Component-Based Software Engineering and
Runtime Type Definition

A. R. Shakurov
Business Informatics Department,
Higher School of Economics,
Moscow, Russia
amir-shak@yandex.ru

Abstract—The component-based approach to software
engineering, its current implementations and theirlimitations
are discussed. A new extended architecture for sudystems is
presented. Its main architectural concepts and priniples are
considered.

Index Terms—Runtime environment, software architecture,
software engineering, software reusability

I. INTRODUCTION

Il. LIMITATIONS OF COMPONENFBASED TECHNOLOGIES

Despite the many advantages of the component agiproa
its currently existing implementations have a numbé
substantial limitations. The most difficult goal &xhieve
here is probably to find a way of designing compuséhat
will provide the necessary functionality withoutcerding
it. The necessary functionality is determined by
requirements, and these are bound to change vétlapise
of time. There’re three options to consider. Fafkall, it is
possible to introduce software with somewhat wider

SOFTWARE ENGINEERshave always pinned their hopes orgapabilities, so that it would stil be adequate ewh

the idea ofreusable codd8]. In their urge towards
eliminating code duplication, simplifying code minance,
making it less error-prone and streamlining theetigyment

requirements change. This approach, however, desnand
remarkable architectural design skills and foretsggid has
the risk of bloating the program under developnmeaking

process programmers have gone a long way from j@unsuitable for system with limited memory resms.
completely unstructured code through procedures amsgbcond of all, one can adapt the software witrcthese of
program libraries to object-oriented technologiesd a time. This would result in the most appropriatenas! as

application frameworks. Taking the code reuse ww®astep
further, the component-based software enginee@hd14]
is a very promising approach to software develogmen
The term “component instance” usually refers to a
program entity holding data and offering some fiowlity
that are hidden by a well-defined interface (cD][111]).

The concept of interface, however, varies from ongw.-rate,

technology to another: a number of “propertiestrilatites,

the most expensive software. The third option is to
introduce a component framework that would allovplace
modification of component’s functionality withoutepping
over the bounds of the component model.

Let as consider an example. ZigBee specificatids] [1
offers a suite of high level communication protacdbr
low-cost, low-power-consumption wireless
personal-area networks. It is implemented, foranse, by

member variables etc.) [13], a number of membe&fommunicational parts of microelectromechanicaltesys

functions/methods (as in most object-oriented @pgning

languages) or even an entity whose nature mayfbeuteof

scope of the component technology itself [1]. Thecpss of
combining components into a working system is atersd
to be relatively simple (e.g. [2]). Nevertheledss tprocess
is implemented differently in various technologies.

in wireless sensor networks. At the same time, the
specification is subject to frequent changes. Thiskes
manufacturers renew and release sensor firmwarehusha
difficult process due to the lack of high-level d®pment
tools for such systems.

ZigBee specification introduces network and appilica

In order to propose an optimal way for organizingayers (in addition to the PHY and MAC layers definby

component interaction, that would introduce a gbaltince
between flexibility and ease of use, let us corigisensider

the IEEE standard 802.15.4 [5]) to the protocotlstd he
topmost application layer (which is subject to freqt

main aspects of component-based models and tedieslo changes) is comprised of a number of componengBe&
and their limitations _(deta|led cqmparaﬂve analyss device objects, their management procedures, apiolic
beyond the scope of this work, see in [12] and)[14] objects. Requirements to these components arehaoiged

at the same time (application objects, for example
provided by the manufacturer and thus aren’t mashdne
the ZigBee alliance). Nevertheless, every new seled the
specification implies a new release of the whalenfiare. It

adjusting a component’s instance.

To summarize, a new component system capable of
introducing new data types by either modifying B8R
ones or creating them from scratch using a number o

would be more cost-efficient to modify only thosepredefined low-level components is needed in orter

components specification for that have changed raakle

create flexible (adaptable to changing requiremearid

the system reconfigure to make use of their ingsnccontexts of use) software for systems with limitegources.

without rewriting a binary firmware image to dewdte
memory.

To add, remove or modify certain functionality of a

component’s instance means to introduce a new coemip
because it is the component that defines functitynaf its
instances. That is, we're essentially dealing whid task of
defining a new type of data.This can be done either by
deducing new type from existing one or creatindgréim
scratch using a number of predefined low-level congmts.
We believe it's this operation that must be avadabt
runtime in order to ensure software flexibility.

This problem can be tackled in a humber of bypasgsw
such as source code, bytecode or binary co
generation/transformation, runtime compiler calistaking
advantage of programming language’s ability to rfyods
low-level runtime data structures (Java Reflectiming a
graphic example). These, however, aren’'t alwaysion.
Reflection mechanisms are primarily meant to bed use
build IDEs, source code analysis tools and GUI glesi
applications. Using them indiscriminately to buikhy
garden-variety software lays exceedingly high claion
developer and is therefore error-prone. Furthermarmny
programming languages don’t support reflectionliatfand
embedded systems often
modification frameworks. Therefore an alternatiyestem
capable of building new types from user-configure
instances without stepping over the bounds of it&leh is
needed.

To conclude the section, let us look at anothempkm
example. We're designing a GUI application and veatio
change a button’s label (the button has already
functionality attached to the application). The e is
supposed to be permanent: the button won't be redaah
runtime. Although obvious, the necessary procedisre
implemented in various frameworks with a distregdiaw:
the variable property is left variable for the fifee of the
component’s instance regardless of developer shiites.
In other words, the fact that the button’s texttismeant to

lack compilers and coggy

To achieve the goal of designing such a systemhave
analyzed advantages and limitations of existingecbj
oriented programming languages and component
technologies. This has allowed us to infer the quieciples
of the suggested component model described in &xt n
section.

The model is based on a general object-orienteal mied
is extended by other technologies’ traits when ssae/
since the need to define data types at runtime snake
%signtime and runtime essentially indistinguisbabl
Omitting a detailed consideration of specific temlogies
here (see [12] and [14] for such review), we aregdo
summarize the core principles that underlie the ehod
question.

The two primary characteristics of any developrreamd
execution environment are the principles and meshanof
data organization and control flow management. Lagpk
for those characteristics in the object-orientegiggm, one
will find the hierarchical data organization principle and
the concept of methodas the means of control flow
nagement. And while the first characteristic givs a
well-balanced solution for managing ever growing
‘éomplexity of software systems, we find the second to
be too complex and cumbersome. We believe thatehg
concept of object method (see [3] e.g.) isn't séafor
adopting it in a component model, because of its
overwhelming versatility: a method can have vagabl
Kumber of parameters and (in certain languages)riret
values, or it can have none of those; arguments bean
passed by either value or reference; methods can be
overloaded and overridden (in which case a contglitaet
of resolution rules takes the stage). The list damn
continued. The concept of method, therefore, ddesn’
provide intended ease of use (though it does haufterare
complexity well).

CORE PRINCIPLES

be mutable at runtime (should this be the designer' | contrast, the concept pfoperty introduced in some

intention) cannot be expressed by a developer.

The designtime work with an instance of a compone
and the runtime work with it are basically two difént
contexts of its use. However, these cannot be &dparated
by existing frameworks (see [13] e.g.), because ltag to
start (execute) a component (i.e. instantiatenitpiider to
either configure it or take advantage of its fumadlity.
This is the source of the troubles one encountdrienw

frameworks (C#, JavaBeans) is more suitable toneeds.
Athe property-based interaction model is simple famchal
because of the limited number of aspects descriltlieg
“property” concept: its type and applicable operasi
(usually reading and writing). However, to beconpeedect
rival (to efficiently implement callback routine,orf
example) the concept needs to be extended withittting
operation (described in following section).

To summarize, we have adopted the principle ofalue change event) whereas in Java Beans a pyogsett
hierarchical data organization and the propertycephas have multiple event types associated with it.
the means of organizing execution flow to create a
component model with a runtime data type definition

capability. We will now proceed to describe the elod B. Container

A container is an execution environment that allows the
following operations to be performed in its cont@xtithin
IV. THE MODEL it”):

. . . * instantiate any components,
The model we're going to discuss has its prototype Y P

implemented in the Java programming language. Tdrere .

let us start with describing the model from therisspoint

of view. .
While working with the application, a user intesaetith

three categories of objects, viz. components, compis’

instances and containers (which are used as baotime

and new type definition environments).

change values of properties of instances created at
the previous step,

bind instances’ properties to each other.

Apart from that, a container can be used to create
components. Its contents are considered to betatppe of
an implementation part of a future component. Teats a
new component, one has to complete this informatiah
interface specification and connect these two gagsther.
Above that, a user is able to edit metadata ofaists
constituting future implementation. All this can aehieved
with the following operations:
restricting access to instances’ properties,

A. Components and instances

An instance of a component is an aggregate of alada
behavior hidden behind anterface, the latter being the
only way to interact with this kind of entity. Waall refer
to the hidden part of an instance asintplementation, as .
opposed to the interface.

Like objects in object-oriented paradigm have @ass
instances have components that describe the wag iieds
of instances are created and function. Every igstdras a
single component associated with it and this aasioci is
immutable during the lifetime of an instance. Every
component can be instantiated without providing any
additional information. This means that primitisgoés of ~ The “sharing connection” between two instances’
data (numerical, boolean, string etc.) arent dbtua properties makes those instances share memory cell

» adding properties (with specified metadata: name,
access permissions etc) to the interface part ef th
component,

addingsharing connectionsbetween a property of
an instance that is a part of the implementatich an
a property of the interface.

components. These are usually called value-typeks tan
instantiate them one has to provide at least aevafuthe
instance to create.

In addition to contextless instantiation, comporeaitow
instantiation in a certain context (e.g. as par ebmposite
instance, see below).

Interface

Let us focus on an interface of a component’s icstalt
is comprised of a number of properties each of whg
characterized by:

« name (used to identify a property),

« value type,

(therefore changing the value of one property imédiately
reflected on the value of the other property). Tdesavior
requires a custom memory model, which we’'ll focus o
later.

Once the user has provided all the necessary data t
container, he can create a new component that will
correspond to the prototype currently in the co@ain the
sense that all of its future instances shall h&e dame
structure.

While a user is working with a container, the Ilatte
gathers all the necessary information about future
component. It is to be noted that some of thisrimfttion
can be deduced from the runtime structure of ingtarhe
user have created. For example, bindings betwestarioes’

e access permissions; any property may be accessipi@perties are analyzed only when a new type ingoei

for reading, writing and binding.

Read/write operations need no explanatiBmding S
property of a particular instance B property of another
instance ensures that whenever the valugisfchanged the

created. Other pieces of information, however, tcd®
stored within the runtime structure. For exampéstnicting
access to a property of an instance won't actuaibdify
that instance because that implies changing meta(dat

new value will be written t@. The binding operation, as it data type) of an existing instance and there’s emss in

was mentioned earlier, is needed to efficiently lanpent
callback routine and is similar to that of the Jd&@ans
model, except that there’s only one event type dery

doing that. In other words, not every user actiam be
directly reflected on the runtime structure of amtes, and
it's container who makes the process of editinghbadta
and metadata transparent to a user.

It wouldn’'t be possible to define new types at et
however, if it wasn't for a specially designed nmial
structure of components, which will be discussedtha
following section.

C. Internal structure

Let us focus on the internal architecture of thetqype
application we've developed that provides the presiy
described functionality. As it was mentioned abottes
application is implemented Java, but it can be lgasi
rewritten in any other strongly-typed object-oriht
programming language.

All the instances in the system implement commo

subscribe to the variable value change event.

Data types

We've already mentioned that the system supports
primitive value-types which are a kind of instargpes.
Another kind of instance types is components, hetd're
two different kinds of them. The first one ompiled
components These are components whose implementation
is not analyzed by the system in any way. This [isrthe
system to handle various components implementet wesi
third-party means (e.g. java bean components).

The second kind of components isomposite
components.These are components implemented by means
Bf the system itself. The implementation part @banposite

Instance interface that provides methods to aCcCeSSomponent is a structure of other components.

instance’s type and properties. Similarly, all thges
implement theType interface that provides methods to
instantiate the type and also extends the Instanegface.
Therefore, any type (and any component which igd &f
type) is an instance whose data are metadata diesgits
future instances. There is als@gpeType type, which is a
type of any type (including itself).

Let us consider the following scenario. A user mkefi a
new component with no bindable properties. Thamthele
event-listener infrastructure (that supports bigdin

Since it is a composite component that is built never
user defines a new type, this kind of component®fis
greatest interest.

Composite components

We are going to focus on the structure of metasdimtieed
in composite components. Since these metadatantdater
the structure of data in corresponding instancess, wal
discuss that structure incidentally.

Composite type (like any other type) describesriate

functionality) becomes redundant and should not bg,q implementation parts of its instances (FigyreThese

included in corresponding instances. This kind ekl
context adjustment is crucial when dealing with time
type definition and we pay great attention to it.

To implement the smart adjustment described, we'v
introduced indirect access to instances’ properfiegy’re
accessed via speciBropertyGetter, PropertySetter and
PropertyBinder objects. If there're no bindable properties

in a component then its instances end up having the

PropertyBinder object uninitialized. And if thereas least
one bindable property, then the binder object bellicreated
(but it still won't be granting access to unbindabl
properties, of course).

Memory model

As it was mentioned above, the custom memory misdel
required in order to consistently handle bindind aharing
connections between properties.

The memory model introduces traditional kinds o
“memory cells” (viz. constants and variables) that stort
instances as their values. The value can be rehdiracase
of a variable) written. The memory cell can alswéhao
value (it is said to be null in this case). Finaligemory
cells are strongly typed, which means that eveliykeews
its type and an attempt to store an instance ofnatishing
type in it produces an error.

There’s also an unconventional kind of variable -
listenable variables. As the name suggests, libtena
variables (in addition to having all the featurdsregular
variables) allow special objects (called listeners)

parts are interconnected via mechanism describledvbe

CompositeType

interface |implementation
1
ICompositeType

InterfacePart|

1
|CompositeTypeImlementationPart

Figure 1. Composite type.

An interface of an instance is a set of its prapsertso the
metadata stored in the interface part of a compoasna
set of property descriptors (Figure 2) each of Wwhic
specifies:

e property value type,
access permissions,
default value (optional).

| CompositeTypeInterfacePart |
1

0..
PropertyDescriptor

alueType : Type
efaultValue : Instance

*

Q<

1
Permissions

Boolean
Boolean
Boolean

readable :
writable :
bindable :

Figure 2. Interface part of a composite type.

Finally, implementation part of a composite type is e The property is shared. In this case not the value
metadata that describe a structure of instance$ wit of the property, but the property itself is
interconnected properties that will result fromtamgiation changed: instead of creating a new memory cell
the type. These metadata are represented in thwviiad for storing the value, an existing (provided from
way (Figure 3). elsewhere) cell is used by the instance.

CompositeTypeImlementationPart The last option is used to provide an instance {tga
subcomponentNames : Map<String, Integers instantiation context) with references to its paiastance’s
1 eventGraph| 1 properties, thus creating sharing connections batwhese
0..* properties. These connections glue interface and
SubcomponentDescriptor implementation parts of a composite instance tageth
valueType : Type

1

Composite component instantiation

0..* To demonstrate described structure at work, legois
[SubcomponentPropertyContextAdjustment through the process of composite type instantiatibine
J, 1 following algorithm implements the process.
[DefaltvalueModifier 1) Memory cells for storing values of properties are
0..* ; ;
1 ! [EventRoate estabyllshed' (one .for every property descriptor). If
PermissionsModifier — there’s an instantiation context, a reference for a
eventDestination - . . .
denyReading : Boolean existing cell is used. Otherwise a new memoryisell
genygriging : EOO{ean eventsource created, its kind (constant, variable or listenable
enyBinding ¢ Foorean|i 1 variable) being determined by respective access
SubcomponentPropertyQualifier permissions, and is |q|t|al|zed with either defal_JIt
subcomponentId : Integer value (if any) or a new instance of the correspogdi
subcomponentPropertyName : String type.

Figure 3. Implementation part of a composite type.

2) Instances constituting the implementational part of
the future component are created. This involves

To every connection between two instances that eyaluating their instantiation contexts. Every

constitute an implfementation of the future componen property descriptor is merged with corresponding
corresponds an object of the EventRoute class ftblits subcomponent property context adjustment object
two objects of the SubcomponentPropertyQualifieassl giving a new set of adjusted access permissions and
(for the beginning and the ending of the connegtidiese default value.
objects simply specify a source and a destinatibrao 3) Binding connections (i.e. event routes) are
property change event: they hold respective compshe established.
IDs and their property names. . _ 4) Proxy objects for accessing new instance’s progerti
For every instance that is a part of an implemeortabf are created (property getters, setters and binders)
the future component there’s a descriptor, an elgeclass These objects receive references to relevant
SubcomponentDescriptor. This object specifies: properties only (e.g. a setter object only holds
* Instance type, references to writable properties) and if therevare
« for every property of the instance, context any, the object is not created at all.

adjustment of that property to its use as a part of After all the steps have taken place, a new olijéctass
another instance’s implementation. ThisCompositelnstance is constructed. The construcwr i
adjustment defines modified default value (ifprovided with the type (an object of the Composyed
any) of the property (the DefaultvValueModifier class) and proxy objects. This results in a newame of
class) as well as restricts access to ihe component.

(PermissionsModifier). The described internal structure of composite carepts

A default value of a property can be modified imuanber ensures great flexibility. Since data types aréneelf by the
of different ways. (runtime) structure of regular (java) objects (apased to
* “Void” modification, the value is left intact. compiled binary or bytecode), it gives us an opyity to

Explicitly specified value (the object of the easily manipulate that structure at runtime thesting new
DefaultValueModifier class holds this value). types.

Value is another instance that's present in the

same context (implementation of the same

instance). In this case the modifier object holds V. RESTRICTIONS AND FUTURE WORK DIRECTIONS

the name of that instance. Let us discuss certain limitations to the described

solution. First of all, flexibility comes at a pecThe ability
to reconfigure software results in overhead comimrial [y

costs. This means that the proposed model should be

adopted only when implementing systems that eittare 2]
no severe restrictions on computational resourcetomot
require very high performance. Aforementioned
microelectromechanical sensors offer a graphicsneie
while having limited memory capacity, they carry no[S]
considerable performance limitations (they ususily idle [4]
for hours between sending a signal and going idkirg.
This is why the availability of remote reconfiguicat means (5]
takes precedence over elevated performance here.

Second of all, while the property-based interactisn
simple and quite flexible, it has its limitationso. For [6]
example, implementing intricate algorithms this way [7]
possible though burdensome, making a traditional
imperative-scripting style far more suitable choiseother (8]
words, the described solution should be adoptednwhiag]
there’re a great number of objects (instances) wvdth
relatively simple interaction. In addition, it's ggble to
incorporate complex logic via compiled componetitsugh
this still requires implementing it in a third-patanguage.

The described system being only a prototype, awst fi
and foremost goal is to turn it into a completatdee-reach
production-quality platform. This requires both big the

[10]

REFERENCES

Bruneton, E., Coupaye, T., Stefani, J.Bhe Fractal Component
Model specification. Version 2.0-3The ObjectWeb Consortium,
2004.

Costa Seco, J., Silva, R., Piriquito, M., “CompadeA Component-
Based Programming Language with Dynamic Reconfigurg
Computer Science and Information Syst€domSIS Consortium,
Novi Sad, Serbia, 2008, pp. 63-86.

Gosling, J., Joy, B., Steele, @he Java™ Language Specification.
3 ed, Addison Wesley, 2005.

Heineman, G.T., Councill W.T.Component-Based Software
Engineering: Putting the Pieces TogetheAddison-Wesley
Professional, 2001.

IEEE Std 802.15.4-2003 — Wireless Medium Accesst@b(MAC)
and Physical layer (PHY) for Low-Rate Wireless Beed Area
Networks (WPANS).

ISO/IEC 14772-1:1997 — Virtual Reality Modeling lguage
(VRML).

ISO/IEC 14772-2:2004 — Virtual Reality Modeling lgumage
(VRML).

Krueger, C.W., “Software reuseACM Comput. Surv. Vol. 2CM,
New York, 1992, pp. 131-183.

Mcllroy, M.D., “Mass produced software componentslaur P.,
Randell B., “Software Engineering, Report on a ewefce
sponsored by the NATO Science Committee, Garm{ehmany,
7th to 11th October 1968” Scientific Affairs Division, NATO,
Brussels, 1969, pp. 138-155.

Object Management Groughe Common Object Request Broker:
Architecture and Specification. Version 3.1. Part 8omponents
OMG document formal/2008-01-08, 2008.

[11] Redmond, F.E.DCOM: Microsoft Distributed Component Object

Model IDG Books Worldwide, Inc., Foster City, 1997.

component model and improving development tools td2] Stiemerling, O.,Component-Based TailorabilityBonn University,

make use of it. This also implies optimization teaantee
acceptable performance.

As for the practical applications, we're plannimgrnhake
use of the platform in question to introduce softwa
solutions for 2D (GUI development) and 3D (VRML [6]
[7] implementation) design, reconfigurable wirelessisors
firmware and possibly for some other purposes.

VI. CONCLUSION

We have described the main ideas and the coreipliesc
of internal organization of the new component dsttture
with extended capabilities. The ease of manipujatinth
data and metadata structure of software is not éo b
underestimated. We believe that formalized, simpd
powerful component model with runtime data type
definition capability will allow creating most cagtirable
software that will be able to evolve and adapt hanging
requirements easily.

[14] Szyperski,

[15] ZigBee Alliance, ZigBee

Bonn, 2000.

[13] Sun Microsystems IncThe JavaBeans™ API specification. Version

1.01-A Sun Microsystems Inc., 1997.

C. Component Software: Beyond Object-Oriented
Programming 2nd ed, Addison-Wesley Professional, Boston, 2002
Specification, ZigBee Document
053474r17, 2007.

