
Static Verification “Under The Hood”:
Implementation Details and Improvements of

BLAST
Pavel Shved

Institute for System Programming, RAS
shved@ispras.ru

Vadim Mutilin
Institute for System Programming, RAS

mutilin@ispras.ru

Mikhail Mandrykin
Moscow State University

misha.bear.1990@gmail.com

Abstract—BLAST is an open-source static verification tool used
in checking safety properties of C programs. Given a C program
with several assertions, which should not fail at runtime, BLAST
statically analyzes the program, and either returns a program
execution path that leads to violation of one of the assertions,
or proves that no assertion is violated. If BLAST fails to prove
inreachability of assertions, it may terminate with error, or loop
forever. The framework approach employed in BLAST is counter-
example guided abstraction refinement (CEGAR) empowered
with lazy abstraction.

The first record of BLAST dates from 2002. The tool had
been constantly improving until July 2008, mostly by its original
creators. Beginning in 2009, we continued working on it as a
part of Linux Driver Verification project.

In this article we overview the current status of BLAST: outline
the algorithms the CEGAR framework approach is implemented
on top of, describe the heuristics used and the technical details
of the implementation, and list the external components BLAST
relies on. Along with this description, we outline and evaluate
the improvements we made since its last release by the original
BLAST team, and share our view on the further improvement
of the tool.

Index Terms—Software verification, safety properties, reacha-
bility verification, static analysis.

I. INTRODUCTION

BLAST is an acronym of “Berkeley Lazy Abstraction Soft-
ware verification Tool”. It is a C program verification tool that
solves reachability problem. Given a C program, a name of
the main function (“entry point”) and a name of a label, it
reasons if there exists a program execution path that starts at
the entry point and reaches the label specified.

It analyzes the program with CounterExample-Guided Ab-
straction Refinement approach (for details, see [11]). The way
it implements CEGAR is known as “lazy abstraction” [12],
a novel approach at that time that aims to retain the part of
abstraction that should not change, instead of rebuilding ab-
straction from scratch after each counterexample analysis. This
approach gave the name to BLAST, and the article referenced
([12]) presented BLAST in its “Experimental Results” section;
moreover, this article does not contain any reference to another
source where BLAST was described or mentioned.

The task in subject is computationally impossible, as the
halting problem may be reduced to it. The tool therefore
does not guarantee its analysis will terminate. BLAST may
terminate in runtime if it detects that the program can’t be

analyzed by it, or provide an incorrect result: either “false
unsafe” (a program that does not violate the safety property
being checked, but is reported as “unsafe”) or “false safe” (an
“unsafe” program reported as “safe”). However, if the tool
reports an “unsafe”, it also prints the error trace: the path to
error location from the entry point, which may be followed
through by a human.

To build an open automated system for Linux device drivers
described in [13], we needed a verification tool, and that article
outlines BLAST as a tool “intended for academic research
in software verification”. The experiments demonstrated that
its potential may spread beyond mere academic application,
serving as a verification engine in an intensive driver checking
workflow, as well as provide a ground for research in the do-
main of static analysis. However, before its potential strength
became current a serious work has been done.

A good description of how the algorithms implemented in
BLAST work is in [6]. That article contains a step-by-step
explanation how a sample program is verified with BLAST,
but does not focus on its implementation details.

In this article we describe what BLAST is now, and outline
how we improved it since its last official release (version 2.6)
by the original team. “Vanilla” algorithms described elsewhere
(see [12] and [6]), we list the undocumented but worthwhile
improvements the authors of BLAST made in its imple-
mentation1; we focus, however, on listing our contribution,
and evaluate the impact of our improvements in the relevant
domains if possible.

A. Algorithms used in BLAST

The algorithms used in BLAST are briefly described as
“lazy abstraction CEGAR, with Cartesian predicate abstrac-
tion and LA+EUF Craig interpolation as predicate discovery
procedure”.

To be more specific, this means:
• CEGAR — counterexample-guided abstraction refine-

ment, a process of solving reachability problem by con-
structing a crude abstraction of all possible paths reached

1The authors recommend to always configure BLAST to use these improve-
ments instead of “vanilla” algorithms by specifying “-craig 2 -predH 7”
in the command line of the tool.



Fig. 1. Assumption as a library call

void custom_assume(int condition)
{ if (!condition)

ENDLESS: goto ENDLESS;
}

from the entry point and iteratively refining this abstrac-
tion by analysis of plausible paths that lead to the error
location, until the abstraction contains no such paths—or
a reachable error location is found. For more info, see
[11];

• lazy abstraction — an implementation of CEGAR char-
acterized by refining only those parts of abstraction that
should contribute to proving inreachability after a coun-
terexample analysis. Re-evaluation of other parts of ab-
straction is avoided as much as possible. For more info,
see [12];

• control-flow graph (CFG) — lazy abstraction assumes
that the program is represented as a finite control-flow
graph, i.e. a labeled-transition system. The abstraction is
then a “reachability tree”: a prefix tree of all possible
paths in the CFG from the entry point, each node (loca-
tion) being marked with an abstract state. It’s named an
“Abstract Reachability Tree”, or simply “ART”.

• Cartesian predicate abstraction — representation of
the abstract state of a location as a conjunction of zero or
more predicates previously discovered. Unlike Boolean
abstraction, Cartesian one restricts usual first-order
Boolean logic formulæ to conjunction operator only. For
more info, see [2];

• Craig interpolation — a procedure of building a Craig
interpolant: given two Boolean formulæ with an un-
satisfiable conjunction, construct an over-approximation
of the first one that uses only terms from the second
one, keeping the conjunction of the approximation and
the second formula unsatisfiable. As of today, BLAST
uses this procedure to construct new predicates for its
Cartesian abstraction.

II. IMPLEMENTATION DETAILS

A. Generic information

Comprising components written in various languages,
BLAST has its core part written in OCaml, and it compiles
with OCaml 3.11 version. BLAST runs under Linux.

OCaml abstracts away memory operations, automated pro-
cessing of which took a considerable time, according to pro-
filing results. By tuning some documented options of OCaml
runtime, we decreased memory allocation overhead. Sample
programs demonstrated a 20% increase in the amount of
locations explored.

B. Program representation

As previously noted, the approach implemented in BLAST
requires the whole program to be represented as a finite

control-flow graph. It means that all functions should be
inlined, and no recursion is allowed. However, BLAST ap-
proaches this in a different way; it uses CIL [16] to build
per-function control-flow graphs. During the program analysis,
BLAST automatically jumps to the proper function unless it
is called via a function pointer. This approach provides more
flexibility, and allows to implement heuristics that concern
function calls. For instance, BLAST is capable to support
recursion with restricted depth. We also implemented a similar
bounding even for non-recursive calls, as we had noticed
that analysis does not need to traverse deeply in the call
graph to succeed in finding bugs. In Linux Driver Verification
project, this allowed us to use code generation tools that
automatically satisfy unresolved external calls to functions
specified throughout the whole kernel without a dramatic
analysis quality degradation.

The representation in such form ignores loop structure,
and unrolls them into a set of conditional jumps. The goto
operators are respected as well. This allows programs to
undergo serious transformations, and still be checkable by
BLAST. We needed a functionality to denote assumptions of
the form “from now on, a certain condition holds”2. Instead
of trying to built this into BLAST as a special directive, we
devised a library function that solves this problem; it’s listed
on Figure 1. The function is a valid C as well as it does not
confuse BLAST with an unnatural endless loop.

As Linux Kernel sources leveraged the whole power of C
language and its GNU extensions, we integrated the latest CIL
version to BLAST (1.3.7 instead of 1.3.1), and made several
minor improvements to it. Now BLAST is capable to read and
process drivers of Linux Kernel of version 2.6.37 with just 2%
of modules leading to parse errors during the analysis.

C. Abstract Reachability Tree exploration

As noted above, lazy abstraction approach does not require
the abstract reachability tree to present in memory as a
separate data structure. Hence, in BLAST the abstraction is
stored in a custom data structure as a graph, and the abstract
postcondition computation happens at its leaf nodes (also
named the “frontier”). If set of possible program states in a
leaf is empty, it’s not traversed anymore. When a leaf contains
a plausible error location, the counterexample analysis begins,
and the reachability tree is then cut so that its only leaf is the
one specified by the error path analysis. When a leaf is covered
by another leaf which was already processed, the analysis
stops in favor of that already happening starting from the
covering leaf. It is implemented by storing “reached region”
that comprises all the locations reached so far.

The order the leaves are processed in is tunable. Presets in-
clude depth-first traversal, breadth-first traversal and bounded
depth-first search (traverse in depth-first manner up to depth
N , add the pending nodes to queue and get the next node from
the queue). The default method is BFS; possible reason is that

2This is useful to specify preconditions for initial data, which may rule out
false positives in certain situations.



it allows to find error locations faster, and the experimental
data described in [4] prove that BFS allows faster verification
than DFS.

Processing a leaf constitutes on determining its region (an
over-approximation of all possible program variable states on
this path) by incoming edge in the CFG and region in previous
location. More on this procedure in Section II-G.

D. Counterexample analysis

When a counterexample—a reachable error location, for
which the abstraction contains a non-empty set of program
states,—is found in the reachability tree, its analysis starts.
A sequence of operations that leads to this location from the
root node is fetched from the ART. Then, preconditions of all
nodes are taken, and static single assignment (SSA) conversion
is applied to the resultant formulæ. The formulæ are stored in
a custom OCaml data structure.

Interestingly, a path formula is converted to SSA backwards:
i.e. the closer the nodes are to the root of the tree the greater
the indexes of their variables are. Therefore, different error
paths do not have a common prefix in their path formulæ.
An optimization opportunity here would be to reverse the
indexes and parallelize ART exploration and path formulæ
construction. This might also help with alias analysis (see
Section II-I).

For the further analysis, the formulæ are converted from
custom format to one of formats suitable for external solvers
(special modules take care of that). Due to large size of the
formulæ the conversion may take a lot of time. It was the
case for SMT solvers format. To overcome this, we focused
on this conversion, and made it nearly a thousand times faster,
which made the conversion overhead negligible compared to
the time to perform an actual formulæ analysis. This result
also demonstrates that tight integration with solver’s formulæ
representation format might not be necessary for a CEGAR-
based verification tool.

After proving that the formula is unsatisfiable (hence the
counterexample is spurious), predicate discovery procedure
starts. These two activities are described in the next two
sections.

E. Path feasibility checking

External solvers are to decide if the formula is satisfiable
(sat) or unsatisfiable (unsat). If error path formula is unsat-
isfiable, then the counterexample is spurious, and should be
analyzed, and the abstraction should be refined; otherwise,
there’s an error in the program. For first-order logic in Linear
Arithmetic and Uninterpreted Function Symbols theory, for-
mula satisfiability is a computationally hard problem. Thus,
careful choice of SAT solver is crucial for building a fast
verification tool.

In the BLAST as of 2008 Simplify solver was used; it is a
“stack-based” solver3 (which makes it ideal for analyzing path

3Allows to push/pop conjuncts of a formula and analyze the conjunction
of formulæ currently on stack; this could assist checking several formulæ that
share common parts for satisfiability.

formulæ concurrently with their generation), but it is a legacy
closed-source software with serious licensing limitations. After
resolving the performance issues in conversion to SMTlib
format (see sec II-D), we turned to experimenting with SMTlib
solvers, mainly with CVC3, as its LGPL license fits our aim
of building an open toolset for software verification.

We noticed that in BLAST it is possible for SAT solver
to report “unknown” instead of “unsat”, and these results are
indistinguishable for BLAST. Since proving satisfiability of
large formulæis hard, and, at the same time, if a formula is
satisfiable, it’s more likely for the satisfying input to be found
really quick, the “unknown” result may server as “unsat” if
the solver is tuned properly. We tried CVC3, and discovered
that by default it runs in a “honest” mode where no unknown
results were possible, and it took CVC3 gigabytes of RAM
and several minutes to verify a typical formula appearing in
driver source code analysis.

It turned out that the main reason for such a low CVC3
performance on many typical BLAST queries was its use of
certain quantifier instantiation heuristics. By default, BLAST
path formulæ contain quantified axioms used to model mem-
ory with aim to rule out some false unsafes when pointer
operations are used. Default settings of CVC3 (used for
SMT-LIB benchmark) turned complete quantifier instantiation
heuristic, which made it try to instantiate every given axiom
with every suitable combination of ground terms occurring in
the formula. Also one axiom instance may itself contain new
ground terms that can be again used for instantiation. Since
the typical BLAST formula contains quantified axioms and a
lot of terms, the solver spent much time and memory on the
instantiations described above.

We used an option to disable complete instantiation heuristic
and put a smaller limit on the number of repeated instanti-
ations. This significantly decreased the number of resulting
instances and thus time and memory consumption. Then we
also disabled some other heuristics regarding quantifiers. It
didn’t cause any significant correctness degradation because
the axioms rarely helped the solver prove formula unsatisfia-
bility.

As of today, there is no reason to use Simplify anymore, as
CVC3, combined with our fixes to integrational components
of BLAST, outperforms it.

We also removed predicate normalization from BLAST4,
as we supposed that solvers should do it much faster. Our
experiments confirmed this.

F. Predicate discovery
Vanilla algorithm to discover predicates with Craig inter-

polation looks like this. A path formula is cut into conjuncts
(basic blocks are cut apart), and at each cut point the conjunc-
tion of all terms before and after formula may undergo Craig
interpolation. For LA+EUF theory Craig interpolants always
exist ([15]), and an interpolating prover is a tool to find them.

However, instead of running an interpolating prover at each
cut point, BLAST first determines “useful blocks”, a subset of

4Actually, we added an option to turn it off/on.



operations along the trace that contribute to unsatisfiability of
the formula: a minimum set of blocks conjunction of which is
unsat, while the rest of the formula is satisfiable. There may
be several non-overlapping sets of useful blocks for a trace.
Essentially, “useful blocks” are close to unsatisfiability core
of a path formula, with two differences:

• granularity of predicate selection is operator-wise, i. e.
a predicate for one assignment or conditional may only
participate as a whole, while only a part of it may belong
to unsatisfiability core5;

• regions may participate in “useful blocks”. A region,
by construction, is an over-approximations of the path
formula to the location it is assigned to. So, instead
of analyzing the trace prior to a certain location, if
a conjunction of the region in this location (computed
by previous refinement procedures) and the part of the
formula past this location is unsat, then we treat the
region as if statement, and nominate it as a part of useful
block set.

The bits of formula extracted this way may themselves
become predicates for the abstraction (as in one of the steps
in SLAM tool [1]). However, BLAST goes further, and runs
the interpolating prover for each cut point between blocks in
each of the “useful block” sets, treating each set as a small
error trace. This way it only calls interpolating prover as many
times, as there are these useful blocks, and the formulæ for it
to handle are much smaller.

To determine these “useful blocks” BLAST joins predicates
in path formula one-by-one, beginning from the last, until their
conjunction becomes unsat. Then the latest block joined is
a useful one. The next useful block is found with the same
procedure, but the first useful block found is added to each
conjunction. The procedure repeats recursively until the set of
blocks found so far and the next useful block alone form an
unsatisfiable conjunction.

For stack-based solver, such as Simplify, joining predicates
one-by-one is straightforward. For SMT solvers all intermedi-
ate conjunctions were to be checked separately. We noticed,
however, that conjunction of all blocks from the end of the
trace up to i-th one is a monotonous function of i (the more
blocks you join, the more likely their conjunction is unsat), and
binary search may be applied to find the next useful block. We
implemented the binary search for SMT solvers, and we also
implemented caching for the predicates converted to SMTlib
format. For a complex sample cxausb driver the number of
calls to SMT solver was decreased from 32630 to 831, thus
reducing the overall verification time of this sample by the
factor of 7.

Craig interpolants for each cut point in small “traces”
constructed from each of the useful block sets are calculated
and added to lists of potential predicates in the locations of
the real trace between the first and the last useful blocks, and
to the locations in their ART subtrees. The negations of the

5It is especially important for more complex formulæ: when alias analysis
(see Section II-I) or other techniques (such as [17]) are used.

interpolants are not added at this point, but they will be taken
into account during the refinement.

To perform the interpolation, an Apache-licensed CSIsat
prover [9] is used, which takes input in “FOCI” format.
It sometimes outputs interpolants with real arithmetic (for
instance, it may print “x < 0.1 · y” instead of “10x < y”); in
these cases, BLAST ignores its output and finds less predicates
hoping that the rest would be enough to prove the safety of a
program.

Each predicates is encoded as a Boolean variable, and each
region is stored as a BDD (binary decision diagram) over these
variables.

G. Abstraction refinement

After an error path was encountered and analyzed, the
analysis in the ART subtree of the node corresponding to the
“useful” block closest to the root is restarted, and the nodes
in it are removed from the queue (also known as “frontier”).

To calculate the region of a frontier node, the “abstract
postcondition” procedure described in [12] is used. For each
of the predicates discovered for this location it is tested if the
precondition of the operation along the incoming edge, given
the predicate is assumed, is implied by the calculated region
in the parent node. To check satisfiability of the formulæ built
this way the same SMT solver is used as in the trace analysis.

Since all the data required by such a refinement are local,
the exploration of the state space may be made concurrently.
We have not implemented this for BLAST, however, a research
in this direction yields promising results [14].

After predicate for a node is verified, the node should be
tested for coverage. For this, it constructs a BDD that denies
that the calculated region for this node implies the reached
one, and checks it for truthfulness via BDD, each predicate
from the Cartesian abstraction being represented as a distinct
BDD term. If this crude check fails, a more precise one with
use of the SAT solver is performed; it takes into account that
predicates share variables, and are not independent from one
another. If a node is not covered, its children are added to the
frontier, and the reached region for the location is updated.

H. Configurable verification

In BLAST it is possible to use lattice-based data-flow anal-
ysis to aid CEGAR. Lattices are known to over-approximate
the feasible program states, so they may be used to rule out
infeasible paths in combination with usual CEGAR analysis
to analyze the rest. BLAST contains several such lattices, and
only one of them (SymbolicStore) is a generic-purpose lattice
that fits all C programs; it is capable to store information
on concrete values of integers and structure fields as well as
perform shape analysis [5].

To utilize capabilities of lattice-based data-flow analysis,
BLAST extends the structure of node’s region beyond the
usual conjunction of interpolants. The region in BLAST is a
tuple of CEGAR’s predicate constraint, and of several lattice
elements, the set of lattices being configured by user. If any
of tuple elements is ⊥ (or false, for predicate regions), then



the further path exploration is not necessary, since one of the
means has proved it infeasible.

As for coverage checking, the lattice-aided verification con-
tained a severe issue: the stopjoin operator was hardcoded;
it made BLAST nominate a single joined region as reached
instead of a set of regions. This cuts feasible program paths,
since SymbolicStore lattice regions are not a powerset do-
main [7] (while predicate regions are). Also, stopjoin made
the number of false safes too big for a certain environment
model6, so we implemented stopsep which checks coverage
against a set of reached regions, and several versions of
merge operator: join at meet-points (merge-join), join at equal
predicates (merge-pred-join)7, and no join (merge-sep). After
experiments we chose stopsep with merge-pred-join as our
default setting.

As a result, the runtime of BLAST with a SymbolicStore
lattice had a 50% increase, but the precision was improved
significantly: the amount of true unsafes increased by 20%
approximately.

This concept of combining different operators in the explo-
ration of state space of a single program in a configurable
way was then developed by one of the authors of BLAST in
the other tool, CPAchecker [8]. Our experience demonstrates
that while it’s not trivial to add more operators the BLAST
implementation is loosely-coupled, and it is only lack of
syntax and framework sugar what prevents a developer from
configuring such operators easily, but the changes one is
required to make are not dramatic.

I. Alias analysis

BLAST employs flow-insensitive may-alias analysis for
more precise reasoning about pointer assignments. As pointed
out in [5], the analysis is “home-brewed”, and we’ll describe
the algorithm here briefly.

The alias analysis starts when the first feasible error location
is found. Originally, BLAST performed this costly procedure
at the beginning of analysis of a program, but for programs
with unreachable error locations, or in cases when all error
paths are ruled out by lattice analysis (see Section II-H), but
we fixed this.

First, the whole program is analyzed, and the aliasing rela-
tion is calculated: if x may point to y at any point of program,
then “may-alias(x,y)” is true. The relation is not reflexive:
while x may be any identifier, y should refer to a concrete
memory location (stack- or statically-allocated memory, or a
location with a malloc() call). An over-approximation is
built by analyzing each assignment (if x is assigned an address
of z then x may point to z8), and closing it transitively (i. e. if
y is assigned to x, and y may-point to z then x may-point to z).
This way, an over-approximation of an “ideal” may-aliasing
relation is built.

6Environment models are “main” functions generated based on templates
for Linux device drivers. For more see [13].

7Predicate equality was tested via BDDs that stored them.
8Pointer operators are ignored at this point, only identifier names are

essential here.

Fig. 2. Verification of this program requires more lvalues than it contains

void mutex_lock(struct mutex* mtx)
{ assert (*mtx == 0);

*mtx = 1; }
void mutex_unlock(struct mutex* mtx)
{ assert (*mtx == 1);

*mtx = 0; }
int main()
{ struct mutex* m;
mutex_lock(m);
mutex_unlock(m);

}

Each expression is encoded as a bit-vector, and the relation
is stored in the a BDD. If x aliases q, and the expressions are
encoded as vectors X and Q respectively, then true value for
bit-vector (X, Q) is inserted into BDD.

When the path formula is constructed, and an assignment
*y=q appears in it, alias analysis comes into play. It queries
each lvalue (a non-constant expression that denotes a concrete
value in the writable memory) encountered in the program if
y may-alias its base identifier. For each lvalue x it may alias,
the following expression is added to the formula in addition
to the usual predicate:

((y = x)→ (∗x = q)) ∧ ((y 6= x)→ (∗x = ∗xold)) (1)

where ∗xold is the previous instance of expression ∗x in
the SSA form. The expression means “if y really points to
the same place x does, then the value of ∗x also becomes q.
Otherwise, this assignment does not change the value of ∗x”.

The lvalues iterated should not be constrained by those en-
countered in the program. For instance, consider the following
program on Figure 2. To verify it, we need to consider ∗m as
an lvalue, while the program does not contain it. BLAST has
a functionality to close the set of lvalues of a program under
dereference and taking a field (for structures) operations up
to a specified number of dereferences. The depth of such a
closure is required to be at least one for the program shown
above, but it already prohibitively increase the number of
iterations over lvalues, beyond the sensible time limits.

Some may-aliases are also must-aliases. For instance, CIL
frontend generates additional variables for assignments to
complex lvalues that involve multiple dereferences and field
takings. These variables are known to alias only one single
variable, and the expressions like (1) generated for them will
not contain any disjunctions, and unconditionally assign the
value to the must-alias.

We tried to decrease such a number of iterations over lvalues
by withdrawing must-aliases from the set of lvalues, then
by adding all ”const” values to the set of must aliases (to
withdraw even more), but we could not make the iterations
fast enough. This improved the speed of alias analysis alone



by factor of hundreds, but even this wasn’t fast enough. Using
faster data structures might help, but we think that a qualitative
research boost should precede fast verification of pointer-
abundant programs.

J. Interaction with user

UI was aimed to satisfy a user that looks at the console
output: plain text printing of debug information, analysis work,
statistics and reports mingled together. We did not change this
much, but tuned the output of error trace and verdicts to fit
automatic processing of it. Now the external tools may read
the verdict, and the error trace with additional information.
This is especially useful when the exploration is cut due to
function call depth limit a user specified, because it would be
unclear from the trace that the limit was enforced rather than
the function is not found.

K. Infrastructure

We added regression tests based on situations that occur
during Linux device drivers analysis. They contain both ex-
pected and current results, for tracking improvements as well
as degradations.

External SAT solvers are connected through a special layer,
that allows parallel execution of queries to the external tools.
For instance, CVC3 is known to have a lag between it outputs
an answer and finished the work (perhaps, due to complicated
resource deallocation), but the layer between BLAST and a
solver does not make BLAST wait and reap the process. Ditto
for interpolating prover.

BLAST contains a lot of dead code. Only a narrow set
of options is supported: some configurations do not work
at all, and terminate with an exception unconditionally. We
did not try to eliminate it; one of the reasons is that it
contains surprises: for example, we were going to implement
the closure under dereferences we described in Section II-I on
our own, but we suddenly found the working code for this
commented out.

1) External components summary: Default shipment of
BLAST includes:

• CUDD package — utilities for binary decision diagrams.
Implemented in C, distributed under MIT-like license.

• CVC3 solver [3] — proves (in)satisfiability of various
formulæ. Implemented in C++, licensed under LGPL.
Communicates to BLAST via SMTlib competition for-
mat.

• CSIsat interpolating prover [9] — computes Craig inter-
polants for LA+EUF. Implemented in OCaml, licensed
under Apache. Communicates via FOCI-like interface
(which is supported, for instance, by MathSAT [10]
interpolating prover as well).

• CIL C frontend — converts C program into syntax
tree stored as OCaml structures. Implemented in OCaml,
licensed under Apache.

L. Known limitations

BLAST does not support assignments of structures as a
whole; does not support function calls by pointer (although
some dead code on this matter is included); ignores inline
assembly; does not provide automatic deduction of properties
involving reasoning about lists and other complex pointer-
based structures; does not support arrays, treats each array
field as a separate identifier, and can not associate a[i]
and a[j] if i = j (i and j being the variables); can not
reason about pointer inequalities; does not have a fast aliasing
solution; ignores short logic in conditional statements; does
not cope with interpolants with real numbers; lacks automatic
modularization, and always analyzes the program as a whole.

III. EVALUATION

To evaluate our improvements, we compared how the latest
BLAST version form the original developers and our version
performs on Linux device drivers from media/ folder of
2.6.37 kernel, and with a simple rule that checks if the mutex
locking is correct. Each launch of BLAST was limited with
15 minutes of CPU time and 1 Gb of memory. To make the
older BLAST work with our newest tools, we merged several
integrational fixes to it, and we had to merge the latest CIL
frontend as well, as the default frontend in the older BLAST
can process zero drivers. The results of the comparison are in
the Table I.

The results demonstrate that the new version of BLAST
is capable to find three times more errors9 (and the newer
version found all the five errors found by the older one), and
total speed was improved by the factor of 5, given that the
precision of BLAST has increased (see Section II-H). The
number of drivers that were reported as neither safe nor unsafe
is two times less than those of the original version. With newer
version, only 30 drivers exceeded resource limits (only two of
them timing out), while the older version ran out of allowed
resources in 52 cases, and it means that 22 out of 52 the most
complex samples were successfully verified under the same
constraints.

In the media folder the new frontend has eliminated all
the parsing errors; however, a more exuberant evaluation of
the newer BLAST demonstrates that as much as 1.1% drivers
are still not parsed by BLAST in 2.6.37 kernel. Compared to
the original BLAST that can process zero Linux kernel drivers
without special patches applied to their source code, this is
quite an improvement.

IV. CONCLUSION

Having started from BLAST 2.6 of 2008, we implemented
a lot of fixes to BLAST, which improved its productivity on
industrial code base (Linux device drivers) by a factor of
more than five (as the evaluation in Section III demonstrates),
making it, at the same time, more precise and capable to
find more errors, as well as more tolerant to the C code it

9The correctness rule was intentionally weak, so most of these errors are
not kernel bugs, but they are valid if approached as mere assertion violations
in C programs.



TABLE I
EVALUATION OF THE ORIGINAL AND THE CURRENT VERSIONS OF BLAST

BLAST version Total Failures SAFE UNSAFE Total time Timed out Memory limit Other failures
Original 389 110 274 5 11.5 hours 36 16 58
Current 389 57 317 15 2.1 hours 2 28 27

parses. The precision improvement is not just ad-hoc, caused
by optimized resource consumption: the algorithms themselves
were improved as well.

During our experiments, we succeeded in utilizing a generic
SMT solver, and demonstrated that formulæ conversion from
an internal verification tool’s format to SMTlib competition
format for programs as large as Linux device drivers takes
negligible time compared to other activities.

We learned also that BLAST is extensible enough to imple-
ment more powerful verification algorithms, albeit it is not a
straightforward task for a developer. Thus, the weaknesses of
BLAST may be overcome, and it’s too early for BLAST to
be considered obsolete.

REFERENCES

[1] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver
verification with under 4 false alarms. In Conference on Formal Methods
in Computer Aided Design, FMCAD 2010, Lugano, CH, 2010.

[2] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. Proc. TACAS, page
268–283, 2001.

[3] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[4] D. Beyer, A. Cimatti, A. Griggio, M.E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Formal Methods
in Computer-Aided Design, 2009. FMCAD 2009, pages 25–32, nov.
2009.

[5] D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape analysis. Proc.
CAV, LNCS, 4144:532–546, 2006.

[6] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast: Applications to software engineering.
Int. J. Softw. Tools Technol. Transf., 9(5):505–525, 2007.

[7] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Con-
figurable software verification: concretizing the convergence of model
checking and program analysis. In Proceedings of the 19th international
conference on Computer aided verification, CAV’07, pages 504–518,
Berlin, Heidelberg, 2007. Springer-Verlag.

[8] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for con-
figurable software verification. Technical report, School of Computing
Science, Simon Fraser University, 2009.

[9] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSIsat: Interpola-
tion for LA+EUF. In CAV, pages 304–308, 2008.

[10] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The mathsat 4smt solver. In CAV,
pages 299–303, 2008.

[11] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. Proc. CAV, LNCS, 1855:154–169, 2000.

[12] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Lazy
abstraction. In Symposium on Principles of Programming Languages,
pages 58–70. ACM Press, 2002.

[13] Alexey Khoroshilov, Vadim Mutilin, Vladislav Shcherbina, Oleg Strikov,
Sergei Vinogradov, and Vladimir Zakharov. How to cook an automated
system for Linux driver verification. In 2nd Spring Young Researchers’
Colloquium on Software Engineering, volume 2 of SYRCoSE 2008,
pages 11–14, 2008.

[14] Nuno P. Lopes and Andrey Rybalchenko. Distributed and predictable
software model checking. In Proceedings of the 12th international
conference on Verification, model checking, and abstract interpretation,
VMCAI’11, pages 340–355, Berlin, Heidelberg, 2011. Springer-Verlag.

[15] K.L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
pages 101–121, 2005.

[16] George C. Necula, Scott Mcpeak, Shree P. Rahul, and Westley Weimer.
Cil: Intermediate language and tools for analysis and transformation of
c programs. In In International Conference on Compiler Construction,
pages 213–228, 2002.

[17] Pavel Shved. On reasoning about finite sets in software model checking.
In 4th Spring Young Researchers’ Colloquium on Software Engineering,
SYRCoSE 2010, pages 17–26, 2010.


