
Model checking approach to the correctness proof
of complex systems

Marina Alekseeva
P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia

Email: marya 87@mail.ru

Ekaterina Dashkova
P.G. Demidov Yaroslavl State University
150000 Yaroslavl, Sovetskaya 14, Russia

Email: dea.yar@mail.ru

Abstract—Very often the question of efficiency in terms of
execution time memory usage, or power consumption of the
dedicated hardware/software systems is of utmost interest that
is why different variants of algorithms are developed. In many
situations the original algorithm is modified to improve its effi-
ciency in terms like power consumption or memory consumption
which were not in the focus of the original algorithm. For all this
modifications it is crucial that functionality and correctness of
the original algorithm is preserved [1].

A lot of systems increasingly applying embedded software
solutions to gain flexibility and cost-efficiency. One of the various
approaches toward the correctness of systems is a formal veri-
fication technique which allows to verify the desirable behavior
properties of a given system. This technique nowadays is well
known as model checking. Model is expected to satisfy desirable
properties.

Verification is the analysis of properties of all admissible
program results through formal evidence for the presence of
required properties. The basic idea of verifying the program is
to formally prove the correspondence between the programming
language and the specification of the problem.

Program and specification describe the same problem using
different languages. Specification languages are purely declar-
ative, human-centered. Imperative programming languages are
more focused on executing on the computing device. Therefore
less natural for men.

Likewise, this technique is an excellent debugging instrument.
From the standpoint of programming technology verification
enables to obtain a better strategy for debugging programs.

Index Terms—verification, automata-based programming,
complex systems.

I. INTRODUCTION

Correctness of Information and Communication Technology
(ICT) systems [2] is the background for their safety. Errors
could be catastrophic. The fatal defects in the control software
are very dangerous and the number of defects grows exponen-
tially with the number of interacting system components. Day
after day ICT systems are becoming more complex.

ICT systems are universal and their reliability is the main
point in the system design process. The key instrument for
design process is verification techniques (fig.1). The features
which are verified could be taken from specification. They are
usually the main properties of the systems. They should be
correct which means react adequate for any command. The
accurate modelling of systems often leads to the discovery of
incompleteness, ambiguities, and inconsistencies in informal
system specifications.

Such problems are usually discovered at later stage of the
design. The system models are accompanied by algorithms
that systematically explore all states of the system model. This
provides the basis for a whole range of verification techniques
as model checking.

Fig. 1. The process of verification

II. MAIN PART

A. Model-checking

Model checking [3] is one of various verification techniques.
It explores all possible system states in a rude manner.

The system model is usually automatically generated from a
model description that is specified in some appropriate dialect
of programming or hardware description languages.

The property specification prescribes how the system be-
haves. All relevant system states are checked whether they
satisfy the desirable property or not (fig.2).

Models of systems describe the behavior of systems in an
accurate and unambiguous way. They are mostly expressed
using finite-state automaton, consisting of a finite set of states
and a set of transitions. In order to improve the quality of the



model, a simulation prior to the model checking can take place.
Simulation can be used effectively to get rid of the simpler
category of modelling errors. Eliminating these simple errors
before any form of thorough checking takes place may reduce
the costly and time-consuming verification effort.

Model checking has been successfully applied to several
ICT systems.

Fig. 2. The process of model-checking

B. Automata-based programming.

Automata-based programming can be used in several types
of programming systems [4]:
• transforming systems (compilers, archivators). Finite au-

tomaton in programming traditionally used in design of com-
pilers. In this situation automaton is understood as some
calculating feature which has an input line and output line.
• reactive systems (telecommunication systems and systems

of control and managing of physical devices). In this case
the automata-based programming solves the problem of logic
programming. Automaton is a device that has several parallel
input lines (often binary), on which in real time the signals
from the environment are coming. Processing such kind of sig-
nals, automaton is forming values for several parallel outputs.

So, the usefulness of the automata-based approach can be
characterized with the combination of the words ”complex
behavior”. For such kind of systems it is very important that
automata-based approach separates the description of logic
of behavior and semantics. This feature makes automaton
description of complex behavior clear and understandable.

Transition systems are often used in computer science
(semantical models for a broad range of high-level formalisms
for concurrent systems, such as process algebras, Petri Nets,
statecharts).They are a fundamental model for modelling soft-
ware and hardware systems.

Transition system is defined as TS. TS is a tuple (S, Act,→,
I, AP, L) where
• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act× S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labeling function.
TS is called finite if S, Act, and AP are finite.
Consider the following example (fig.3). The transition sys-

tem in fig.3 is a schematic design of an automaton. The au-
tomaton can either deliver tea or coffee. States are represented
by ovals and transitions by labeled edges. Initial states are
arrow without source.

The state space is
S = {pay, select, tea, coffee}.
The set of initial states consists of only one state, i.e., I =

{pay}.
The action insert coin denotes the insertion of a coin,

while the automaton actions get tea and get coffee denote the
delivery of tea and coffee. Transitions of which the action
label is not of further interest here are all denoted by the
distinguished action symbol τ . We have:
Act = {insert coin, get tea, get coffee, τ}.
Automaton is represented by two locations pay (start) and

select. Notes that after the insertion of a coin, the automaton
nondeterministically choose to provide either coffee or tea.

Fig. 3. A simple transition system

III. RESULTS

Authors had an experience of applying the model checking
method. Their diploma paper was devoted to the verification
of the WTP (Wireless Transaction Protocol). The simple
transactions were built with the help of CPN Tools and NS2
Simulator. Two types of instruments were explored.

A. System modeling. NS2.

Simulation is widely-used in system modeling for appli-
cations ranging from engineering research, business analysis,
manufacturing planning, and biological science experimenta-
tion. Network Simulator (Version 2), widely known as NS2,
is an event driven simulation tool which is very useful in



studying the dynamic nature of communication networks.
NS2 provides users with a way of specifying such network
protocols and simulating their behaviors. NS2 suggest two
steps of work. The first step is constructing a model with the
help of programming on C++, and finally the use of the Object-
oriented Tool Command Language (OTcl) for analysis of the
model and simulating the network conditions. It allows us to
include our C++ programming code to the NS2 environment.
We decided that NS2 is the most convenient tool for modeling
the network behavior.

B. Proposed model.

The Wireless Transaction Protocol is responsible for re-
liable message delivery. Maximum Transfer Unit (MTU) is
a maximum size of a packet in networks. If we have a
message that is bigger than MTU then WTP fragmentizes this
message. Flow control in cases of fragmented messages, is
performed by sending fragments in groups. Every group of
packets requires only one acknowledgement of the group. The
last packet of each group contains a special flag. This flag
indicates the end of the group and receiver knows when to
send an acknowledgment. Size of each group depends on the
link characteristics and the device memory. It is necessary
to avoid extra packet retransmission and data loss. Receiver
sends a negative acknowledgement (NAK) if the end-of-group
packet is received whilst intermediate packets are missing.
This operation is repeated until the entire group is received and
a positive acknowledgment is sent. If timeout occurs, only the
last packet of the group is retransmitted, and sender knows
what packets have been lost. Wireless Transaction Protocol
tries to minimize the number of unnecessary retransmissions.

In our model we have three parameters:
• ts is the time interval between consecutive packets of the

group which are sent from the sender SENDER to the receiver
RECEIVER.
• tr is the interval between consecutive packets of the group

which are received by the RECEIVER.
• Pam as the number of packets in the group.
In our model there are two types of acknowledgments (ACK

is a positive and NAK - negative acknowledgment).
When receiver sends an acknowledgment it transfers tr with

the help of it. Sender calculates special ratio. Depending on
the result of this ratio sender has several situations for analysis
and further actions.
• Perfect network conditions.
• Parameters can be modified by increasing Pam, decreasing

ts and timeout.
• There is no enough data for our algorithm to make a

decision how to modify parameters (conditions of a network
correspond to the established parameters).
• The network is congested, parameters can be modified by

decreasing Pam, increasing ts and timeout.

IV. CONCLUSION

Theory of programming even in the 1968 openly accepted
the crisis of software development. The main symptom of

this crisis is disability of the developers to provide the main
feature of the software: its correctness. Theoreticians and
practitioners of software underline that the crisis of methods of
the development of software shows mainly during the design
of the systems with complex behavior and automata-based
approach can deal with this problem. That is why it is the
answer for the most up-to date problems of the software
development industry. The predictions show [4] that the area of
applying automata-based programming will be expanded and
this technology will be developed. A new models, notations
and instruments will appear in the foreseeable future.

ACKNOWLEDGMENT

The following scientific advisers supported us by using
(sometimes very) preliminary versions of this article: Valery
A. Sokolov (Yaroslavl, Russia), Dmitry U. Chaly (Yaroslavl,
Russia), Egor V. Kuzmin (Yaroslavl, Russia).

The authors would also like to thank the dean of Yaroslavl
Demidov State University Computer Science Department P.G.
Parfenov for interest and support of this project and the
head of scientific-educational center ”Center of Innovation
Programming” Professor V.A. Sokolov for helpful advices.
This work would be developed and extended in the future.

REFERENCES

[1] Anikeev M., Madlener F., Schlosser A., Huss S.A., Walter C., ”Automated
Correctness Proof of Algorithm Variants in Elliptic Curve Cryptography”
Modeling and Analysis of Information Systems, pp. 7–16, 2010.

[2] Baier Christel, Katoen Joost-Pieter. ”Principles of Model Checking,” The
MIT Press, Cambridge, Massachusetts, London, England, 2008.

[3] Egor V. Kuzmin, ”Introduction to the theory of mathematical processes
and structures,” Yaroslavl Demidov State University, Yaroslavl, Russia,
2001.

[4] N.I. Polikarpova, A.A. Shalyto, ”Automata-based programming” Saint-
Petersburg State University of Informatic Technologies, Mechanics and
Optic, Saint-Petersburg, Russia, 2009.


