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Abstract—Composed of multiple modular robotic units, self- must remain connected. Five types of modular reconfigurable

reconfigurable modular robots are metamorphic systems that robotic systems have been proposed in the literature:
can autonomously rearrange the modules and form differ-

ent configurations for dynamic environments and tasks. Self- * Fobots in which modules are reconfigured using external

reconfiguration is to solve how to change connectivity among intervention, e.g. [11] — [14];
modules to transform the robot from the current configuration « cellular robotic systems in which a heterogeneous collec-
into the goal configuration within the restrictions of physical tion of independent specialized modules are coordinated,

implementation. The existing reconfiguration algorithms used e.g. [15] - [18];
different methods, such as divide-and-conquer, graph matching 9. ; . . .
etc, to reduce the reconfiguration cost. However, the optimal ~* Swarm intelligence in which there are generally no phys-

solution with least reconfiguration steps has never been reached. ical connections between modules, e.g. [19] — [22];
The optimal reconfiguration planning problem of finding the « modular robots composed of a few basic elements which
least number of reconfiguration steps to transform between two can be composed into complex systems and used for

configurations is NP-complete. In this paper we describe an

approach to solve this problem. This approach is based on various modes of locomotion, e.g. [23] — [25];

constructing a logical models for considered problem. « fractal systems composed of modules with zero kinematic
mobility, but which can walk over each other in discrete
I. INTRODUCTION quanta due to changes in the polarity of magnetic fields,

Modular robotics has been the subject of much interest €-9- [51, [26].
in the research community [1]. Using large numbers of In the present work, a metamorphic robotic system is a
simple modules to replace one complicated, special-purpaxglection of independently controlled mechatronic modules,
device provides benefits in terms of flexibility, robustness, a@ch of which has the ability to connect, disconnect, and climb
manufacturing cost. The challenge in these systems liesOver adjacent modules, e.g. [6]. A metamorphic system can
controlling large numbers of low-powered, unreliable modulegynamically reconfigure by the locomotion of modules over
Motion planning and shape formation for these systems is tHir neighbors. Thus they can be viewed as a collection of
main problem of such a difficult challenge. connected modular robots which act together to perform the

Metamorphic robotic systems [2] can be viewed as a largéven task. Composed of multiple modular robotic units, self-
swarm of connected robots which collectively act as a singléconfigurable modular robots are metamorphic systems that
entity. Potential applications of metamorphic systems corfan autonomously rearrange the modules and form different

posed of a large number of modules include: configurations for dynamic environments and tasks.
. obstacle avoidance in highly constrained and unstructured/iodular reconfigurable robot programming can be substan-
environments: tially more challenging than normal robot programming due

« growing structures composed of modules to form bridge@,:

buttresses, and other civil structures in times of emer-« scale / number of modules;

gency; « concurrency and asynchronicity, both in physical interac-
« envelopment of objects, such as recovering satellites from tions and potentially at the software level;

space; « the local scope of information naturally available at each
« performing inspections in constrained environments such module.

as nuclear reactors. For modular reconfigurable robots it is developed several
Self-reconfiguring robots were first proposed in [3]. Imspecialized programming languages (e.g. [27], [28]). However,
this planar system modules were heterogeneous and sesmisting programming methods show relatively poor perfor-
autonomous. Other research focused on homogeneous systesasce for reconfiguration planning problems. Note that recon-
with non-autonomous modules in two dimensions [4] — [Aguration planning problems play a central role for modular
and three dimensions [8] — [10]. In this type of system thebots (e.g. [29] —[40]). Solutions for such problems lies at the
modules are not capable of acting independently, and thusart of any control system of modular robots. Performance



of such solutions is the base factor for the performance of tf7] etc. The different geometric arrangement of modules
whole control system. So, the main challenges for modulaetween lattice-type and chain-type modular robots makes
robotic systems is an efficient planner. It has long bedheir reconfiguration planning mechanisms fundamentally dif-
recognized that traditional methods are unsuitable due to fleeent. The work in this paper is more focused on chain-
large search space and the blocking constraints imposedtyyye reconfiguration. For simplicity, we will use the term
realizable module design. To ease the planning problem, mé&nyodular robots” or simply “robots” to denote “the chain-type
groups have proposed different kinds of metamodules, groupsdular robots”, and use “reconfiguration” to denote “chain-
of modules that act as a unit for planning or motion executidgipe reconfiguration” in the following.
purposes, each specific to a particular module design [7], [38],The existing reconfiguration algorithms used different meth-
[41], [42]. ods, such as divide-and-conquer [43], graph matching [44] etc,
Poor performance for reconfiguration planning problems i reduce the reconfiguration cost. However, the optimal solu-
not surprising, since such problems are computationally hatihn with least reconfiguration steps has never been reached.
In particular, in proved that the optimal reconfiguration plarin [48] proved that the optimal reconfiguration planning prob-
ning problem of finding the least number of reconfiguratiolem of finding the least number of reconfiguration steps to
steps to transform between two configurations (ORRYRs  transform between two configurationsN#>-complete.
complete. Therefore, we need some intelligent solution for
this problem. However, the applying of distributed algorithmg_ Configuration Representation
or any iterative procedure requires a great exchange of infor-
mation between modules. This leads to the loss of solutionBefore defining the optimal reconfiguration planning prob-
accuracy and reduce performance. Therefore, it is desiral@, we would describe representation of robot's configuration
to solve ORP in a separate intelligent module which wouféfst. Two robots with the same graph topology can function
generate a final solution represented by simple instructioféfferently if the modules are connected via different con-
Note that the centralization of ORP solution allows to useectors (see e.g. [48]). To fully represent a robot's configu-
some remote computing resources and makes the performdi@®n, a special graph called C-Graph (Connector-Graph) is
independent from computing resources of modules. WheFPposed in [48]. C-Graph is the extension of normal graph

using such approach, programming of individual modul&¥ith differentiated connecting points. Each node has a finite
consists in number of ports that are internally labeled corresponding to

the connectors of a module. A connection between module
. transmission of sensory information:; u; conngckt)ortz and modgleus connectorj corresponds to an

« motor control; edge(, j) betweenu andv. , _ _

« receiving instructions for actuators. In principle we could represent a robot’s configuration as a

« processing of sensory information;

In this paper we describe an approach to solve OR%—Graph
problem. This approach is based on constructing a logical G=(V,E),
models for considered problem.

Il. OPTIMAL RECONFIGURATIONPLANNING PROBLEM

Self-reconfiguration is to solve how to change connectivity E ={e[1],e[2],...,e[m]},
among modules to transform the robot from the current con-
figuration into the goal configuration within the restrictions ofvhere:
physical implementation. Depending on the hardware design, each nodes[i] € V' represents the set
reconfiguration algorithms fall into two groups:

« reconfiguration for lattice-type modular robot and recon- v[i] = {v[i, 1],v[i,2],. .., v[i, pi]}
figuration for chain-type modular robot. In lattice-type
robot, modules lie in 2D or 3D grids; of connecting points ofith module, wherep; is the

« the reconfiguration is achieved through discrete move- number of connecting points éth module;
ments of modules detaching from the current lattice « each edge
location, moving along and surface of the robot and
docking at the adjacent cells. elj] = ([ir, l1],v[iz, l2]) € E
Example reconfiguration work includes [32] — [40] etc. In
chain-type robots, modules can form moving chains and loops
of any graph topology, and the reconfiguration is achieved
through “connect” and “disconnect” operations between mod-
ules along with the joint motion of chains composed of several
modules. Due to its difficulty, the chain-type reconfiguration
has received less attention. Existing algorithms include [43] — 1<l <pi,,1 <l < pi,.

represents a connection between moduyls connector
{; and moduleiy’s connectorl,, where

1<ip <n,1 <43 <m,



B. Reconfiguration Actions I1l. LoGICAL MODEL OF ORP

The two elementary reconfiguration actions are: . o .

. making new connections; The prpposmonal s_atlsflab_|l|ty problem (_PSAT) is a core
« disconnecting current co,nnections between modules %rt_)blem n .mgthglmatilcal logic and computing thepry. 'Propo—
connectivity rearrangement S|{|<_)nal satlsﬁaplhty is the proble_m of determlnmg |f_ the

i ' o variables of a given boolean function can be assigned in such
The robot can bend its body through module joints, S0 aRyyay as to make the formula evaluate to true. PSAT was the
two module;. with free connectors can potentially be aligngls; knownNP-complete problem, as proved by Stephen Cook
and dock with each other. in 1971 [49]. Until that time, the concept of atP-complete
problem did not even exist. Considered also different variants

) . . . _ of the satisfiability problem. For instance, Satisfiability (SAT)
The reconfiguration planning problem is defined as hoW he problem of determining if the variables of a given

modules in one configuration rearrange into another usiggojean function in conjunctive normal form can be assigned
several sets of reconfiguration actions. Basically, what cof sych a way as to make the formula evaluate to true. In
nections to make and what connections to disconnect SO @scfice, the satisfiability problem is fundamental in solving

to reconfigure from arbl_trary one shape to another? W|tho,L.1]tany problems in automated reasoning, computer-aided de-
loss of generality, we will always assume that the number gfyn, " computer-aided manufacturing, machine vision, database,
modules in the initial configuration is the same as that in thg,gtics, integrated circuit design, computer architecture de-

goal configuration. sign, and computer network design. Traditional methods treat

~ During the reconfiguration process, the reconfiguration agje satisfiability problem as a discrete, constrained decision
tions are most time- and energy-consuming, so it is a COmMgRypiem.

practice to aim at minimizing the number of reconfiguration
steps, i.e. the number of connect actions plus the number
of disconnect actions. Therefore, the optimal reconfiguratidn Reduction td®SAT
planning problem is to find the least number of reconfiguration .
steps to transform from the initial configuration into the goal Consider a set of C-Graphs
configuration.

Since the number of physical connections is predefined in {Gld]
the initial and goal configurations, the number of connect
actions is fixed once the number of disconnect action is knowhere

C. Optimal Reconfiguration Planning Problem

=(V,Elg] | 0 < q <k},

and vice versa. So we get that the optimal reconfiguration Elq) = {elg, 1], e[q,2], .. ., g, mg]}
planning problem is to find the either one of the following B
metrics: each edge

« least number of connect actions;

« least number of disconnect actions; elg, j]1 = (v[i1, 1], v]iz, 12]) € E[q]

« least number of reconfiguration steps (i.e., the number of
connect actions plus the number of disconnect aCt'Onspepresents a connection between modyle connectorl; and

For given two connected C-Graphs modulei,’s connectorly, where
I=(V.Ey) . .
1 Sll Sn,lS'LQ Sn71§ll Spi1a1§l2 Splg
and
G = (V, Ez) Let G[0] = I, G[k] = G. Now consider a set of boolean
variables

we say that there exists a reconfiguration plan with at rkost
reconfiguration steps if and only if there exists a sequence of
r < k connect and disconnect actions such that starting ffom
we obtainG and applying each of this connect and disconnect

{x[Q7ilai2;i37i4} ‘ OSQS k71 Sll Sna

actions we obtain a connected C-Graph. The decision version 1<iy <pi,1<iz<n,1<iy<py}
of optimal reconfiguration planning problem is formulated as
the following problem. Suppose that relation
OPTIMAL RECONFIGURATION PLANNING PROBLEM
(ORP): 2lg, i1, i, i3 ia] = 1

INSTANCE: C-GraphsI = (V,E;) and G = (V, Es), a
given integerk. means that
QUESTION: Whether there exists a reconfiguration plan for
C-GraphsI and G with at mostk reconfiguration steps? (v[iz, i2), v[iz,i4]) € Elq].



Consider following boolean function:

3
©

C A

(~wly, i1, 12,13, 4]V

S 1< < i=t
s= A alaiviisid = < <p
. 1§12 Spiu
1<s <n, 1 <4 <, 1<izg<n
1§52§pi17 1§i2§Pi17 12232297
1<s3<n, 1<i3<n, 122‘427;37
’ ] 4 > U5 X T
1§54§p13 1SZ4§p23a 1S16 Spiw
7 s 1<ir<n,
222223 1 <ig Spim
zi 7 Sj (i1,13) # (i5,47),
. ) 11,14 17,1
pr (i1,13) # (i, 15)
is # S4, _‘w[j7i57i6ai7?i8]))/\
i3 # s1, n?
Z‘4#s2 . . . . .
( /\ /\ w(j, i1,12,13,%4] =

l‘[q + 17@.171'272.371'4}-

It is easy to see that boolean functigfy] is satisfiable if and
only if G[q] = G[g + 1] or C-GraphGJq + 1] obtained from
G|q] by one connect or disconnect action. Therefore, it is easy
to see that boolean function

( A

(v[i1, 42], v[iz, a]) € E[0]

( A

(vlir, iz, vlis, ia]) ¢ EI0]

( A

(U[il,ig},v[ig, 24]) S E[kj]

x[07i177;27 23724} = 1)/\

‘T[07i17i25 7:377;4} = O)/\

Z[k},il,ig, i3,i4] = 1)/\
is

( A

(v[i1,d2], vlis, ia]) & E[k]

Z[k7i17i27 i37i4] = O)/\

N

1<i <n, i=1
1 <is < piy,

1 <iy < pyy

U)[], i3ai25 7;17i4])/\

1§i1§n7
1§7;2§p7;17
1§7:3§7’L,
1§714sz37
1§i5§n7

w((is — 1)n +ig, 1, 2, i3, 14] —

I‘[k,il, i27i3a Z4] = Z[kaif); 7;27i6ai4])/\

C A ¥lg))

0<g<k-—-1

satisfiable if and only if there exists a reconfiguration plan
for C-Graphsl and G with at mostk reconfiguration steps.

Note that
(a=p) < (aV-B8)A(-aV ).

Therefore[q] < ¢'[q], where

n
(A (Vwlhiiis iz, ia)A Vig= N ((@lg,ir iz, is, ia]V
1< <n, 5=1 1<s1<n, 1<4;<n,
1 <42 < pyy, 1<s2<pi, 1<i4<py,
1<iz3<mn, 1<s3<n, 1<i3<n,
1 <44 < pyy,s 1<s4<py; 1<0g <pyg,
i1 # 81,
12 7+ 52,
( /\ ( /\ (ﬁw[jl,il,ig,ig,u]\/ ig ZZ s3,
lgilﬁn, 1§j1§nn2’ i47é84,
L<iy <piss 1 < jy <, i1 7 83,
L<iz<n, 4 4 io # S4,
1<y < piy,s i3 # 51,
ig # 52

—w(ja, i1, 12, i3, 14])))A

ﬁff[q + 177;17i27i3ai4])/\



(_‘x[q, ila i?; i37 14}\/

Jj[q + 1)i17i2ai37i4]))7

n?
N N\ wliiriais,ia] =
1<i <n, i=1
1 SZZ Spiu
1 <3 <n,
1 <4 <piy

’LU[], i37i27i13i4] g

7l2

/\ ((w[j,ilaiQai37i4}v
1 S il S n, J=1
1 S Z.2 Spiu
1 < Z.3 < n,
1 <4y < piy
_‘w[j7i37i2;7:17i4])/\

(_‘w[j7i1ai27i37i4]v

U}[]7 i377;27i17i4]))‘

Sincea — < —a V 5,

N wlis — Vn+is, i, i, is, i) —
1 SZI §n7
1 SlQ Spiu
1 SZ?) Sna
1 §Z4 szp
1 §Z5 Sna

ir[ka11177:277:372'4] = Z[k7i57i27i67i4] =

/\ ~w((i5 — 1)n + i, i1, 92, 43, 44|V
1 S Z.1 S n,
1 S 7:2 Spilv
1 S i3 S n,
1 <y < piy,s
1 S Z.5 S n,
1 S i6 S n

xlk,i1,42,13, 14) = z[k, 15,12, 16, 14] &

/\ (—w((is — 1)n + g, i1, 42, i3, i4]V
1 S il S n,
1<y < pyy,s
1 < i3 < n,
1 S i4 S Dis,
1 < 7;5 < n,

((l’[]f, 7:1>7’.27,L.3c7i4]\/
ﬁz[k7i5,i2, i67i4])/\
(_'I[kail7i27i3a Z4]\/

z[k,i5, 12,76, 14])))-

So, using only—, A, andV, we obtain a boolean function

&= ( A

(v[i1, ia], v]is, i4]) € E[0]

( A

(vli1, i), vlis, ia]) ¢ E[0]

( A

(i, d2], vlis,ia]) € E[k]

( A

(vlix, i2], vlis, 1a]) ¢ E[K]

(A (Vwljiizis,ia)A
1<4; <n, =1

1 <o < piys

1<43<n,

1§Z4§p237

«C A C A

1<i <m, 1§j1§n"z’
L<ia <piys 1 < jp <,
LSissn, g g
1§Z4§p237

1'[0,7:1,i277;3, Z4])/\

_\JS[O, il,ig,ig,i4])/\

Z[k77;17i25 Z-3ai4])/\

_'Z[kuilvi27i37 Z4])/\

3

(mwlj1, 91,92, i3, 14]V

_‘w[j27i17i25 7’377’4})))/\

(A
]-Silgn? J
1 S i2 Spim

1 S Z‘3 S n,

1 S Z'4 sz‘3>

1 < Z.5 < n,

1 S Z.6 Spil?

1 S 7;7 S n,

1 <is < pi,
(ilai3) 7é (i5ai7)7
(ilai3) # (i7ai5)

—w(j, s, 46,97, 18])) A

2

3

(“w[jfila 7:272’377;4]\/
1

n2
( /\ /\((w[jvilvi%i?niél]v
1 S ’il S n, j=1

1 <42 <pyy,s

1 <i3 <mn,

1<y < pyy

_‘w[j7i37i27 Z.172'4])/\
(ﬁ’lU[j77;1,Z-2, i?niﬁdv

wlj, i3, 42,91, 14])) ) A



(N (wllis — )n+ig, i1, ia, i3, 4]V Since

1<idp <n, (a=p) & (aV-0)A(maVF)),
1 <4 <pyy,s o " "
it is clear that & , Where
1<is<n, )" [q] < " [q]
1 <iq < piy, Y] = /\ ((x[g, 51, 52, 83, 4]V
1§Z5Sn7 1§51§n7
1SZG§” 1§82§pi17
((x[kail7i2ai3;i4]v 1 S 83 S n,
1 <54 <y,
_‘Z[k7i57i277:67i4})/\ 1 S tl S n,
S 1<t <p;
- k b b) \/ _ — v
( x[ ;11,12 13,14] 1<t <n,
zlk, is, iz, i, 1]))))A 1 <t4 < pis,
(s1,52,53,54) # (t1,t2,13,t4),
( /\ w/[q]) (81782a33784) 7& (t37t4at15t2)7

0<qg<k-1 —xlg + 1,1, 82,83, 84])A

such that¢&; is satisfiable if and only if there exists a

reconfiguration plan for C-Graphg and G with at most (5zla, 1,52, 53, 54V

k reconfiguration steps. It is easy to see that the size of xlqg+ 1,51, 82, 83, 84]) )V

boolean functiorg; polynomially depends from the size of C-

Graphs. Therefore, we obtain an explicit reduction from ORP ((zlg, b1, ta, t3, ta] v

to PSAT. ﬂx[q+17t17t2,t3,t4])/\
Clearly, & is not in conjunctive normal form. Using the

distributive law, we can obtain frond; a boolean function (—zlg, t1,t2, t3, ta]V

in conjunctive normal form but this function will be have
exponential size. In some sense it is a good news. The
propositional satisfiability problem seems to become easiemMbte that
boolean functions are restricted to those in disjunctive normal ((z]g, s1, 52, 83, 4]V
form. This is because such a formula is satisfiable if and
only if some clause is satisfiable, and a conjunctive clause

$[q + 17t17t27t37t4}))'

—xlqg+ 1, 81, $2, 83, S4]) A

is satisfiable if and only if it does not contain bothand (—x[q, 51, S2, 83, S4]V
—x for some variabler. This can be checked in polynomial

time. Correspondently, the propositional satisfiability problem z[g + 1, 51, 82, 83, 54]))V
seems to become harder if boolean functions are restricted to (g, tr, to, b3, La]V
those in conjunctive normal form. From this point of view the e
impossibility of polynomial reduction frong; to a boolean —x[g + 1,t1,to, t3, t4])A

function in conjunctive normal form is a good news.
(ﬁm[Qa t17 t27 t3; t4]\/

B. Reduction tSSAT
It is easy to see that[q] < ¢"[q], where

Cf[q + 17t17t2;t3;t4])) =

(((z[g, s1, 52, 53, 84]V

ISR _
Vg = een /\ (z[q, s1, 52, S3, 54] = gt L1, 52, 53, sa])A
1< 82 <piys (—x[q, s1, S2, 83, 84|V
1 iji iz:s x[q + 1, 51, $2, 83, 84]))V
1 Eg EZH (z[q, t1, t2, ts, ta]V
1 <t3 <n, _'Jf[q+1,t1,t2,t3,t4]))/\
281% 27?3],9;34’) # (t1,t2,t3,t4), (((z[g, s1, 52, 83, 84]V
(51,82, 83,54) # (t3,t4,1,12), —xlq+ 1,51, 82, 83, 84])A
zlg+ 1, 81,52, 83,54]V (—z|q, 51, 52, 53, S4]V

x[q7t17t27t37t4] = .’I,'[q + 1at17t27t37t4])' .’l?[q + 17817 82783784}))\/



(—x[q,t1,to, ts, ta]V
zlg+ 1,61, t0,t3,t4])) &
(z[q, s1, $2, S3, 84|V
—z[q+ 1, 81, 82, 83, $4]V
x[q, t1,t2, t3, t4]V
—x[q + 1,t1,to, t3, t4])A
(—z[q, 51, 52, 53, 54]V
x[qg + 1,81, S2, 83, 84]V
x[q, t1,t2, t3, t4]V
—x[q + 1,t1,t, t3, t4])A
(x[g, 81, 2, S3, S4]V
—z[q + 1, 81, S2, S3, $4]V
—z[q, t1, ta, 3, t4]V
xlg+ 1,t1,to, ts, ta])A
(—z[q, s1, S2, 83, 84|V
z[qg + 1, 51, s2, S3, $4]V
—xlg, t1, ta, ts, t4]V
x[q+ 1,t1,t2,t3,t4]).

Therefore "’ [q] < """ [q], where

w////[q] = /\

]- S S1 S n,

1< 52 < piy,s

1 <s3<n,

1 <s4<py,

1<t <n,

1 S t2 Spilv

1<t3 <n,

1 <14 < pig,

(51, 82,83,84) # (t1,1t2,t3,14),
(51,32,53,84) 75 (tg,t4,t1,t2),

—xlq + 1,81, 52,83, 54] V x[q, t1, t2, t3, 4]V

(l‘[q, S1, 52,53, 54]\/

—xlg + 1,t1, to, ta, ta])A
(—z[q, 51, 52, 53, 54]V
x[qg + 1,81, S2, S3, 84]V
x[q, t1,t2, t3, t4]V
—x[q + 1,t1,t, t3, t4])A
(z[g, 51, 52, 83, 54]V
(g + 1,51, 52, 83, 54]V
—x[q, t1, ta, 3, ta]V
z(g + 1,1, to, ts, ta])A

(_'m[q351782353784]\/
1’1[(]+ 1?51752383754}\/
ﬁx[q?tlat23t3at4]v
.’L'[q+ 1at1at2at3at4])-
Note that
/\ (—w[(is — 1)n + g, i1, 42, 3, i4]V
1 S le é n,
1< Z'2 < Piys
1 S ig S n,
1 S Z.4 S Dis,

ISiE')Sna

((x[k,i1,42,13,14]V
_'Z[kvi57i23i6ai4])/\
(_‘I[kvilai27i3ai4]\/
Z[k7i5ai27i67i4]))) =
AN (wl(is = Vn+i, i, ia, i3, i)V
1 S z.1 S n,
1 < i2 < Diys
1< i3 < n,
1 S 7:4 S Dis,

1§i5§n7
1§16§n

xlk,i1,12,13, 4]V
—z[k, 15,12, 16, 14] ) A
(—w[(is — V)n + ig, 11, 92, i3, 14V
—xlk, i1, 12, 13,14V
z[k, 5, 12,16, 94]))-
So, we obtain a boolean function

L= ( A

(v[i1, i2], vlis, ia]) € E[0]

( A

(v[ix, i2], vlis, 1a]) ¢ E[0]

( A

(U[i],ig},v[ig,@;]) € E[k’]

( A
(v[i1, izl Vi, ia]) & E[K]

2

1<4<n, J
ISiQSPiU
1§i3§n7

1 <44 < piy,

.’I}[O, i17i2ai3; 7/4])/\

[0, 11, @2, 13, 94]) A

Z[ka 7:171'2a7:37i4])/\

ﬁz[k” i17i2ai3; 7/4])/\

3

w(j, 1,192,143, 14])) A
1



/\ ( /\ (mwlj, i1, 2,13, 14]V
1§i1§n7 1§j1§nn2’
1§i2§pi171§j2§n"2
Lsizsn, g 24

1 <44 < piy,s

)
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IV. CONCLUSION AND EXPERIMENTAL RESULTS

In recent years, many optimization methods, parallel al-
gorithms, and practical techniques have been developed for
solving the satisfiability problem (see [50]). In particular,
proposed several genetic algorithms [51] — [54]. Considered
hybrid algorithms in which the approach of genetic algorithms
combined with local search [55].

Modern propositional satisfiability solvers are usually de-
signed to solve SAT formula encoded in conjunctive normal
form (CNF). Stochastic local search techniques have been suc-
cessful in solving propositional satisfiability problems encoded
in CNF. Recently complete solvers have shown that there are
advantages to tackling propositional satisfiability problems in
a more expressive natural representation, since the conversion
to CNF can lose problem structure and introduce significantly
more variables to encode the problem. CNF solvers can
be disadvantageous for problems which are more naturally
encoded as arbitrary propositional formula. The conversion to
CNF form may increase the size of the formula exponentially,
or significantly reduce the strength of the formulation. The
translation may introduce many new variables which increases
the size of the raw valuation space through which the solver
must search. Recently, interest has arisen in designing non-
clausal satisfiability algorithms (see e.g. [56] — [63]).

Relatively high efficiency demonstrated by algorithms based
solely on local search. Of course, these algorithms require
exponential time at worst. But they can relatively quick receive
solutions for many boolean functions. Therefore, it is natural
to use a reduction to different variants of the satisfiability
problem to solve computational hard problems.

Encoding problems as Boolean satisfiability and solving
them with very efficient satisfiability algorithms has recently
caused considerable interest. In particular, local search algo-
rithms have given impressive results on many problems. For
example, there are several ways of SAT-encoding constraint
satisfaction [64] — [73], clique [74], planning [75] — [95],
and colouring problems [74], [96] — [98]. The maximum cut,
vertex cover and maximum independent set problems can be
reduced to MAX-2-SAT [99] — [101]. There are a number of
implicit reductions from the Hamiltonian cycle problem to the
satisfiability (SAT) problem (see [74], [102], [103]).

In previous section we obtain an implicit reduction from
the optimal reconfiguration planning problem of finding the
least number of reconfiguration steps to transform between
two configurations to some variants of satisfiability: PSAT,
SAT. We create a generator of special hard and natural
instances for the optimal reconfiguration planning problem of
finding the least number of reconfiguration steps to transform
between two configurations. We use algorithms from [104].

such thaté, is satisfiable if and only if there exists a re-Also we design our own genetic algorithm for SAT which
configuration plan for C-Graph$ and G with at mostk based on algorithms from [104]. We use heterogeneous cluster
reconfiguration steps. It is easy to see that the size of booldmsed on three clusters (Cluster USU, Linux, 8 calculation
function &, polynomially depends from the size of C-Graphsodes, Intel Pentium 1V 2.40GHz processors; umt, Linux, 256
Since & in conjunctive normal form, we obtain an explicitcalculation nodes, Xeon 3.00GHz processors; um64, Linux,
reduction from ORP to SAT.

124 calculation nodes, AMD Opteron 2.6GHz bi-processors)



[105]. For computational experiment we create special haud] Beni, G. Concept of Cellular Robotic Systerfsoceedings of the IEEE
test sets and natural test sets. Special hard test sets based dﬁ;gfg”ationa' CSVmPOSi“rS” on Intelligent Contrpages 57-62, Arlington,
. : 1988. IEEE t Press.
ideas from [106]. Natural test sets based on ideas from [48]1%& ompulter Soclety Press

0

) - . Beni, G., and Wang, J. Theoretical Problems for the Realization of
tests we consider systems consisted from approximately Distributed Robotic System®roceedings of the 1991 IEEE Conference

of modular robots. on Robotics and Automatippages 1914-1920, Sacramento, 1991. IEEE

Computer Society Press.
Each test was run on a cluster of at least 100 nodes. FP;] Fukuda, T., and Nakagawa, S. Dynamically Reconfigurable Robotic

special hard test sets: the maximum solution time was 16" systemsProceedings of the 1988 IEEE Conference on Robotics and Au-
hours; the average time to find a solution was 33.2 minutes; the tomation pages 15811586, Philadelphia, 1988. IEEE Computer Society

; . ; ress.
best time was 116 seconds. For natural test sets: the maxi Fukuda, T., and Kawauchi, Y. Cellular Robotic System (CEBOT) as One

solution time was 9 hours; the average time to find a solution” of the Realization of Self-organizing Intelligent Universal Manipulator.
was 9.8 minutes; the best time was 9 seconds. Based on ourProceedings of the 1990 IEEE Conference on Robotics and Automation
experiments we can say that considered model can be useg g}gage_s 662-667, Cincinnati, 1990. IEEE Computer Society Press.

. 19] Beni, G., and Hackwood, S. Stationary Waves in Cyclic Swarms.
an efficient planner. Proceedings of IEEE International Symposium on Intelligent Control
pages 234-242, Los Alamitos, 1992. IEEE Computer Society Press.
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