
// An aspect consisting of a named pointcut

// and an advice.

aspect Logging {

 // A named pointcut that matches a join

 // points set of method calls.

 pointcut move():

 call(void FigureElement.setXY(int,int)) ||

 call(void Point.setX(int)) ||

 call(void Point.setY(int));

 // An advice performing some actions before

 // execution of a matched by the given named

 // pointcut program point.

 before(): move() {

 System.out.println("about to move");

 }
}

One Approach to Aspect-Oriented Programming

Implementation for the C programming language

Eugene Novikov

Institute for System Programming

Russian Academy of Sciences

Moscow, Russian Federation

Email: joker@ispras.ru

Abstract—The given paper introduces an approach for aspect-

oriented programming implementation developing intended for

the C programming language. Key features of C and a common

C program build process are considered and it’s shown how they

influence on a supposed C AOP implementation. The last is

described in details and after all its practical application is

demonstrated. It’s shown that the supposed C AOP

implementation works well enough although it possesses some

shortcomings. Some improvements required to overcome the

given shortcomings are discussed.

Keywords-aspect-oriented programming; join point; pointcut;

advice; aspect; weaving; the C programming language;

implementation

I. INTRODUCTION

Aspect-Oriented Programming (AOP) is a rather fresh
programming paradigm that is intended to increase program
modularity by means of cross-cutting concerns separation.
Generally speaking cross-cutting concerns mean functionality
or features that cannot be easily decomposed from so-called
core concerns. The last in depend on a programming paradigm
used is implemented as corresponding functions, classes and
modules while cross-cutting concerns scatter through them and
tangle a program source code. The typical example of cross-
cutting concerns is logging. Also some more complex fields
like errors handling, some sort of testing, security, and database
operations can be treated as cross-cutting concerns. AOP
provides programmers with opportunity to extract cross-cutting
concerns into separate modules called aspects. To understand
better let us consider other major AOP conceptions since
they’ll be widely used at the rest of the given paper.

The basic AOP conception is a join point. In general join
points are those elements of the programming language
semantics which the aspects coordinate with [1]. The given
paper takes a join point to be a program construction connected
with its context. The typical example of a join point is a
function/method call because of such a construction can be
found almost in any programming language. But generally
speaking join points depend on and even in some degree are
determined by a programming language used. A pointcut is a
set of join points satisfying a given condition. For instance, all
memory allocating function (like malloc, calloc and so on)
calls may be treated as a pointcut. Next AOP conception is an
advice. An advice consists of a pointcut and a body. The last

represents some actions to be executed in matching between a
join point corresponding to a given pointcut and a program
construction related with some context. Moreover an advice
contains information on whether these actions should be
executed before, instead of (around) or after a matched
program point execution. Usually an advice body is written in a
given programming language although some special AOP
constructions (e.g. a matched entity name) may be also
available. An aspect already mentioned above is a separate
module that consists of a number of advices implementing
some part of cross-cutting concerns. More exactly an aspect
also can contain some other constructions, e.g. named pointcuts
that is pointcuts associated with identifiers for following usage.
At last, the process of aspects with main program integration is
referred to as weaving. Weaving can be done at any stage of a
program processing (at compile time, at post compile time, up
to run time) that is exhibited by different approaches.

An AOP implementation depends on a programming
language used as was said. Generally an AOP implementation
represents a programming language superset required to write
aspects and some tool(s) to weave aspects with programs. Let
us consider the most advance and popular AOP implementation
AspectJ [2] intended for the Java programming language. Note
that even though the goal of this paper is the C programming
language, nevertheless AspectJ is well suited because of C and
Java programming languages have many similar constructions
and almost all AOP implementations are more or less based on
AspectJ ideas.

Figure 1. Example of an AspectJ aspect for a graphical system logging

In using an AspectJ extension for Java a logging
functionality for a graphical system can be extracted into an
aspect showed in Fig. 1 [3]. In whole this means that before
execution of each called method from the specified ones the
given log message will be printed to a screen. The AspectJ
weaver deals with Java program bytecode and after its work
such the object code is obtained. This weaver is implemented
as a part of a special compiler. The given example shows that
an AOP implementation really strongly depends on a
programming language and a program build process. Indeed
there are more than 20 different AOP implementations just for
the Java programming language. So the main goal, to separate
cross-cutting concerns from the core ones for a given
programming language, can be reached in the different ways.

The rest of the paper is structured as follows. Section II
considers features of the C programming language and a
typical build process of programs written in the given
language. On the basis of these features and demands of the
Linux driver verification project (it’s considered there)
requirements to an AOP implementation for the C
programming language are collected. Section III describes
related work and shows how different approaches meet the
requirements pointed out in Section II. A suggested approach
of an AOP implementation for the C programming language is
introduced in Section IV. Section V estimates an application of
the suggested approach. Section VI summarizes the work done
and considers future work directions.

II. REQUIREMENTS TO AN AOP IMPLEMENTATION FOR THE

C PROGRAMMING LANGUAGE

Let us consider a typical workflow in building of a common
C program and estimate how AOP conceptions may be related
with different C constructions. It’s worth while noticing that
during the given consideration we won’t restrict a C AOP
implementation to represent just AOP constructions similar to
the AspectJ ones as it’s done by the most of AOP
implementations. On the contrary we will try to describe an
AOP implementation specific for the C programming language.
Generally speaking it’s assumed that such the implementation
won’t have any fundamental limitations for C cross-cutting
concerns separation.

Fig. 2 illustrates 3 stages of a common C program build
process, preprocessing, compilation and linking. Note that
rectangles having dash line borders represent third-party
components used by a program considered.

A. Preprocessing

At the first stage a preprocessor in depend on passed
preprocessor options includes necessary header files (both
program’s h1.h, h2.h, h3.h, … and libraries’ lib1.h, lib2.h,
lib3.h, …) into a program source code files a1.c, a2.c, a3.c, …
and expand macros there. More exactly it’s the two main
actions performed by a preprocessor but the rest ones aren’t
touched in the given paper. Both header files including and
macro expansion may be related with AOP conceptions in the
following way. Each file included to a given program source
code file and even that source code file itself can be treated as a
corresponding join point. Therefore the including process can

be modified by adding needed instructions before, after or
instead of a given file. For instance, this helps to add some
auxiliary preprocessor directives, function prototypes and so
on. Macro expansion also can be altered in the similar way. So
instead of (or before, or after) a substituted code we may put
our own code that may deal with macro arguments as well as
perform some required actions. Preprocessing is the essential C
feature because of there is just few programming languages
through all that supports it.

Figure 2. Common C program build process

B. Compilation

Then at the second stage a compiler parses a preprocessed
program source code files a1.i, a2.i, a3.i, … and produces
corresponding object files a1.o, a2.o, a3.o, … Compilation
may be affected by some build options. Traditionally AOP
conceptions are developed for constructions of the given stage.
For instance, AOP conceptions are related with
function/method definitions and calls, type/class declarations
and variable and field manipulations. Here is indeed the large
area for AOP to be involved. As for the given work it’s
suggested that there should be implemented at least support for
such join points as a function definition and call, a type
declaration, a local and global variable, field and function

h1.h h2.h h3.h …

a1.c a2.c a3.c …

lib1.h lib2.h lib3.h …

preprocessing

A program source code and header files of libraries:

a1.i a2.i a3.i …

A preprocessed program source code:

Object files of a program and libraries:

compilation

a1.o a2.o a3.o …

lib1.o lib2.o lib3.o …

linking

An executable file (or a library):

a.out

parameter set and get. The most of current AOP
implementations support just the given or even a smaller set of
join points (see Section III). Moreover C is a programming
language having pointers and a lot of operations with them.
The most popular operations like a pointer dereference and
vice versa a taking of a variable/field/parameter address and a
taking of an array element should be supported as
corresponding join points. Also it’s required that for each
mentioned join point some actions written as advice bodies can
be performed before, instead of and after a corresponding
program construction execution. Of course it isn’t a complete
list of different program join points, e.g. loop and specific
condition statements as well as a lot of different expressions
weren’t described. But indeed they also may be taken into
account sooner or later.

Both the first and the second stages weaving should
produce a correct source code or/and a corresponding compiler
internal representation. For example, advice bodies should be
substituted and be compliable as well as a given program
source code. Also for these stages a considered construction
scope (either some file or some function) plays a significant
role because of some action like a function call may be
performed either in one file or in another one, in one function
or in another one. It is important to notice that among advice
body instructions there may be some specific AOP instructions.
In the given paper they are referred to as body patterns. For
instance, there may be such body patterns as:

• a matched construction name and type (for a function
call and definition, for a variable declaration, etc.);

• matched construction argument names and types (for a
function call and definition);

• a matched construction size (for entities having an
array type or strings);

• and even a matched construction itself (e.g. to have
ability to call a matched function from inside a
corresponding advice body).

C. Linking

Linking performed at the third stage by a linker with
corresponding build options assembles given program object
files a1.o, a2.o, a3.o, … together with libraries object files
lib1.o, lib2.o, lib3.o, …. After all an executable file or a library
a1.out is obtained. It’s worth while mentioning that C program
object files to be linked shouldn’t contain the same defined
symbols such as function definitions having the same names.
So if some shared functions and global variables are required to
separate cross-cutting concerns they should be contained just in
one object file. For instance, this may help to use different
counters or flags, i.e. to save a shared context or state, and to
efficiently execute the same code by means of special auxiliary
functions (one can see an example in Section V). Interaction of
AOP directly with object files and a running program is beyond
of the given paper.

So the common C program build process, the most of key C
constructions and their influence on an AOP implementation
were considered. But the goal of the given paper isn’t to

introduce some AOP implementation for the C programming
language but is to suppose the one that can be used for real
programs. To the author’s knowledge unfortunately the most of
C AOP implementations are used just for artificial simple
examples and isn’t widely used in practice (there is some
discussion about the given issue in Section III). So the AOP
implementation concerned at this paper was strongly affected
by the Linux driver verification (LDV) project [4][5]. The goal
of that project is to provide an industrial quality toolset that
allows to use different static code analysis tools to verify
whether drivers satisfy correctness rules or not. The appropriate
way to formalize these correctness rules in the manner being
independent on a static verifier used and than to instrument a
driver source code to be checked is to use AOP. Therefore this
constrains some extra circumstances on a C AOP
implementation:

• Support of the C programming language with all GNU
extensions as an input language (it’s a standard
language for drivers writing) as well as all support of
standard and GNU build options.

• Offering of a well set of AOP constructions
corresponding to the C programming language. This is
required since correctness rules refer to different C
constructions used in different contexts. But
nevertheless aspects development should be rather
easy.

• An output should be also a correct program in C
equivalent to the original one except it may be
extended with corresponding cross-cutting concerns.
This is required by the following application of static
code analysis tools.

• An AOP implementation should be quite easy
maintained and extended with new features. This
comes because of new correctness rules are constantly
appearing, so an extra AOP constructions support is
required.

Note that nevertheless the most of these requirements are
suitable for any program written in the C programming
language (may be with allowance that this is done on the Linux
platform). So a supposed C AOP implementation appears to be
used both in the LDV project and in developing of a rather
random C program. Moreover the requirement for an output to
be a C program is useful for an AOP implementation
debugging, because of by means of this output one can easily
observe how a given AOP implementation behaves.

III. RELATED WORK

AOP for the C programming language that is the goal of the
given paper is considerably less developed in comparison with
the one for Java. At present the most interesting C AOP
implementation is ACC (AspeCt-oriented C) [6]. Fig. 3 shows
that its superset for C likes the one for Java made in AspectJ
[7]. That aspect means that after function foo2 is called its
result will be printed to a screen. ACC weaving differs from
the one of AspectJ. For a given preprocessed C file ACC
produces a corresponding C file extended with cross-cutting
concerns. Despite of ACC supports a rather large set of AOP

static void instrument_malloc_calls() {

 /* Construct a pointcut that matches calls

to: void *malloc(unsigned int). */

 struct aop_pointcut *pc =

aop_match_function_call();

 aop_filter_call_pc_by_name(pc, "malloc");

 aop_filter_call_pc_by_param_type(pc, 0,

aop_t_all_unsigned());

 aop_filter_call_pc_by_return_type(pc,

aop_t_all_pointer());

 /* Visit every statement in the pointcut. */

 aop_join_on(pc, malloc_callback, NULL);

}

state { int zero_cnt = 0; }

put.entry {

 if ($1 == 0) {

 if (zero_cnt == 4)

 abort "Queue has 4 zeroes!";

 else
 zero_cnt = zero_cnt + 1;

 }
}
get.exit {

 if ($return == 0)

 zero_cnt = zero_cnt - 1;
}

// An advice printing a message after a

// given function call is performed.

after (int res): call(int foo2(int)) &&

result(res) {

 printf(“ after call foo2, return %d\n”, res);
}

constructions it cannot deal with preprocessor ones since it
takes already preprocessed source code. Also it is intended just
for one file processing and there isn’t ability to specify some
shared variables and auxiliary functions. ACC has its own
closed C parser that fails to process some GNU extensions.
Maintenance of ACC by its developers isn’t active and due to
its core component is closed it isn’t so easy to deal with it.

Figure 3. Example of an ACC aspect

InterAspect is a more recent AOP implementation intended
for the C programming language [8]. It was developed almost
at that time when the given work was done. This tool is
interesting because of it’s based on GCC plugins [9], so it is
most likely to support all GNU extensions. Unfortunately the
InterAspect tool after all produces an object code (in fact this is
done by GCC itself) like AspectJ so it cannot be directly used
for static verification. At present the given tool supports rather
limited number of AOP constructions and preprocessor
constructions aren’t supported as well as state variables and
auxiliary functions. Instead of a C superset it provides a special
C AOP library allowing to write aspects like an usual C
program. But as one can see in Fig. 4 it seems to be even a
more complex task to write such an aspect. In fact there only a
joint point for malloc function call is defined. The tool was
actively developed recently. However its development was
stopped at the end of 2010. Nevertheless its progress should be
tracked and correlated with the suggested approach.

Figure 4. Example of a part of an InterAspect aspect

Another good approach is SLIC (Specification Language
for Interface Checking (of C)) [10]. To the author’s knowledge
it’s the only C AOP implementation that is widely used in
practice. However it has just one field of application, it’s used
during a process of static verification of Microsoft Windows
operation system drivers. SLIC allows to use state variables
and has a simple syntax for aspect writing. A SLIC
specification is indeed some kind of an aspect. The example of
a SLIC specification is demonstrated in Fig. 5. This artificial
specification states that it is an error to have more than four
zeroes in a queue. A SLIC preprocessor weaves driver source

code with a specification and after all produces equivalent C
program to be checked by means of a static verifier. A
shortcoming of the given approach is that there just few join
points are implemented (in fact just a function call and
definition). Also the given project is completely closed.

Figure 5. Example of a SLIC specification

A lot of other AOP implementations for C like C4,
Aspicere2, Xweaver project, WeaveC and so on posses a less
number of useful features than the ones described above, so
they aren’t considered in this paper. Also AOP tools dealing
with C++ even though they may be adapted in some way for
the C programming language aren’t introduced because of
usually they produce output in C++ while C is required by
static code analysis tools.

IV. OVERVIEW OF SUGGESTED C AOP IMPLEMENTATION

ARCHITECTURE

A suggested approach tends to implement all the
requirements described in Section II in the most complete way.
So after thorough investigation it was decided to base it on the
LLVM compiler infrastructure [11]. In turn this infrastructure
is built on top of GCC, it has so-called LLVM GCC Front End
binding GCC with LLVM tools. So the LLVM compiler
infrastructure inherits a GCC parsing of both C constructions
and GNU extensions and supports all GCC build options
almost as InterAspect described above. The suggested C AOP
implementation is built on top of a GCC parser itself. Because
of GCC includes preprocessing the given C AOP
implementation can deal with both preprocessing and
compilation join points. Next the LLVM tools include its own
linker and a C backend tool. The first allows to link several
object files of the whole program together, so some set of
source code files can be woven instead of an alone file. The C
backend tool is used to produce a C source code file to be
verified by a static code analysis tool. To write aspect files it
was decided to use a superset of C like AspectJ, ACC and
SLIC do. Section V contains an example of such an aspect that
is used in practice. Below the overall architecture of the
suggested C AOP implementation is considered in more
details. It’s shown how program source code files, libraries’
header files and aspect file are used and modified to weave
cross-cutting concerns with a program.

Different constructions matching and weaving are
performed through 4 stages by means of LDV GCC Front End
invocation on each stage. Then linking and a C source code file
generation are done. First of all it’s necessary to mention that

there are usually 2 aspect files. The first is intended for
weaving with all program source code files. The second aspect
file is required to define auxiliary function definitions and
global variable declarations shared between all other source
code files. The second aspect file is applied just to one program
source code file of those forming a final executable file or a
library. To make the further description more general * is used
instead of corresponding names. For instance a first aspect file
is denoted as *.aspect, and a second as *.aspect.common.

A. Aspect preprocessing

At the first stage comments of both C and C++ styles are
eliminated from both aspect files. So *.aspect.nc and
*.aspect.common.nc (where nc means “no comment”) are
obtained. Then at every stage such the modified aspect files are
parsed by means of a special parser (that is later referred to as
aspect parser) implemented as a patch for LLVM GCC Front
End. In an aspect file parsing lexical, syntax and semantic
correctness is checked. Advice bodies are looked through just
to determine body patterns. In case of some error an exact
place and an error type are reported. If a given aspect file is
correct it’s translated into own internal representation used
during matching and weaving later.

At the first stage required modifications are done for a
program source code file processed, *.c. Either before or after
or instead of it some additional source code is inserted. This is
done to process further these modifications as soon as possible,
i.e. even by means of a preprocessor because of they may
contain some preprocessor directives. By analogy with a
preprocessor a file obtained after this stage is called *.c.p (p
means “preprocessed”) and the given stage is named aspect
preprocessing. At the moment there isn’t weaving for included
files but it can be implemented in the similar way.

B. Macro weaving

At the second stage during the standard preprocessing of a
*.c.p file performed by LLVM GCC Front End using
corresponding build options (e.g. to find all included files)
macro matching and weaving are performed. So this stage is
referred to as macro weaving. When a corresponding to a given
pointcut macro directive is matched a macro body is extended
in a way required by an advice. After all there is a *.c.p.mw
(mw means “macro woven”) file that is the both aspect
preprocessed and preprocessed one.

C. Advice weaving

The third and the fourth stages correspond to the
compilation phase. Here is important to notice that we don’t
restrict an advice body source code with C constructions usage
and we don’t parse it by ourselves. Instead, advice bodies are
substituted to a given source code file as unique auxiliary
function bodies on advice pointcut matching. And then the
LLVM GCC Front End powerful parser processes them. So at
the third stage auxiliary functions required to implement advice
body actions are created in depend on join points matching and
advice requirements. Also to perform parsing of type
declaration extensions as well as to allow using of given
extensions in auxiliary functions type declarations weaving is
done at the third stage. At this stage the LLVM GCC Front End

C parser deals with a preprocessed file *.c.p.mw and produces
step by step its intermediate representation in the form of the
GCC internal representation, called later as a parsing tree. Also
parsed entities (in fact, type declarations and function bodies)
are looked through to find matches with pointcuts defined in a
given aspect file. It’s kept where matched entities are placed (to
insert either auxiliary function prototypes or to extend
corresponding type declarations later), what exact types and
names are matched to replace body patterns used in
corresponding advice bodies. After all required type
declaration extensions as well as auxiliary function definitions
with substituted body patterns and their prototypes are directly
inserted into corresponding places of an initial source code file
*.c.p.mw and a *.c.p.mw.aw (aw means “advice woven”) file is
obtained. The stage is called advice weaving.

D. Compilation

After that at the fourth final stage the inserted source code
is checked for correctness and translated into a parsing tree as
well as an initial source code. Also at the third stage matching
and weaving are performed in parsing. Here function
definitions and function body expressions are modified directly
at the level of the parsing tree and some relations with auxiliary
functions are established if it’s necessary. After the parsing is
completed LLVM GCC Front End behaves in its standard
mode and obtains an object file as well as a compiler does.

All four stages described above are summarized in Table 1.
The table shows how input data is modified and used and what
output is obtained in depend on a given stage.

TABLE I. DATAFLOW OF MATCHING AND WEAVING STAGES

Stage *.aspect *.c Build options

Aspect

preprocessing

Comments

elimination

(*.aspect.nc)

and parsing

Include join point

weaving (*.c.p)

Aren’t used

Macro

weaving

Parsing Macro weaving and

preprocessing

(*.c.p.mw)

Preprocessor

options are

used

Advice

weaving

Parsing Auxiliary functions and

declarations direct

including (*.c.p.mw.aw)

Compiler

options are

used

Compilation Parsing Function definitions and

bodies weaving,

compilation

Compiler

options are

used

E. Linking and C source code file generation

Further required object files are linked together by means
of the LLVM linker tool. As it was already mentioned for a
resultant file just one object file woven with both aspect files is
taken. For an assembled object file the LLVM C backend tool
produces a C source code file that can be processed by a static
verifier. Although the last action is optional. For example,
instead of this there is ability to produce an executable file for a
given program that is intended for some architecture supported
by the LLVM compiler infrastructure.

V. APPLICATION OF SUGGESTED C AOP IMPLEMENTATION

The suggested AOP implementation for the C programming
language is already included into a LDV project toolset. It’s

model0032a-blast.aspect
before: file ("$this") {

#include <linux/kernel.h>

#include <linux/mutex.h>

extern void ldv_mutex_lock(struct mutex *lock);

}

around: define(mutex_lock(lock)) {

ldv_mutex_lock(lock)

}

before: call(extern void mutex_lock(struct

mutex *)) {

ldv_mutex_lock($arg1);

}

model0032a-blast.aspect.common
after: file ("$this") {

#include <linux/kernel.h>

#include <linux/mutex.h>

#include "engine-blast.h"

int ldv_mutex = 1;

void ldv_mutex_lock(struct mutex *lock) {

 ldv_assert(ldv_mutex == 1);

 ldv_mutex = 2;

}

void mutex_unlock(struct mutex *lock) {

 ldv_assert(ldv_mutex == 2);

 ldv_mutex = 1;

}

void ldv_check_final_state(void) {

 ldv_assert(ldv_mutex == 1);

}

}

used to formalize few correctness rules and in driver source
code instrumentation intended for a further verification by
means of static code analysis tools.

Fig. 6 shows an example of aspect files used in verification
of the “Locking a mutex twice or unlocking without prior
locking” correctness rule. Note that these aspect files are
simplified in comparison with the actually used ones since
some extra lock functions aren’t presented. Syntax is most
likely to be rather intuitively clear. It’s worth while noticing
that there are 2 join points as for macro mutex_lock and for
function mutex_lock. This is required because of Linux kernel
can define either a macro or a function in depend on its
configuration. Function mutex_unlock is always declared as
extern, so it doesn’t require instrumentation since it can be
explicitly defined. Global variable ldv_mutex is an example of
shared state variables while ldv_mutex_lock is an auxiliary
shared function. Function ldv_check_final_state is executed at
the end of checking to ensure that nothing is locked then.

Figure 6. Example of aspect files of the supposed C AOP implementation

To estimate quality of the proposed C AOP implementation
2 experiments were performed. The first one used a specially
prepared Linux kernel configuration and corresponding kernel
function implementations (like mutex_unlock showed in Fig. 6)
while the second one used aspect files like presented in Fig. 6
and following instrumentation. Later the first experiment is
called plain and the second one is called aspect. During
experiments all drivers of Linux kernel 2.6.31.6 [12] that can
be represented as kernel modules (there are 2160 such the
drivers) were examined against the correctness rule about
mutex lock/unlock described above with help of BLAST static

code analysis tool [13]. The most interesting results
demonstrating verdict changes between plain and aspect
approaches are shown in Table II (a first verdict belongs to the
plain experiment, and the second one belongs to the aspect
one). Safe verdict means that a given driver satisfied the given
correctness rule, unsafe is the reverse one, unknown verdict
means that a static verifier used failed to check a given driver
(e.g. because of time or memory shortage or due to some
parsing error).

TABLE II. COMPARISON OF THE SUGGESTED C AOP IMPLEMENTATION

WITH ANOTHER APPROACH

Safe →

Unsafe

Safe →

Unknown

Unsafe →

Unknown

Unknown

→ Safe

Unknown

→ Unsafe

4 95 18 82 3

As one can see from Table II the supposed C AOP
implementation behaves rather well because of the number of
“bad” transitions (i.e. from safe/unsafe to unknown) almost
equals to the number of “good” transitions. There are 95 + 18 =
113 “bad” transitions and 82 + 3 = 85 “good” ones. Their
difference is just 28, that is less then 1.3% of the total number
of kernel modules.

In fact it requires more memory for a generated file
verification to be performed in the aspect experiment in
comparison with the plain one. So, 62 modules were not
checked because of memory shortage. Also in the aspect
experiment some produced by LLVM C backend C
constructions are rather complex for the static verifier used (31
modules were not checked due to the given reason). Although
the plain experiment showed that even more drivers confuse a
BLAST C parser because of complex constructions coming
from initial driver source code as is. There are 68 such
modules. The rest transitions from/to unknown verdict are
concerned with either some bugs in the supposed C AOP
implementation (20 modules for the aspect experiment) or
time/memory shortage in the plain experiment (17 modules).
Unfortunately, all additionally found unsafes (7 modules for
which safe or unknown verdict was exchanged with unsafe
one) are false positives because of either generated C file
shortcomings (like generation of big unsigned integer numbers
instead of negative ones that is demonstrated later) or
incomplete correctness rule implementation and some static
verifier lacks.

But nevertheless the most significant shortcoming of the
supposed C AOP implementation consists in a generated code
itself. Fig. 7 illustrates an example of how a driver source code
is modified after the given implementation invocation. As it
was already mentioned sometimes this prevent a static verifier
from check performing due to complex constructions
generated. As Fig. 7 shows there is a lot of variables having
prefix blast_must. This is a special workaround made as a
corresponding LLVM C backend patch. It is required to
designate so-called must-aliases, that is the aliases that alias
only one known memory location (all artificial temporary
variables are must-aliases). The suggested approach application
leads to more memory requirement for a testing to be executed.
Such the generated source code scares users trying to see on it,
for example, in analyzing unsafes or in debugging the given C
AOP implementation. In fact the LLVM compiler

drivers/pci/hotplug/fakephp.c (preprocessed)

if (strict_strtoul(buf, 0, &val) < 0)

 return -22;

if (val)

 pci_rescan_bus(slot->dev->bus);

fakephp.ko.linked.cbe.c

blast_must_tmp__85 = *(&llvm_cbe_buf_addr);

blast_must_tmp__86 =

strict_strtoul(blast_must_tmp__85, 0u,

(&llvm_cbe_val));

if ((((signed int)blast_must_tmp__86) <

((signed int)0u)))

 goto llvm_cbe_bb;

else

 goto llvm_cbe_bb1;

llvm_cbe_bb:

 *(&llvm_cbe_tmp__73) =

18446744073709551594ull;

 goto llvm_cbe_bb5;

llvm_cbe_bb1:

 blast_must_tmp__87 = *(&llvm_cbe_val);

 blast_must_tmp__88 = *(&llvm_cbe_slot);

 blast_must_tmp__89 = *((&blast_must_tmp__88-

>field1));

if ((blast_must_tmp__87 != 0ull))

 goto llvm_cbe_bb2;

else

 goto llvm_cbe_bb3;

llvm_cbe_bb2:

 blast_must_tmp__90 = *((&blast_must_tmp__89-

>field1));

 blast_must_tmp__91 =

pci_rescan_bus(blast_must_tmp__90);

llvm_cbe_bb3:

infrastructure used is responsible for this shortcoming. First of
all it deals with a GCC internal representation called GIMPLE
that already rather differs from a source code pure
representation. Next it is intended for machine independent
source code generation. So one can see large positive numbers
instead of small negative ones in Fig. 7.

Figure 7. Comarison of a driver source code with the generated one

Another big shortcoming is connected with the fact that
LLVM GCC Front End is based on the rather old GCC
compiler (of 4.2.1 version, nowadays 4.5.2 is a stable release)
while the modern Linux kernel drivers already posses such new
constructions that aren’t processed with it. So different
workarounds are required to overcome this.

After all let us imagine how different approaches
introduced in Section III could meet aspect files presented in
Fig. 6, driver source code instrumentation, following static
analysis and obtained verification results examination. First of
all none of them supports the join point concerned with the
preprocessor construction define(mutex_lock(lock)).

Then, step by step, ACC fails to parse driver source code
because of unsupported fresh GNU extensions to the C
programming language and that tool cannot be adjusted
because of it uses a closed parser. InterAspect deals with
GIMPLE representation of source code and, if we had some C
backend tool for GCC, InterAspect would produce
instrumented source code too dissimilar to the original one
almost as well as LLVM C backend. Both ACC and

InterAspect doesn’t support state variables and functions like

ldv_mutex and ldv_mutex_lock correspondingly. Most
likely that we could verify the given model by means of SLIC,
except the preprocessor issue, but in fact this is one of the
simplest model from the LDV project. Other models require
more complex join points and advice bodies, so what can we
do if SLIC supports just function calls and definitions and it is
the closed project.

VI. CONCLUSION

This paper describes an approach of how to implement
aspect-oriented programming in the way specific for the C
programming language. It considers features and shortcomings
of current implementations. After all a new implementation
that tends to cover all major features of the C programming
language as well as to take into account those features that
come from the C programs build process is considered. It’s
shown how the given C AOP implementation behaves to reach
the required intention.

For the supposed C AOP implementation its real
application for the Linux driver verification process is
demonstrated. An example of real aspect files implementing a
correctness rule associated with the mutex lock/unlock problem
is given. Also the supposed approach is compared with another
one that doesn’t use AOP. It’s shown that the given C AOP
implementation is rather good except a generated source code
is too complex for further analysis and it’s quite unlike the
original one. Mental comparison with another AOP
approaches, such as ACC, InterAspect and SLIC, is done.
Finally it becomes clear that the given approaches can not meet
all requirements imposed on the suggested C AOP
implementation by a number of reasons.

The current development of the supposed approach of the
AOP implementation for the C programming language tends to
overcome the restrictions specified above. To keep all
advantages of the supposed approach as well as to eliminate the
given shortcomings it was decided to develop our own C
backend tool intended directly for GCC itself. It’s assumed that
it’ll be built on top of stable GCC “from svn” that is it’ll parse
all modern constructions and GNU language extensions. Also
the given C backend tool should work at the low-level GCC
internal representation even before GIMPLE. Thus far a
produced source code will most likely to be very similar to the
original one. We believe that this will allow to combine
abilities of both the supposed C AOP implementation and
powerful GCC compiler to process C source code and to use
AOP.

One can obtain the current AOP implementation for the C
programming language from a LDV development site [14].
There it can be found as a part of rule-instrumentor. It’s planed
that an updated C AOP implementation will also be there soon.

REFERENCES

[1] Definitions of key AOP concepts.

http://www.aosd.net/wiki/index.php?title=Main_Page

[2] AspectJ: an aspect-oriented extension to the Java programming
language. http://www.eclipse.org/aspectj/

[3] An AspectJ example.

http://eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

[4] A. Khoroshilov, V. Mutilin, V. Shcherbina, O. Strikov, S. Vinogradov,
and V. Zakharov, “How to cook an automated system for Linux driver
verication,” 2nd Spring Young Researchers' Colloquium on Software
Engineering, vol. 2, pp. 10-14, 2008.

[5] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov,
“Establishing Linux driver verification process,” Perspectives of
Systems Informatics, vol. 5947 of Lecture Notes in Computer Science,
pp. 165-176, 2010.

[6] M. Gong, C. Zhang, and H.-A. Jacobsen, “AspeCt-oriented C,”
Technology Showcase, CASCON 2007, Markahm, Ontario, 2007.

[7] W. Gong and H.-A. Jacobsen, “AspeCt-oriented C Language Spefication
Version 0.8,” University of Toronto, 2008.

[8] J. Seyster, K. Dixit, X. Huang, R. Grosu1, K. Havelund, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Aspect-Oriented Instrumentation with

GCC,” Procedings of the First International Conference on Runtime
Verification, pp. 405-420, 2010.

[9] GCC plugins. http://gcc.gnu.org/wiki/plugins

[10] T. Ball and S.K. Rajamani, “SLIC: a Specification Language for
Interface Checking (of C),” Technical Report MSR-TR-2001-21,
Microsoft Research, 2002.

[11] The LLVM Compiler Infrastructure. http://llvm.org/

[12] Linux kernel 2.6.31.6. http://www.kernel.org/

[13] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker Blast: Applications to software engineering,” Int. J.
Softw. Tools Technol. Transf. 9(5), pp. 505-525, 2007.

[14] The LDV project. http://forge.ispras.ru/projects/ldv

