses and threads. By now, two simple strategies of processor
time sharing were implemented in LIntel enabling optimiza-
tion backgrounding for single-core and dual-core systems.

B. Background optimization in a single-core system

In case of a single-core system background optimization
is implemented by interleaving of execution and optimization
threads. Throughout optimizing translation of a hot region
processor switches between the two threads. Scheduling is trig-
gered by interrupts from internal binary translation dedicated
timer ”invisible” for executable codes under translation. Each
thread is assigned a fixed time slice. When execution thread is
active, incoming external interrupt has a chance to be handled
without having to wait for region optimization to complete
(Fig. 6). If there are no hot regions pending for optimization,
execution thread fully utilizes the processor core.

To demonstrate single-core background optimization ap-
proach, a simple strategy of processor time sharing was chosen
when both threads have equal priority, with equal time slices
assigned (meaning that optimization thread’s processor utiliza-
tion is 50%, in contrast to 100% utilization when optimizing
consequently). As seen from Fig. 7, interleaving of execution
and optimization improves interrupt delivery time significantly.

At the same time, as Fig. 8 demonstrates, this approach tend

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

 0%

 2%

 4%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

1.8%

-4.0% -3.7%

-15.5%

-10.5%-10.7%

-17.4%

-5.6%

-3.8%

-1.5%

2.8%

-2.6%

-4.0%

-6.1%

Fig. 8. Binary translation slow-down when interleaving optimization with
execution (as compared to consecutive optimization).

to degrade binary translation performance.
Degradation can be explained by the fact that hot region

optimization phase now lasts longer. As a result, optimized
translations injection into execution is being delayed, mean-
while source binary codes are being executed non-optimized
(or interpreted). Additional overhead comes with context
switching routines.

Basically, single-core background optimization implemen-
tation is not of high priority currently. At the same time
we believe that it is possible to improve its efficiency by
tuning various parameters like execution and optimization
threads’ time slices and profiling thresholds to achieve earlier
injection of optimized translations into execution process while
keeping whole system latency acceptable. Besides, IA-32
”halt” instruction can be used as a hint to utilize free cycles
and yield processor to optimization thread before the end of
execution thread’s time slice. Extensive study of execution and
optimization threads’ processor time utilization was made in
[17].

C. Background optimization in a dual-core system

In a dual-core system LIntel completely utilizes the second
(unemployed otherwise) processor core to perform dynamic
optimization in a background thread. In this case execution
thread exclusively utilizes its own core and only interrupts
execution to acquire next region for optimization and allocate
generated translation when optimization completes.

As Fig. 10 demonstrates, overlapping of execution and
optimization by moving optimization thread onto a separate
core not only eliminates the problem of latency, but also
increases overall binary translation system performance.

The resulting speed-up (6% on average) agrees good enough
with dynamic optimization overhead estimated for the case of
consecutive optimization (see Section II-A).

D. Discussion and future works

As noted above, selection of hot regions in execution thread
gets blocked unless optimization phase completes. However,

Core 2
· Optimizing translation
 of region

Core 1
· Execution
· Run-time support
· Interpreter and non-opt. translation

Acquire new
hot region

Allocate region translation
in translation cache

Fig. 9. Utilization of a separate processor core for dynamic optimization.

-2%

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

255.vortex

168.wupwise

172.m
grid

179.art

187.facerec

189.lucas

191.fm
a3d

200.sixtrack

6.1%5.5%

1.1%

4.5%

8.7%
7.7%

13.2%

4.2%
3.0%

0.4%

7.1%

0.5%

5.2%

7.1%

Fig. 10. Binary translation speed-up when optimizing on a separate processor
core (as compared to consecutive optimization).

profile counters continue to grow, and by the end of optimiza-
tion there may be several nonoverlapping regions in the profile
graph with counters exceeding threshold. As counters are
checked during execution of corresponding translated codes,
next optimizing translation will be launched for the first region
executed. Not necessarily will this region be the hottest one.
As such, a problem of suboptimal hot region selection arises
which also needs to be addressed (profile graph traversal can
be quite time-consuming and is not an option).

The profile of binary translation for SPEC2000 tests (Fig.
4) suggests that current optimization workload is not enough
to fully utilize optimization thread affiliated processor core,
which will run idle most of the application run time. To im-
prove its utilization ratio, optimizing translator can be forced
to activate more often. This can be achieved by dynamically
decreasing of hot region profiling threshold depending on
current load of the core affiliated with optimizing translator.
When execution activity is naturally low, this core should be
halted due to energy efficiency reasons.

This is reasonable to ask why not utilize unemployed
processor core to execute source binary codes. In other words,
if there are more than one target architecture microprocessor
core in the system, source architecture system software (e.g.

operating system) could ”see” and utilize the same number
of cores. Current Elbrus architecture implementation (used in
this paper) does not satisfy IA-32 architecture requirements
concerning organization of multiprocessor systems. As a re-
sult, IA-32 multiprocessor support is not possible on top of
Elbrus hardware. But we hope to implement this scenario
in the future. Still, we believe that having processor cores
solely utilized for dynamic optimization is reasonable due to
a following:

• different classes of software (legacy software, software
for embedded systems, etc.), not always developed with
multiprocessing or multithreading in mind, can benefit
from multicore or multiprocessor systems when being
executed through binary translation with background op-
timization option;

• keeping in mind the tendency towards ever increasing
number of cores per chip, it seems reasonable to uti-
lize some cores to improve dynamic binary translation
system performance; not only optimizing translator can
consume this resources; other jobs that could also be
performed asynchronously include identification and se-
lection of code regions for optimization [18], software
code prefetching [19], persistent translated code storage
access [20] 2, etc.

Finally, we think that a promising direction for future
research and development is building a binary translation
infrastructure that could support unrestricted number of exe-
cution (in terms of source architecture virtual machine; so that
operating system under translation could ”see” more than one
processor core), optimization and other threads and schedule
them efficiently across the available computational resources
depending on their quantity, load and binary codes execution
behavior.

IV. CONCLUSION

The paper addresses the problem of optimization overhead
in dynamic binary translation systems and presents the appli-
cation of background optimization technique in full system
dynamic binary translator LIntel. Implementations for single-
core and dual-core systems are considered. In the first case
backgrounding is implemented by interleaving execution and
optimization, while in the second case dynamic optimization
is completely moved onto a separate processor core. In both
cases background optimization solves the problem of high
latency caused by dynamic optimization which is particularly
important for full system execution environment. Performing
optimization on a separate core also eliminates optimization
overhead from the application run time thus improving binary
translation system performance in general.

2Asynchronous access to a persistent code storage (aka CodeBase) has
already been implemented in LIntel by the moment but is not covered
in this paper as we only consider the effect of background optimization
implementation.

REFERENCES

[1] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes. Morgan Kaufmann, 2005.

[2] S. Campanoni, G. Agosta, and S. C. Reghizzi, “ILDJIT: a parallel
dynamic compiler,” in VLSI-SoC’08: Proceedings of the 16th IFIP/IEEE
International Conference on Very Large Scale Integration, 2008, pp. 13–
15.

[3] C. J. Krintz, D. Grove, V. Sarkar, and B. Calder, “Reducing the
overhead of dynamic compilation,” Software: Practice and Experience,
vol. Volume 31 Issue 8, pp. 717–738, 2001.

[4] J. Mars, “Satellite optimization: The offloading of software dynamic
optimization on multicore systems (poster),” in PLDI ’07: 2007 ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2007.

[5] P. Unnikrishnan, M. Kandemir, and F. Li, “Reducing dynamic compila-
tion overhead by overlapping compilation and execution,” in Proceed-
ings of the 11th South Pacific Design Automation Conference (ASP-DAC
’06). Piscataway, NJ, USA: IEEE Press, January 2006, pp. 929–934.

[6] M. J. Voss and R. Eigenmann, “A framework for remote dynamic
program optimization,” in Proceedings of the ACM SIGPLAN workshop
on Dynamic and adaptive compilation and optimization, 2000, pp. 32 –
40.

[7] W. Zhang, B. Calder, and D. M. Tullsen, “An event-driven multithreaded
dynamic optimization framework,” in Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’05). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 87–98.

[8] H. Guan, B. Liu, T. Li, and A. Liang, “Multithreaded optimizing
technique for dynamic binary translator CrossBit,” Computer Science
and Software Engineering, International Conference on, vol. 5, pp. 945–
952, 2008.

[9] B. Babayan, “E2k technology and implementation,” in Euro-Par ’00:
Proceedings from the 6th International Euro-Par Conference on Parallel
Processing. London, UK: Springer-Verlag, 2000, pp. 18–21.

[10] V. Volkonskiy, “Optimizing compilers for Elbrus-2000 (E2k) architec-
ture,” in 4th Workshop on EPIC Architectures and Compiler Technology,
2005.

[11] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and
Y. Zemach., “IA-32 Execution Layer: a two-phase dynamic translator
designed to support IA-32 applications on Itanium-based systems,” in
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 2003, p. 191.

[12] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B.
Yadavalli, and J. Yates, “FX!32: A profile-directed binary translator,”
IEEE Micro, vol. 18, no. 2, pp. 56–64, 1998.

[13] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,
“Dynamic and transparent binary translation,” Computer, vol. 33, no. 3,
pp. 54–59, 2000.

[14] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing Software:
Using speculation, recovery, and adaptive retranslation to address real-
life challenges,” in Proceedings of the First Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 2003.

[15] A. Klaiber, “The technology behind Crusoe processors,” Transmeta
Corporation, Tech. Rep., January 2000.

[16] A. V. Ermolovich, “Methods of hardware assisted dynamic binary trans-
lation systems performance improvement,” Ph.D. dissertation, Institute
of microproccessor computing systems, Moscow, 2003.

[17] P. Kulkarni, M. Arnold, and M. Hind, “Dynamic compilation: the bene-
fits of early investing,” in VEE ’07: Proceedings of the 3rd international
conference on Virtual execution environments. New York, NY, USA:
ACM, 2007, pp. 94–104.

[18] J. Mars and M. L. Soffa, “MATS: Multicore adaptive trace selection,”
in Proceedings of the 3rd Workshop on Software Tools for MultiCore
Systems (STMCS 2008), April 2008.

[19] J. Mars, D. Williams, D. Upton, S. Ghosh, and K. Hazelwood, “A reac-
tive unobtrusive prefetcher for multicore and manycore architectures,”
in Proceedings of the Workshop on Software and Hardware Challenges
of Manycore Platforms (SHCMP), June 2008.

[20] A. V. Ermolovich, “CodeBase: persistent code storage for dynamic
binary translation system preformance improvement,” Information tech-
nologies, vol. 9, pp. 14–22, 2003.

