Detecting C Program Vulnerabilitiés

Anton Ermakov,

Natalia Kushik

dept. of Information Technologies
Tomsk State University
Tomsk, Russsia
antonermak@inbox.ru, kushiknatalya@yahoo.com

Abstract—C/C++ language is widely used for developing tools
in various applications, in particular, software tools for critical
systems are often written in C language. Thereforehe security
of such software should be thoroughly tested, i.ethe absence of
vulnerabilities has to be confirmed. When detectingC program
vulnerabilities static source code analysis can based. In this
paper, we present a short survey of existing softwa tools for
such analysis and show that for some kinds of C ced
vulnerabilities this analysis is insufficient. Thus we briefly
present an approach forSPIN based approach for vulnerability
detection which may be useful in some cases.

Index Terms—C programming language, software
vulnerability, static/dynamic detection method

I. INTRODUCTION
HE

becomes important as the complexity of softwardstoo X ; .
in C/C++ programmin'BStr”Ct'onv =g, and in general, the maximal value for type

increases and programs written
language are often used in many critical systerhe. Security
of such software should be thoroughly tested, e ,absence
of vulnerabilities has to be confirmed. There ave different
approaches for vulnerability testing: static andnaipic
methods. In this paper, we present a short surfexisting
tools based on static vulnerability detection mdthand show
that for detecting some vulnerabilities, for exaepl buffer

overflow vulnerability, SPIN[1] based approach may be more®

appropriate.

The structure of the paper is as follows. Sectiocohtains
preliminaries. Section Il is devoted to static eahalyzers: a
short survey of existing tools for static vulnetipidetection
is presented in this Section. Section 1V discuss®BINbased
approach for vulnerability detection while Sectiod
concludes the paper.

Il. PRELIMINARIES

A programvulnerability is a property of the program that

allows a user to disturb confidentiality, integritand/or
availability of this software. Given a set of vulabilities
(features) of a C program, if the program has nohéhese

! This work is partly supported by RFBR-NSC graintL0-08-92003

features then the program is said toshéew.r.t. the given set
of vulnerabilities; otherwise, the programussafew.r.t. this
set of vulnerabilities. Vulnerability detection rhetls can be
classified as static and dynamic methods [2]. Whtatic
detecting methods are applied the source code atyzad
without running the program while dynamic detection
methods require the program of interest to be drelcu

Given a C program, in this paper, when illustratimg
approaches, we consider the following types of iptess
vulnerabilities: type overflow, type conversion diew, array
overflow (incorrect array index), string overflonhigh can be
considered as different types of a buffer overflanerability
and double free vulnerability. All these types afnerabilities
are specified in details in [3]. Type overflow ocgun a C
code when a variable is defined as a variable of typeand
the valuee of this variable when executing the code can

problem of computer-aided software testingexceed the maximal value for typdt can occur when a given

expressiore is assigned to a variablei.e., the C code has an
might be different for different platforms and ogting
systems. An array overflow takes place when a pogner
deals with an array that hassize a items while using a
variablea|[i] for i >=size a. When analyzing student software
tools implementing well-known array algorithms suel
different sorts and/or search of minimal/maximaiagritem,
we noticed that many those programs are unsafé. \wpe
verflow and array overflow (incorrect array index)
vulnerabilities. In order to estimate whether érigptstatic
methods can detect type overflow and array overflow
vulnerabilities we consider three student impleratohs of
array algorithms and run existing tools for detattdf such
vulnerabilities. In the next section, we presershart survey
of existing tools for static code analysis and thwitputs for
several vulnerable student programs. We then shatvsome
of such vulnerabilities can be detected usBBIN based
approach.

Ill. STATIC CODE ANALYZERS

When estimating the security of student impleméonat of
array algorithms we considered the following tasks:
calculating the average value of integer array $tetime bubble
sort, the insertion sort. C implementations of éhpsograms
are specified in the Table 1 which is divided irtoee

sections. Table 1.1 contains a C implementatiocatfulating
the average value of integer array items (Prograrable
1.2 contains a C implementation of the bubble @rogram
2) while Table 1.3 contains a C implementation bé t
insertion sort (Program 3). Program 1 has a typerftow
vulnerability in the line
sred+=ali];

There is no check in Program 1sifed variable value does
not exceed the maximal value of the typ&signed shortin
this paper, the maximal value equals 65536 and easigned

short variable occupies two memory bytes. Programs 23and

have an array overflow vulnerability, since arragexes of

arraysa and arr are not checked whether they exceed th

number of array items.

int main(){
unsigned short n=0, a[10];
printf("Enter size of array,
please:");
scanf("%d",&n);
for (int i=0; i<n; i++)
{printf("%d. ",i);
Program 1 — ey .
C implegr]nentation of ?canf(%d",&alll);
calculating the average . e
value of integer array un&gngij s'hort. §red—0,
. for (int i=0; i<n; i++)
items {
sred+=ali];
}
sred/=n;
printf("Sred:%d",sred);
system("pause”); return sred;

Table 1.1 C implementation of array algorithms
(Program 1)

int main()

{

unsigned short j=0,i=0,n, a[10];

cout<<"Enter integer, please:";

cin>>n;

for (i=0; i<n; i++)

{
cout<<i<<" ="
cin>>a[i];

}

unsigned short temp;

bool t = true;

while (t==true)

{

Program 2 —
C implementation
of the bubble sort

t = false;

for (j=0;j<n-1; j++)

{
if (afi]>afj+1])
{

temp=a[j];

afj]=afj+1];

afj+1]=temp;
t=true;

}
}
}
for (i=0;i<n; i++)
{
cout<<i<<"="<<ali]<<endl;
}
system("pause”);returni;

Table 1.2 C implementation of array algorithms
(Program 2)

%elow we describe the outputs of several static@®eode
analyzers that have been run against C implementatn the
Table 1.

A. ITS4 is a static code analyzer that has been
developed in USA by th€igital company in 1992 [4]. The
ITS4 is a tool for static detection vulnerabilities @/C++
programs. The tool can be executed under Windowsnorx
operating systems.

int main()
{
unsigned short length, key,
arr[10];

int i=0, j=0, tmp=0;
cout<<"length:";

cin>>length;
for (i=0; i<length; i++)
{
cout<<i<<" =",
cin>>arr|i];

Program 3 — for (i=0; i < length; i++)
C implementation | {

of the insertion sort tmp = arr]i];
for (j=i-1;j>=0 && arr[j]>tmp;j-
)

arr[j+1] = arr[j];
arr[j+1] = tmp;
}

for (i=0;i<length; i++)

cout<<i<<"="<<arr[i]<<endl;

system("pause"); return 1;

Table 1.3 C implementation of array algorithms
(Program 3)

When analyzing a given C code th€S4 relies on its
database of potentially dangerous C functions &titere is a
call for such dangerous function in the given colide|TS4
returns a corresponding report with some recomnienmda
about proposes (preferable changes) in the codelTB#tool
is a free software tool that can be easily downdolaffom
web-site [4]. We executedlS4 against Programs 1, 2, 3
(Tables 1.1, 1.2, 1.3) and thiES4 has detected two calls for

dangerous functions. Those awzanf) and printf(), in
particular, thdTS4has reported thatcanf) is a function of a
high risk for a buffer overflow vulnerability.

F. There are other static code analyzers that can be

used for vulnerability detection in C programs. leaample,
Cqual [10], developed by Dan Wilkerson in 200Eshelon

B. Flawfinder is also a static C/C++ code analyzer thaAK-VS [11] developed in Russi&locwork Truepath [12]

has been developed by David A. Wheeler in May, 2[H)4
Flawfinder“scans” a given code and similar to &4 has a
list of potentially dangerous instructions of a eodiven a
code, selected dangerous instructions (if any}faea ordered
according to the risks. The-lawfinder report for a
programmer points out the calls for dangerous fanstand
proposes a way for changing the code. Howevertferabove

developed bKlocwork company andoverity Static Analysis
[13] developed byoveritycompany in USAMOPS[14] and
BOON [15] are tools for static detection vulnerabiltieNe
could not execute these tools due to some reasmtsas a
high price, lack of documentation, absence of destrating
version etc. However, according to their descripgifl0-15],
all these tools are developed for static detectioh

Programs 1, 2, 3 tHelawfinder report has only one dangerousvulnerabilities and many of them allow static asaynot only

function — systen) and the recommendatiortry using a
library call that implements the same functionaliif
available'.

C. Graudit is a tool that can also help to staticallysearch for

detect several C code vulnerabilities [6]. In ortterun this
tool it is necessary to call utilit¢srep underUnix operating
system. As usual, there can be several optionstbown this
utility but in the simplest case only the pathctip file has to
be specified. As a result, a colorful report wiipgar where
for a given C program, some dangerous instructamesblue
colored. One can also manually add more instrustioto the
database of dangerous functions. For each prograralle 1
the Graudit colored functionsscanf), printf() and stream
input/output operatorsin andcout

D. CppCheck 1.46is a tool with the original name
C++checkthat has been developed DBgniel Marjaméakiand
Cppcheck teanfrom 2007 until 2010 [7]. The&CppCheck
utility is specialized for memory leakage vulnetfitigis. As it

for C/C++ code but also for Java or C# programs.
According to the above short survey of static code
analyzers, one can conclude that most existingstawily

descriptions do not detect type overflow and inectrarray
index vulnerabilities. The latter means that fomsokinds of
software vulnerabilities static detection is nobegh, that is
the reason why in the next section we presented bvierview
of an approach for dynamic detection vulnerab#ifig].

IV. SPINBASED APPROACH FOR DETECTING VULNERABILITIES

Most existing tools providing dynamic detection
vulnerabilities are based on randomly generatedtidpta for
a given program. Thus, it is difficult to guarantdme fault
coverage for such security testing. There alsot esqiecial
tools for distributed programs testing, for examptielgrind
[16] that is designed for multithreaded progransting. We

is mentioned in [7]CppCheckhas detected 21 errors in thenote that this tool does not support buffer ovevfldetection

Linux Core and many other errors in free softwafbe
Cppcheckis also a free software tool under the conditiohs
the GNU GeneralPublic License We have run th€ppcheck
against above Programs 1, 2, 3 and the output gpesto
errors found” has been returned.

E. AEGIS is another tool for static detectionbased on SPIN model

vulnerabilities in C/C++ programs [8]. Th®EGIS has been
developing in Digitek Labs since 2008. This laborgatis
strongly
University, Russia. One of the advantages of thid ts that
the AEGIS supports vulnerability detection for several file
simultaneously if they are united in one projedte REGIS
detects vulnerabilities that can often occur in @gpams,
such as memory leakage, incorrect pointers, incoragray
indexes, uninitialized variables, the use of potdigt
dangerous functions etc. In order to staticallyedetthese

connected with Saint-Petersburg Polytechn

technique but it is able to control synchronizatiogtween
threads.

There are other model checking techniques which
widely used for vulnerability detection. Workinggtether with
our French colleagues we proposed a detection itpodn
checker [f] and have partially
presented the obtained results in the technicartgf]. In
this case, a vulnerability is described as a ptgpbat has to
be verified. However SPIN accepts a program written in

;’ROMELA language and thus, the first question isvHho

translate a C code into PROMELA instructions when
verifying a property of interest. If the programwvislnerable,
i.e., possesses a ‘“bad” feature, th&FIN produces a
counterexample that corresponds to the values trnal
variables or of input data of the program. We ntiat,

vulnerabilities theAEGIS derives the abstract model of theaccording to SPIN documentation features mightecisied

program for verification. The free usage of the lgzex is
available via the official Digitek Labs web-site].[Before
running this tool it is necessary to make somesfiamations
of a given C code for further compiling. For examph the
AEGIS it is prohibited to analyze a code where two orenC
instructions are located in the same program [ife. have
correspondingly changed the above Programs 1aadhave

as temporal logic formulas or Buchi automata [1I].the
former case, we propose how to inject such data the
program in order to show a programmer which parthef
code is vulnerable. The proposed technique someh&es
into account both static and dynamic vulnerabitistection,
since PROMELA model is verified statically while
counterexample is injected into the program throitghrun-

run theAEGIS For Program 1 of average value calculating thgme In [3], some discussions can be found howanslate C

AEGIS detected an incorrect array index for the araay
while for Programs 2 and 3 of array sorts tAEGIS
mentioned only the call of unsafe functisyster().

instructions into PROMELA instructions and how the

2 The work was done together with French scientificup of Prof. Ana
Cavalli (TELECOM & Management Sud Paris)

dangerous functions and despite of their

are

injection procedure can be implemented. In PROMELAletection. The obtained preliminary results clesthpw that
language verified properties are described as timserand SPIN based detection techniques could be useful when
such assertions have to be constructed for each bfp analyzing the C code safety. In this paper, wenditldiscuss
vulnerabilities. Unfortunately the translation merhed by vulnerability detection techniques based on othesdeh
MODEX tool [18] cannot be applied directly and singe are checkers; such a comparison is a part of our fuend.
in the process of developing new automatic tools siach
translation, some C codes were manually convertdd i REFERENCES
PROMELA codes and corresponding assertions weredadd[1] G. Holzmann. Spin Model Checker. Primer and RefezeManual.
; ; g Addison Wesley, 2003.
We have applied a proposed technique to the ab ams [21 Willy Jimenez, Amel Mammar, and Ana R. Cavalli. Saire
1, 2, 3 and SPIN produced counterexamples for fathem. Vulnerabilities, Prevention and Detection MethodsReview, SEC-
We injected data according to these counterexamfdesd MDA workshop.— Enschede, The Netherlands, June2@@9.
out that the programs return wrong results and nore [3] Technical report of the joint FCP Russian-Frenchang Ne
PR 02.514.12.4002, Step 4.

message about “bad” input data has appeared,SF._ﬂN_hgs [4] Cigital [Electronic resource] — http://www.cigitedm/its4/
detected type overflow and array overflow vulneliibs in [5] Flawfinder home page [Electronic resource] -
the above programs. For example, for Program 1 @ http//www.dwheeler.com/flawfinder _

terexample produced ISPIN has the value 10005 for Just Another Hacker [Electronic resource] -
coun _p p A http://www.justanotherhacker.com/projects/grauditvdload.html
each array item value, the returned result whemingnthe [7] Sound Forge [Electronic resource] -
program was 3451 while the right value should b8050, . httpi//SkoUrgefFr?e-neUappslmedifiwilﬂlcr)zcheckéejd o
: . o 8] Digitek Labs [Electronic resource] — http://www.deklabs.ru/aegis
i.e., this C code has a type overflow vulnerahility [9] Digitek Labs [Electronic resource] - http://aegis-

For Program SPIN produced a counterexample as well as demo.digiteklabs.ru/s2a.webserver/

for the array dimension as for array item valuetHis case [10] Department of computer science. University of Mang [Electronic
when detecting array overflow vulnerability the,, . resourcel—http:/fwww.cs.umd.edu/~jfoster/cqual

. 11] Soft Line [Electronic resource] - http://soft.sofd.ru/NPO-
counterexample was = 11 when each array item equals 1 Echelon/eshelon-ak-vs/
too. When detecting type overflow vulnerabilit$PIN [12] Klocwork [Electronic resource] -
produced the value 70035 that was then assigneddoarray |, rc‘tg\)/é/r‘gvt;vw‘k'ocwork'c[gl‘;grrgﬂi“cm/ '”S'ghﬂk'orct‘e’vscc’;uk‘r"fe‘;ath/ ~
item. After applying these input data to Prograrm@rrect http://www.coverity.com/products/static-analysisht
result has been obtained when running the C progvhifle no [14] Electrical engineering and computer sciences [Eeat resource] —
error occurred. According to the incorrect reshiéittcan easily http-/ww.cs.berkeley.edu/~daw/mops/

15] Electrical engineering and computer sciences [Ededt resource] —
be checked, one can conclude t8RINhas detected type and ™! http://www.csgberkele%/.edu/~dawr;boon/ []

array overflow in Program 2. For Program 3 (TableSPIN [16] Valgrind [Electronic resource] — http://valgrindgdinfo/tools.html
has produced the same counterexanmple 11 for an array [17] SPIN [Electronic resou_rce]—http://spinroot.com/
L [18] Modex [Electronic resource] - http://cm.bell-

overflow while in the counterexample for a type idhmv labs. com/cm/cs/what/modexfindex.htmi
vulnerability, each array item was assigned to 8004

In order to compareSPIN based vulnerability detection
technique with other tools providing dynamic vukgtity
detection we have run th®emcheckutility of Valgrind
software [15] against Programs 1, 2 Memchecks designed
to detect memory leakages in C/C++ programs andriiect
use of uninitialized values. Valgrind allows a pammer to
assign desirable values to input variables and &y of a
virtual machine thévlemchechutility checks whether memory
leakage occurs during the program execution. Wee hran
Memcheckagainst Programs 1, 2, 3 with counterexamples
produced bySPIN and neither type overflow nor array
overflow vulnerability has been mentioned.

Based on the obtained experimental results, we can
conclude thaBPINbased detection techniques could be useful
when analyzing the C code safety.

V. CONCLUSIONS

In this paper, we have presented a short surveaxisting
tools providing vulnerability detection in C/C++ ggrams.
Several tools have been executed against student
implementations of array algorithms. The experiraergsults
clearly show that for some kinds of C code vulndites
static analysis can be insufficient and we havesgrted a
brief overview of aSPINbased approach for vulnerability

