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Abstract—Many robotic problems are computationally hard.
Implementation of various heuristics for solving such problems
greatly complicates the development of efficient software for
robotic systems. In recent years among developers of robotic
software formed a direction of the development of individual
solvers. Such solvers are designed for specific hard problems.
It should be noted that developed specialized programming
languages for robotic logic. These languages allow efficient scale
logic circuits produced by the solver for large robotic complexes.
On this basis it can be argued that now the main problem in this
area consists in the developing efficient solvers themselves. In this
paper we consider an approach to design of an efficient solver
for the problem of placement of visual landmarks. In particular,
we present a formalization of the problem of placement of
visual landmarks for navigation of mobile robots. We show that
this problem is NP-complete. Also we propose an approach to
solve this problem. Our approach based on the construction
of a logical model. In our construction we give an explicit
polynomial reduction from the problem of placing of visual
landmarks to the maximum satisfiability problem. Such approach
provides effective solution of the considered problem using a high
performance computing.

I. I NTRODUCTION

Many robotic problems are computationally hard. In partic-
ular, we can mention planning problems, pattern recognition,
pattern matching, localization problems, mapping problems,
SLAM (simultaneous localization and mapping) and many
others. Implementation of various heuristics for solving such
problems greatly complicates the development of efficient
software for robotic systems. In recent years among developers
of robotic software formed a direction of the development
of individual solvers. Such solvers are designed for specific
hard problems [1] – [4]. It should be noted that developed
specialized programming languages for robotic logic [5], [6].
These languages allow efficient scale logic circuits produced
by the solver for large robotic complexes. On this basis it can
be argued that now the main problem in this area consists in
the developing efficient solvers themselves. In this paper we
consider an approach to design of an efficient solver for the
problem of placement of visual landmarks.

Visual navigation is extensively used in contemporary ro-
botics (see e.g. [7] – [11]). In many cases methods of the
visual navigation based on some algorithms of the selection
of visual landmarks. Note that even for other approaches (e.g.
reactive motion (see, in particular, [12] – [14]) or topological

navigation [15] – [19]) appliance of visual landmarks as an
additional method allow significantly increase performance of
a navigation system. We can use not only artificial landmarks
[20] – [22] but also different objects from environment (see
e.g. [23] – [30]).

Navigation systems based on landmarks are most simple
and efficient method of orientation. An appliance of artificial
landmarks provides a reliable way of autonomous operations.
But for appliance of artificial landmarks we need either initial
equipment of coverage area of the robot or the robot itself
should have a function of self-installation of landmarks. In
both cases decreasing of the number of landmarks have signif-
icantly influences on improvement of the robot performance.
Another way consist in an implementation of natural land-
marks. It is allows to avoid a cost of the landmarks installation.
But in this case we need essentially more effective methods of
visual information processing than for artificial marks (see e.g.
[31], [32]). In particular, for search even a simple regularity
we need to solve someNP-hard problem (see e.g. [33], [34]).
When we do not have sufficiently fast algorithms for solving
such problems, we use some self-learning navigation systems
(see e.g. [25]). This leads to fast growth of landmarks data
base and, finally, to dramatic drop of performance of on-
board computer systems. Therefore, problem of minimizing
of interest for both artificial and natural landmarks. In the
first case we need to minimize the cost of installation of
landmarks. In the second case we minimize an expense of
computational resources for the new landmarks search and for
the identification of available landmarks. A question about
a minimization of the number of used landmarks can be
formalized as some algorithmic problem where we need to
find an explicit placement of landmarks. This placement must
safeguard a navigation of mobile objects in a specified area.

II. PROBLEM DEFINITION

Usually, a problem of placement of visual landmarks in a
three dimensional space can be reduced to such problem in a
two dimensional space. Frequently, an appropriate reduction
can be obtained using the fact that range of heights is too
small in compare with horizontal coordinates (an underwater
navigation) or by a sampling with a large step (an aero-
space navigation). In both cases we can place a set of points,
which corresponds to different heights in the one cell of



sampling. When the range of heights is too large and horizontal
coordinates have a small variation (a navigation inside a
skyscraper), usually, space is divided on horizontal layers lying
in one plane. Thus, without loss of generality, we can consider
a problem of placement of visual landmarks in the discrete
spaceZ2, whereZ is the set of integers. Also we identify
every elementx of Z2 with a square with sides equal to one
and the center inx. A set of points inZ2 which of interest to
navigation we denote byN . Note thatN is not necessarily
a connected area. For instance, we can be interested only
in surface facilities and a part of the surrounding area can
be covered by water. LetS be a set of points inZ2 which
permissible to placement of landmarks. It is natural to assume
that we are dealing with some limited regionR such that
N ⊆ R, S ⊆ R. Since the deployment regionR can contain
obstacles or visual landmarks can be visible not from all points
of space, it is natural to assign for each point of the setS its
own field of vision which is defined by the function

F : S → 2R.

We can suppose thatF is given by the sequence of pairs
consisting of elements ofS and corresponding subsets. We
also consider some constantd which determines a minimal
number of necessary landmarks. Note that the value ofd,
usually, does not exceed 4. In the form of a satisfiability
problem the considering problem can be formulated as follows:

THE PROBLEM OF PLACEMENT OF VISUAL LANDMARKS

(VL):
INSTANCE: A finite setR, S ⊆ R, N ⊆ R, F : S → 2R, a

natural parameterk, and a natural constantd.
QUESTION: Is thereT ⊆ S such that|T | ≤ k and for all

y ∈ N there isD ⊆ T such that
y ∈ F (x) for all x ∈ D;
|D| ≥ d?

III. C OMPLEXITY OF VL

Theorem. VL is NP-complete.
Proof. Note thatT ⊆ S. Therefore, the number of elements

in T is limited by the number of elements inS. A size ofF (x)
for x ∈ T is limited by the size ofN . It is evident that the
value

∪x∈T F (x)

is computable in polynomial time from the number of elements
in T and the size ofF (x). So, for the problem VL there is a
polynomial algorithm of checking. Therefore, VL is inNP.

Now to prove the theorem it is sufficient to show the
hardness of VL. We reduce the 3-set exact cover problem to
VL. The 3-set exact cover problem is a well knownNP-hard
problem [35]. Initial data of this problem is the set

U = {1, 2, . . . , n}

and the set

Σ = {Xi | 1 ≤ i ≤ r, Xi ⊂ U, |Xi| = 3}.

In this problem we need to find out whether there isΠ ⊆ Σ
such that for allX, Y ∈ Π we have a following

X ∩ Y = ∅,

∪X∈ΠX = U.

When n is not divisible by three, the answer is trivially
negative. So, without loss of generality, in the 3-set exact cover
problem we can assume thatn is divisible by three.

Let d = 1, k = n
3 ,

N = {((n + r − 1)(2(r − 1) + 2i− 1), 0) | i ∈ U},

S = {((n + r − 1)(n + r − 1 + 2(j − 1)),

(n + r − 1)(n + r − 1)) | 1 ≤ j ≤ r}.

For any point

Sj = ((n+r−1)(n+r−1+2(j−1)), (n+r−1)(n+r−1))

from S consider the triangleTj with vertices in this point and
points

Aj = (2(n + r − 1)(j − 1), 0)

and
Bj = (2(n + r − 1)(n + r + j − 2), 0).

Suppose that for anym, 1 ≤ m ≤ n+r−1, the segment with
vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2)),

represents a tight space of zero width if and only ifm−r+j 6∈
Xj . Assume that the signal propagates rectilinear and define
F (Sj) as a set of pointsx of triangleTj such thatx is visible
from Sj . As R we consider rectangle, the bottom left corner
of which is located at the point(0, 0) and a upper right corner
of which is located at the point

(2(n + r − 1)(n + 3r − 3), 2(n + r − 1)(n + r − 1)).

It is easy to see that values ofR, S, N , F , k, d is defined
correctly and their size polynomially depends from the initial
data. LetT ′

j be a triangle with verticesSj ,

A′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2),

(n + r − 1)(n + r − 2)),

and

B′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r),

(n + r − 1)(n + r − 2)).

Note that

~AjSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−



2(n + r − 1)(j − 1), (n + r − 1)(n + r − 1)) =

((n + r − 1)(n + r − 1), (n + r − 1)(n + r − 1)),

~A′
jSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(j − 1)− (n + r − 1)(n + r − 2),

(n + r − 1)(n + r − 1)− (n + r − 1)(n + r − 2)) =

(n + r − 1, n + r − 1).

So, ~AjSj = (n + r − 1) ~A′
jSj . Therefore,

~AjSj ‖ ~A′
jSj .

In this caseA′
j ∈ AjSj . Since

~BjSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(n + r + j − 2), (n + r − 1)(n + r − 1)) =

(−(n + r − 1)(n + r − 1), (n + r − 1)(n + r − 1)),

~B′
jSj = ((n + r − 1)(n + r − 1 + 2(j − 1))−

2(n + r − 1)(j − 1)− (n + r − 1)(n + r),

(n + r − 1)(n + r − 1)− (n + r − 1)(n + r − 2)) =

(−n− r + 1, n + r − 1),

it is easy to see thatB′
j ∈ BjSj . Clearly, in this case

AjBj ‖ A′
jB

′
j .

Thus, trianglesTj andT ′
j are similar with the similarity ratio

n + r − 1.

It is easy to see that for allj segments with vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2)),

1 ≤ m ≤ n + r − 1, give us a partition of the segmentA′
jB

′
j

into n+ r−1 equal parts. It is evident thatA′
j+1 = B′

j where
j < r,

A′
j = (2(n+r−1)(j−1)+(n+r−1)(n+r−2)+2(m−1),

(n + r − 1)(n + r − 2))

wherem = 1 and

B′
j = (2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2))

wherem = n + r − 1. From this and from the similarity of
trianglesTj andT ′

j we obtain that points of the segments with
vertices

(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0)

and
(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)

is visible from the pointSj if and only if points of the
segments with vertices

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2(m− 1),

(n + r − 1)(n + r − 2))

and

(2(n + r − 1)(j − 1) + (n + r − 1)(n + r − 2) + 2m,

(n + r − 1)(n + r − 2))

not form an obstacle. Therefore, the segments with vertices

(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0)

and
(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0),

is visible from the pointSj if and only if

m− r + j ∈ Xj .

Consider the point

Ni = ((n + r − 1)(2(r − 1) + 2i− 1), 0).

It is easy to see that the pointNi belongs to the segment

[(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0);

(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)]

if and only if

2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1) ≤

(n + r − 1)(2(r − 1) + 2i− 1) ≤

2(n + r − 1)(j − 1) + 2m(n + r − 1).

Hence,
(n + r − 1)(2(r − 1) + 2i− 1)−

2(n + r − 1)(j − 1)− 2(m− 1)(n + r − 1) ≥ 0,

2(n + r − 1)(j − 1) + 2m(n + r − 1)−

(n + r − 1)(2(r − 1) + 2i− 1) ≥ 0.

Therefore,

2(r − 1) + 2i− 1− 2(j − 1)− 2(m− 1) =

2r − 2 + 2i− 1− 2j + 2− 2m + 2 =

2r + 2i− 2j − 2m + 1 ≥ 0,

2(j − 1) + 2m− 2(r − 1)− 2i + 1 =

2j − 2 + 2m− 2r + 2− 2i + 1 =

2j + 2m− 2r − 2i + 1 ≥ 0.

Let i = m− r + j + a. In this case we have

2a + 1 ≥ 0,



−2a + 1 ≥ 0.

So, a = 0. Therefore,i = m − r + j. Clearly,Ni belongs to
the segment

[(2(n + r − 1)(j − 1) + 2(m− 1)(n + r − 1), 0);

(2(n + r − 1)(j − 1) + 2m(n + r − 1), 0)]

if and only if
i = m− r + j.

Therefore, the pointNi is visible from the pointSj if and
only if i ∈ Xj .

IV. A L OGICAL MODEL FORVL

Since the problem VL isNP-complete, there is no polyno-
mial time algorithm for finding a solution for this problem.
However, since the considered problem is of significant prac-
tical use, we need to find a fast algorithm for solving this
problem.

Well known, many problems with practical applications
belong to the class of computational complexityNP. Also
all problems from theNP can be polynomially reduced to
the problem of satisfiability of a Boolean function (SAT) (see
e.g. [36]). This problem can be formulated as follows

BOOLEAN SATISFIABILITY PROBLEM IN CONJUNCTIVE

NORMAL FORM (SAT):
INSTANCE: A Boolean function

g(x1, x2, . . . , xn)

in conjunctive normal form.
QUESTION: Is there an assignment of the set of variables

such that
g(x1, x2, . . . , xn) = 1?

The satisfiability problem is a core problem in mathematical
logic and computing theory. In practice, SAT is fundamental
in solving many problems in automated reasoning, computer-
aided design, computer-aided manufacturing, machine vision,
database, robotics, integrated circuit design, computer ar-
chitecture design, and computer network design. Traditional
methods treat SAT as a discrete, constrained decision problem.
Many optimization methods, parallel algorithms, and practical
techniques have been developed for solving SAT. Recently,
in the domain of development of fast algorithms to solving
SAT was achieved a substantial progress (see, in particular,
[37]). Most studies have focused on genetic algorithms and
algorithms of local search. Note that significant attention is
focused both on SAT and its optimization version MAXSAT
(see e.g. [36]) which can be formulated as follows.

MAXIMUM SATISFIABILITY PROBLEM IN CONJUNCTIVE

NORMAL FORM (MAXSAT):
INSTANCE: A Boolean function

g(x1, x2, . . . , xn)

in conjunctive normal form.

QUESTION: Is there an assignment of the set of variables
such that in the function

g(x1, x2, . . . , xn)

the maximum number of clauses is true?
Recently, proposed several genetic algorithms [38] – [41].

Considered also hybrid algorithms based on combinations of
genetic algorithms and local search algorithms [42]. Relatively
high efficiency can be achieved for algorithms based solely on
the local search. Of course, these algorithms run in exponential
time in worst case. But they can relatively fast obtain a solution
for many Boolean functions arising in practice. So, a reduction
from hard problems to SAT and MAXSAT for its solving
acquires a practical sense. For example, such approach was
considered for hamiltonian path problem in [43], [44].

Consider a reduction the problem VL to the MAXSAT. For
all i, 1 ≤ i ≤ n, consider a set

Mi = {p | bi ∈ F (ap)}.

It is easy to see that the system of setsMi, 1 ≤ i ≤ n, can be
constructed in polynomial time. Obviously, if for somei we
have a following inequality|Mi| < d, then the solution for
the problem VL is negative.

Thus, in further, without loss of generality, we assume that
for all i it is true that|Mi| ≥ d. Therefore, for alli we can
consider the system

Mi,1,Mi,2, . . .

from
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!

pairwise different subsets of the setMi each of which consists
from |Mi| − d + 1 elements.

Directly from the definition ofMi,j follows that if for some
i and arbitraryj each of setsMi,j contains at least one number
of a point of a landmark location, then from the pointbi is
visible at leastd landmarks.

We interpretxl = 1 as presence of some landmark in the
point with the numberl. Hence, we obtain that∧

1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)
(d−1)!

(
∨

l ∈ Mi,j

xl)

is true if and only if from the pointbi is visible at leastd
landmarks.

Now we show that

ϕ = (
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ sr))∧

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ ¬sr))∧



(
∧

1 ≤ t ≤ m

¬xt)

provides a reduction from VL to MAXSAT.
Note that inϕ the total number of clauses is equal to

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!
+ m.

It is easy to see if there is a required placement of landmarks,
then the Boolean function

(
∧

1 ≤ i ≤ n,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

∨
l ∈ Mi,j

xl)∧

(
∧

1 ≤ i ≤ n,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

∨
l ∈ Mi,j

xl)

is satisfiable. This obviously implies a satisfiability of the
Boolean function

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ sr))∧

(
∧

1 ≤ i ≤ n,
1 ≤ r ≤ m + 1,
1 ≤ j ≤ |Mi|(|Mi|−1)...(|Mi|−d+2)

(d−1)!

((
∨

l ∈ Mi,j

xl) ∨ ¬sr)).

If there is required placement of landmarks, then in the
Boolean functionϕ at least

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!

clauses is true.
Suppose, that there is no required placement of landmarks.

Then there isi and j such that the Boolean function∨
l ∈ Mi,j

xl

is false. Therefore for allr either

(
∨

l ∈ Mi,j

xl) ∨ sr

or
(

∨
l ∈ Mi,j

xl) ∨ ¬sr

is false. Thus, in the Boolean functionϕ no more then

2n(m + 1)
|Mi|(|Mi| − 1) . . . (|Mi| − d + 2)

(d− 1)!
− 1

clauses is true. Therefore, we obtain a reduction from VL to
MAXSAT.

V. CONCLUSION AND EXPERIMENTAL RESULTS

In previous section we obtain an implicit reduction from
VL to MAXSAT.

New algorithms allow ordinary desktop computers to solve
boolean functions in conjunctive normal form, which has more
than 10000 conjuncts (see e.g. [43]). There is a well known site
on which posted solvers for SAT [45]. Currently on the site
published 16 implementations of algorithms for solving SAT.
They are divided into two main classes: stochastic local search
algorithms and algorithms improved exhaustive search. All
solvers allow the conventional format for recording DIMACS
Boolean function in conjunctive normal form and solve the
corresponding problem [46]. In addition to the solvers the site
also represented a large set of test problems in the format of
DIMACS. This set includes a randomly generated problems
of satisfiability.

For the computational experiments we used heterogeneous
cluster based on three clusters:

• The cluster of Ural State University (8 computational
nodes, Linux, processor Intel Pentium IV 2.40GHz);

• The cluster umt of Institute of Mathematics and Me-
chanics, Ural Branch of the Russian Academy of Sci-
ences (256 computational nodes, Linux, processor Xeon
3.00GHz) [47] (see also [48]);

• The cluster um64 of Institute of Mathematics and Me-
chanics, Ural Branch of the Russian Academy of Sciences
(124 computational nodes, Linux, dual-core processor
AMD Opteron 2.6GHz bi-processors) [47] (see also [48]).

In our experiments we used own genetic algorithm MSAT
and two standard solvers [45] (fgrasp and posit). Computa-
tional experiments were carried out on standard tests [45] and
tests, obtained by special generators creating a natural data for
the problem VL and for a number of others robotics problems.

The total was carried out 14 runs of cluster in the format of
100 nodes on 20 hours. For summarizing final statistics were
selected 200 tests. Chosen tests was countered by three solvers
in 5 modes with constraints on the limit of time

• no restriction;
• 10 seconds;
• 100 seconds;
• 500 seconds;
• 1000 seconds.

We found that all three solvers have about the same per-
formance. The best average velocity is showed by fgrasp. A
slightly lower average velocity is showed by posit. Genetic
algorithm showed a worst average velocity. From other hand
we found that algorithms of local search are more resource
demanding then the genetic algorithm. In particular, on some
tests fgrasp could not finish the execution.

From our experiments we obtain an important property
of genetic algorithm. Algorithms of local search showing
relatively smooth results on several tests but genetic algorithm
has a significant difference (from 26 seconds to 12 hours) in
time during the test execution. The total trend can be described
as follows. In many cases run time ranges from few seconds



Fig. 1. An artificial landmark.

Fig. 2. Semi-artificial landmarks.

to few minutes. However, on a small set of Boolean functions
a run time of genetic algorithm increased to 10-12 hours.

Our experiments have shown that our approach can be
used for design of an efficient solver for the problem of
placement of visual landmarks. Further advantages we can get
by improving our genetic algorithm.

The first author developed a software package for processing
video data to compute three-dimensional coordinates of ob-
jects [49]. This software package is designed for visual naviga-
tion on landmarks. To date, an intelligent system allowing the
use of artificial (specially designed) and semi-artificial (located
in a special way but not specifically designed) landmarks of
various types implemented (e.g. Fig. 1 and 2).

Module of visual navigation based on landmarks used as
part of the onboard control system of various modifications
of robots Kuzma-I (e.g. Fig. 3 and 4) and Kuzma-II (e.g. Fig.
5 and 6). The onboard control system with module of visual
navigation based on landmarks of a modifications of Kuzma-
II (Fig. 5) was demonstrated at the International Exhibition
INNOPROM – 2010 (15.07.2010 – 17.07.2010).

For our experiments on intelligent control systems, we use

Fig. 3. Robot Kuzma-I. Design of this robot based on the well-known
RC cars. From RC-CAR AT-10ES Thunder Tiger [50] we use only the four
wheel chassis, the high torque DC-MOTOR and a steering servo. The DC-
MOTOR drives the chassis and a steering servo controls the direction. The
electronic system based on SSC-32 microcontroller. Onboard computer based
on a motherboard with x86 compatible processor AMD Geode LX600 for
embedded systems. The robot is equipped with USB web camera Live! Cam
Video IM Pro (VF0410) [52].

Fig. 4. Another modification of Kuzma-I. The robot is equipped with
modified Lynxmotion [51] robotic arm and 2 x USB web camera Live! Cam
Video IM Pro (VF0410).

a testbed composed of these mobile robots and a stationary
monitoring system. In particular, we study different algorithms
of visual navigation based on landmarks. In general, good
results of robotic experiments do not guarantee high efficiency
of algorithms. Perhaps experiments are conducted in too
simple environments. Our theoretical results help us to select
appropriate methods as well as testbeds to demonstrate them.
Some of our robots are able to add their own landmarks
(e.g. Fig. 4 and 5). They use a wireless connection to a
supercomputer to run the solver for VL to plan their actions.
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Fig. 5. Robot Kuzma-II. Design of this robot based on the well-known Johnny
5 Robot [53]. By utilizing heavy duty polypropylene and rubber tracks with
durable ABS molded sprockets the robot has excellent traction. It includes two
12vdc 50:1 gear head motors and the Sabertooth 2 x 5 R/C motor controller.
The electronic system based on SSC-32 microcontroller. Onboard computer
of this robot is Asus Eee PC 1000HE. The robot is equipped with modified
Lynxmotion robotic arm with wrist rotate and USB web camera Live! Cam
Video IM Pro (VF0410).

Fig. 6. Another modification of Kuzma-II. The robot is equipped with a 2
DOF robotic camera (USB web camera Live! Cam Video IM Pro (VF0410)).
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