

SYRCoSE 2012

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the 6th Spring/Summer Young Researchers’ Colloquium on
Software Engineering

Perm, May 30-31, 2012

Perm
2012

Proceedings of the 6th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2012), May 30-31, 2012 – Perm, Russia:

The issue contains the papers presented at the 6th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2012) held in Perm, Russia on 30th and 31st of May, 2012.
Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include software development technologies, programming languages,
testing and verification of computer systems, analysis of programs, information systems, image and
video processing and others.

Труды 6-ого весеннего/летнего коллоквиума молодых исследователей в области
программной инженерии (SYRCoSE 2012), 30-31 мая 2012 г. – Пермь, Россия:

Сборник содержит статьи, представленные на 6-ом весеннем/летнем коллоквиуме молодых
исследователей в области программной инженерии (SYRCoSE 2012), проводимом в Перми 30
и 31 мая 2012 г. Отбор статей производился на основе рецензирования материалов
программным комитетом. На коллоквиум допускались как полные статьи, так и краткие
сообщения, описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: технологии разработки программ;
языки программирования, тестирование и верификация компьютерных систем; анализ
программ; информационные системы, обработка изображений и видео и др.

ISBN 978-5-91474-019-8

© Авторы, 2012

Contents

Foreword··6

Committees / Referees··7

Invited Talks

Getting Software Engineering out of Isolation

P.G. Larsen, J.W. Coleman, J. Fitzgerald···9

Time Series Analysis by Soft Computing Methods

N.G. Yarushkina··16

Software Development Technologies

Meta-Model and Platform for Quickly Build Software Applications
 A. Degtyarev, Yu. Rogozov···21

Application of SADT for Source Code Generation in Learning the Programming Fundamentals
 M. Kustov, G. Bogdan, N. Datsun···28

Technology for Creating 3D Realtime Applications in Android OS
 I. Polotnyanshchikov, L. Zalogova··34

Programming and Modeling Languages

Sisal: Parallel Language Development

R. Idrisov···38

MetaLanguage: A Tool for Creating Visual Domain-Specific Modeling Languages
 A. Sukhov, L. Lyadova···42

New Developments of the Computer Language Classification Knowledge Portal
 A. Akinin, N. Shilov, A. Zubkov···54

Testing and Monitoring of Computer Systems

Generating Test Cases With High Branch Coverage for Web Applications
 A. Zakonov, A. Shalyto··59

MicroTESK: An ADL-Based Reconfigurable Test Program Generator for Microprocessors
 A. Kamkin, A. Tatarnikov··64

Run-Time Monitoring for Model-Based Testing of Distributed Systems
 V. Fedotov···70

Distributed Testing of Multicomponent Systems
 B. Tyutin, I. Nikiforov, V. Kotlyarov···75

Static Verification and Symbolic Computations

An SDVRP Platform Verification Method for Microprocessor-Based Systems Software

S. Shershakov··79

3 of 230

Instantiation-Based Interpolation for Quantified Formulae in CSIsat
M. Mandrykin, V. Mutilin··85

Translation of UML Statecharts to UPPAAL Automata for Verification of Real-time Systems

D. Zorin, V. Podymov··94

Enhancement of Automated Static Verification Efficiency through Manual Quantifiers Instantiation

D. Buzdalov···102

Symbolic Computations in .NET Framework

Yu. Okulovsky, I. Medvedev··105

Computer Networks and Telecommunication Protocols

The Bufferbloat Problem and TCP: Fighting with Congestion and Latency

A. Sivov··109

Detecting Faults in TFTP Implementations using Finite State Machines with Timeouts

M. Zhigulin, S. Prokopenko, M. Forostyanova···115

Formalization of Initial Requirements for the Design of Wireless Sensor Networks

M. Kislyakov, S. Mosin··119

Computer Science

On Temporal Properties of Nested Petri Nets

L. Dvoryansky, D. Frumin···122

Checking Service Compatibility via Resource Conformance

I. Romanov··127

Elaborating on the Alias Calculus

A. Gerasimov···130

Internal and Online Simplification in Genetic Programming: an Experimental Comparison

Yu. Okulovsky, Ya. Borcheninov···134

Dynamic Analysis of Programs

Execution Analysis of ARPC Programs in the Environment of the Recursive Parallel Programming

A. Sedov···139

Towards a HLA-Based Hardware-In-the-Loop Simulation Runtime

E. Chemeritskiy···144

The Spruce System: Quality Verification of Linux File Systems Drivers

K. Tsirunyan, V. Martirosyan, A. Tsyvarev··151

Deterministic Replay of Program Execution Based on Valgrind Framework

M. Ryndin··157

Simulation Analysis Framework Based on TRIAD.NET

G. Kolevatov, E. Zamyatina··160

4 of 230

Information Systems and Data Mining

Meta-Database for the Information Systems Development Platform

Yu. Rogozov, A. Sviridov, S. Kucherov···164

The Problem of Creating Multi-Tenant Database Clusters

E. Boytsov, V. Sokolov···172

Automation of QA in the Project of DB Migration from SQL Server into Oracle

E. Baranov, I. Kirilenko··178

One Approach to Document Semantic Indexing Based on Multi-Agent Paradigm

G. Sokolov, V. Lanin···182

One Approach to Metadata Inclusion in Electronic Documents

V. Bessonov, V. Lanin···186

Data Mining Techniques in Real-Time Marketing

V. Gromov···191

Image and Video Processing

Multistroke Mouse Gestures Recognition in QReal metaCASE Technology

M. Osechkina, Yu. Litvinov, T. Bryksin···194

Novel Heuristics for Deconvolution Applied to Picture Deblurring

E. Olenuk, M. Gromov··202

Application-Specific Methods and Tools

A Semiotic Approach to the Intelligent Chinese CALL System Development

T. Osotova, S. Chuprina··206

Scheduling Problem Solutions in Transport Enterprises

A. Orlov···213

EnergoWatcher – The Platform for Creating Adaptable Energy Monitoring Systems

E. Kalashnikov··220

Development Experience of Ore Extraction and Traffic Simulation System in Potash mines – Bundled
Software “Рудопоток”

G. Chudinov··224

Research of Methods for Constructing Message-Passing Interprocess Communication Based System for
Railroad Situation Analysis

D. Kobyakova··227

5 of 230

Foreword

Dear participants, we are glad to meet you at the 6th Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE). This year’s event is held in Perm, a major
administrative, industrial, scientific, and cultural center. The colloquium is hosted by the Perm
branch of National Research University – Higher School of Economics (NRU HSE), one of the
most prestigious universities in Russia. SYRCoSE 2012 is organized by Institute for System
Programming of the Russian Academy of Sciences (ISPRAS) and Saint-Petersburg State
University (SPbSU) jointly with NRU HSE.

Over the past years, Software Engineering (SE) has becoming a more mature scientific and
technical discipline. However, being rapidly developed (as many others computer-related fields
of knowledge), it cannot clearly identify its methods, object(s) of research and relation with other
disciplines. Thus, in particular, it is not easy to determine a particular domain of some SE
research. Such “fuzziness” has a certain influence on conferences and workshops on SE and
information technologies in whole. SYRCoSE is not an exception. These proceedings contain
not only papers on software development and analysis (SE in a restricted sense), but application-
specific works as well (e.g., image processing and data mining).

In this year, Program Committee (consisting of 35 members from 22 organizations) has selected
40 papers. Each submitted paper has been reviewed independently by two or three referees.
Participants of SYRCoSE 2012 represent well-known universities and research institutes such as
A.P. Ershov Institute of Informatics Systems of RAS, Donetsk National Technical University
(Ukraine), ISPRAS, Moscow Institute of Physics and Technology, Moscow State University,
Novosibirsk State University, NRU HSE, NRU Saint-Petersburg State Polytechnical University,
NRNU “MEPhI”, Perm State National Research University, Russian-Armenian (Slavonic)
University (Armenia), SPbSU, Saint-Petersburg NRU of Information Technologies, Mechanics
and Optics, Taganrog Institute of Technology of Southern Federal University, Tomsk State
University, Ural Federal University, Ural State University, Vladimir State University and
Yaroslavl Demidov State University (3 countries, 11 cities and 19 organizations).

We would like to thank all the participants of SYRCoSE 2012 and their advisors for interesting
papers. We are also very grateful to the PC members and the external reviewers for their hard
work on reviewing the papers and selecting the program. Our thanks go to the invited speakers,
Prof. Peter Gorm Larsen (Aarhus University, Denmark) and Prof. Nadezhda Yarushkina
(Ulyanovsk State Technical University). We would also like to thank our sponsors, Russian
Foundation for Basic Research (grant 12-07-06018-г), Microsoft Research, ICS and Prognoz.
Finally, our special thanks to Galina Volodina (Director of NRU HSE – Perm), Valery Arkhipov
(Deputy Director of NRU HSE – Perm), Lyudmila Lyadova and Vasilisa Korchagina for their
invaluable help in organizing the colloquium in Perm.

Sincerely yours

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
May 2012

6 of 230

Committees

Program Committee Chairs

 Alexander Petrenko – Russia
Institute for System Programming of RAS Andrey Terekhov – Russia

Saint-Petersburg State University

Program Committee

 Habib Abdulrab – France
National Institute of Applied Sciences, INSA-Rouen

 Tiziana Margaria – Germany
University of Potsdam

 Sergey Avdoshin – Russia
NRU Higher School of Economics

 Igor Mashechkin – Russia
Moscow State University

 Eduard Babkin – Russia
NRU Higher School of Economics

 Valery Nepomniaschy – Russia
Ershov Institute of Informatics Systems, RAS

 Svetlana Chuprina – Russia
Perm State National Research University

 Elena Pavlova – Russia
Microsoft Research

 Victor Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

 Ivan Piletski – Belorussia
Belarusian State University of Informatics and
Radioelectronics

 Efim Grinkrug – Russia
NRU Higher School of Economics

 Vladimir Popov – Russia
Ural State University

 Maxim Gromov – Russia
Tomsk State University

 Yury Rogozov – Russia
Taganrog Institute of Technology, Southern Federal
University

 Vladimir Hahanov – Ukraine
Kharkov National University of Radioelectronics

 Nikolay Shilov – Russia
Ershov Institute of Informatics Systems, RAS

 Shihong Huang– USA
Florida Atlantic University

 Ruslan Smelyansky – Russia
Moscow State University

 Alexander Kamkin
Institute for System Programming of RAS

 Valeriy Sokolov – Russia
Yaroslavl Demidov State University

 Vsevolod Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

 Vladimir Voevodin – Russia
Research Computing Center of Moscow State University

 Oleg Kozyrev – Russia
NRU Higher School of Economics

 Dmitry Volkanov – Russia
Moscow State University

 Daniel Kurushin – Russia
State National Research Polytechnic University of Perm

 Mikhail Volkov – Russia
Ural State University

 Alexander Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

 Rostislav Yavorsky – Russia
Witology

 Irina Lomazova – Russia
NRU Higher School of Economics

 Nina Yevtushenko – Russia
Tomsk State University

 Yury Lukach – Russia
Ural State University

 Vladimir Zakharov – Russia
Moscow State University

 Lyudmila Lyadova – Russia
NRU Higher School of Economics

Organizing Committee Chairs

 Alexander S. Kamkin – Russia
Institute for System Programming of RAS Lyudmila N. Lyadova – Russia

NRU Higher School of Economics

7 of 230

Referees

Sergey Avdoshin Tiziana Margaria

Eduard Babkin Valery Nepomniaschy

Igor Bourdonov Elena Pavlova

Mikhail Chupilko Alexander Petrenko

Svetlana Chuprina Andrew Petukhov

Denis Efremov Ivan Piletski

Rustam Galimulin Vladimir Popov

Victor Gergel Svetlana Prokopenko

Efim Grinkrug Yury Rogozov

Maxim Gromov Natalia Shabaldina

Vladimir Hahanov Petr Shestov

Shihong Huang Nikolay Shilov

Alexander Kamkin Sergey Smolov

Olga Kondratyeva Valeriy Sokolov

Vsevolod Kotlyarov Andrey Tatarnikov

Oleg Kozyrev Andrey Terekhov

Daniel Kurushin Dmitry Volkanov

Natalya Kushik Mikhail Volkov

Anna-Lena Lamprecht Rostislav Yavorskiy

Alexander Letichevsky Nina Yevtushenko

Irina Lomazova Vladimir Zakharov

Ludmila Lyadova Sergey Zelenov

8 of 230

Getting Software Engineering out of Isolation
(Invited Paper)

Peter Gorm Larsen and Joey W. Coleman
Aarhus University

Department of Engineering
Finlandsgade 22, DK-8200 Aarhus N, Denmark

e-mail: {pgl,jwc}@iha.dk

John Fitzgerald
Newcastle University

School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK

e-mail: John.Fitzgerald@ncl.ac.uk

Abstract—We argue that the main challenges to be overcome in
developing future generations of IT-enabled products and services
lie not so much in the software engineering discipline itself as in
the collaborative relationships that software engineers have with
other disciplines. We briefly review the need for more emphasis
on multi-disciplinary approaches and consider three classes of
demanding system: embedded products, systems-of-systems and
cyber-physical systems. In each of these areas, we argue that
there is a need for engineering with formal semantic bases that
enable joint modelling, analysis and simulation of groups of
heterogeneous models.

Index Terms—Formal methods, multi-disciplinarity, modelling,
simulation, systems-of-systems, cyber-physical systems, embed-
ded systems

I. INTRODUCTION

The discipline of “software engineering”, the origins of
which are traceable to the NATO conferences of the late 1960s,
emerged from a perceived need for a well-founded discipline
underpinning a technical response to a software crisis [1],
[2]. Unfortunately, the success rate of software development
projects is still far from ideal [3], [4]. We would speculate
that the rise of software engineering as a separate discipline
has brought a real risk that software developers are distanced
from the other engineering disciplines involved in product
development. It almost seems a truism to say that software
engineers need to understand well the system in which their
product will operate, but the separation of engineering teams
and phases in development still militates against this. The
growth in embedded systems, and in networked integrations of
software-rich systems, makes it imperative for software engi-
neers to find ways of developing systems collaboratively with
disciplines that may use quite radically different modelling and
analysis techniques. This implies global system models that
encompass cyber and physical elements, enabling the analysis
and trade-off of decisions across the boundaries between these
domains.

The mono-disciplinary nature of most engineering edu-
cations contributes to the challenge here. Graduates trained
as experts in one single discipline may have difficulties in
understanding stakeholders from different disciplines and the
challenges that they face. As a result, solutions that are glob-
ally optimal from a system-wide perspective are not reached
because modelling and analysis work tends to focus on mono-
disciplinary optimisation. There is a need in our education

system to ensure that students get at least a feel for the
significant design parameters from other disciplines.

One example of such an opportunity for collaborative
engineering is between control and software engineering.
Modelling embedded systems that are intended to affect the
physical world is a significant challenge [5]. Models of the
physical world often involve differential equations that de-
scribe how the world changes over time; these models are
based on continuous mathematical domains. Models of digital
controllers –often software-based– usually do not reference
time at all and instead treat the model of the controller in
terms of discrete events that trigger specific reactions from the
controller; these models are based on discrete mathematical
domains [6]. In order to be able to appropriately balance
concerns from control engineering with software engineering
and taking potential faults into account a common model that
can be analysed is needed [7]. The challenge can be further
extended when different systems can provide added benefits
for its users by interaction with other systems. There is a new
emerging discipline for the proper engineering of such System
of Systems (SoSs). Here the challenges cannot be solved using
software engineering or system engineering principles alone.
The scaling here gives new research challenges that clearly
can get inspiration from existing engineering disciplines but a
multidisciplinary approach is necessary again.

In this paper we look at the need for multidisciplinarity
in engineering education in Section II. In Section III, we
focus on how software engineering aspects might be combined
with consideration of the physical world surrounding software.
Section IV discuss scaling software development up to the
level of “Systems-of-Systems”. Section V takes this further
on to cyber-physical systems that have aspects of both em-
bedded systems and systems-of-systems. Section VII provides
concluding remarks and identifies future research directions
aiming at getting software engineering out of isolation.

II. MULTIDISCIPLINARY ENGINEERING EDUCATION

Most university studies are highly specialized within a sin-
gle discipline –to the point of being strictly mono-disciplinary
at some universities– in order to impart a sufficient depth of
skill to the students. This approach is true of most European
universities and many North American institutions as well.

9 of 230

As a contrast, there are universities, mostly in North Amer-
ica though some are in Europe, that follow the liberal arts
tradition. These institutions require that students take courses
from outside of their chosen discipline. This applies mostly
to programs offered at the Bachelour’s level, as Master’s level
degrees remain specialized even at liberal arts institutions.

At all levels of education, however, it is important that
the students have some significant exposure to challenges and
terminology from other disciplines [8]. Without this exposure
there is a substantial risk that students starting their careers will
face challenges in understanding and collaborating with peers
and stakeholders from different disciplinary backgrounds. The
question is how to best prevent this situation from happening,
and how to provide the appropriate tools for students to over-
come this situation when it does occur. Practical experience
suggests the direction of a broader answer to this question.

A summer school with the aim of providing students with a
multi-disciplinary angle to their studies has run since 2008 in
Denmark, in collaboration with Bang & Olufsen [9]. The sum-
mer school is entitled “Conceptual Design and Development
of Innovative products”. Students with different disciplinary
and cultural backgrounds are combined in mixed groups. Each
group then receives assignments that require them to use their
combined skills to solve it appropriately. This requirement
for collaboration is rooted in problem-based learning princi-
ples [10]. The results of delivering this summer school series
has been so successful that the idea is being exported and
expanded with a similar summer school in China in 2012.

A similar multidisciplinary summer school for PhD students
was delivered for the first time in Portugal in 2012, titled “In-
novation and Creativity for Complex Engineering Systems”.
Here the focus was more on producing multidisciplinary
research plans. This summer school is also project-based but
more teacher-led lecturing was included to give the students a
better understanding of specific topics, such as how to write
multidisciplinary research plans.

The challenge is to get such stand-alone events incorporated
into the standard curriculum used in (engineering) educations
such that all students get exposed to this kind of experience
during their studies. We believe that a first start of this is
to ensure that all (engineering) students get a joint course
on system engineering [11]. However, we believe that col-
laboration across disciplines and respect for the challenges in
other disciplines will only fully be achieved if the students try
to solve multi-disciplinary assignments in multi-disciplinary
groups.

In the spirit of the liberal arts traditions seen in Bachelor’s
education, we would ultimately like a similar “technical arts”
tradition for specialist Master’s degrees. This is most important
for those programs whose topic inevitably leads to cross-
disciplinary collaboration. This proposal is not to introduce
a “general science year” into the curricula, but rather to
ensure that the graduates of specialist Master’s programs have
significant exposure to the terminology and challenges of other
scientific disciplines.

The incorporation of a stand-alone multidisciplinary project

course –tacking problems that require input and skills from
many disciplines– into the regular curriculum is a first step
towards a technical arts tradition. The main challenges for
implementing these courses are mainly of practical adminis-
tration since such courses typically need to be coordinated
between different disciplinary studies and across different
departments. However, if it was successfully implemented the
students would get out of isolation of their own discipline and
as a consequence be much better at solving more complicated
challenges at the general system level when they would enter
their professional careers.

III. EMBEDDED SYSTEMS

An embedded system is a computer system designed for
specific control functions within a larger system, often with
real-time computing constraints [12]. It is embedded as part
of a complete device often including hardware and mechanical
parts and typically with less interface towards human users.
By contrast, a general-purpose computer, such as a Personal
Computer (PC), is designed to be flexible and to meet a wide
range of end-user needs. Embedded systems control many
devices in common use today.

The DESTECS project1 has taken a first step in the di-
rection of crossing between different disciplines necessary in
the embedded control domain [13]. This project addresses
collaborative, multidisciplinary design of embedded systems
using methodology and tools that promote rapid construction
and evaluation of well-founded system models.

One of the main impediments to the design of embedded
real-time control solutions is the separation of engineering
disciplines. While control engineering typically uses tools
operating on Continuous-Time (CT) models, software engi-
neering is founded on Discrete-Event (DE) models. In order
to evaluate alternative designs and support early defect analysis
or correction, it is essential that engineers collaborate across
disciplines in short windows of opportunity [14], [15]. Model-
based approaches provide a way of encouraging collaboration,
but engineers need to jointly perform design evaluation and
analysis using models expressed in different tools. These tools
should reflect the relevant aspects of the design in a natural
way, but also allow consistent, rapid analysis and comparison
of models. Achieving this requires advances in CT modelling;
formal DE modelling of controllers and architectures; fault
modelling and fault tolerance; and open tools frameworks.
These various advances are the aim of the DESTECS project.

An Example: Train Carriage Braking

It is simply impossible to develop a useful controller without
close interaction between the disciplines of control engi-
neering, software engineering, mechanical engineering and
electrical engineering. Each of these will have their own estab-
lished modelling techniques and formalisms. As an example,
consider the development of software for controlling the speed
of railway carriages by applying the brakes. Associated with

1“Design Support and Tooling for Embedded Control Software”
http://www.destecs.org

10 of 230

each carriage, control software takes account of environmental
conditions (e.g. current speed, temperature, friction etc.) and
fixed design parameters (e.g. number and position of wheels,
mass of the carriage etc.) in order to determine how best to
apply the brakes on command from the driver or safety unit. It
only makes sense to talk about the behaviour of this software
in the context of the product of which it is a part – the railway
carriage as a whole.

Imagine one scenario for the development of the braking
system. Well-established control laws for this type of brak-
ing system are developed using tools based on continuous
time models (perhaps using numerical solutions to differential
equations as a simulation). These laws are passed to software
developers who discover that the laws cannot be directly
implemented on the processors available because certain cal-
culations necessary for processing the data from the sensors
cannot be completed quickly enough within the processor
schedule. By this stage in the development process it may be
too late to modify the carriage design, or use alternative and
better sensors. The CPUs for the controller software will often
have been fixed and even purchased some time previously,
so they cannot be replaced with faster processors. The only
remaining option may be to modify the schedule running on
the processor, so that some other functionality affecting less
critical functions, like the smoothness of the ride, for example,
have to be rescheduled, compromising performance and the
quality of the product. In practice, there can often be a slow
iterative process in which control laws are re-engineered and
re-implemented several times before a compromise is reached,
reducing time to market.

Fig. 1. A 20-sim model of a train carriage braking built from bond graphs
and iconic diagrams.

If the developers could model the control laws collabora-
tively and at the same time as the software, some of these diffi-
culties might be reduced. For example, an alternative choice of
sensor might be made, replacing the original design with one
that does pre-processing of the data, and this could be checked
out and evaluated at the modelling stage. In DESTECS, we
build such collaborative models (co-models) which represent
the semantic integration of the software design, based on DE
computation models in VDM, with the CT models of the plant
and control laws in a bond graph formalism supported by the

20-sim environment (see Figure 1). For our example, such a
co-model would contain:

• A CT model encompassing the wheels of the carriage,
their friction and force linkages to the track, and the
braking mechanism itself.

• A DE model of the control software, including the main
control loop. This may also include the supervisory
control software which manages system functionality a
level above the loop control, including the switching of
modes, error detection and recovery. In our experience,
supervisory control accounts for 80% of the software
content of an embedded product, and can be a greater
source of potential defects than the loop controller itself.
The DE model can readily be expressed in VDM with its
real-time extensions. In our example, supervisory control
might be responsible for switching alternative control
laws into force if the temperature of the brakes exceeds
a certain value, or invoke emergency braking modes if
signalled to do so from the train driver’s cab.

• An interface (in DESTECS this is termed the contract)
between the two models defining the shared design
parameters that both sides need to know, the shared
variables that are monitored or controlled and any events
of interest. Events are logical predicates that may cause
the simulation of the CT-side model of the plant to be
interrupted in order so that a response can be generated
by the controller (for example if a sensed value crosses
a threshold).

The question of where to place the models of sensors and actu-
ators is interesting. In many cases it is appropriate to describe
them “CT-side”, but digital control might sometimes suggest
placing them DE-side. The co-model as a whole presents an
interface to a co-simulation engine that allows the CT and DE
models to be executed together. The co-simulation engine im-
plements a reconciled operational semantics of the two models,
managing the synchronisation of time and state between them.
The co-simulation can proceed under the control of a script
that implements a particular scenario in terms of the actions of
the environment (for example in raising a braking signal), and
the invocation of fault models that may be built in to the DE or
CT models. The exploration of the space of design alternatives
is enabled by such co-simulation. Multiple scenario-based tests
can be used to assess the performance of either alternative
plant or controller designs. In our example, this could include
an assessment of alternative numbers and configurations of
sensors (modelled CT side) with a appropriate changes of
control loop (DE-side). Being able to perform design space
exploration at an early stage is the essence of successful
system design, and the example emphasises the extent to
which this is a multi-disciplinary activity enabled by software
engineers work in collaboration with others, and certainly not
alone. The challenges that remain in such cross-disciplinary
assignments are much more complex and important to tackle
than those that remains inside software engineering itself.

11 of 230

IV. SYSTEMS-OF-SYSTEMS

Modern network technologies are enabling the integration
of pre-existing computing systems into “Systems-of-Systems”
(SoS) that together deliver a service that the constituent sys-
tems could not offer alone [16]. Examples include emergency
response systems formed from the coalition of information
systems of the response services such the ambulance, hospital
and fire services. The public who expect responsive emergency
services may demand confidence that the SoS will deliver
safe, rapid and secure transfer of patient data between these
systems. Examples on another scale might include the audio-
video ecosystem in a home in which digital content is streamed
from multiple sources to multiple users via a range of systems
provided by different manufacturers. The customer experienc-
ing the SoS expects to have a consistent experience (such as
a common playlist) as they move through the ecosystem from
device to device. The manufacturers of the devices also need to
demonstrate that they will respect the digital rights agreements
in force for the content as it is played through their devices,
even though they may be delivered through another system in
the SoS.

While embedded systems are often characterised by closed
loop control, SoS are more general, are distributed, and
typically have more human interaction. The distinguishing
characteristics of SoSs are:

• Operational independence: A SoS is formed by het-
erogeneous constituent systems, many of which may not
have been originally designed for participation in the SoS.
They may be described using a wide range of methods
and require modification, for example, through wrapping
or linking interfaces, in order to achieve integration

• Managerial independence: The constituent systems may
be managed independently and so can change function-
ality or character during the life of the SoS in ways that
are not foreseen when they are originally composed.

• Distribution: Constituent systems may be distributed
and decoupled, and yet a communications infrastructure
should support the protocols necessary to facilitate coor-
dination between them.

• Evolutionary development: The independence of con-
stituent systems means that the SoS changes over time to
respond to changing goals or component characteristics.

• Emergence: SoSs exhibit behaviour that their compo-
nents do not exhibit on their own.

In a rather conventional view of software engineering,
software systems are constructed in a highly directed way
by teams who are usually within the same organisation, and
who (at least on paper) have a shared understanding of the
goals of the system being developed. The components can
be designed to use carefully defined interfaces that violate
their independence by revealing data and services in order to
manage their collaboration. The operational and managerial
independence characteristics mean this is not the case. One
category of SoS (“directed” SoS [17]) does allow for a master
that has the power to get owners of other constituent systems

to adapt to their wishes, but SoS that adhere to this structure
are comparatively rare. In general, the characteristics listed
above pose major challenges to conventional “closed” software
engineering methods if we wish to develop SoS that are de-
pendable. Independence means that developers can have only
limited knowledge of, and confidence in the likely behaviour
of constituent systems. Distribution (in some cases also mo-
bility) can compound the difficulty of gaining confidence
in concurrent behaviours. The need to manage evolutionary
development means that some ability to cope with change must
be built-in. Above all the reliance on emergence means that the
verification of global SoS-level behaviour must follow from
the composition of the behaviours of individual constituents.
As our emergency response and audio-video examples show,
in practical terms, SoS Engineering is challenged by the large
number and range of stakeholders (the owners and operators of
the constituent systems as well as the users who experience the
SoS as a whole). Here again, software cannot be developed in
isolation and thus software engineers need to be able to think
in a SoS setting where they cannot control all parts.

The COMPASS2 project that aims to develop systematic
engineering principles that are applicable to SoS design,
including the scaling-up of modelling and validation tech-
niques from a formal methods to address the SoS challenges.
COMPASS is defining the first formally based modelling
language specially designed to target the SoS area [18]. The
challenge of constituent system independence is addressed by
recording contracts that express our limited knowledge about
constituents, constraining, but not completely prescribing, their
range of behaviours. Global SoS-level properties are verified as
the composition of the properties guaranteed in the constituent
system contracts.

Example: Interoperable Train Carriage Systems

An important objective of development work in the rail
sector is to increase the interoperability of railway equipment
such as carriages from different suppliers, so that it becomes
possible to mix them in the same “set” or train, for example
by coupling trains from different railway systems at national
borders, to form larger trains.

A train made up from a heterogeneous collection of com-
ponent carriages is a form of a SoS, and Figure 2 gives a
partial representation of this. The constituent systems are the
information and computing systems in each carriage. These
constituents were not necessarily designed with the intention
of being in a mixed set, and they will generally be running
software that is managed and upgraded by suppliers who
are independent of each other. They are networked in the
train and geographically distributed, and the software in each
manufacturer’s carriage can change with time. In spite of
all this, we expect them to deliver a consistent emergent
experience to the passengers on board. The developers of
train systems are unlikely to subjugate their own corporate

2This is an acronym for “Comprehensive Modelling for Advanced Systems
of Systems”.

12 of 230

goals to those of the SoS, so this is not a “directed” SoS. We
would not risk simply plugging carriages together, so some
level of explicit cooperation is needed, even at the level of
ensuring data transfer, so this is not a “virtual” SoS either [16].
Rather, depending on the degree of explicit cooperation, it is
an “acknowledged” or a “collaborative” SoS.

Control bus

Engine

Carriage 1

Carriage 2
Doors

...

Fig. 2. Diagram of a system of train carriages.

A model of this SoS contains contractual descriptions
for each of the services offered at the boundaries of each
carriage and other constituent systems. Such contracts involve
assumptions and guarantees. For example, the contract on a
door locking service of a constituent system might record a
guarantee to lock the doors within 3 seconds of receiving
a specified signal; the assumption might be that the signal
comes with a valid carriage identifier. Contracts also record the
constraints on interaction behaviours, recording for example
that a “Lock the doors” command is acknowledged once the
doors have been locked, or a special response denoting failure
if the locks did not work. Furthermore, the door locking
services of all carriages must communicate with the control
bus on each carriage, and each carriage’s control bus must
cooperate with the busses on connected carriages and with the
control system in the engine.

In COMPASS, we work on formalisms for contracts that
support the description of both functional and interaction
behaviours. Verifying a global property, such as the fact that
all of the train’s doors will be locked, or failure acknowledged
within a specified time, should follow from the contracts of-
fered by the constituents. For such a SoS we require not merely
that data should be syntactically compatible between units, but
that there should be a semantic mapping, so that “Lock the
doors!” is interpreted in similar ways in all carriages of the
train. In SoS engineering, as in embedded systems, software
engineers have to deal with heterogeneity of systems and
models, and cannot confine their analysis to mono-disciplinary

approaches. This again provides a need to think outside the
isolated software engineering discipline.

V. CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems (CPS) are integrations of multiple
computing and physical processes, with the potential to design
and adapt both computing and physical elements to improve
efficiency and resilience of the system as a whole [19], [20].
This encompasses the conventional control systems which
typically are represented in a static setup. However CPS can
also be seen in increasingly dynamic settings. Examples of
mobile cyber-physical systems include applications to track
and analyse Carbon Dioxide emissions [21], detect traffic
accidents and provide situational awareness services to first
responders [22], measure traffic [23], and monitor cardiac
patients [24].

The engineering challenges associated with developing
dependable CPS combine those of embedded systems and
systems-of-systems. The ultimate goal here is to be able
to analyse trade-offs of design alternatives that cross the
boundaries between cyber and physical elements, as with em-
bedded systems, but also between multiple cyber and multiple
physical elements. As with SoS, the integrator has only limited
knowledge and confidence about the constituent computing
and physical elements, so these can only be modelled in
contractual terms. In a CPS setting, we need to consider
a range of interfaces between physical and cyber elements,
including force or other physical phenomena, and not merely
data. Indeed, the field of rigorous engineering methods for
dependable CPS is still in its infancy [25].

Example: Controlling the Train!
In our multi-carriage train example, the SoS formed by

distributed control of the diverse carriage braking systems
forms a CPS. Developers requiring to verify that braking
commands will result in the train speed reducing within a
specified distance or time need to consider the multiple cyber
control elements in the constituent carriages, and their different
capabilities, as well as the effects of braking on the train
physics. In this latter aspect, the physical elements have an
influence on one another through the braking force of the
train. Aside from verifying safety-related properties, having a
CPS multi-model based on a number of networked co-models,
allows us to analyse properties such as energy consumption
in different operating scenarios. The kinds of design trade-
off that might be considered are variations in the braking
command parameters sent to different carriages to take account
of their physical differences as well as the differences in their
control characteristics. Aside from the multiple co-modelling
involved, there is a significant amount of research to be done in
visualisation of scenario outcomes, and the associated support
for design space exploration, in such a complex system.

VI. RELATED WORK

The ideas presented here build for example on advances
in embedded systems design and fault modelling. In the em-
bedded sector, BODERC [26] developed a method to predict

13 of 230

performance of real-time control systems, albeit with little tool
support for trade-off studies or co-simulation. Modelica [27] is
an object-oriented, equation-based multi-domain language for
simulating controlled physical systems, and provides source
libraries of physical components similar to the approach taken
in the DESTECS project. Approaches to co-simulation of
discrete-event and continuous-time models have been defined
by Nicolescu et al. [28]. Ptolemy II [29] offers both discrete-
event and continuous-time simulation within a single tool,
though lacking the object-orientation offered by VDM and
the component libraries offered by 20-sim. Work on time
synchronisation between DE and CT models is described in
hybrid systems literature, for instance, Cassandras et al. [30].
The DESTECS approach is distinctive in including a rich but
abstract DE-side modelling language, and in managing co-
simulation of heterogeneous models in their “native” tools.

Collaborative modelling is essential in both SoS and CPS
engineering. Several approaches to collaborative modelling are
described by Renger et al. [31]: problem structuring methods
focus on the decision-making process including simulation
for scenario exploration; group model building takes extends
the conceptual model to simulation models to explore differ-
ent options; enterprise analysis focuses on models that are
built collaboratively. Our work is focussed on collaborative
construction of models that are then used to explore design
options.

VII. CONCLUDING REMARKS

Software engineering is a maturing discipline with sound
scientific foundations, a range of methodologies, increasingly
robust tools, and a wealth of experience. However, in this
paper, we have argued that the complex products, solutions
and services developed in the future, and the levels of depend-
ability that they demand, require a more multidisciplinary and
collaborative approach. This has consequences for software
engineering technology, for formal methods themselves, and
for training and education, all of which need to cross an
increasingly broad range of disciplines and modelling types.

Our experience in the DESTECS and COMPASS projects
has been a first small step in this direction. There remain
opportunities for significant advances in modelling technol-
ogy, including the areas of semantics, tool support, design
space exploration, methodology and model management. The
need to package relevant research results as industry-ready
methods and (open) tools is paramount. We hope that the
ideas presented in this paper will cause more researchers to
carry out their research in software engineering in a larger
context in order to have a more significant impact on the
actual development of software-based systems in industry.
Hopefully there will be fruitful collaborations for this kind
of multidisciplinary research.

ACKNOWLEDGEMENTS

Both the DESTECS and the COMPASS projects have been
supported by the European Commission under the 7th Frame-
work programme. We would like to thank our collaborators

from the DESTECS and COMPASS projects for their work
to make the joint visions become reality. Finally we would
like to thank Nick Battle, Carl Gamble and Claus Ballegaard
Nielsen for providing valuable input on drafts of this paper.

REFERENCES

[1] P. Naur and E. B. Randell, “Software Engineering: Report on a Confer-
ence sponsored by the NATO Science Committee,” garmisch, Germany,
7th to 11th October 1968, Brussels, Scientific Affairs Division, NATO,
January 1969.

[2] W. W. Gibbs, “Software’s Chronic Crisis,” Scientific American, pp. 72–
81, September 1994.

[3] The-Standish-Group, “The Chaos Report,”
http://www.projectsmart.co.uk/docs/chaos-report.pdf, 1995.

[4] J. Johnson, My Life Is Failure: 100 Things You Should Know to Be a
Better Project Leader. Standish Group International, 2004.

[5] T. Henzinger and J. Sifakis, “The Discipline of Embedded Systems
Design,” IEEE Computer, vol. 40, no. 10, pp. 32–40, October 2007.

[6] A. Tiwari, N. Shankar, and J. Rushby, “Invisible Formal Methods for
Embedded Control Systems,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 29–39, January 2003.

[7] M. Verhoef, “Modeling and Validating Distributed Embedded Real-Time
Control Systems,” Ph.D. dissertation, Radboud University Nijmegen,
2009.

[8] S. Jahanian and J. M. Matthews, “Multidisciplinary Project: A Tool for
Learning the Subject,” Journal of Engineering Education, April 1999.

[9] P. G. Larsen, J. M. Fernandes, J. Habel, H. Lehrskov, R. J. Vos,
O. Wallington, and J. Zidek, “A Multidisciplinary Engineering Summer
School in an Industrial Setting,” European Journal of Engineering
Education, August 2009.

[10] D. L. Maskell and P. J. Grabau, “A Multidisciplinary Cooperative
Problem-Based Learning Approach to Embedded Systems Design,”
IEEE Transactions on Education, vol. 41, no. 2, pp. 101–103, May
1998.

[11] R. Stevens, P. Brook, K. Jackson, and S. Arnold, System Engineering
– Coping with Complexity. Pearson Education, 1998, vol. ISBN 0-13-
095085-8.

[12] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design, Modelling Synthesis and Verification. Springer, 2009.

[13] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic,
K. Pierce, and W. F., “Design Support and Tooling for Dependable Em-
bedded Control Software,” in Proceedings of Serene 2010 International
Workshop on Software Engineering for Resilient Systems. ACM, April
2010, pp. 77–82.

[14] J. Fitzgerald, P. G. Larsen, K. Pierce, M. Verhoef, and S. Wolff, “Collab-
orative Modelling and Co-simulation in the Development of Dependable
Embedded Systems,” in IFM 2010, Integrated Formal Methods, ser.
Lecture Notes in Computer Science, D. Méry and S. Merz, Eds., vol.
6396. Springer-Verlag, October 2010, pp. 12–26.

[15] J. Fitzgerald, P. G. Larsen, K. Pierce, and M. Verhoef, “A Formal
Approach to Collaborative Modelling and Co-simulation for Embedded
Systems,” To appear in Mathematical Structures in Computer Science,
2012.

[16] M. W. Maier, “Architecting Principles for Systems-of-Systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[17] J. Dahmann and K. Baldwin, “Understanding the Current State of
US Defense Systems of Systems and the Implications for Systems
Engineering,” in IEEE Systems Conference. IEEE, April 2008.

[18] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry, “Features of CML: a Formal Modelling Language for Systems
of Systems,” in The 7th International Conference on System of System
Engineering, July 2012.

[19] J. White, S. Clarke, C. Groba, B. Dougherty, C. Thompson, and D. C.
Schmidt, “R&D Challenges and Solutions for Mobile Cyber-Physical
Applications and Supporting Internet Services,” J. Internet Services and
Applications, vol. 1, no. 1, pp. 45–56, 2010.

[20] E. Lee and S. Seshia, Introduction to Embedded Systems, A
Cyber-Physical Systems Approach. University of Berkley:
http://LeeSeshia.org, 2011, iSBN 978-0-557-70857-4.

14 of 230

[21] J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Har-
rison, and J. A. Landay, “UbiGreen: Investigating a Mobile Tool for
Tracking and Supporting Green Transportation Habits,” in Proceedings
of the 27th international conference on Human factors in computing
systems, ser. CHI ’09. New York, NY, USA: ACM, 2009, pp. 1043–
1052.

[22] C. Thompson, J. White, B. Dougherty, and D. C. Schmidt, “Optimizing
Mobile Application Performance with Model-Driven Engineering,” in
Proceedings of the 7th IFIP WG 10.2 International Workshop on
Software Technologies for Embedded and Ubiquitous Systems, ser. SEUS
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 36–46.

[23] G. Rose, “Mobile Phones as Traffic Probes: Practices, Prospects and
Issues,” Transport Reviews, vol. 26, no. 3, pp. 275–291, 2006.

[24] P. Leijdekkers and V. Gay, “Personal Heart Monitoring and Rehabilita-
tion System using Smart Phones,” in Proceedings of the International
Conference on Mobile Business. Washington, DC, USA: IEEE Com-
puter Society, 2006.

[25] H. Giese, B. Rumpe, B. Schätz, and J. Sztipanovits, Eds., Science and
Engineering of Cyber-Physical Systems (Dagstuhl Seminar 11441), ser.
Dagstuhl Reports. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011, vol. 1(11).

[26] M. Heemels and G. Muller, Boderc: Model-Based Design of High-
tech Systems, 2nd ed. Den Dolech 2, Eindhoven, The Netherlands:
Embedded Systems Institute, March 2007.

[27] P. Fritzson and V. Engelson, “Modelica - A Unified Object-Oriented
Language for System Modelling and Simulation,” in ECCOP ’98:
Proceedings of the 12th European Conference on Object-Oriented
Programming. Springer-Verlag, 1998, pp. 67–90. [Online]. Available:
http://www.modelica.org/documents/ModelicaSpec32.pdf

[28] G. Nicolescu, H. Boucheneb, L. Gheorghe, and F. Bouchhima, “Method-
ology for Efficient Design of Continuous/Discrete-Events Co-Simulation
Tools,” in High Level Simulation Languages and Applications, J. Ander-
son and R. Huntsinger, Eds. San Diego, CA: SCS, 2007, pp. 172–179.

[29] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong, “Taming Heterogeneity – the Ptolemy
Approach,” Proc. of the IEEE, vol. 91, no. 1, pp. 127–144, January
2003.

[30] C. G. Cassandras, Analysis and Design of Hybrid Systems: a Proceed-
ings Volume from the 2nd IFAC Conference. Elsevier, Jun. 2006.

[31] M. Renger, G. L. Kolfschoten, and G.-J. Vreede, “Challenges in Col-
laborative Modeling: A Literature Review,” in Advances in Enterprise
Engineering I, ser. Lecture Notes in Business Information Processing,
J. L. G. Dietz, A. Albani, J. Barjis, W. Aalst, J. Mylopoulos, M. Rose-
mann, M. J. Shaw, and C. Szyperski, Eds. Springer Berlin Heidelberg,
2008, vol. 10, pp. 61–77.

15 of 230

 Time Series Analysis by Soft Computing Methods

N. Yarushkina
Information Systems Department

Ulyanovsk State Technical University, UlSTU
Ulyanovsk, Russia

jng@ulstu.ru

Abstract—Qualitative evaluation and comparison of changes of
indications of objects having different nature is used by designers,
managers, people making decisions (PMD) and experts to make the
decisions more reasonable. For suport of such activity on the
analysis of changes of data connected with certain dates and time
intervals, models of fuzzy time series are applied. In this article a
model of fuzzy tendency the carrier of which is a fuzzy time series
and its variety — elementary tendency model — is offered. The
offered models are aplied for solution of the problem of
summarization of fuzzy time series in terms of tendencies.

Keywords Fuzzy Time Series, Fuzzy Tendency, Elementary
Tendency, Summarization.

I. INTRODUCTION
In connection with increasing volume and speed of storage of
data connected with certain dates and time intervals in data
bases, the new technology of data analysis Data Mining for
Time Series Data Base (TSDM) is actively developed.
Forming these time sequences on the basis of domains permits
to consider them in the form of time series (TS). A number of
distinctions of such time sequences from traditional (classic)
TS, considered in statistic theory of analysis and forecast of
TS, can be noted: these time sequences are short TS; such time
sequences can be represented not only by numerical but also
by linguistic values; it is difficult or impossible to determine
suppositions about random nature of values for such time
sequences. Distinctive properties of Time Series Data Base
generate changes in the aggregate of aims and tasks which
form the direction Data Mining for Time Series Data Base[1]:
segmentation, clusterisation, classification, indexing,
summarization, disclosing anomalies, frequency analysis,
forecasting, extraction of associative rules. At present the
methodology of solving the indicated problems is formed on
the basis of methods and models of intelligent analysis,
representation and processing of data [2, 3, 4, 5]. The basis of
the offered methods of intelligent data analysis is the concept
of the fuzzy time series (FTS) constructed on the base of
levels of TS [5, 6] or their first differences [3]. In this article
an original model of FTS on the basis of fuzzy tendencies is
offered. The offered model describes the behaviour of FTS in
the form of the sequence of fuzzy tendencies represented by
information granules. Application of information granules for
problems of Data Mining for Time Series Data Base is

presented in the work [7]. An indisputable advantage of data
granulation is the possibility of representation of models of TS
at different levels of abstraction in the linguistic form, which
permits to widen the accessibility of using models of TS by
application users and to improve their interpretability.
In the second part of the article models of a fuzzy time series
and a fuzzy tendency are considered. In the third part a special
scale for generating an elementary fuzzy tendency is given.
Procedures of granulation of FTS in the basis of FT are
presented in the fourth part, there is also described the solution
of the problem of summarization of TS in terms of FT and
presented the experiment on the solution of the problem of
summarization of a synthetic TS as the problem of
determination of a fuzzy tendency.

II. FUZZY TENDENCY MODEL

A. Concept of linguistic evaluation
One of the problems of the analysis of TS is the analysis of

FTS behaviour, that is change of values of TS levels. The
solution of the problem of the analysis of TS behaviour
expressed in linguistic form can serve as the linguistic
evaluation of the behaviour. Linguistic evaluations (LE) are
the means of qualitative evaluation and comparison of
characteristics and indications of objects having different
nature used by designers, managers, people making decisions
(PMD), experts. An important property of linguistic evaluations
is wide application in practice in making decisions for
expressing knowledge about the degree of correspondence of
the object being observed or its characteristics to some objective
or subjective criterion. The stated property determines the class
of absolute LE, which reflects the static aspect of evaluation.
The following expressions can be examples of such evaluations:
"Satisfactory", "Good", "Bad", "Big", "Small", "Medium", etc.
The semantics of absolute linguistic evaluations depends on the
context of the environment in which they are used and modeled
by fuzzy sets.

Another important property of linguistic evaluations is
conditioned on the possibility of ranking them, it permits to
present the aggregate of LE in the form of some system with
relations. Binary relations formed on the set of absolute LE
generate comparative linguistic evaluations by different criteria
such as "More", "Less", "Approximately Equal", "Earlier",

16 of 230

"Later", "Rather", "Better", etc. Comparative evaluations made
on the basis of absolute LE can represent changes in different
universes: in the universe of objects, in the time universe, in the
universe of problems and they express dynamic aspect of
evaluation. The semantics of comparative evaluations is also
context-dependent and can be modeled on the basis of fuzzy
sets.

It is noted in the article [4] that linguistic evaluation has
indications expressing the degree of intensity of this evaluation.
These indications can be represented in the linguistic form,
usually used by people: "Very", "Insignificantly",
"Approximately", etc.

Context-dependent linguistic evaluations considered above
are given in expert way as a rule, and they are called expert
evaluations. In case of impossibility of receiving expert
evaluations of indications of objects, abstract linguistic
evaluations are used, let us consider such evaluations among the
class of context-free linguistic evaluations.

Let the aggregate of all linguistic evaluations forms the

finite set X~ ={ jх~ }, where j∈[1,nj]. Let us call the linguistic

evaluation of the indication x from the universe B a fuzzy
label, if the fuzzy set is determined for it such that jх~ ={‹ wm

, μ
jх~
(wm) ›| wm ∈ w, w⊆B }, where wm – is the carrier of the

fuzzy set, μ
jх~
(wm) – is the membership function.

B. Model and kinds of a fuzzy tendencys
Let us introduce definitions.
Let some time series (TS) Хt={ti,xi} is given, i∈[1,n] , n – is
the quantity of members of the series, xi∈ В, ti ∈ Вt.
Let us call the ordered sequence of observations over some
phenomenon the states of which change in time if the value of
the state at the instant ti is expressed with the help of the

fuzzy label Xхi
~~ ∈ , i∈ [1,n] , n – is the quantity of

members of series, a fuzzy time series (FTS). That is we

represent a fuzzy time series in the form tX~ ={ti, х~ i}, where

х~ i – i-th fuzzy set (fuzzy label), ti – i-th value of the instant of
time, t1 ≤ ti ≤ tn, n – is the quantity of members of FTS. Any
TS can be represented in the form of the sequence of fuzzy
labels jх~ ={‹ wm , μ

jх~
(wm) ›| wm ∈ w, w⊆B } on the basis

of linguistic (context-dependent or context-free) evaluation of
levels of TS xi∈В.

Let us call the fuzzy label kτ ∈ X~ expressing the character of
change (systematic motion) of the sequence of fuzzy values of

FTS tX~ in the given interval of time the fuzzy tendency (FT)
of a fuzzy time series. A fuzzy tendency determines the nature
of FTS not in analytic, but in the linguistic form.

Each fuzzy tendency kτ of the fuzzy time series X~ can be

represented by the fuzzy set kτ ={<τi,μ
tX~ (τi) >, i∈ [1,n]}

with the function of membership in the fuzzy time series
μ

tX~ (τi), where τi is the model of the following form:

τi = <νi,αi, ∆t i >, where
νi – is the type of the tendency. Let us compare fuzzy labels

kτ and base types of tendencies "Increase", "Decrease",
"Stability". On the basis of base types derivative types of
tendencies, such as "Fluctuations", "Chaos", "Load", "Idle
time", etc., can be formed.
αi– intensity of the tendency.
∆ti – duration of the tendency.
In case if ∆ti =1, let us consider the fuzzy tendency among the
class of elementary fuzzy tendencies, if ∆ti = n-1, we consider
the fuzzy tendency among the class of general fuzzy tendency
of FTS, if 1<∆ti< n-1, let us consider the fuzzy tendency
among the class of local (derivative) fuzzy tendencies of FTS.

In the aspect of content an elementary fuzzy tendency
models changes between two neighbouring values of the fuzzy
time series iх~ , 1

~
+iх , and it can be compared with the instant

of time ti of FTS. A local fuzzy tendency is determined
between two chosen values of the fuzzy time series iх~ and

jх~ , when i< j can be compared with the instant of time ti. Any

local FT can be expressed by the sequence of elementary ET.
The general fuzzy tendency characterizes the behaviour of all
FTS and it is representable in the form of the sequence of local
and, therefore, also elementary FT. Thus, the time series of
elementary FT of the form { ti , kτ (ti, х~ i)}, i∈ [1,n-1] can be
made for any FTS.

The analysis of fuzzy labels used when evaluating levels
and behaviour of a time series permits to make the following
conclusions:

1. Models of elementary, local, general FT of a fuzzy time
series have common structure.

2. Local and general fuzzy tendencies of FTS can be
expressed through the time series of elementary FT.

3. A time series of elementary FT is an invariant method of
linguistic representation of behaviour of any FTS.

4. Representation of time series in the form of fuzzy time
series and time series of elementary fuzzy tendencies permits
to take into account additional knowledge in the form of
semantics of application area during their analysis owing to
use of context-dependent fuzzy labels.

In the next part we will introduce a special scale for
generation of the model of the elementary fuzzy tendency.

III. ACL-SCALE FOR GENERATION OF THE MODEL
OF THE ELEMENTARY TENDENCY

In this part a special linguistic scale is offered as a tool of both
absolute and comparative linguistic evaluation – ACL-scale
(Absolute & Comparative Linguistic). This scale will be

17 of 230

applied for construction of the model of the elementary fuzzy
tendency.
The model of ACL-scale Sx for determination of absolute and
comparative linguistic evaluations is representable in the form
of linguistic variable with relations

Sx = <Name_ Sx, X~ , B, G, P, TTend, RTend>,
where Name_ Sx – is the name of ACL-scale, X~ – is the base
term-set of absolute LE (linguistic name of gradations), for
example, X~ ={Bad, Satisfactory, Good, Excellent, ..},

iх~ ∈ X~ , B – is the universal set on which the scale is
determined, x∈B . G – are syntactic rules of deduction
(generation) of chains of evaluation propositions (derivative of
terms which do not enter into the base term-set), P - are
semantic rules which determine membership functions for
each term (they are usually given in an expert way),
TTend(iх~ , jх~) – is the linguistic relation fixing the type of

change between two evaluations iх~ , jх~ of the scale,

RTend(iх~ , jх~) – is the linguistic relation fixing the intensity

of difference between two evaluations iх~ , jх~ of the scale.

The relation TTend(iх~ , jх~) is the fuzzy linguistic relation
which is applied for determination of comparative linguistic
evaluation νij = TTend(iх~ , jх~) which characterizes the
direction of change (increase or decrease) of the value of the
absolute LE iх~ with respect to jх~ which can be represented
by linguistic expressions, for example, by values from the set
{INCREASE, DECREASE, STABILITY, ZERO}. Let us
note that each evaluation νij= TTend(iх~ , jх~) is representable
by its fuzzy set. The relation TTend is antireflexive,
antisymmetric and transitive:

()
)~,~()~,~()~,~(~~,~,~

0)~,~(~,~)~~(~~,~
,0)~,~(~~

zyTTendyxTTendzxTTendXzyx

xyTTendyxTTendyxXyx

xxTTendXx

∧>∈∀

=∧≠∈∀

=∈∀

The stated properties of the relation TTend permit to classify it
as an ordering relation. Then the aggregate of all possible
evaluations V={νij } forms the fuzzy ordinal scale Sv
=<Name_ TTend, V, X~ , Gv, Pv>.
The relation RTend (iх~ , jх~) is also the fuzzy linguistic
relation applied for determination of comparative linguistic
evaluation αij = RTend (iх~ , jх~) which characterizes the

degree of difference, "non-metric" distance between iх~ , jх~
which can be expressed linguistically, for example, by values
from the set {BIG, MEDIUM, SMALL, ZERO}. This
evaluation αij is also representable by its fuzzy set. The
relation RTend is antireflexive and symmetric:

())~,~(~,~~~,~
,0)~,~(~~

xyRTendyxRTendXyx

xxRTendXx

=∈∀

=∈∀

The indicated properties of the relation RTend permit to
classify it as a relation of difference, with it the aggregate of
all possible evaluations A={αij} forms the fuzzy scale Sa
=<Name_ RTend, A, X~ , Ga, Pa>.
 Thus, the ACL-scale Sx for determination of linguistic
evaluations is the two-level scale. At the first level of
hierarchy from its universal set the ACL-scale Sx permits to
determine linguistic evaluations iх~ for values x∈Х which
characterize their qualitative aspects. Such linguistic
evaluations relate to the class of absolute LE. At the second
level of hierarchy for values iх~ and jх~ – linguistic

evaluations of their changes (νij,αij) which characterize
qualitative aspects of differences or "difference of the first
order" by scales Sv, Sa. Such linguistic evaluations are related
to comparative LE.

Let us consider peculiarities of ACL-scales. The offered
linguistic ACL-scale Sx is related to the class of fuzzy
evaluation scales which enter into the class of ordinal scales,
difference and the degree of difference can be additionally
evaluated in it. This property permits to consider the linguistic
evaluation ACL-scale Sx as quasi-interval and to determine
"evaluation" and "computing" operations for it.

Let us introduce the following "evaluation" operations of
the ACL-scale Sx generating linguistic evaluations:

1. The operation of determination of the absolute
linguistic evaluation iх~ by the value of characteristic
of the object xj being evaluated

iх~ =Fuzzy(xj), xj ∈B, iх~ ∈ X~ .
2. The operation of determination of the value of

characteristic of the object xj being evaluated by the
absolute linguistic evaluation iх~

xj = DeFuzzy(iх~),xj ∈B, iх~ ∈ X~ .
3. The operation of determination of the type of

difference (comparative linguistic evaluation)
νij = TTend(iх~ , jх~), iх~ ∈ X~ , jх~ ∈ X~ .

The operation TTend is non-commutative.
4. The operation of determination of intensity of

difference (comparative linguistic evaluation)
αij = RTend (iх~ , jх~), iх~ ∈ X~ , jх~ ∈ X~ .

The operation RTend is commutative.
Let us determine the aggregate of "computing" operations of
the ACL-scale for generated linguistic evaluations:

1. Computing the absolute linguistic evaluation

jх~ = Comp(iх~ ,νij,αij).
2. The difference of intensities of differences

αij =Diff(αi , αj)

18 of 230

3. The union of intensities of the difference
αij = Union(αi , αj).

4. The intersection of intensities of differences
αij = Inter(αi , αj).

Operations Diff, Union, Inter are commutative,
associative, bounded.

Linguistic evaluations received by the indicated linguistic
ACL-scale will be used in the next part as semantic-dependent
for solution of the problem of summarization of FTS in terms
of fuzzy tendencies.

IV. APPLICATION OF ELEMENTARY TENDENCY MODEL FOR
SUMMARIZATION OF FUZZY TIME SERIES

Let us consider the application of the offered ACL-scale in
solution of the problem of summarization of FTS as the
problem of identification of its general fuzzy tendency.
For this purpose, let us design the hierarchical granular model
for the initial time series Х={ti,xi}, i∈ [1,n] , n – is the
quantity of members of the series. Let us introduce four levels
of granulation forming of which corresponds to the bottom-up
approach. The zero level of granules will be represented by
fuzzy labels of the initial TS. For forming the granules of the
zero level, let us use the "evaluation" operation of the ACL-
scale: iх~ =Fuzzy(xi).
Let us compare fuzzy tendencies of FTS and information
granules which have structural commonness. Let us define the
operation of granulation of the first level in the form of the
functional ETend forming the granules of elementary fuzzy
tendencies: τi = ETend(iх~ , 1

~
+iх), i∈ [1,n-1] , n – is the

quantity of members of FTS.
The functional ETend generates granules of elementary fuzzy
tendencies on the basis of "evaluation" operations TTend and
RTend of the ACL-scale and can be realized in the subsystem
of fuzzy deduction with rules of the following form:

 N is a AND is THEN is AND is IF :
..

 is THEN is AND is IF :

mt211

11121111

mtmtmtm

tttt

BvAXAXR

NisaANDBvAXAXR

+

+

=

=

The semantics of rules of realization of the functional ETend
is represented in the following table.

TABLE I. TABLE OF RULES

No. of the
rule X~ t X~ t+1

ν t=

TTend(X~ t ,

X~ t+1)

αt=RTend(X~ t,

X~ t+1)

1. Sat Sat St Ze
2. Go Go St Ze
3. Ex Ex St Ze
4. Bad Bad St Ze
5. Ze Ze St Ze
6. Ze Bad Inc Sm
7. Ze Sat Inc Me

8. Ze Go Inc Bi
9. Ze Ex Inc VeBi
10. Bad Ze Dec Sm
11. Bad Sat Inc Sm
12. Bad Go Inc Me
13. Bad Ex Inc Bi
14. Sat Ze Dec Me
15. Sat Bad Dec Sm
16. Sat Go Inc Sm
17. Sat Ex Inc Me
18. Go Ze Dec Bi
19. Go Bad Dec Me
20. Go Sat Dec Sm
21. Go Ex Inc Sm
22. Ex Ze Dec VeBi
23. Ex Bad Dec Bi
24. Ex Sat Dec Me
25. Ex Go Dec Sm

The following abridgements were used in this table: Ze(Zero),
Bad(Bad), Sat(Satisfactory), Go(Good), Ex(Excellent) for
fuzzy values of FTS; Inc(INCREASE), Dec(DECREASE),
St(STABILITY) for values of types of changes; Bi(Big),
Me(Medium), Sm(Small) and modifiers, such as Ve(Very),
Si(Significantly), No(No) for values of intensity of changes.
Let us define the operation of granulation of the second level
in the form of the functional STend forming the granules of
local fuzzy tendencies: τj =STend(τi, τs), where τi, τs are
granules of the first level.
The introduced functional STend is computed as the result of
the union of one-type elementary tendencies on the base of the
"computing" operation Union of the ACL-scale. Then the
union τj=STend(τi, τs) is the such fuzzy tendency for which
νj=νi , αj = Union (αi , αs), µj = µi ∪ µs, the duration Δtj =Δti
+Δts.
The operation of union of one-type tendencies defines the
granules of the second level.
The generalized form of rules of granulation of the second
level on the basis of the functional STend has the form:

,

 :

211

1

112111

11

 is Bc THEN TIn is A AND a is AIF a
N is Inc THE IF v:R

..
c is B THEN TIn is A AND a is A IF a

EN is Inc THIF vR

mmtmt

t m

tt

t

+

+

=

=

 :

211

2

112111

12

 is Bc THEN TDe is A AND a is AIF a
N is Dec THE IF v:R

..
c is B THEN TDe is A AND a is A IF a

EN is Dec THIF vR

mmtmt

t m

tt

t

+

+

=

=

The semantics of rules of granulation of the second level is
given below:

19 of 230

TABLE 2. TABLE OF RULES LEVEL 2

 TInc TDec Tend
1 Bi Me Inc
2 VeSm Sm Dec
4 Me Bi Dec
5 Bi Sm Inc
6 Me Sm Inc
7 Sm Me Dec
 …. … …

On the basis of introduced functionals we defined the
procedure of summarization of TS as the procedure of
identification of the fuzzy tendency Tend.. This procedure is
the sequential generation of information granules which model
TS at different abstract levels. The result of the procedure of
summarization of FTS is the granule of the general fuzzy
tendency which is the convolution of elementary tendencies
into the linguistic evaluation of behaviour of a FTS:

ETend(iх~ , 1
~

+iх)→ STend(τi, τs) → GTend (τi,τs) .

Figure 1. The time series No. 1. The result of summarization procedure:
"General tendency =Increase"

Figure 2. The time series No. 2. The result of summarization procedure
"General tendency=Decrease".

The offered approach to the solution of the problem of
summarization of FTS on the basis of fuzzy tendency model
and granular computing was realized as software in the system
generating artificial time series with noise. On figures 1, 2
examples of execution of the procedure of summarization of
the artificial TS and its results are presented.

REFERENCES

[1] Batyrshinand L. Sheremetov. Perception Based Time Series Data
Mining for Decision Making. /IFSA’07 Theoretical Advances and
Applications of Fuzzy Logic, pp.209-219.

[2] N.G. Yarushkina Principles of the theory of fuzzy and hybrid systems:
Training aid. - Moscow: Finances and statistics, 2004. - 320 p.

[3] M. Şah ,K.Y. Degtiarev. Forecasting Enrollment Model Based on First-
Order Fuzzy Time Series. İnternational Conference on Computational
İntelligence (İCCİ) 17-19 December 2004, İstanbul, Turkey

[4] Dvorak A.,Novak V.:Formal Theories and Linguistic Description.
Fuzzy Sets and Systems, 143(2004), 169-188 .

[5] Song, Q., Chissom, B.S. Fuzzy time series and its models. Fuzzy Sets
and Systems , 54 (1993) 269–277

[6] Huarng, K. Heuristic models of fuzzy time series for forecasting. Fuzzy
Sets and Systems, 123: 369-386. Young, The Technical Writers
Handbook, Mill Valley, CA: University Science, 1989.

[7] L.A. Zadeh. Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems ,
90(1997), 111-127

20 of 230

Meta-Model and Platform for quickly build software
applications

Yuri Rogozov, Alexey Degtyarev
System analysis and telecommunications.

Taganrog Institute of Technology, Southern Federal University
Taganrog, Russia

rogozov@tsure.ru, alexey.a.degtyarev@gmail.com

Abstract— In the development of large and complex applications
is difficult to satisfy unique customer requirements without
stretching development time. The need to support adaptability of
applications is growing because of dynamic business processes.
We analyzed of the literature in this domain. The analysis has
shown that combination of the existing paradigm of application
development is a good approach to support adaptability of
business applications. This paper presents a multi-layered Meta-
Model for enterprise applications and platforms that we have
created on our multi-layered Meta-Model.

Keywords - metamodel, metamodelling, meta-design, business
application development platform, automation.

I. INTRODUCTION
The creation of business applications based on client-

server architecture is still an urgent task. In this paper we will
pay attention to the corporate business applications. The main
features of such applications are heterogeneity (heterogeneity)
of business information and variability processes that use this
information. This creates a lot of problems in the development
of business applications. Many of the studies on software
project failures have identified difficulties of accurately
capturing user requirements as a major contributor to failure of
software development projects [1]. In the domain of software
engineering a lot of effort has been spent to improve methods
of capturing requirements. However, experience has shown
that requirements cannot be initially captured completely and
correctly [2]. In our opinion they are not static, but
dynamically changing, evolving along with the world around
us. To solve this problem software engineering proposed
iterative approach to application development. The main idea
of the approach is the speedy transfer of user working version
[3]. Given the scale and complexity of corporate business
applications, we can confidently say that even when using an
iterative approach, the average time of development business
applications is not less than six months. Approved by the
functional and data structure in an early iteration of the project
completion can be drastically revised by future system users.
It will make some additional risks in the development process.
That is why the support of business applications adaptability
appears [27]. On the other side the market of the modern
information technology, shows that universal automation
solutions are ineffective [28], so the business application must
be created individually for each customer [29].

To solve the above problems, we need such software tool
that would allow: significantly reduce the complexity of each
iteration; ensure the creation of individual decisions at
different levels of detail (either total subsystem, or individual
business functions); modify the functional and data structures
at no additional cost, which were approved in early iterations.

Analysis of existing approaches to application
development allowed us to determine that each of them
focuses on a specific level of granularity, i.e. strictly defined
in advance the items that are indivisible or atomic. In some
approaches to such elements include operators of classical
programming languages, classes and objects [4], in other
cases, they include the whole program modules [5]. However,
in our opinion, the approach Meta – Design is the most
promising. [6]. A comparison of these approaches with its
problems allowed us to assume that a multi-level Meta -
Model platform was the most promising. To understand what
must be the Meta - Model, we have generalized our
knowledge in developing enterprise business applications.
Then we built meta-level aspects of the model that described
the business applications. This Meta-Model should be
reflected in the Meta - Model implementation. We relied on
our experience and knowledge and tried to make it more
concrete. We chose the concept of service-oriented
architecture as a starting point [7]. In this paper we propose a
multi - level Meta - Model and platform for building client /
server enterprise business applications.

Platform with developed AV Script scripting language and
the unique structure of an independent data base [8] allow us to
bind together the software details of different levels - from the
software modules that implement support for business process
or some of its functions to a low-level programming constructs
perform mathematical operations and access to business
information.

II. ANALYSIS OF EXISTING APPROACHES TO SOFTWARE
BUILDING

During the development of software engineering a number
of approaches to software development have formed. These
approaches have both positive sides and restrictions. The most
important methods of software development , proven during
its existence presented below: a) Classical programming [9];
b) Generative programming [10]; c) Model Driven
(Architecture, Design, Engineering) [11]; d) Feature-Driven

21 of 230

Development [12]; e) domain specific (languages ,modeling,
design) [13]; f) Metaprogramming [14]; g) Software factory,
Frame Technology [15].

Figure 1. Existing approaches to software building

In our view, the criteria by which we can compare the
approaches are following:

• level of personalization of the solutions determines
how much depth we take into account the unique requirements
of user (if the user wants a button, which shimmers like a
rainbow, and we fulfill his requirement, it means that degree
of personalization is high, if we make the four colors button
only, because we have such templates, it means that degree of
personalization is lower);

• level of formalization of the programming process,
determines which way displaying the business problem in an
existing space of solutions the process is carried out. (For
example, if an application requires a creative activity for
transformation of business models processes then the degree
of formalization is low, and if an application has to perform a
set of strictly defined rules for transformation of business
models process then the degree of formalization is high) [16].
Then a comparison of approaches could be presented
graphically in the following way (see Figure 1). The motion
on the dotted line from left to right in Figure 1 shows the
increasing abstraction level. So, to create a platform that
would allow to reduce the complexity of each iteration, we
need to maximize the formalization of the software
development process.

Figure 1 shows that requirements to the platform could be
met using Meta – design approach as the most attractive in
accordance with our requirements [17].

However, the development of software at different levels of
detail by constructing a common meta-model is most likely not
succeeded. This is primarily because of constructing the
complexity single universal Meta – Model [18, 19, 20].
Assumes that the Meta - Model should be multilevel and meet
the following requirements: ensure that changes in the level of
detail (see Figure 1); ensure the maximum degree of software
formalization development processes.

III. ASPECTS THAT CHARACTERIZE THE CORPORATE
BUSINESS APPLICATIONS

We believe that the modern corporate business
applications aimed at collecting, storing and processing
information in the most general case characterized by the
following aspects (see Figure 2): work flow logic; graphic user
interface; decision logic; data manipulating function; business
objects. Note that some researchers in the software field have
a similar view [21],[22],[23],[24], it makes our judgments
more reasonable.

Work flow logic - an aspect that reflects the functions
sequence performing, business applications and management
tasks.

Graphic user interface - an aspect that reflects the
interaction of users with information and business application.

Decision logic - an aspect that describes the
implementation of logic solutions (calculation formulas,
processing information about Business Objects).

Data manipulating function - determines how to work with
data that represent real business objects. The standard
functions for manipulating data include: the input new data,
edit existing data, viewing of existing data, delete existing
data.

Business Objects - a simplified model of real business
objects, which characterizes them as the way which is
important for building enterprise business applications.

Figure 2. Aspects that characterize the corporate business applications

Figure 2 shows the Meta – Model aspects level that
characterize the corporate business applications. This Meta -
Model is abstracted from the domain and business objectives,
i.e. is interdisciplinary. However, if we attempt to deepen it
(refine) to a specific business problem we will be faced with
problems. First, these problems are associated with a set of the

Identify applicable sponsor/s here. If no sponsors, delete this text box.
(sponsors)

22 of 230

domain knowledge, which subject that works out in detail
should know. Secondly knowledge of implementation
technologies to create the functioning business applications is
required. In other words, it is not enough to work out in detail
aspects of the Meta - Model to the level of a specific business
problem. It is necessary to display the specific business
objectives for space implementation. Today it is a serious
problem. Assume the following: concretized aspects of the
Meta - Model elements, will find their place in any of the
approaches to building software that depicted in Figure 1.

Then conceptually multi-layered meta-model space
realizations can be represented as a plane that is divided into
different levels of abstraction (see Figure 3). In this view, you
can find the correspondence between the abstraction level
above approaches and input levels of abstraction space
realizations (see numerals in Figures 2 and 3). Depth of detail
and level of abstraction is limited only by the degree of our
knowledge and technology developments i.e. can grow
indefinitely.

Figure 3. Mapping aspects

IV. MULTI-LEVEL META - MODEL CORPORATE BUSINESS
APPLICATIONS

Multi-level Meta- Model was constructing by using the
idea behind meta-approach of building prototypes of the object
[25]. To determine the highest level of abstraction layered
Meta- Model we used the principle of service-oriented
architecture [7]. This principle bases that any enterprise
business application is represented as a collection of loosely
coupled modules. At the level of detail, where the module is an
atomic unit, a business application can be represented as
follows - Figure 4. By analogy with the terminology of object-
oriented approach [26], the module is an object that
encapsulates a user interface and business logic. Inter-module

interfaces and interfaces to the database are external interfaces
of the module. In Figure 4, weak ties are reflected by dotted
lines. In accordance with Figure 3, consider how aspects of
enterprise business applications are displayed at the proposed
area of implementation. Analyzing the figures 2, 3 and 4 set a
direct mapping is characterized by the corporate business
applications in the proposed space realizations.

Figure 4. Meta-Model on level modules

Business objects are displayed in the database (Data Base),
the logic of the process of business applications in the inter-
module interfaces (Module interface), user interfaces and

business logic in the module (Module), the standard functions
for manipulating data in an interface to the database (data base
interface). This map is shown in Figure 5. Displays the next
level of detail will be similar.

Figure 5. Mapping aspects of one level

Let’s decompose the module into smaller components (see
Figure 6) and introduce the corresponding concepts.

Module - is a certain amount of functional units (FU).
They are strongly connected (tightly coupled) with each other
and have minimal connection with the functional units (FU) of
other modules. One of the functional units have to be the main
(working with the central or main object in the context of the
business objectives of the module) and the remaining
subsidiaries.

23 of 230

Figure 6. Meta-Model on level functional units

We showed Interface intermodule interactions (Module
Interface) interface and work with DB (Data Base interface)
on Figure 6 because the functional units themselves may
interact with the database and functional units of other
modules. In reality, the module interface and data base
interface are located in the internal structure of functional
units (FU). The solid lines in Figure 6 show that the functional
units are combined into modules according to the principle of
tightly coupled. We introduce the concept of functional units
and continue to decompose.

Functional unit of the module (FE) - a graphical element
(shape, window, Web page, etc.) which contains a set of
elementary operations (EO). They are intended for display,
modify, add or remove a business object's attributes or their
values. Elementary operation may cause, another elementary
operation or a functional unit of the module and perform other
similar operations. In other words, a functional unit allows for
a certain set of functions associated business processes.
Main functional unit (MFU) - functional unit of the module
with the highest degree of connectivity (informational or
functional) with other functional units of modules and
comprises a master form. The remaining functional units of
the module are subject-forms. We can lead explorer in MS
Windows as an illustration. It folders and files are central to
the business objects, so a window displaying them with all its
functionality, is the primary functional unit. In turn, the
window control which users can share any file or folder it can
be a child or a subordinate.

Figure 7. Meta-Model on level Graphic Element

The graphic element of a higher order (see Figure 7) - is a
component, which is presented graphically in the window
form or the screen. It has events and properties and contain a
set of elementary operations. Events and properties of the
graphical elements of higher order and a set of elementary
operations together provide a complete description of the
functional units of the module. Elementary operations can be
arbitrarily interact with each other and interact with other
functional units. There are two important limitations: an
elementary operation cannot directly interact with the unit
belonging operation to another graphic element, a functional
unit of the module always has one and only one graphic
element of a higher order, which represents a box shape of the
screen or Web page.

Events - this is actually class methods (in the terminology
of object-oriented programming) implements a specific
graphic element (such as a mouse click - OnButtonClick (), or
loss of window focus - FocusOff (), or closing the window -
OnClose ()), each event if so stipulated requirements for
business applications, can have its own handler.

Properties - the attributes that characterize a particular
instance of a graphical interface. The properties of the graphic
element may include the following parameters: name,
description, the form position the top left corner along the axis
X; the form position of the upper left corner along the axis Y;
height form, the breadth of forms; color, font settings (font
name, font size, bold, italic, underline), the visibility of the
form (visible / invisible).
Elementary operation (EO) - is an elementary graphical
elements (buttons, panels, switch, etc.), that connected with a
single action function of a business process. The structure of
its metadata elementary graphic element is very similar to the
graphic element of a higher order. There is one exception, to
be exact an elementary graphic element cannot contain
elementary operations. Everything else is absolutely equally:
events, properties and handlers. Let`s consider the structure of
the handler (see Figure 8). The structure is identical for both
the graphic element of a higher order (GE) and for an
elementary graphic element (EGE).

Figure 8. Meta-Model on level handler event

The operators of arithmetic and logic, mathematical
functions, operators, loops and conditionals - these operators

24 of 230

are designed to implement the business logic (see Figure 1),
their collection may vary.

Function call's graphic elements (GE) of higher order,
function call's elementary graphical elements (EGE), options
to set properties for GE and EGE - may represent a limited
number of universal adaptive functions (performance depends
on the method of implementation and using the framework).

Data Manipulating function - designed to implement
interfaces with databases. Data Manipulating function can be
variable. For stored objects in our database ("Object", "object
attributes", "The values of object attributes") we released 12
basic functions for manipulating data. In case of need this set
of functions can be expanded. The handler must have a certain
syntax. The handler`s syntax can be a modern graphical
syntax, built on the cognitive perception of reality as well as
the classic text syntax.
A result of realizations stepwise decomposition of elements a
Meta - Model was obtained. The Meta - Model has a divergent
level of detail. Multi-level meta-atomic elements at the
deepest level of detail can be considered: the elements of an
event handler, basic graphic elements and graphic elements of
the highest order. The last two sections cannot be divided but
can be customized. Generalized multi-layered meta-model is
shown on Figure 9.

Figure 9. Meta-Model on all levels

We should note that at all levels either explicitly or
implicitly event element as part of an integration is used. The
syntax of the handler describes the event.	

V. A PLATFORM TO QUICKLY BUILD BUSINESS
APPLICATIONS

Our platform is based on the multi-level Meta – Model.
The Meta - Model presented above has been implemented as
bundles of desktop applications and server. Server stores the
description of the components, business information and all
service information. We tried to make the most simple quickly
creation environment of business applications. It contains only
the most necessary elements for building business
applications. We will see a concise workspace, when we

launch Primius platform. Since launching platform Primius,
we will see a concise workspace. Main navigation menu
consists of 2 major categories: Administration and modules
that are available in selected business applications (see Figure
10). Figure 10 shows that the current business application
consists of 3 modules - Drugstore, Clinical nutrition,
Employee.

The modules are workstations of employees in the
enterprise information system. Each application contains
several functional units. The work of the existing modules is
no differ from other business applications that is why it will
not be considered. Figure 11 shows the category of platform
administration. This section consists of three sections:
Configuration, System Editor, and Business Object Editor.
The Configuration partition partially consistent with the
hierarchy of levels of multilevel Meta - Model we have
developed. The creation and configuration the necessary
business applications are made by this section. Section System
Editor is designed to create new and modify existing items
that are available in the categories section of Configuration.
The work of Configuration partition always starts with the
choice of Domain. Any further action should be tied to a
specific application, so long as the current application is not
specified, the other tabs will be unavailable.

Figure 10. Modules those are available in selected business applications

A configuration on the modules is done by adding them to the
list of available in the selected application modules. Every
time you add a new module to the application, the metadata of
the business data changes. Features of the implementation of
this framework were considered in [8]. Configurations of next
detail levels of elements realizes similarly. Figure 12 shows
the Business Objects Editor. Any business object (real or
abstract) is displayed by directory of objects that reference the
attributes and the type of relationship between objects and
attributes. All business objects and their attributes are linked
to a specific system. There are two ways to create or change
the structure of business data: automatic and manual.

25 of 230

Figure 11. Modules configuration

Automatic mode is available when developer operating at the
level of modules. In other cases, the structure of business data
should be prepared manually by editing the business objects.

Figure 12. Business object editor

VI. CONCLUSION
In this article we looked at popular approaches to

development programs and analyzed them for the important
criteria to us. We concluded that to solve the problems of
software development which relate to development time,
individuality and flexibility of these solutions the platform
should use a combination of approaches Meta design and
factory applications. We have also assumed that the basis of
the platform should be based on a multi-level Meta - Model.
Analysis of the aspects characterizing the corporate business
applications enabling us to understand what kind of needs
multi-level Meta - Model should be. Our platform is based on
the Meta - Model that we have developed. We have developed
a unique structure of the data [8] to implement the ideas
embodied in the Meta - Model. The structure is a common

repository that describes elements of Meta, Meta data
describing the business objects and data from which these
objects work. This platform allows reducing the demands on
staff. To explore this indicator we have attracted students to
develop real-world business applications. Students were at 2
and 3 year bachelor's degree programs in "Computer Science
and Engineering." One of the groups studied the C # and SQL
in the IDE Microsoft Visual Studio 2005, another group of
students studying specialized algorithmic language AV
Scripts, SQL and basic knowledge of operating principles in
the platform Primius. Our research group specializes in the
development of fairly large business applications for the social
protection institutions. We detected the following fact: in both
groups to obtain basic knowledge took on average a similar
time. However, the results between the groups were very
different. Figure 13 reflects the evaluation of professional
commitment to the development of applied business
applications of groups.

Figure 13. Comparison Chart

When we research and test platform for the control groups
we identified areas which require further investigation. One of
the identified areas was the task of generation automating the
SQL queries. We want to rid the developers using our platform
from having knowledge of SQL - they need to concentrate on
the business structure of the data but not on relational algebra.
This work demonstrates that a natural way of development of
software engineering is raising the level of abstraction. Our
results show that the combination paradigm of Meta - Design
and application factories can produce very good results.

REFERENCES

[1] Standish_Group (1995). Chaos. THE STANDISH GROUP REPORT.
[2] Tao Yue, Lionel C. Briand and Yvan Labiche, "A systematic review of

transformation approaches between user requirements and analysis
models". //Springerlink.com

[3] Craig Larman, Victor R. Basili (June 2003). "Iterative and Incremental
Development: A Brief History"

[4] Gafter, Neal (2006-11-05). "Reified Generkics for Java"
[5] Esteves, J., and Pastor, J., Enterprise Resource Planning Systems

Research: An Annotated Bibliography, Communications of AIS, 7(8)
pp. 2-54

[6] Cesar Gonzalez-Perez, Brian Henderson-Sellers Metamodelling for
Software Engineering, Wiley, 2008, 219 pages

26 of 230

[7] Bieberstein et al., Service-Oriented Architecture (SOA) Compass:
Business Value, Planning, and Enterprise Roadmap (The
developerWorks Series) (Hardcover), IBM Press books, 2005.

[8] Youri I. Rogozov, Alexander S. Sviridov, Sergey A. Kutcherov,
Wladimir Bodrov. Purpose-driven approach for flexible structure-
independent database design. Proceedings of the Fifth International
Conference on Software and Data Technologies, ICSOFT 2010, Volume
1, p.356-362

[9] Stroustrup, Bjarne (1997). "1". The C++ Programming Language (Third
ed.).

[10] Krzysztof Czarnecki and Ulrich W. Eisenecker Generative
Programming - Methods, Tools, and Applications Addison-Wesley,
2000, 864 pages

[11] Anneke Kleppe , Jos Warmer , Wim Bast MDA Explained: The Model
Driven Architecture(TM): Practice and Promise Addison-Wesley
Professional, 2003, 192 рages

[12] Palmer, S.R., & Felsing, J.M. (2002). A Practical Guide to Feature-
Driven Development. Prentice Hall. (ISBN 0-13-067615-2)

[13] Steven Kelly, Juha-Pekka Tolvanen Domain-Specific Modeling Wiley-
IEEE Computer Society Press,2008, 448 pages

[14] David Abrahams, Aleksey Gurtovoy C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley Professional , 2004, 4000 pages

[15] Jack Greenfield and Keith Short Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools Wiley, 2004,
500 pages

[16] Рогозов Ю.И., Актуальные проблемы и перспективные направления
в области построения информационных систем и процессов:
сборник статей международной научно-технической конференции.
Таганрог: изд-во ТИ ЮФУ, 2010 г., стр. 9-15

[17] Ye, Y., Fischer, G.: Designing for Participation in Socio-Technical
Software Systems. In: Stephanidis, C. (ed.) Proceedings of 4th
International Conference on Universal Access in Human-Computer
Interaction, Beijing, China, pp. 312–321. Springer, Heidelberg (2007)

[18] Schwabe, D., G. Rossi, et al. (1996). Systematic hypermedia application
design with OOHDM. seventh ACM conference on Hypertext,
Bethesda, Maryland, United States, ACM Press.

[19] Fratenali, P. and P. Paolini (1998). A conceptual model and a tool
environment for developing more scalable and dynamic Web
applications. EDBT 98, Valencia, Spain

[20] Schewe, K.-D., B. Thalheim, et al. (2004). Modelling and Stories in
Web Information System. Information Systems Technology and its
Applications (ISTA), Salt Lake Ciy, Utah, USA.

[21] Visual Rules – www.visual-rules.com/dynamic-applications.html
[22] Athula Ginige. Meta-design paradigm based approach for iterative rapid

development of enterprise WEB applications. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, p.337-343

[23] Webratio – http://www.webratio.com
[24] Mendix – http://www.mendix.com/
[25] Yuri Rogozov, Wladimir Bodrow, META-APPROACH FOR

CREATION OF OBJECT PROTOTYPES. Proceedings of ICERI2010
Conference. 15th-17th November 2010, Madrid, Spain.

[26] Grady Booch, Object-Oriented Analysis and Design with Applications,
2007.

[27] L.N. Lyadova et al., Implementation of distant learning portals based on
CASE-technology METAS, // International Journal "Information
Technologies and Knowledge", 2008. Т. 2. № 5. C. 489—495

[28] L.N. Lyadova, V.Lanin, Documents Management in Dynamically
Adaptable Systems Based on Metamodelling // Proceedings of the
Congress on Intelligence Systems and Technologies “AIS-IT’10”.
Scientific publications in 4 volumes. Moscow: Physmathlit, 2010, Vol.
4. , Moscow, 2010.

[29] Fischer, G. and E. Giaccardi. Meta Design: A framework for the future
of end user development. End User Development: Empowering People
to flexibly Employ Advanced Information and Communication
Technology. H. Lieberman, F. Paterno and V. Wulf, Springer. 9: 427-
457

27 of 230

f=0;

i=0;

while(i<n)

{

 a=x[i];

 if((a<0)&&!f))

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 && (res<a))

 res=a;

 i++;

}

if(!f)

{

 printf("There

are no right

elements");

}

Algorithm A1

f=0;

fseek(file, 0L,

SEEK_SET);

fscanf("%d",&a);

while(!feof(file))

{

 if(a<0&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 &&(res<a))

 res=a;

}

if(!f)

{

 printf("There are

no right elements

");

}

Algorithm B1

f=0;

i=p;

// p - head list

while(i!=NULL)

{

 a=i->info;

 if((a<0)&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)

 &&(res<a))

 res=a;

 i=i->next;

}

if(!f)

{

 printf("There

are no right

elements ");

}

 Algorithm C1

Application of SADT for source code generation in

learning the programming fundamentals

Kustov M.
1
, Guban B., Datsun N.

2

Department of Applied Mathematics and Informatics
Donetsk National Technical University

Donetsk, Ukraine
1
maksym.kustov@gmail.com,

2
datsun@pmi.dgtu.donetsk.ua

Abstract— Approach to generating source code from the SADT

(Structured Analysis and Design Technique) specification of the

program is offered. Invariants are allocated in basic algorithms.

Algorithm of generating source code on the basis of templates is

formulated. Data structures used for implementation of

algorithm are considered. Internal representation of the SADT

specification can be used to analyze the properties of the

generated program.

programming fundamentals, SADT, algorithms, invariants,

data structures, generating source code

I. INTRODUCTION

This paper presents the results of application of the SADT
(Structured Analysis and Design Technique) [1, 2]
specification for the generating source code. The course SE101
of SEEK (Software Engineering Education Knowledge) [3] is
focused on the solution of such learning objectives: develop
simple statements of requirements and write small programs in
some language. Modern methods of generating source code
from a Domain-Specific Language (DSL)/specification
language (SL) can be used in learning to create a structured
program based on the standard algorithms and simple data
structures. Development of methods for generating source code
from a DSL/SL is an actual problem for the various subject
areas [4-10]. There are textual and visual DSL/SL. UML and
UML-like languages are most popular among the visual
specification languages. C++, C#, Java, VB and VB.NET in
most cases are the source code languages [4-9]. But the
notation of UML and object-oriented languages for generating
source code are redundant for problems of learning the
programming fundamentals. SADT [1, 2] as a methodology for
functional modeling successfully works for the description of
clearly specified processes [11, 12]. Therefore it is possible to
apply SADT in learning the methods of decomposition
programs. Language SADT-methodology is a visual
specification language. Graphical notation of IDEF0 [2] in
such subject area as formalization of programs development
allows to consider the logic relations between functional blocks
of the program and provides the minimum toolkit for building
software projects with standard algorithms. Work objective is
to use the graphic notation of SADT for teaching of
decomposition program and generating source code for
procedural language from the SADT-specification with
standard algorithms on basic data structures.

II. SELECTION OF INVARIANTS OF BASIC ALGORITHMS

A. Selection of Invariants of The Algorithm With Respect To

The Input Data

Let's try to identify the invariants for basic search
algorithm of the maximum negative elements. For this we
consider the implementation of this algorithm for various data
structures. Fig. 1 presents these algorithms for the array, a text
file and linked list.

Figure 1. Basic algorithms of the maximum negative element for the array,

a text file and linked list.

After detailed analysis of algorithms, you may notice that
some parts are the same for all types of data structures. Let's
distinguish immutable parts (invariants) of algorithms.

28 of 230

f=0;

i=0;

while(i<n)

{

 a=x[i];

 if((a<0)&&!f)

 {

 f=1;

 res=a;

 }

 if(f&&(a<0)&&

 (res<a))

 res=a;

 i++;

}

if(!f)

{

 printf("There are

no right elements");

}

Algorithm A2

res=x[0];

i=0;

while(i<n)

{

 a=x[i];

if(a<rez)

 res=a;

 i++;

}

Algorithm B2

i=0;

while(i<n)

{

 a=x[i];

if(a>0)

 x[i]=0;

 i++;

}

 Algorithm C2

In Fig. 1, the invariants of these algorithms are marked in
bold. Thus we have the invariants of algorithms with respect
to the input data. That is, when you change structure of input
data invariant remains the same. The resulting invariants are
divided into three parts: initialization (in Fig. 1 marked in
underlined), main part, ending part (in Fig. 1 marked in italic).

Unchanging part of the processing algorithm determines
the input variable and the variable part of it represents this
variable to the input, looking over an array, file or linked list.

B. Selection of the algorithm invariant by the method of

processing

We consider algorithms for finding maximum of the
negative elements, minimum and replacement of the positive
elements of zeros for the same data structure (array). Fig. 2
presents these algorithms.

Figure 2. Various algorithms for the array.

Let's distinguish the invariants for the considered
algorithms. Common to these algorithms is the cycle for the
elements of the array. In Fig. 2, the invariants of these
algorithms are marked in bold. In these algorithms there are no
some parts: algorithm B2 has lost the ending part, and the
algorithm C2 lost the initialization and the ending parts.

III. GENERATION OF NEW ALGORITHMS BASED ON

INVARIANTS

Let's create a patterns of the algorithms obtained in the
previous sections. To do this, we will cut out the invariants
from the algorithm. Now we can get a brand new algorithm by
combining the algorithm C1 and algorithm B2. Fig. 3
illustrates the preparation of an entirely new algorithm based

on invariants. Further, the project implementation software for
generating program code based on the specifications of the
SADT-methodology will be discussed.

Figure 3. Process of obtaining a new algorithm based on invariants.

IV. DATA STRUCTURES

From the IDEF0/SADT graphic language for creation of
the SADT specification are used:

 functional blocks (Activity Box) to denote the
program modules at decomposition

 interface arcs (Arrow) of two types (“Input” to
transfer the input data and “Output” to transfer the
output data);

 names of interface arcs (Arrow Label) to denote the
names of the input and output data.

Consider the representation of the visual components of
SADT specification in the form of data structures

A. SADTUnit Structure

The main data structures is SADTUnit, describing a unit of
SADT diagrams, and SADTData, describing the type and data
structure of links SADT diagrams. Elements of structure
SADTUnit are:

 number of diagram unit (integer);

 links (list);

 containers (list).

“Number of diagram unit” serves for process ordering.
Process occurs consistently, according to numbers of diagrams.

List item "Links" is a pair <key (name); value (link
structure)>. This component will organize a logical relationship
of component with other diagram units.

29 of 230

List item "Containers" is a pair <key (name); value
(container structure)>. It contains a set of possible patterns of
code for generated program. Needed container is selected in
accordance with the data type and structure of the input data.

B. SADTLink Structure

Elements of structure SADTLink are:

 name (string);

 type of link (string);

 linked to the diagram (string);

 link on the external diagram (string);

 data (string).

"Name" is used to display in graphical representation of the
diagram. Also the name is used for this purpose what to refer to
this communication from external diagrams and
communication with various internal structures, such as the
mask of using of the diagram container.

"Type of link" specifies the type of communication with
respect to the diagram in which this connection is contained.
Link can be:

 input (intended to link a diagram to input data);

 output (intended to create of the reference to the data
received as a result of work of the diagram);

 modular (intended to connect the various modules to
the diagram, which can extend standard functionality).

"Linked to the diagram" specifies the name of an external
diagram. It is used in input and modular links to specify the
diagram connected with the current diagram through this link.

"Link on the external diagram" is the name of the output
link of external diagram, which is connected with this link. It is
used for input and modular links.

The field "Data" is used for output links. The value of this
field corresponds to a name of data which are created as a
result of work of the current unit diagram. This field establishes
compliance between data and links.

If the diagram generates new data, the fields "Linked to the
diagram" and "Link on the external diagram" are empty, and
the field "Data" refers to the structure of the newly created
data. Such a set is created only for the output links. Conversely,
if the field "Data" is empty, and the fields "Linked to the
diagram" and "Link on the external diagram" are filled, it
means that the link is connected with one of the external
diagrams, or that the link is associated with one of the inputs to
the current diagram. This occurs when new data aren't
generated, but only only to modify the input data.

C. SADTData Structure

Elements of structure SADTData are:

 data structure (string);

 data type (string);

 name of the data (string).

"Data structure" describes the type of the data structure
(array, list, file).

"Data type" describes the type of data in structure (integer,
character or real).

"Name of the data" used to identify the created data
structure.

By analogy to SADT diagrams, SADTUnit itself acts as a
diagram, and SADTData acts as links between diagrams. If we
consider the mechanism of processing of the workpiece in the
SADT specification, SADTData will act as a workpiece, and
SADTUnit will act as methods and techniques for handling the
workpiece. Accordingly, after processing of the workpiece is
obtained by the final product, which will be the output link. It
will be at the same time presented by SADTData structure.

D. Container Structure

Elements of container structure are:

 text field (string);

 mask of using (array of structures).

"Text field" contains one of versions of the generated text
of the program.

Structure of the field "Mask of using" contain the name,
structure and type of input links. The container contains some
such structures. If all parameters (structure and type), specified
in the mask, correspond to all the listed links, this particular
container is used for source code generation.

E. Mask of Using Structure

The mask of using is the array, each element of which is
the data structure:

 name of link (string);

 data type (string);

 data structure (string).
“Name of link” should correspond to one of names of links

of diagram units.

Type in the "Data Type" should match the type of the
corresponding input link. Then the container will be called, and
the code will be generated by its pattern.

"Data Structure" contains the name of the data structure
relevant to the input link.

Compliance of a mask of the input link is defined by the
coincidence of the input link name of diagram and the name of
link in the mask of using.

F. Data Structures Communication

The main block is «SADTUnit». It contains the array of
structures «Container» and «SADTLink». In turn, the structure
of the container contains the array of of structures «Mask of
Using», and the field «Data» of structure «SADTLink» refers
to a structure «SADTData».

30 of 230

V. SOURCE CODE GENERATION

A. Description of Problem

Input data:
ST: set /* set of basic data structures */
ST={array, matrix, list, sequential file, direct access file}
AT: set /* set of basic algorithms */
BD: set /* set of diagram blocks */
BD = <nbdid, BDIN, BDOUT, MET, INST>
nbdid: string /* ID of the diagram block */
BDIN: set /* set of inputs of diagram */
BDOUT: set /* set of outputs of diagram */
BDMET: set /* set of diagram methods*/
INST: set /* set of tools */

Restrictions: AT, ST, BD sets are not empty.

Results:
D: graph /* the problem specification from which the file PR
 is generated */
PR: file /* file of program code */

Relation “ input data - results ”:
D=BD union V
V = {vi}

vi = < bdin
k
i ,bdout

l
j > , i, j — numbers of input and

 output block diagram, k, l - numbers of inputs and outputs
 PR= AT × ST × P

B. Source Code Generation by SADT Specification

Using of templates is a common practice in programming.
Many programming languages have functions to work with
templates. But the usual patterns become powerless when the
variables substituted into the templates have different structure
(arrays, lists, files), because the processing of each data
structures is individual. For the array, it is possible to use the
loop, the matrix is required nested loops, for a tree - bypassing
the depth or breadth.

Several containers of a template used to solve this
problem. Appropriate container is selected according to the
type and structure of the input data. After that contents of the
container are used as a usual template.

Code generation is a substitution of data from the input
links in the text of container. The universality of this approach
is that the containers are defined for each data type and data
structure.

C. Source Code Generation Algorithm

1. Creation SADT diagrams.

2. Creation of links for SADT diagrams and giving them
names.

3. Numbering units in order to code generate.

4. Creation of containers with templates.

5. Specifying of mask of using for each of containers. The
algorithms contained in the containers can be created on the
basis of invariants of the algorithms.

6. Linkage of the created blocks. Linking of blocks occurs
by comparison to the input link of one diagram and the output
links of another diagram. Fields «Linked to the diagram» and
«Link on the external diagram» are filled. Link will be
recursively traced to the reference to data.

7. Selection of the container, which corresponds to the
input data. For this purpose it is necessary to compare the data
of each input link. Then, knowing type and data structure with
which should operate the diagram block, select the appropriate
template. From the list of all possible patterns is chosen the one
with the mask of using corresponds to the input data.

8. Replacement in a template of the container of values of
input links on names of data which correspond to this link.

9. Repeating steps 1-8 to all diagrams.

10. Arrangement of the obtained text of a program code
according to numbers of diagrams.

VI. DESCRIPTION OF TEST STAND

A. Implementation Toolkit

Qt library [13] was chosen as an instrument of
implementation. It includes all the basic classes that may be
required for the development of applied software. Qt is fully
object-oriented tool, easily expanded and supporting of
component programming technique. Thus, the designed
software product is cross-platform and can easily extended to
work over the network and databases.

Development of software is based on the Linux operating
system CentOS 5.5. Tests were carried out for the following
operating systems CentOS5.5, Fedora 14, Windows XP.
Compilation and debugging implemented in QT Creator.

B. Architecture Variants

Experiments were carried out on different hardware
architectures running different operating systems. Table I
presents options for the test stand.

TABLE I. VARIANTS OF TEST STAND

Hardware OS

Intel(R) Celeron(R) CPU E3300

2.5GHz 1GB RAM

Microsoft Windows XP
Professional Service Pack 3

AMD Phenom(tm) II X4 B45

Processor 3,1 GHz 1370112 KB

RAM

CentOS 5.5 x86_64

AMD Sempron(tm) 140

Processor 2,7GHz 1796440 KB

RAM

Fedora 14 x86_64

VII. TESTING

A. Description of Test Set

The experiment was performed on data structures: the array
of integers, the direct access file of integers, the array of
strings.

31 of 230

f=0;

res=-1;

i=0;

while ((i<n) && !f)

{

r=x[i];

if (r==a) {

 f=1;

 res=i; }

else

 i++;

}

Algorithm A3

f=0;

res=-1;

i=p;

while ((i!=NULL) && !f)

{

r=i->info;

if (r==a) {

 f=1;

 res=i; }

else

 i=i->next;

}

Algorithm B3

i=0;

while (i<Res)

i++;

while (i<n)

{

 a[i]=a[i+1];

 i++;

}

Algorithm A4

i=p; // p - head list

while (i!=Res)

i=i->next;

while (i!=NULL)

{

 i->info=i->next->info;

 i=i->next;

}

Algorithm B4

The blocks of diagram with containers ("find the
minimum", "find the maximum", "swap elements") were
created for processing of these data structures.

Containers are contained in each of blocks of diagrams.
Each of the container corresponds to a certain set of input data.
Table II presents the set of containers for each of the block.

TABLE II. SETS CONTAINERS FOR EACH BLOCK

Data Container
Array of Integer

Один контейнер,

создающий данные

int an=20;

int a[20];
Direct Access File of Integers (D/A File Int)

Один контейнер,

создающий данные

FILE *f;

if((f=fopen("rw","filename"))==NULL)

 printf("Cannot open file");

int fn=fseek(a,0,SEEK_END);
Array of Strings

Один контейнер,

создающий данные

int cn=20;

char c[20][100];

Minimum in Dataset (Min in Dataset)

ArrayInt int iMin=0;

for (int i=1; i<%xn%;i++) {

 if(%x%[i]<%x%[iMin]) iMin=i;

}

DAFileInt int iMin=0;

int Min,bufMin;

fseek(%x%,0,SEEK_SET);

fread (&Min, sizeof(Min), 1, %x%);

for (int i=1; i<%xn%;i++)

{

fread (&bufMin, sizeof(Min), 1, %x%);

if(bufMin<Min)

 { Min=bufMin; iMin=i; }

}

ArrayString int iMin=0;

for (int i=1; i<%xn%;i++)

{

if(strcmp(%x%[i],%x%[iMin])<0) iMin=i;

}

Maximum in Dataset (Max in Dataset)

ArrayInt, DAFileInt,

ArrayString

By analogy to the container Min in Dataset

Swap elements in Dataset

ArrayInt int buf; buf=%x%[%i1%]);

%x%[%i1%]=%x%[%i2%];

%x%[%i2%]=buf;

DAFileInt int changeMax,changeMin;

fseek(%x%,iMin*sizeof(int),SEEK_SET);

fread (&changeMin, sizeof(Max), 1, %x%);

fseek(%x%,iMax*sizeof(int),SEEK_SET);

fread (&changeMax, sizeof(Max), 1, %x%);

fseek(%x%,iMin*sizeof(int),SEEK_SET);

fwrite (&changeMax, sizeof(Max), 1, %x%);

fseek(%x%,iMax*sizeof(int),SEEK_SET);

fwrite (&changeMin, sizeof(Max), 1, %x%);

ArrayString char buf[100]; strcpy(buf,%x%[%i1%]);

strcpy(%x%[%i1%],%x%[%i2%]);

strcpy(%x%[%i2%],buf);

Fig. 4 shows the interface of the test stand.

Figure 4. Interface of the test stand.

VIII. EXPANSION OF SET OF BASIC ALGORITHMS

Let's consider source code generation by the SADT
specification on an example of search of an element "a" an and
further removal of the found element from the one-dimensional
array and the list. In Fig. 5, the invariants of these algorithms
are marked in bold.

Figure 5. Element search (array and list).

Having analyzed algorithms of A3-B3 and A4-B4, we see
that some parts of these algorithms are identical. Fig. 6 shows
that the same algorithm is specific to the different data
structures.

Figure 6. Remove with a shift (array and list).

32 of 230

f=0;

Res=-1;

i=0;

while(i<strlen(str)

&& !f)

{

r= str[i];

if (r==a)

{

f=1;

Res=i;

}

else

i++;

}

Algorithm A5

f=0;

Res=-1;

fseek(file, 0L, SEEK_SET);

i=ftell(file);

while ((fscanf(filein, "%d", &r) !=

EOF) && !f)

{

i=ftell(file);

if (r==a)

{

f=1;

Res= i;

}

else

i++;

}

 Algorithm B5

Fig. 7 represents the result of combining these two basic
algorithms. Under the proposed approach in this work, it is
possible to allocate the invariants of algorithms and to create
containers for source code generation for SADT diagrams for
the other data structures (direct access files and sequential files,
strings or trees).

Figure 7. Combining the basic algorithm A3 and A4.

In Fig. 8, the invariants of these algorithms are marked in
bold.

Figure 8. Element search (string and file).

The project results will be used for teaching the bachelors
"Software Engineering" in the discipline of "Programming
Fundamentals."

Prospects for the development of the project involve the
solution of such problems:

 analyze generated programs to determine their
efficiency;

 add an interface arc "Control" to describe conditions
that are imposed on standard algorithms.

IX. CONCLUSION

In learning the programming fundamentals of "Software
Engineering" students is necessary to develop their competence
of structuring problems. When studying standard algorithms
and basic data structures it is important to show the general
approaches and implementation features. Therefore, this
project focuses on the using of SADT-methodology for
learning the programming fundamentals. Possibilities of the
specification are limited to standard algorithms and basic data
structures. Approach of source code generation by SADT
specification is offered. Invariants are allocated in basic
algorithms. Source code generation algorithm on the basis of
templates is formulated. Possibility of creation of new
algorithm on the basis algorithms is provided. Data structures
used for implementation of algorithm are considered. Internal
representation of the SADT specification can be used to
analyze the properties of the generated program.

REFERENCES

[1] D. Ross, “Structured Analysis (SA): A Language for Communicating
Ideas”, IEEE Transactions on Software Engineering, vol. SE-3, N. 1,
pp. 16-34. 1, Jan. 1977.

[2] D.A. Marca and C.L. McGowan, "IDEF0 and SADT: a modeler's
guide,", Auburndale, OpenProcess, Inc., 2006, p.392.

[3] “Recommendations for teaching software engineering and computer
science in universities = Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software
Engineering; Computing Curricula 2001: Computer Science,” V.L.
Pavlov, A.A. Terekhov, and A.N. Terekhov, Eds. Moscow: INTUIT.RU
"Online University of Information Technologies", 2007, p. 462
[Рекомендации по преподаванию программной инженерии и
информатики в университетах, М.: ИНТУИТ.РУ "Интернет-
Университет Информационных Технологий", 2007, 462с.].

[4] S. Kelly, J.-P.Tolvanen, "Domain-Specific Modeling: Enabling Full
Code Generation," Wiley-IEEE Computer Society Press, 2008, p.448.

[5] J.-P. Tolvanen, “Domain-specific modeling for full code generation,”
Journal of Software technology, vol. 12, N. 4, Jan. 2010.

[6] B. Jager and M. Rosenau, “Method for generating source code in a
procedural, re-entrant-compatible programming language using a
spreadsheet representation,”. US patent application 11/057,430, issue
date 9/6/2011, patent number 8015481.

[7] N. M. Jakubiak and M. Kucharski, “System and method for generating
source code-based test cases,” application number 11/558241,
publication date 08/16/2011.

[8] J. M. Festa,”Systems and methods for generating source code for
workflow platform,” patent application number 20100281462,
publication date 11/04/2010.

[9] M. Fowler, “Code Generation for Dummies,” Methods & Tools, Spring
2009, vol. 17, N. 1, pp 65-82.

[10] K. Vogel, “A source code generator for C: a language-independent
means of building programs that are consistent, elegant, and fast,”
Journal Dr. Dobb's, vol. 16, pp. 28 -35, Aug. 1991.

[11] H.S. Delugach, "A Multiple-Viewed Approach to Software
Requirements," Ph.D. Dissertation, Department of Computer Science,
University of Virginia, Charlottesville, VA, May, 1991.

[12] O. Djebbi, “Eliciting Requirements Variability for Embedded Real-Time
System Family,” in Proceedings of the First International Workshop on
Situational Requirements Engineering Processes: Methods, Techniques,
and Tools to Support Situation-Specific Requirements Engineering
Processes (SREP'05), Paris, France, August 29-30, 2005, In Conjunction
with the Thirteenth IEEE Requirements Engineering Conference
(RE'05), J. Ralyté, P. J. Еgerfalk, and N. Kraiem, Eds. Ireland:
University of Limerick, 2005, pp. 192-199.

[13] M. Summerfield, "Advanced Qt Programming: Creating Great Software
with C++ and Qt 4," Prentice Hall, 2010, p.550.

33 of 230

Technology for creating 3D realtime applications in

Android OS

Polotnyanschikov I.S.

mjollneer@gmail.com

Scientific advisor: Zalogova L.A.

zalogova.la@gmail.com

Software and Computing Systems Mathematical Support Perm State University

Perm, Russia

Abstract— This article discusses the development of technology

for creating 3D realtime applications for OS Android. Described

tools selection, data domain analysis and realization. Also

described process of creating new light model for luminous

segment. The results of the work are illustrated with screenshots

of real application.

Keywords-Androd; 3D graphics; Opengl ES; OOP; shaders;

lighting model

I. INTRODUCTION

Creation of 3D applications for Android OS became
especially actual after devices using this platform spread over
the world, outstripping its rival Apple iOS.

Devices with Android OS belong to differing classes of
performance and appointment – from a MP3 players and a
watches to tablet computers. Users of this devices often require
high-quality 3D visualization in real time.

The purpose of the work is to develop technology of
creation of interactive applications for the mobile devices using
3D graphics. Achievement of this purpose require to solve the
following problems:

 investigate features of development 3D applications in
Android OS,

 prove use of an object-oriented paradigm,

 design and implement hierarchy of classes for creation
of 3D appendices.

II. CURRENT STATE OF 3D GRAPHICS IN ANDROID

Nowadays best engines of 3D graphics in Android
presented by following two categories:

A. Commercial engines

Best commercial engines are Corona SDK and UNITY 3D
[9, 10]. No doubt, they offer very powerful cross platform
solutions. Library of different multimedia resources, music
subsystem, physics emulation, strong animation and most
modern visual effects. Customers also get professional support
and many tools for development 3D applications. And the cost
from $200 to $1500 annually.

B. Free engines

Best free engines are AndEngine and LibGDX [11, 12].
They both corresponds big difficult systems with many
functions. Both of them contains many subsystems, like sound,
file i/o, animation, physics. LibGDX is crossplatform,
AndEngine is 2D-only. Support here is forums and manuals.

Note now, that cross platform source code is noticeably
slower than native, because of different wrapping technologies.
Also high complexity made mentioned engines difficult to
understand and use.

So, taking into account all of the above, seems urgent to
develop easy-to-use technology for creating android-only
hardware accelerated real-time 3D graphic.

III. INTERFACE CHOICE

There are different approaches to render graphics in
Android [7]. OpenGL ES library was chosen as the hardware-
software interface. It is recommended by developers of
Android for creation of high-efficiency applications [3].
Besides, OpenGL ES allows to reach the most qualitative
result.

At present the majority of mobile devices work under
control of Android 2.3 or more senior version. In these devices
OpenGL ES 1.0 and 2.0 is supported at the same time. So there
is a question of a choice.. Each subsequent OpenGL version for
the personal computer comprises all functionality of the
previous versions. At the same time senior and younger
OpenGL ES versions contain essentially different functionality.
Therefore, they solve identical problems in qualitatively
different ways. For example, the programmer should create a
part of functionality of ES 2.0 by means of special programs –
shaders. It is impossible to recognize the senior version
unequivocally better than the younger. It is necessary to choose
the version allowing in the best way to achieve the object of
work. This choice will directly affect structure of the developed
technology.

IV. OPENGL ES VERSION CHOICE

During comparison of OpenGL ES versions distinctions in
their syntax [1,2] and functionality were analysed. Results
presented in tab. 1.

34 of 230

TABLE I. RESULT OF COMPARING OF OPENGL ES VERSIONS

Criterion OpenGL ES 1.0 OpenGL ES 2.0

Code amount Less More

Program structure More easy More difficult

Result Worse Better

Number of

supported effects

Less More

Perfomance Less More

Rendering setup By means of

parameters of

rasterization,

texturing, lighting,

etc.

By means of

shaders

OpenGL ES 1.0 is suitable when speed of development is
more important than image quality. But in this work
performance and quality of result interests us first of all. So
version 2.0 corresponds us in the best way. In ES 2.0 growth of
number of geometrical objects cause the size of the program
considerably increases.

Note, that there are different paradigms available for
anfroid-developers. For example procedural paradigm and even
workable bindings for OpenGL and LISP (functional
paradigm) [5,6]. But, for effective management of large
amount of a code the object-oriented paradigm was selected.

V. CLASS HIERARCHY DEVELOPMENT

In the course of creation class hierarchy it is necessary to
consider features of data domain and the instrument of
implementation. The data domain (a 3D graphics) is described
in such terms as the camera, geometrical object, a material, a
light source. The developed hierarchy includes the classes
corresponding to terms specified above. However, their fields,
methods and relations substantially depend on features of
OpenGL ES 2.0.

For detection of features of ES 2.0 the test program
consisting of several geometrical objects, shader objects and
attributes of vertexes was written. Specific organization of this
program allowed to select repeating parts of a code and data
with similar behavior. This features became fields and methods
of classes.

The developed object model were named "Lit Engine". In
paragraphs A-D classes of LitEngine grouped by implication
and described in outline.

A. Creation of geometrical objects

Containers of data – the abstract class LitDataContainer and
its successors. They intended to storage attributes of any
dimensionality and assignment.

Factory of data – the abstract class LitDataFactory and its
successors. They intended to filling data containers with the
attributes describing one geometrical object.

A transformation matrix – the class ModelViewMatrix. It is
intended to storing and processing matrix in terms of
transformation of coordinates.

The universal object – the class Universal3DObject. It is
intended for storage all information describing one geometrical
object.

B. Light setup

Material – the abstract class LitAppearance and its
descendants. They intended to storing settings for the specific
shader program.

The effect manager – LitSpecialEffect and its descendants.
Effect manger can tune one shader program for one universal
3D object using one specified material."Material".

C. Camera setup

Projection matrix - the class ProjectionMatrix. It is intended
to storing and processing matrix in terms of projection of
coordinates.

The camera – class LitCamera. It is intended to operate a
projection matrix in terms of setup of the camera.

D. Rendering

Shader program – class glslProgramm. It is intended to
encapsulate all operation with one shader: loading,
compilation, linking, setup and activation.

VI. DEVELOPMENT OF NOT POINTWISE LIGHT SOURSE

MODEL

Let’s take a close look on process of development new light
model.

A. Formulation of the problem

Lighting calculation by means of shaders traditionally use
models of pointwise light sources. For example Ward's models,
Lambert, Gooch, Blinn and Phong [13]. These models
appeared preferentially to simulate more and more difficult
materials.

 However, obviously, it is not enough in those situations
when it is impossible to neglect the form or the sizes of a
source – a lamp shade occupies essential volume and creates
dim shadows, the lamp of day lighting shall illuminate like
shining cylinder and be mirrored like a bright straight line. The
screen of the computer shall be processed as rectangle
occupying a certain fixed space and creating an adequate flare
on smooth surfaces.

Let's call such objects not pointwise, i.e. consisting of more
than one point.

This task is certainly solved by means of global
illumination models in which emit and reflect light can any
polygon. Such decision provides the high-quality image,
generated for the long time every frame. For real-time
applications similar physically accurate solution was not found
by the author.

Within this work the problem of simulation of not
pointwise light sources was posed and solved.

35 of 230

B. Solution

First of all let’s describe, how lighting from a luminous
segment empirically shall be created.

Figure 1. Desirable light for luminous segment

On fig. 1 we see how diffuse (left) and specular (right) light
should spread in space near luminous segment.

Note that diffuse lighting is the brighter where the
perpendiculars lowered from a segment to a surface.

Author made the assumption that in case of calculation
diffuse lighting of each separate fragment it is possible to
replace a luminous segment without loss with one pointwise
light source. This pointwise source at the same time should
belong to a segment and be placed as close to a lighted
fragment as possible. Searching of such points on a segment
for different surface fragments is schematically figured by
orange dotted lines.

Let's note that the mirror flare is brightest on fragments
which reflect a vector of a look v as precisely into a segment as
it is possible (blue dotted lines).

We will make the assumption, based on reasons of common
sense, that in case of calculation specular lighting for each
surface fragment it is possible to replace a luminous segment
with one pointwise light source without loss. This source shall
belong to a straight line passing through a segment. At the
same time it must be as close to reflected eye vector v as
possible.

In other words, summary it is necessary to calculate
coordinates of two light sources – the first will give us
diffusion component, the second – specular.

It is necessary to calculate these coordinates for each
surface fragment for every frame.

Specific values of diffusion and specular components can
be calculated by means of any pointwise illumination model,
for example Blinn.

Below illustrated (fig. 2) a model of diffusion light for
segment and one surface fragment.

Figure 2. Geometrical model of luminous segment

P – point for which intensity computation is made (surface
fragment)

, – coordinates of the ends of a luminous segment

L – required pointwise diffuse light source

d – distance to a straight line passing through a segment

Computation of required coordinates without intermediate
formulas:

The received formula is correct, only if the point L belongs
to a segment. If point L is outside of segment, it is necessary to
replace it with one of the segment ends.

For computation of coordinates of the second light source it
is necessary to find a point on segment close to reflected v
vector.

Equation for coefficient m will not be shown in this article.

If m is not between [0,1], it must be replaced with or .

Described model was realized via GLES shaders and
included in LitEngine.

VII. EXAMPLE OF APPLICATION OF LITENGINE

Fig. 3 and 4 is the screenshots of demo application running
on mobile device. By means of LitEngine the scene consisting
of a set of cubes and illuminated with one luminous segment is
rendered in real-time (about 20fps and 600 polygons on
Adreno 205 GPU). It is important that luminous segment create
adequate diffuse and specular lighting.

Figure 3. Example of use of LitEngine

36 of 230

Figure 4. Example of use of LitEngine

VIII. CONCLUSION

Possibility of a reuse of the developed hierarchy was
proved in practice by a means of several demonstration
applications with a different set of geometrical and shader
objects.

Extensibility of the developed hierarchy is proved by one of
probable scenarios of extension. For example support of new
geometry – the torus was added. Torus was completely
incapsulated in one new class inherited from the abstract
factory of data. For use of new geometry in the user application
its requiring just to rewrite one line of code.

Thus, the developed hierarchy can be reused in case to
solve tasks from different data domain (game, simulation

modeling, advertizing, editors, GIS, augmented reality, etc.).
Further it is necessary to expand model with additional special
effects, use JNI [8], include support for external models and
create more demo applications.

REFERENCES

[1] Leech J. OpenGL ES Common Profile Difference Annotated
Specification 2.0.25. URL:
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.25.pdf

[2] Munshi A. OpenGL ES 2.0 Programming Guide. Boston: Addison-
Wesley, 2009. 457 с.

[3] Android DevGuide. Graphics URL:
http://developer.android.com/guide/topics/graphics/index.html

[4] Imagination Technologies Ltd. Migration from OpenGL ES

[5] Spare time projects: OpenGL and Lisp URL:
http://www.mindstab.net/spare-time-projects-opengl-lisp/

[6] Lisp and Android SDK URL:
http://stackoverflow.com/questions/5683543/lisp-and-android-ndk

[7] Android Developer. Graphics URL:
http://developer.android.com/guide/topics/graphics/index.html

[8] Java Native Interface URL:
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html

[9] UNITY URL: http://unity3d.com

[10] Corona URL: http://www.anscamobile.com/corona/index.html

[11] AndEngine - http://www.andengine.org/

[12] LibGDX - http://libgdx.badlogicgames.com/documentation.php

[13] Light models URL: http://steps3d.narod.ru/tutorials/lighting-
tutorial.html

37 of 230

http://www.andengine.org/
http://libgdx.badlogicgames.com/documentation.php

Sisal: parallel language development

Idrisov Renat

Program construction and optimization laboratory

IIS Sib RAS

Novosibirsk, Russia

In this paper we present unfinished research on Sisal language

currently held at our institute. It wasn’t our development initially

but now we are trying to create better science computational task

solving with it. I also describe why this research is valuable and

its current state.

Language description, functional languages, dataflow

languages, parallelism

I. INTRODUCTION

 Parallel computations are more than actual today, the
architecture of the popular computing systems is changed
almost every year, a developer needs some universal method of
describing a parallel algorithm independent to the system. The
idea is to make algorithm description closer to the task
description and not to implement the exact algorithm but to
formulate the problem as far as it possible. Of course, this idea
can be found at early A. P. Ershov articles and is not new in
general, but it become more relevant today. Functional
programming can give the developer an ability to write
programs like problem statements and it is better for
exploration of parallelism. In this article we briefly describe
some of Sisal programming language constructions and its
benefits for parallel algorithm forming.

II. ADVANTAGES

A. Single assignment

Sisal [1] [2] differs from other functional languages and we
think that this difference make Sisal more adapted for
computational tasks. First of all, it has some usual functional
language benefits like single assignment[3]. This approach
requires every variable to be defined only once. Someone
would say that it is not an advantage because every imperative
program can be converted to SSA-form, and of course at low-
level programming it has no difference but imagine some
function and the global variable in the language where every
variable need to be declared (we use C for example):

int g=0;

void foo(void) { g=1; }

You need to re-declare the global variable when it is
modified, but you can’t make it inside the function. Inside the
compiler this program will be converted quite easy but to write
initially singe assignment programs is not the same. You can
declare another global variable without setting any value but it
can bring more questions to the rest of the code, we can use
more complex example to withdraw this but we wouldn’t. The

idea is that single assignment is something similar to structural
programming where "goto" operator is prohibited.

B. Streams and arrays

Sisal also uses arrays and loops which is not common for a
functional language, but it is good for computation: you don’t
have to worry about the recognition of the tail recursion or the
number of iterations or matrix description which is simpler
with arrays.

You can operate with n-th element of the array in a natural
way like in Fortran:

for i in 1, N repeat

 R := A[i] * B[k]

 returns array of R

C. Verbose syntax

And the last benefit is more verbose syntax. It makes
program source more readable and as the result – long time
development by different people becomes easier. Many
functional languages suffers from the lack of the words in the
program source, it makes the text hard to understand. The
example below is the famous Haskell1 quicksort:

qsort [] = []

qsort (x:xs) =

qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

This kind of code is hard to maintain. The same algorithm
implemented in Sisal listed below:

function qsort (Data : array[real] returns array[real])

if array_size(Data) > 2 then

let

L, Middle, R := for E in Data

 returns array of E when E < Data[1]

array of E when E = Data[1]

array of E when E > Data[1]

 end for

in

1
 More information on Haskell can be found at

http://www.haskell.org

38 of 230

http://www.haskell.org/

qsort(L) || Middle || qsort(R)

end let

else

Data

end if

end function

III. LOOPS AND REDUCTIONS

In functional programming every statement is a function
returning the value, the loops are the same. Reduction is used
to determine the returning value of the loop. Keyword "returns"
at the end of the loop is followed by the name of the reduction
and its parameters. For example, if we need to summarize the
elements in the array or the stream we use following
construction of the loop:

function sum(A: array[real] returns real)

for r in A

returns sum of r

end for

end function

Of course, loop construction can be used without any
function declaration. Sisal is pure functional, it has no side
effects and any loop contains the reduction call, also user can
implement his own reductions.

The reductions are good because its implementation can
depend on target system. When the program is executed in
single-threaded environment it can be performed sequentially,
but when executed on multiple threads it can be performed in
parallel. Similar idea can be found in modern library
"Threading Building Blocks" by Intel2 . This library allows
usage of reduction mechanism in C++, but user can also use
ordinary loops as well. In Sisal programs reductions can't be
avoided.

In Sisal we have three kinds of loops: Post-conditional, pre-
conditional and "for all" (operation is applied to the set).
Reductions can be folding or generating (some aggregation
function or an array generator). Conditional loops are
sequential in general but reduction allows them to be pipelined
easier ―Fig. 1‖.

At this figure loops are divided into parts: Initialization,
loop body, loop test, loop reduction (ret) and range generator,
we think that the part names can briefly describe them, but if
you need more information – please check Sisal language
description [1] [2].

Using reductions matrix multiplication can be implemented
meaningfully:

2
 More information can be found at

http://threadingbuildingblocks.org/

Figure 1. ―for all‖ and post-conditional (for repeat) pipelined structure

function multiply(A,B: array[array[real]]; M,N,L : integer
returns array[array[real]])

 for i in 1, M cross j in 1, L

 returns array of

 for k in 1, N repeat

 R := A[i,k] * B[k,j]

 returns sum of R

 end for

 end for

end function

Reduction can be always used in sequential style:

function multiply(A:array[array[real]]; B:array[array[real]];
N:integer

 returns array[array[real]])

 for i in 1, N cross j in 1, N

 returns array of

 for initial

 s := 0.0;

 k := 1

39 of 230

http://threadingbuildingblocks.org/

 while (k <= N)

 repeat

 s := old s + A[i, old k] * B[old k, j];

 k := old k + 1

 returns value of s

 end for

 end for

end function

But imperative languages doesn't have any reduction
mechanism at all

IV. ERROR HANDLING

Try-catch mechanism is more popular for error handling
today but this approach has conflicts with parallel program
execution. When the exception occurs all the execution streams
must be stopped, pipeline flushed and so on. Also it is harder
to keep program determinism in the case of the parallel
execution and exception occurs. Check the following JAVA
example:

try {

 for (int i=0;i<N;i++) {

 a[i]=a[i]/((i+1)%K);

 }

} catch (Exception e) {

 // display partial results stored in "a"

}

In this example loop iterations are independent and can be
executed in parallel. Sequential execution will always give the
same result (for the fixed values of N and K); the result will not
depend on the executor properties as far as it remains to be
sequential. While there is no dependence between the
iterations, programming language semantics remains to be
sequential and parallelism exploration can break this semantics
or demand additional corrections to keep it. Interpreter or
parallelizing compiler needs additional mechanism to differ
between the data before and after the exception.

In Sisal language we have ―always finished computations‖
semantics, which means that execution stream will not stop on
any error and return resulting value even if the error occurs
(―Fig. 2‖).

V. RELATED WORKS

New parallel language development is not popular today;
more popular is existing language extension (sometimes it is
positioned as a separate language); such approach keeps
sequential semantics problems, but considered as the fastest
both for the developer and for the final application execution.
In this section we will not observe such extensions as related.

Figure 2. Error value propagation in ―always finished computations‖
semantics

A. Pifagor

This language is currently developed at Siberian Federal
Institute [4]. The language is optimized to dataflow graph
description; syntax is not easy to understand because it differs
from common imperative and functional languages. For
example, it has no infix operations, no loops. The following
Pifagor function performs vector multiplication by scalar:

VecScalMult << funcdef Param

// Argument format: ((x1, x2, : xn), y),

// where ((x1, x2, : xn) is a vector, y – scalar

{

((Param:1,(Param:2,Param:1:|):dup):#:[]:*) >>return

}

It is hard to compare Pifagor syntax and constructions with
Sisal because they are completely different. Sisal has loops and
arrays; we suppose it is better for science computational tasks.
According to the articles of the Pifagor developers it is aimed
on the list processing and the conception of unlimited
parallelism scheduled as limited at runtime.

This project has compiler and interpreter used for scientific
proposes: development of the new scheduling algorithms and
parallel programming education.

B. F# from Microsoft

We can’t say that F# is the project in a same direction with
Sisal, but Microsoft’s developments in a functional paradigm
can’t be avoidable. As the complexity of the systems was
increased the complexity of compiler grows and some features
of the functional languages formerly considered as ineffective
started to implement in imperative languages.

At one hand: F# is functional ML-family language;
functional paradigm suits better for parallel computations. At
the other: it has an ability to create any mutable indexes, non-
functional calls or dependencies, external .NET objects and
operations. It can’t be considered as single assignment or
parallel; it is hybrid, you can write implicitly parallel and
sequential programs both. Multithreaded programming on F# is
quite similar to C# or C programming.

40 of 230

Not in case of the only F# but for the all functional
languages developers are trying to make language
programming available for wide range of people but it makes
language less pure and less functional. State modification
operators such as input and output give the developer familiar
ability to process the data but makes the semantic sequential or
non-deterministic.

VI. OUR CURRENT STATE

At our institute we develop both language standard and
compiler. First version of the language was derived from Sisal
1.2 initially developed at Lawrence Livermore National
Laboratory [5]; current version of the language is 3.2 and we
are trying to improve it by solving some science computation
problems.

Sisal language compiler is used mostly by its developers for
scientific proposes: developing new optimization and analysis
algorithms, checking and improving language standard.

The main aim for today is to make language available for
people who solving computational problems and students. We
are developing JavaScript Sisal interpreter to achieve these
objectives.

My personal contribution is algorithm implementation for
language standard improvement investigations; backend
optimization algorithms and parallelization at Sisal compiler.
Now I develop JavaScript Sisal interpreter.

VII. CONCLUSION

The main idea of this paper is to explain some algorithmic
solutions and language properties valuable for parallel
execution. Development of the new languages become more
and more easy, user can create his own science field specific
language. And if the programs became task definitions and not
algorithm descriptions – it will be not necessary to rewrite it
when the execution environment or computation system will
change. You have to rewrite only the compiler; it is easier than
re-solve all the tasks again. Even if the language will be
specific it will give advantages while migrating to another
executor. Microsoft pays additional attention to functional
programming and provides tools for functional language
building, it is positive trend3.

Sisal language was initially developed for parallel
programming and writing Sisal programs is not the same as
writing C programs. In this paper we briefly described
semantic difference. If you are interested in parallel
programming and unfamiliar with functional or logic paradigm
you should definitely explore it.

REFERENCES

[1] V. Kasyanov, A. Stasenko, ―Sisal 3.2 language structures
decomposition‖, Lecture Notes in Electrical Engineering. — Berlin:
Springer-Verlag, 2009. — Vol. 28. — P. 582–594.

[2] J. McGraw, S. Skedzielewski, S. Allan, D. Grit and R. Oldehoeft ―Sisal:
Streams and iterations in a single assignment language, Language

3
 This tools are provided with F# can be found at

http://research.microsoft.com/en-
us/um/cambridge/projects/fsharp/

Reference Manual Version 1.1‖, Lawrence Livermore Nat. Lab. Manual
M-146. — Livermore, CA 1983.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman and K. Zadeck,
―Efficiently computing static single assignment form,‖ Proc. POPL-
1989, pp. 25-35, ACM.

[4] A. Legalov ―Functional language for creation of architecture-
independent parallel programs‖ Легалов А. И. Функциональный язык
для создания архитектурно-независимых параллельных
программ Вычислительные технологии : журнал. — 2005. — Т. 10.
— № 1. — С. 71-89

[5] McGraw, J. R. et. al. ―Sisal: Streams and iterations in a single
assignment language, Language Reference Manual Version 1.2‖
Lawrence Livermore Nat. Lab. Manual M-146 (Rev.1). — Livermore,
CA 1985.

41 of 230

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

MetaLanguage: a Tool for Creating Visual

Domain-Specific Modeling Languages

Alexander O. Sukhov

Department of Software and Computing Systems

Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: Sukhov.psu@gmail.com

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. The technologies based on applying a metamodeling

and domain-specific languages are widely used at information

systems developing. There are many different tools for creating

graphical domain-specific language editors with a possibility of

determining user’s graphical notations. However they possess

disadvantages. The MetaLanguage system is designed to

eliminate some of these shortcomings. MetaLanguage is a

language workbench which provides creation of visual dynamic

adaptable domain-specific modeling languages used in the

development of information systems. In paper the approach to

development of MetaLanguage DSM-platform is considered.

Basic metalanguage constructions of this system are described.

The mathematical multilevel domain model with usage of

pseudo-metagraphs is constructed. Definitions of the graph and

metagraph are given. The algorithm of vertical models

transformations is described. The architecture and

implementation of the development environment of

MetaLanguage toolkit is presented.

Domain-specific language; DSM-platform; MetaLanguage;

metamodel; visual modeling languages; graph grammars

I. INTRODUCTION

One of the key requirements for information systems is the
possibility of flexible customization to ever-changing needs of
business processes and users. Domain modeling is an essential
stage in the development of any information system. One of
approaches for maximum adaptability – using models not only
at the system development stage, but also at system
functioning.

Model is an abstract description of system characteristics
which are important from the viewpoint of modeling purposes.
Model is described in some formal language. To each task
solution can be applied a modeling language which uses
concepts and relations from the information system domain.
The systems life cycle is based on usage of the several models
that are described from the various points of view and with
different levels of abstraction. Such approach is caused by that
system development process consists of several stages:
analysis, design, implementation, testing. For example, at the
analysis stage on the software look as on implementation of
specific business functionality needed to the customer,

herewith principles and details of implementation are not
important.

At system creation several levels of models are created: the
data that are stored in system database is a state model of the
information system domain; their description, which providing
a data interpretation or code generation to work with them, is a
metamodel; for developing this model special formal language,
which allows to work in terms of the appropriate domain, is
applied – the meta-metamodel here is used.

In fact, system creation with usage of modern workbenches
represents the development of domain-specific
languages (DSLs) – information system meta-metamodels.
DSLs are simple on applying and are easy to understand for
users as they operate with domain terms. Therefore now a large
number of DSLs is developed for using in different domains,
for example, for business processes modeling [1] and the
designing applications for mobile devices [2].

The use of DSLs and language workbenches allows to
simplify process of models creation. Experts – specialists in
various domains can be involved in the development.
Expressiveness of languages and productivity of the systems
created on their basis depends on properties of baseline
models, a choice of mathematical formalism for describing
language properties.

Today, there are many widespread visual DSLs, because
the diagrams are more clear and understandable not only for
programmers, but also for the domain experts and system
users. This approach to use of visual DSLs is called domain-
specific modeling (DSM). DSM-technology provides modeling
in domain terms.

There is no unified general-purpose visual language of
software development. In practice now are widely used such
languages of visual modeling, as Class Diagrams and ERD –
for domains modeling; IDEF, DFD, EPC, BPEL, and BPML –
for business process modeling, etc.

This paper is supported by Russian Foundation for Basic Research (Grant
12-07-00763)

42 of 230

Recently, UML claims to be the modeling language
standard, however, this language has some significant
disadvantages:

 UML diagrams are complicated for understanding not
only for experts who take part in system engineering,
but in some cases even for professional programmers;

 UML diagrams can’t adequately represent domain
concepts, since work is being done in terms of “class,”
“association,” “aggregation,” etc., rather than in
domain terms.

The language used to create other languages is called the
metalanguage. Process of model creation can be iteratively:
having created some language, we can use it as a metalanguage
for designing other language which, by-turn, also can be used
as a metalanguage, etc.

Despite all DSL advantages they have one big
disadvantage – complexity of the designing. If general purpose
languages allow creating programs irrespectively to domain, in
case of DSLs for each domain, and in some cases for each task
it is necessary to create the domain-specific language. If the
domain is quite simple and language is uncomplicated, the
compiler will create easily. More complex domain and
language will require much effort. Another shortcoming of
domain-specific language is that it’s necessary to create
convenient graphical editors to work with it.

The language workbench or DSM-platform is the
instrumental software intended to support development and
maintenance of DSLs [3]. Usage at DSLs creation a language
workbench considerably simplifies the process of their
designing [4].

It is necessary to make following demands to tools that are
using for creation of visual DSLs:

 possibility of modeling languages defining for the
majority of domains, as for description of business
processes, ontologies, object models, and for models of
applications for mobile devices creation;

 unified representation and description of models and
metamodels, i.e. for models and metamodels definition
the same toolkit should be used;

 ability to dynamically change the language description
without source code modification and without system
restart;

 consistency of domain metamodels and models
description, i.e. system should support language and
models in a consistent state, and when metamodel
changes system must perform all necessary
modifications in corresponding models automatically;

 enabling an ability of iteration metamodels definition,
i.e. describing a metamodel, the developer should be
able to use it as a tool for creation other metamodels;

 possibility of models transforming from one notation
to another.

II. RELATED WORKS

There are many different DSM-platforms for developing
DSLs graphical editors with a possibility of determining user’s
notations. These tools are MetaEdit+, MS DSL Tools,
Eclipse GMF, State Machine Designer, Meta Programming
System, REAL-IT, UFO-toolkit, etc. A main idea of DSM-
approach is to create toolkits that support optimal variants of
visual modeling for specific domain. Let’s consider these
platforms in more detail.

UFO-toolkit [5], unlike the other systems, supports a
simulation modeling of created models. This tool provides a
representation of any system as a set of three-element
constructions: “Unit – Function – Object” (UFO-element). The
“Unit” is a point of intersection of input and output arrows.
The “Function” is a transformation process of input into
output. The “Object” is a substance that implements this
function. The disadvantage of this system is that it does not
support a possibility of models usage created in other systems
since its notation does not correspond to an open standard.

Technology REAL-IT [6] is based on the use of UML.
Information system development is reduced to description of
the database and user interface with CASE-package REAL. On
the basis of these models the application can be automatically
generated. The generation possibility is provided by user
interface standardization and lack of nontrivial logic of data
processing. Otherwise in the generated code it is necessary to
add the code written “by hand.”

REAL-IT and UFO-toolkit at information systems creating
allow using only the built-in modeling languages. This
significantly limits the customization of these systems.

MetaEdit+ is a multiplatform environment that enables
users to simultaneously work with several projects each of
which can have a few models [7]. At usage this DSM-platform
besides a possibility of domain-specific language creation, the
developer receives the CASE tool into which this language is
integrated. MetaEdit+ allows to use several DSLs at system
creation.

The approach based on metamodels interpretation, instead
of code generation used in MetaEdit+ allows changing the
DSL definition at run-time. The system allows working with
languages and metalanguages universally, using the same
tools. The disadvantage of MetaEdit+ is that this DSM-
platform for export of models uses an own file format (MXT)
and this affects the openness of technology.

DSL Tools [8, 9] and Eclipse GMF [10, 11] technologies
provide the user with advanced IDE MS Visual Studio and
Eclipse, respectively. Because of this there is a possibility of
code completion in high-level languages “by hand,” but it can
lead to inconsistency of diagrams and source code. State
Machine Designer [12], in fact, is an add-on DSL Tools,
eliminating some of its defect. However, the State Machine
Designer allows creating a DSL only using UML Activity
Diagrams that considerably limits the range of tasks.

As opposed to other DSM-platforms in the Meta
Programming System [13] a method for designing textual

43 of 230

DSLs is supported. It's not so convenient, because the text is
not sufficiently expressive.

Technology Eclipse GMF is most powerful of the above.
However, its use is impeded by the lack of documentation,
complexity, and frequent releases of new versions. In fact,
Eclipse GMF is in a stage of intensive development.

Eclipse environment provides the user with tab GMF
Dashboard which allows accelerating DSL development
process by automatically generating of some language
components. On GMF Dashboard tab the sequence of the
operations which execution will lead to creation of a plug-in
for Eclipse that allows to build diagrams in current domain is
represented.

Cases when DSLs becomes part of other applications are
common. For example, a specially designed language for
describing business processes can be used in document
circulation. Therefore one more important characteristic of the
DSM-platforms is their alienability of the development
environment. DSL Tools, Eclipse GMF, Meta Programming
System are strongly associated with the development
platforms – MS Visual Studio, Eclipse, IntelliJ-IDEA,
respectively, therefore languages created by these workbenches
can’t be exported to external system.

All of these technologies do not provide the ability to create
both visual and textual DSLs. In addition, all DSM-platforms,
except for the MetaEdit+, do not allow creating the dynamic
adaptability languages.

Existing problems of definition and using domain-specific
visual modeling languages and DSM-platform restrictions
became a reason to the MetaLanguage system creation, which
would integrate the advantages of existing language
workbenches and eliminate some disadvantages.

The visual metalanguage of created system should

 allow to build models that are sufficiently detailed and
accurately describe the domain, so detailed and
accurately how much it is necessary in each case, thus
for different detail levels of description it is necessary
to use the same constructions;

 have a simple constructions, allowing to work with the
metalanguage not only to professional programmers
but also ultimate users, such as business analysts;

 provide an opportunity to specify not only language
syntax, but also its semantics.

III. CONSTRUCTIONS OF METALANGUAGE SYSTEM

The main shortcoming of metalanguages, which are used
for DSLs designing, is their static character: the developer
can’t change the existing metalanguage constructions. A basis
of this problem is that the metalanguage description is
embedded in system source code, therefore for metalanguage
modification it is necessary either to modify the source code,
what to make in most cases impossible, or to offer to put up
with language capabilities.

If the metalanguage description will be presented in the
form of metadata, there will be possibility to change created
language constructions in dynamics, i.e. without modification
of system source code.

MetaLanguage system is a tool for creating visual dynamic
adaptable domain-specific modeling languages used for
development of information system. To describe the
metamodels MetaLanguage toolkit uses metalanguage, which
basic constructions are the entity, the relation, the constraint.

A. Entity

The entity is any construction of modeling language.
Entities are characterized by

 name that uniquely identifies the entity within the
metamodel;

 amount of entity instances that can be created in the
model;

 set of entity attributes;

 set of entity operations;

 set of constraint imposed on the entity;

 flag of uniqueness that determines limits of entity
instance name uniqueness.

The amount of entity instances defines how many instances
can be created in the model. The amount of instances is set by
an integer from the interval [0, ∞). If value of this entity
characteristic is equal to zero, then at model designing the
entity of this type will not be in list of entities, proposed for
creation. If the value of the characteristic is equal to infinity, it
is possible to create an arbitrary number of this type entity
instances.

Attribute is the named property of the entity (relation),
including a description of valid values set.

The attribute has

 name that uniquely identifies it within the
entity (relation);

 type that determines a set of possible values for the
attribute and the operations that can be done on its
values;

 default value which will be chosen as the attribute
value, if the last is not specified;

 description which contains some additional
information about the attribute.

Entity (relation) can have any number of attributes or not
have them at all.

Operation is an abstraction of actions which can be carried
out over the entity. In most cases, an applying of the operation
leads to the fact that the entity changes the state.

44 of 230

The operation includes:

 name that uniquely identifies the operation within the
entity;

 operation parameters;

 default values for parameters which in case of
unavailability of basic values will be used when an
operation call;

 type of returned value;

 description, containing the additional information
about the operation.

Entity can have any number of operations or not have them
at all.

Consider the examples of entities. Fig. 1 shows a fragment
of metamodel for UML Use Case diagrams. The metamodel
contains two entities “Actor” and “Use Case.”

The entity “Use Case” has following attributes: “Name,”
“Description,” “Creation_Date.” The attribute “Name” has a
string type and defines the Use Case name. The attribute
“Description” sets the short description of the Use Case.
“Creation_Date” – the attribute which contains information on
when the “Use Case” has been created. Over the entity “Use
Case” the following operations are admissible: “SetName(),”
“SetDescription(),” “SetDate().”

An attribute of “Actor” is a string attribute “Name” which
specifies the name of the actor. Permissible operation over the
entity “Actor” is the “SetName()”operation.

B. Relation

Visual languages constructions in rare cases exist
independently, more often they are in some way related to each
other, therefore at metamodel creation importantly not only to
define the basic language constructions, but also correctly
specify the relations between them.

The relation is used for description a physical or
conceptual links between entities.

Any relation is characterized by

 name that uniquely identifies the relation in this
metamodel;

 type that defines the semantics of the relation;

 set of relation attributes;

 set of constraint imposed on the relation;

 multiplicity which determines how many entity
instances can participate in the relation;

 flag of uniqueness that determines limits of relation
instance name uniqueness.

Use Case

Name: String

Description: Text

Creation_Date: Date

SetName()

SetDescription()

SetDate()

Actor

Name: String

SetName()

Actor_PartUse_Case_Part

Figure 1. Fragment of metamodel for UML Use Case diagrams

The metamodel can contain the following types of relation:
inheritance, association, aggregation. However in models it is
possible to create only instances of the association and
aggregation relations. Consider each type of relation in more
detail.

Inheritance – a relation between the general
entity (superclass, parent) and a specific entity (subclass,
child).

The child entity inherits all parent attributes, operations and
relations. In addition to the parent it can also have their own
attributes, operations, relations, therefore child entity can be
used everywhere where the parent entity is used, but converse
is not true.

Entity can have only one parent and unlimited number of
child entities, i.e. multiplicity of this type relation is 1:M.

On Fig. 2 the fragment of metamodel for Entity-Relation
Diagrams is presented. The metamodel contains the entities
“Abstract,” “Attribute,” “Entity,” “Relation.” In order to
reduce the diagram entity operations are not represented in
figure.

Attributes of the entity “Abstract” are “Name” that
identifies an entity instance, and “Description,” containing the
additional information about the entity.

The entity “Attribute” has following attributes: “Name,”
“Type” and “Description.”

Abstract

Name: String

Description: Text

Entity Relation

Is_a Is_a

Has_Attribute

SuperClass_SubClass

Links

Attribute

Name: String

Type: String

Description: Text

Linked
Figure 2. Fragment of metamodel for Entity-Relation Diagrams

45 of 230

The entity “Abstract” is abstract, i.e. it is impossible to
create instances of this entity in the model. “Abstract” acts as a
parent for entities “Entity” and “Relation” (in the figure it is
shown by an arrow with a triangular end). Both child entities
inherit all parent attributes, operations, relations; these entities
have no own attributes and operations. Entities “Relation” and
“Entity” in addition to the inherited relation “Has_Attribute”
have their own relation “Linked_Links.” Another association
relation “SuperClass_SubClass” belongs to the entity “Entity.”

Association is a structural relationship which specifies that
entities of one kind are connected to entities of another.

If two entities are connected by association, then we can
navigate from one entity instances to another entity instances.
The association relation can be unidirectional and bidirectional.
Unidirectional association is used, when it is necessary to
specify that the relation instance can be drawn only in the
given direction, bidirectional association defines that the
relation instance can be drawn in both directions. The case
when both ends of association belong to one entity is a valid. It
means that some entity instance can be associated with another
instance of the same entity.

In addition to the previously described basic characteristics
of the relation, there is one more which applies only to the
association – a role. Entities related by association plays a role
in it. The role is a name which uniquely identifies one of the
association ends.

The arbitrary number of entity instances can participate in
association as with one, and on the other hand, thus, generally
a multiplicity of this relation is М:М.

On Fig. 2 two associations are presented. The bidirectional
association connects entities “Relation” and “Entity” it means
that in ERD-models between these entity instances it is
possible to draw equivalent relation. The second unidirectional
association binds entity “Entity” with itself, this allows any
instance of “Entity” to have parent (another instance of
“Entity”) in ERD-models.

Aggregation – a kind of association that models an unequal
part-whole relation.

The main difference of aggregation from association is that
the last reflects the relation between two equal entities, while in
aggregation one of entities is the main and another –
dependent. The distinctive features of aggregation is also the
fact that this type of relation is always directed, the multiplicity
of this relation is 1:M, and the aggregation ends can’t belong to
one entity.

At removal of main entity instance all instances of
dependent entity participating in this aggregation will be
automatically deleted.

In ERD metamodel between entities “Abstract” and
“Attribute” the aggregation relation is set (in figure this
relation is represented by an arc with a diamond end), therefore
in ERD-models instances of entities “Relation” and “Entity”
can be connected by aggregation with the instances of entity
“Attribute.”

C. Constraints

In practice quite often there are cases when it is necessary
to impose any constraints on entities and relations between
them.

If rules of diagrams connection set syntax of visual
language, constraints define its semantics. Some of constraints
are set by metamodel structure, and others are described on
some language. An example of the language used to describe
constraints is OCL.

All constraints imposed on the metamodel can be divided
into two groups: constraints imposed on the entities and
constraints imposed on the relations.

Constraints imposed on the entity can be one of the
following types:

 constraints imposed on the uniqueness of entity
instance name;

 constraints imposed on the amount of entity instances
in model;

 constraints imposed on the attribute values of entity
instance.

The name of the entity instance can be unique in the
metamodel, in the model or not be unique. The uniqueness in
the metamodel means that in all models which are created on
the basis of a current metamodel the entity instance name
should be appeared only once. The constraint of such type it is
necessary to set on the “Use Case” entity of metamodel for
UML diagrams, if you want to specify that names of all
instances of the “Use Case” entity must be unique in all
models.

The uniqueness in the model means that the name of entity
instance will be unique only within limits of the model of
which this entity belongs. The condition of name uniqueness of
the “Actor” entity in the Use Case diagram model can be an
example of such constraint.

Constraint imposed on the amount of entity instances in
model is set by specifying the number of instances at entity
creation. So instances of abstract entities at which value of
property “amount” is equal to zero, will not participate at
model creation. If value of this property is equal to one, then in
model it is possible to create only a single instance of this type
entity. An example of this type constraint is a condition that
limits an amount of created instances of the entity “Actor” by
value five, it will build a clear diagram, which is not
encumbered by great number of “Use Cases” and “Actors.”

In terms of defining the semantics of visual language the
constraints imposed on the attribute values of entity instance
are the most important. Such constraints are specified as
triples:

Attribute_Name: Sign: Value.

“Value” can be a constant, attribute value of the entity
instance or some function of attribute values of entity
instances.

46 of 230

For example, in a metamodel of Use Case diagrams
constraint of this type can be imposed on the attribute
“Creation_Date” of the “Use Case” entity, because the date
can’t exceed the current time. Such constraint may look like:

Creation_Date <= Now(),

where function Now() returns current system time.

All constraints imposed on the relation may be divided into
following groups:

 constraints imposed on the uniqueness of relation
instance name;

 constraints imposed on the types of connected entity
instances;

 constraints imposed on the relations multiplicity;

 constraints imposed on the attribute values of
connected entity instances.

Constraint imposed on the uniqueness of relation instance
name are similar to constraint imposed on the uniqueness of
entity instance name and can accept one of values: unique in
the metamodel, unique in the model, non-unique.

Constraints imposed on the types of connected entity
instances are defined by metamodel structure. These
constraints set rules for connection of different types of entity
instances. For example, the metamodel in Fig. 1 hasn’t
association the ends of which belong to the same entity, this
means that between two instances of the “Use Case” entity or
between two instances of the “Actor” entity it is impossible to
create an association instance.

Constraints imposed on the relations multiplicity are set at
their creation. Thus the relation of inheritance and aggregation
supports only 1:M multiplicity, which can be adjusted only for
dependent entity multiplicity. The association admits M:M
multiplicity with the ability to refine.

If in models of Use Case diagrams it is necessary to specify
that the amount of the “Actors” which involved with “Use
Case” can’t be more than five, then at creation of association
between entities “Use Case” and “Actor” it is necessary to set
the M:5 multiplicity.

The constraints imposed on the attribute values of
connected entity instances carry the greatest semantic weight.
Difference of these constraints from the constraints imposed on
the attribute values of entity instance is that first type
constraints allow setting specific entity instances on which
constraints are imposed.

Constraints of this type can be set on values of attribute
“Birthday” of connected entities “Person” in constructing the
metamodel “Family tree,” as the parent’s birthday can’t exceed
of child’s birthday.

IV. MATHEMATICAL DESCRIPTION OF MULTILEVEL

DOMAIN MODEL

Using constructions entity and relation it is possible to
build any model, including an invalid in the current domain.

There are various formalisms for specifying the syntax of
visual languages: automatic models [14], algorithmic nets [15],
graph grammars [16], et al.

Most of the existing approaches to definition visual
languages syntax consider a concrete syntax, and only in rare
cases – abstract syntax. The abstract syntax of visual modeling
languages does not need all those details that are presented in a
concrete syntax: it is possible to abstract from the choice of
icons used to display the language elements, and their
geometrical parameters, etc.

To define the formal rules of models creation it is proposed
to use graph grammars. Graph grammar is a generalization of
Chomsky grammars on graphs. To define a grammar it is
required to specify the finite sets of terminal and nonterminal
symbols, a finite set of production rules, and select the start
symbol in nonterminal symbols set. For representation graph
grammars it is necessary to choose such type of graphs which
would be provided the opportunity for an iteratively
metamodels definition, unified representation and description
of domain models and metamodels.

Production rules in graph grammar contain the left- and the
right-hand side. If to generalize the classic definition of graph
grammars, then as right-hand side of the rule may be not only a
labeled graph, but the code in any programming language, and
also a fragment of a visual model described in other notation.
That is why the graph grammar can be used for generation
syntax correct models and for refactoring of existing models,
code generation and model transformations from one modeling
language to another [17].

As an analysis result of various representations of graph
grammars it was determined that the most appropriate
formalism for describing the syntax of visual modeling
languages in MetaLanguage system are graph grammars,
which are constructed on the pseudo-metagraphs [18]. Let’s
define the domain metamodel and model, applying the selected
formalism, and construct the direct and reverse map of
metamodel graph on model graph.

A. Metamodel graph

Let { }, ,iEnt ent i i (N – set of natural numbers)

is a set of metamodel entities that is finite at every fixed point
in time, but extends at entity creation and reduces at removing.

Let's designate each entity as a tuple

enti = {ENamei, EICounti, EAttri, EOppi, EResti, EUniquei},

where ENamei is a entity name, EICounti – amount of entity

instances, { }, ,
ii j i iEAttr eattr j j – entity attributes,

{ }, ,
ii j i iEOpp eopp j j – entity operations,

{ }, ,
ii j i iERest erest j j – set of constraint imposed

on the entity, EUniquei – flag of uniqueness.

Sets iEAttr , iEOpp , iERest are finite at every fixed point

in time.

Let's divide all characteristics of i-th entity on two groups
EGi

1
 and EGi

2
. The first group consists of those characteristics,

47 of 230

which will be represented by separate nodes in graph model:
sets of attributes, operations, and constraints imposed on the
entity, i.e.

EGi
1
 = {EAttri, EOppi, EResti}.

Characteristics of second group EGi
2
 = {ENamei, EICounti,

EUniquei} (entity name, amount of entity instances, flag of
uniqueness) will be attributed to node of the corresponding
entity directly.

{ }, ,iRel rel i i denotes a set of metamodel

relations that is finite at every fixed point in time, but extends
at relation creation and reduces at removing.

Let relation is a tuple

reli = {RNamei, RTypei, RAttri, RMulti, RResti, RUniquei},

where RNamei is a relation name, RTypei – relation type,

{ }, ,
ii j i iRAttr rattr j j – relation attributes,

RMulti – multiplicity, { }, ,
ii j i iRRest rrest j j –

relation constraints, RUniquei – flag of uniqueness.

Sets iRAttr , iRRest are finite at every fixed point in time.

Characteristics of i-th relation will be divided into two
groups RGi

1
 and RGi

2
. The first group comprises a set of

relation attributes and constraints imposed on the relation. The
second group includes the following characteristics: “name,”
“type,” “multiplicity,” “flag of uniqueness,” i.e.

RGi
1
 = {RAttri, RResti},

RGi
2
 = {RNamei, RTypei, RMulti, RUniquei}.

Consider directed pseudo-metagraph (,)GMM V E . Let

a set of metamodel graph nodes is a union of seven disjoint
subsets:

1 1 1

Ent Ent Ent

i i i

i i i

V Ent EAttr EOpp ERest

1 1

Rel Rel

i i

i i

Rel RAttr RRest

. (1)

The set of pseudo-metagraph arcs E divide into six
disjoint subsets:

 { }, 1,iEEA eea i Ent – a set of arcs connecting

each metamodel entity with set of attributes belonging
to it;

 { }, 1,iEEO eeo i Ent – a set of arcs connecting

each metamodel entity with set of operations over it;

 { }, 1,iEER eer i Ent – a set of arcs connecting

each metamodel entity with set of constraints imposed
on it;

 { }, 1,iERA era i Rel – a set of arcs connecting

each metamodel relation with set of its attributes;

 { }, 1,iERR err i Rel – a set of arcs connecting

each metamodel relation with set of constraints
imposed on it;

 { }, ,iEERR eerr i i – a set of arcs

conforming to links between entities and relations that
is finite at every fixed point in time, but extends at
entity (relation) creation and reduces at removing.

Thus, we see that

 E EEA EEO EER ERA ERR EERR . (2)

The metamodel graph is a directed pseudo-metagraph

(,)GMM V E , for which (1) and (2), where V is a

nonempty set of graph nodes, E is a set of graph arcs.

Let's consider an example. We will construct a metamodel
graph for the entity “Use Case” of UML Use Case diagrams.
Metamodel of this diagram type is shown in Fig 1. Attributes
of the entity “Use Case” are “Name,” “Description,”
“Creation_Date.” Operations that can be performed on entity –
“SetName(),” “SetDescription(),” “SetDate(),” i.e. for given
entity

iEAttr {“Name,” “Description,” “Creation_Date”},

iEOpp {“SetName(),” “SetDescription(),” “SetDate()”},

iERest .

The metamodel graph corresponding to a fragment of the
“Use Case” entity shown in Fig. 3.

As can be seen from figure

1
{ }iEEA eea ,

1
{ }iEEO eeo , EER , EERR .

B. Model Graph

The model is actually an “instance” of metamodel in which:

 the attributes of entity – a concrete values;

 there are no operations over entity instances and
constraints imposed on the entity and relation
instances;

 inheritance relation instances can’t be created.

Name

SetName

eeoi1

eeai1

Use Case

(enti)

Description

SetDescription

Creation_Date

SetDate

EAttri

EOppi

Figure 3. Fragment of metamodel graph for

“Use Case” entity

48 of 230

Let's designate a set of all models which have been created
based on the current metamodel through

{ }, ,kM m k k that is finite at every fixed point in

time, but extends at model creation and reduces at removing.

Let's introduce following notation:

 iEntI – set of instances of i-th entity;

ij

EAttrI – set of attribute values for j-th instance of

i-th entity;

 kRelI – set of instances of k-th relation;

lkRAttrI – set of attribute values for k-th instance of

l-th relation.

Sets iEntI ,
ij

EAttrI , kRelI ,
lkRAttrI are finite at every

fixed point in time, but extend at entity (relation) instance
creation and reduce at removing.

Examine the directed pseudo-metagraph (,)GM VI EI .

Let a set of model graph nodes is a union

1 1 1 1

i k

i k

EAttr RAttrEnt Rel

i j k l

i j k l

VI EntI EAttrI RelI RAttrI

. (3)

Consider the following example. Let’s create a model
graph for instance of “Use Case” entity (Fig. 4).

From a figure it is apparently that

iEAttrI {“Pass_exam,” “Use Case describes passing an

exam process,” “21/06/09”}.

The set EI divides into three disjoint subsets:

 { }, 1,iEEAI eeaI i EntI – a set of arcs

connecting each entity instance with set of attributes
belonging to it;

 { }, 1,iERAI eraI i RelI – a set of arcs

connecting each relation instance with set of attributes
belonging to it;

 { }, ,iEERRI eerrI i i – a set of arcs

corresponding to the links between entity instances and
relation instances that is finite at every fixed point in
time, but extends at entity (relation) instance creation
and reduces at removing.

Thus, we see that

 EI EEAI ERAI EERRI . (4)

You can see from the Fig. 4 that for represented “Use

Case” entity instance
1

{ }iEEAI eeaI , EERRI .

The model graph is a directed pseudo-metagraph

(,)GM VI EI , for which (3) and (4), where VI is a

nonempty set of graph nodes, EI – set of graph arcs.

Pass_Exam

eeaIi1

Use_Case_Pass_Exam (entIi)

Use Case describes

passing an exam process
21/06/09

Figure 4. Model graph corresponding to “Use Case”

entity instance

C. Operation of Model Graph Creation

Let's construct map of the metamodel graph on the model
graph, it corresponds to an operation of a model graph creation.
Such map allow to support models in an actual state, as
metamodel modification leads to a change of all models
created based on it.

Let's introduce following notation:

1

Ent

i

i

EntI EntI

 – a set of model graph nodes

conforming to all entity instances;

1

Rel

i

i

RelI RelI

 – a set of model graph nodes

corresponding to all relation instances;

1 1

i

i

Ent EntI

j

i j

EAttrI EAttrI

 – a set of model graph nodes

conforming to attribute values of all entity instances;

1 1

k

k

Rel RelI

l

k l

RAttrI RAttrI

 – a set of model graph nodes

corresponding to attribute values of all relation
instances.

Sets EntI , RelI , EAttrI , RAttrI are finite at every

fixed point in time, but extend at entity (relation) instance
creation and reduce at removing.

Let’s construct a map that for each metamodel graph entity-
node defines a set of model graph nodes conforming to
instances of this entity, i.e.

 ()() : ()
i ii j i jent Ent entI EntI fe ent entI , if

entity is not abstract and has instances;

 () : ()i ient Ent fe ent , if entity is abstract and

does not have instances.

Map fe defines creation operation of node corresponding

to entity instance.

Let's define map of metamodel graph nodes EAttr

conforming to a set of entity attributes on a set of model graph
nodes EAttrI :

:fea EAttr EAttrI .

49 of 230

And besides

()() : () ,
i j i ji i
j k j keattr EAttr eattrI EAttrI fea eattr eattrI

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Map fea corresponds to the operation of assignment a

value to entity instance attribute.

Let's examine a set of metamodel graph nodes which
correspond to relations. With each node we associate a set of
graph model nodes that appropriate to particular relation

instances, as a result we obtain a map :fr Rel RelI , such

that the following

 ()() : ()
i ii j i jrel Rel reli RelI fr rel reli , if

relation has instances;

 () : ()i irel Rel fr rel , if relation does not have

instances.

This map defines creation operation of node corresponding
to relation instance.

Let’s define operation of assignment a value to relation
instance attribute. To do this, we will construct a map of
metamodel graph nodes RAttr conforming to a set of relation

attributes on set of model graph nodes corresponding to

attribute values RAttrI : :fra RAttr RAttrI .

And besides

()() : () ,
i j i ji i
j k j krattr RAttr rattrI RAttrI fra rattr rattrI

1, , 1, , 1,
i ii i j ji Rel j RelI k RAttrI .

Thus, maps , , ,fe fea fr fra define matching between set

of metamodel graph nodes and set of model graph
nodes (Fig. 5).

Now we will define the rules under which the arcs of graph
GMM are mapped to the arcs of graph GM .

Let's construct the map :gea EEA EEAI , according to

which each arc of the set EEA is put in correspondence with
specified arcs of the set EEAI , i.e.

()() : () ,
i j i ji i
j k j keea EEA eeaI EEAI gea eea eeaI

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Similarly, we can define a map :gra ERA ERAI for

which

()() : () ,
i j i ji i
j k j kera ERA eraI ERAI gra era eraI

1, , 1, , 1,
i ii i j ji Rel j RelI k RAttrI .

VIV

RelI

EntI

EAttrI

Rel

EAttr

Ent
fe

fea

fr

RAttrI
RAttr fra

Figure 5. The map of metamodel graph nodes on

model graph nodes

Let’s construct the map :ger EERR EERRI , according

to which each arc of the set EERR is put in correspondence
with specified arcs of the set EERRI , i.e.

()() : () ,
j ji i

i k k ieerr EERR eerrI EERRI ger eerrI eerr

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Thus, maps , ,gea gra ger define matching between the set

of metamodel graph arcs and the set of model graph arcs.

Model graph creation is a map of metamodel graph on
model graph at which conversions are performed

, , , , , ,fe fea fr fra gea gra ger .

D. Operation of Model Interpretation

Let's construct map of model graph on metamodel graph. It
defines operation of model interpretation which allows to
execute operations over entity instances and to check
constraints imposed on the entities and relations.

As model graph nodes are instances of metamodel graph
nodes, it is possible to define the map of the model graph
nodes on the metamodel graph nodes.

Let’s construct a surjection
1 :fe EntI Ent which to

each model entity instance puts in correspondence metamodel
entity

1()(!) : () ,
i ij i j ientI EntI ent Ent fe entI ent

1, , 1,i ii Ent j EntI ,

and besides several elements of the set EntI may correspond

to one entity, i.e. is performed

()(, ,) :
i i i ii j k j kent Ent entI entI EntI entI entI

1 1() ()
i ij k ife entI fe entI ent .

50 of 230

Let's define map which is an inverse of map fea :

1 :fea EAttrI EAttr .

This surjection to each element of set EAttrI puts in

correspondence a unique element of set EAttr , i.e.

1()(!) : ()
j i ji i

k j keattrI EAttrI eattr EAttr fea eattrI

, 1, , 1, , 1,
i i ij i i j jeattr i Ent j EntI k EAttrI ,

and besides several elements of the set EAttrI may

correspond to one element of the set EAttr , i.e. is performed

()(, ,) :
i j j j ji i i i
j k l k lea EAttr eaI eaI EAttrI eaI eaI

1 1() ()
j j ii i

k l jfea eaI fea eaI ea .

Let’s consider a set of model graph nodes that correspond
to relation instances. Each such node we associate with a
unique metamodel graph node, which corresponds to a current
relation, as a result we obtain a surjective map

1 :fr RelI Rel for which

1()(!) : () ,
i ij i j irelI RelI rel Rel fr relI rel

1, , 1,i ii Rel j RelI ,

and multiple relation instances may be created on the basis of
one relation, i.e. is performed

()(, ,) :
i i i ii j k j krel Rel relI relI RelI relI relI

1 1() ()
i ij k ifr relI fr relI rel .

Surjective map
1 :fra RAttrI RAttr which is an

inverse of map fra , each model node conforming to relation

attribute value associates with a unique metamodel node from
set RAttr :

1()(!) : ()
j i ji i

k j krattrI RAttrI rattr RAttr fra rattrI

, 1, , 1, , 1,
i i ij i i j jrattr i Rel j RelI k RAttrI ,

and multiple elements of the set RAttrI may correspond to

one element of set RAttr , i.e. is performed

()(, ,) :
i j j j ji i i i
j k l k lra RAttr raI raI RAttrI raI raI

1 1() ()
j j ii i

k l jfra raI fra raI ra .

Thus, four maps
1 1 1 1, , ,fe fea fr fra

 define matching

between the set of model graph nodes and the set of metamodel
graph nodes (see Fig. 6).

VI V

RelI

EntI

EAttrI

Rel

EAttr

Ent
fe

-1

fea
-1

fr
-1

RAttrI
RAttrfra

-1

Figure 6. The map of model graph nodes on metamodel

graph nodes

Since operations over entity and relation instances are not
defined, then for navigation between the entities, relations and
their instances let’s extend set of model graph arcs with the
arc-references connecting entity and relation instances with
those metamodel entities and relations on which basis they are
created. Let’s denote the set of such arcs through

1

, { }, 1,
i

Ent Rel

i i j i i

i

T T T t j EntI RelI

 .

Now we will define the rules under which the arcs of model
graph GM are associated with the arcs of metamodel graph

GMM .

Let’s construct the map
1 :gea EEAI EEA which to

each arc of the set EEAI puts in correspondence unique arc of
the set EEA , i.e.

1()(!) : () ,
j i j ii i

k j k jeeaI EEAI eea EEA gea eeaI eea

1, , 1, , 1,
i ii i j ji Ent j EntI k AttrI .

Similarly, we can define a map
1 :gra ERAI ERA for

which

1()(!) : () ,
j i j ii i

k j k jeraI ERAI era ERA gra eraI era

1, , 1, , 1,
i ii i j ji Rel j RelI k AttrI .

As can be seen from definition the maps
1gea
 and

1gra

are surjective.

Let's construct the surjective map
1 :ger EERRI EERR which to each arc of the set EERRI

puts in correspondence unique arc of the set EERR , i.e.

1()(!) : () ,
i ij i j ieerrI EERRI eerr EERR ger eerrI eerr

1, , 1,i ii EERR j EERRI .

51 of 230

Thus, maps
1 1 1, ,gea gra ger

 define single-valued

transformation between set of model graph arcs and set of
metamodel graph arcs.

Model interpretation is a map of model graph on
metamodel graph at which conversions are performed

1 1 1 1 1 1 1, , , , , ,fe fea fr fra gea gra ger
.

V. DEVELOPMENT ENVIRONMENT OF METALANGUAGE

SYSTEM

To work with metalanguage objects the development
environment that includes the following components: graphical
editor, object browser, repository, validator, generator is
designed.

The development environment includes implementation of
the general service functions of created system. It integrates all
components into a single unit.

Graphic Editor – a work area for drawing diagrams.
Assignment of the Editor is a creation, modification, removal
of models, and also establishment of links between different
models. Each model entity is represented by some graphic
symbol, and relations between entities are represented by
different types of lines.

The Graphical Editor allows to allocate on a worksheet
various shapes (instances of entities and relations), to apply to
these shapes different actions, to set various graphical
properties for them.

Object Browser – a tool designed for viewing and editing
information stored in the repository. The browser provides the
ability to export/import models to/from external systems. A
format for models import/export is the XML which contains
besides the data also metadata that describe structure of the
stored information.

Uniform storage of all information about the system is the
repository. It contains the information about metamodels,
models, entities, relations, attributes, constraints, icons used to
image entities and relations. Repository stores the information
about models as well as metamodels uniformly it allows to
process them with a single tool. Physically, the repository is a
relational database.

The Validator checks correspondence of model to the
constraints specified by the user. At check each constraint will
be applied to each instance of entities and relations. If
constraint is not performed, the error message will be shown.

The Generator allows generating XML-file, model
documentation or source code on the basis of existing models.
XML-file will contain information about the model: model
properties, entities, relations, their attributes, constraints
imposed on the model. Model documentation includes: model
name, information about developers who took part in its
creation, graphical representation of model with links to
description of its individual parts.

Having described the basic components of a MetaLanguage
system, let consider how visual domain-specific modeling
languages are designed (Fig. 7).

Entity

creation/

modification

Metamodel creation/modification

Specifying the

relations

between entities

Set constraints

imposed on the

metamodel objects

Domain concepts

creation/modification

Model creation/modification

Specifying the relations

between concepts

Check of the constraints

imposed on the entities

Validation

Check of the constraints

imposed on the relations

XML-file

generation

Generation

Model

documentation

generation

Source code

generation

Figure 7. Process of creation/modification the by means of

MetaLanguage system

Process of DSL definition begins with metamodel creation.
For this purpose it is necessary to specify the main
constructions of created language, to define relations between
them, to set constraints imposed on the metamodel entities and
relations. After building of metamodel the developer gets a
customizable extensible visual modeling language.

Using created DSL, the user can design models containing
objects that describe specific domain concepts and links
between them.

The Validator should check up whether model satisfies to
constraints which were imposed on it after model constructing.

Using the Generator, the developer can save the
constructed metamodels and models in the form of XML-files
or generate system documentation or source code based on
them.

Note that at metamodel modification the system
automatically will make all necessary changes in the models
which are created on the basis of this metamodel.

VI. CONCLUSION AND FUTURE WORKS

The article describes the language workbench
MetaLanguage which can be used at all stages of information
system creation from domain-specific modeling languages
development to creating of models that used in a particular
system implementation or for source code generation.

The analysis of existing analogues has shown that there are
unresolved problems: impossibility of export of DSLs and
models to external systems, impossibility of models

52 of 230

transformations from one notation to another, impossibility of
dynamic adaptability of languages. It was decided to eliminate
these DSM-platforms restrictions at MetaLanguage system
engineering.

The development environment is simple to use, therefore
not only professional programmers, but also domain experts,
for example, business analysts, can work with this toolkits.
Thus the developer gets powerful workbench for creation of
visual dynamic adaptable domain-specific modeling languages.

To work with models and metamodels uniformly, it is used
the same tools, therefore process of model creation can be
iterative.

Metamodels modification can be made at any stage of DSL
creation. Thus after metamodel modification the system
automatically will make all necessary changes in models which
are created on basis of this metamodel.

For unified models creation the mathematical model –
graph grammars based on pseudo-metagraphs – was
constructed. This formalism has allowed to describe basic
elements and algorithms which MetaLanguage uses in its
work: algorithms for creation/modification of domain
metamodels and models, algorithms for vertical models
transformation, algorithms for constraint checking.

The paper also presents the approaches to implementation
of metalanguage and development environment to work with
it. This environment allows to create modeling languages that

 can be flexibly configured not only to ever-changing
needs of business processes and users, but also to other
domains;

 provide an opportunity to work in domain terms;

 have a high degree of consistency with the
metalanguage;

 can be reused in similar projects.

The research prototype of MetaLanguage system that
implements the functionality described above was created in
the present time. In the future it is planned to continue working
in this direction:

 to design the DSLs for various purposes, for example,
for description of ontologies, document templates,
business processes with created DSM-platform;

 to describe algorithms for the horizontal
transformation of graph representation which will
allow to make transformation of domain models from
one notation to another;

 to integrate language workbench MetaLanguage with
some CASE tool that allows to develop information
systems, for example, with METAS CASE
system [19].

REFERENCES

[1] А.О. Сухов, Л.Н. Лядова "Использование визуальных предметно-
ориентированных языков для описания бизнес-процессов",
Материалы межвуз. конкурса-конференции "Технологии Microsoft
в теории и практике программирования", СПб, 2009. С. 117.

[2] А.О. Сухов "Использование предметно-ориентированных языков
при создании приложений для мобильных устройств", Материалы
всероссийской научно-практической конференции студентов
"Студент и наука", т. 3, 2010. С. 75-76.

[3] M. Fowler, “Language Workbenches: The Killer-App for Domain
Specific Languages?” Available at:
http://martinfowler.com/articles/languageWorkbench.html (accessed
10 April 2012).

[4] Л.Н. Лядова, А.О. Сухов "Визуальные языки и языковые
инструментарии: методы и средства реализации", Труды
международных научно-технических конференций
"Интеллектуальные системы" (AIS’10) и "Интеллектуальные
САПР" (CAD-2010), т. 1, 2010. С. 374-382.

[5] В.С. Маторин "CASE-инструментарий UFO-toolkit. Автоматизация
построения УФО-моделей", Проблемы программирования, №2,
2004. – С. 144-149.

[6] А.Н. Иванов "Технологическое решение REAL-IT: создание
информационных систем на основе визуального моделирования",
Сб. "Системное программирование" под ред. проф. А.Н.Терехова и
Д.Ю.Булычева, 2004. – С.89-100.

[7] J.-P. Tolvanen, M. Rossi, “MetaEdit+: defining and using domain-
specific modeling languages and code generators.” Available at:
http://portal.acm.org/citation.cfm?id=949365 (accessed 10 April 2012).

[8] S. Cook, G. Jones, S. Kent, A.C. Wills, “Domain-Specific Development
with Visual Studio DSL Tools,” Reading: Addison-Wesley, 2007.

[9] “Creating Domain-Specific Languages.” Available at:
http://msdn.microsoft.com/en-us/library/bb126259(v=vs.80).aspx
(accessed 10 April 2012).

[10] R.C. Gronback “Eclipse Modeling Project: A Domain-Specific
Language Toolkit,” Reading: Addison-Wesley, 2009.

[11] T. Ozgur, “Comparison of Microsoft DSL Tools and Eclipse Modeling
Frameworks for Domain-Specific Modeling In the context of the Model-
Driven Development.” Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6383&re
p=rep1&type=pdf (accessed 10 April 2012).

[12] А.В. Ларионов "Разработка визуального языка автоматного
программирования".
Available at: http://is.ifmo.ru/papers/StateMachineDesigner.pdf
(accessed 10 April 2012).

[13] S. Dmitriev, “Language Oriented Programming: The Next Programming
Paradigm.” Available at:
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/index.html
(accessed 10 April 2012).

[14] А.П. Стасенко "Автоматная модель визуального описания
синтаксического разбора", Вычислительные технологии, вып. 5,
т. 13, 2008. – С. 70-87.

[15] О.Ф. Королев "Алгоритмические сети как визуальный язык
программирования", Труды СПИИРАН, вып. 2, 2005. – С. 130-137.

[16] J. Rekers, A. Schuerr, “A Graph Grammar approach to Graphical
Parsing,” Visual Languages Proceedings, 11th IEEE International
Symposium, Darmstadt, pp. 195-202, 1995.

[17] B. Courcelle, “Graph Rewriting: An Algebraic and Logic Approach,”
Handbook of Theoretical Computer Science, vol. B, 1990, pp. 193-242.

[18] А.О. Сухов "Анализ формализмов описания визуальных языков
моделирования", Современные проблемы науки и образования, №2,
2012. Available at: http://www.science-education.ru/102-5655 (accessed
10 April 2012).

[19] Л.Н. Лядова, С.А. Рыжков "CASE-технология METAS",
Математика программных систем, Межвуз. сб. науч. статей, Пермь,
2003. С. 4-18.

53 of 230

New Developments of the
Computer Language Classification

Knowledge Portal
Aleksandr Akinin

Novosibirsk State University,
Novosibirsk, Russia

Email: akinin3113@gmail.com

Alexey Zubkov
Novosibirsk State University

Novosibirsk, Russia
Email: ortoslon@gmail.com

Nikolay Shilov
Institute of Informatics Systems,

Novosibirsk, Russia
Email: shilov@iis.nsk.su

Abstract—During the semicentennial history of Computer
Science and Information Technologies, several thousands of
computer languages have been created. The computer language
universe includes languages for different purposes (programming,
specification, modeling, etc.). In each of these branches of com-
puter languages it is possible to track several approaches (imper-
ative, declarative, object-oriented, etc.), disciplines of processing
(sequential, non-deterministic, distributed, etc.), and formalized
models, such as Turing machines or logic inference machines.
Computer language paradigms are the basis for classification
of the computer languages. They are based on joint attributes
which allow us to differentiate branches in the computer language
universe. We have presented our computer-aided approach to
the problem of computer language classification and paradigm
identification in a recent paper Development of the Computer
Language Classification Portal (Proc. of Ershov Informatics
Conference PSI-2011, Lect. Not. in Comp. Sci., v.7162). In the
present paper we discuss new developments of our project: (1)
the pre-alpha version of the Portal is online, and (2) the reasoner
is a model checking engine for a paraconsistent (inconsistency-
tolerant) description logic.
Keywords: computer languages, computer paradigm, classifi-
cation, knowledge portal, description logic, paraconsistency,
inconsistency-tolerance, model checking.

I. INTRODUCTION: THE PROBLEM OF COMPUTER
LANGUAGE CLASSIFICATION

Let us start with a sketch of motivation for our research.
Please refer [12] for more details.

We understand by a computer language any language that
is designed or used for automatic information processing, i.e.
data and process representation, handling and management.
A classification of some universe (the universe of computer
languages in particular) consists in means of identification and
separation of items/entities/objects, classes and their roles, and
navigation between them.

The History of Programming Languages poster by
O’REILLY is well known [15]. It represents chronological and
influence relations between 2500 programming languages. Due
to the number of existing computer languages alone, there is
a necessity for their systematization or, more precisely, for
their classification. At the same time, classification of already
developed and new computer languages is a very important
problem for Computer Science, since software engineers and

information technology experts could benefit by a sound
framework for computer language choice of components for
new program and information systems.

Drawing an analogy between Computer Science and other
sciences, one may assume that classification of computer
languages could be done in the style of Linnaeus (i.e., a
taxonomy like: Kingdom - Phylum - Class - Order - Family -
Subfamily - Genus - Species). For example, look at Taxonomic
system for computer languages [17].

However, there is a great difference between domains of
natural sciences and Computer Science since the former is
static while the latter is highly dynamic. In the last decade
of the twentieth century everyone can see rapid growth of
existing and new branches of computer languages (knowledge
representation languages, languages for parallel/concurrent
computing, languages for distributed and multi-agent systems,
etc.). Each of these new computer languages has its own,
sometimes very particular syntax, a certain model of informa-
tion processing (i.e., semantics or a virtual machine), and its
pragmatics (i.e., the sphere of its application and distribution).
And though there were rather small groups of computer lan-
guages (e.g., Hardware Description Languages), many groups
had already been crowded (e.g., Specification Languages) and
some of them went through the period of explosion and
migration (e.g., Markup Languages). Sometimes computer lan-
guage experts have difficulties in putting some languages into
one definite group. For example, the programming language
Ruby: “Its creator, Yukihiro “matz”, blended parts of his
favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to
form a new language that balanced functional programming
with imperative programming”[18]. Rapid generation of new
computer languages will continue while new spheres of human
activities will be computerized.

We think that a modern classification of the computer
languages universe can be built upon the flexible notion of
computer language paradigms. In the general methodology
of science, paradigm is an approach to the formulation of
problems and their solutions. The contemporary meaning of
the term is due to the well-known book [5] by Thomas Kuhn.
Robert Floyd was the first who had explicitly used the term

54 of 230

“paradigm” in the Computer Science context. In particular, he
addressed “Paradigms of Programming” in his Turing Award
Lecture [3]. Unfortunately, R. Floyd did not define this concept
explicitly.

Recently Peter van Roy has published the taxonomy The
principal programming paradigms [19] with 27 different
paradigms and advocated it in the paper [10]. Surprisingly,
the cited paper does not provide a convincing and concise
definition of the notion Programming Paradigm. We can refer
to the following quotation only: “A programming paradigm is
an approach to programming a computer based on a mathe-
matical theory or a coherent set of principles. Each paradigm
supports a set of concepts that makes it the best for a certain
kind of problem.” [10]

In our recent paper [12] we suggested more comprehensive
definition for computer paradigm that (we believe) is coherent
with the general concept of paradigm:

1) Computer paradigms are alternative approaches (pat-
terns) to formalization of information problem formu-
lation, presentation, handling and processing.

2) They are fixed in the form of formal (mathematical)
theory and accumulated in computer languages.

3) Every natural class of computer languages is the extent
of some paradigm, and vice versa, every computer
paradigm is the intent of some class of computer lan-
guages.

4) A paradigm can be characterized by a set of prob-
lems/application areas that the paradigm fits better than
the other ones.

5) The educational value of paradigms is to teach to think
different about information problems and to choose the
best paradigm to solve them.

II. METHODOLOGY: THE
SYNTACTIC-SEMANTIC-PRAGMATIC APPROACH

Categories syntax, semantics and pragmatics are used to
characterize natural and artificial languages (including com-
puter languages). Syntax is the orthography of the language.
The meaning of syntactically correct constructs is provided
through language semantics. Pragmatics is the practice of use
of meaningful, syntactically correct constructs. Therefore the
approach that is based on features of syntax, semantics and
pragmatics could be natural for specification of paradigms and
classification of computer languages.

The syntactic aspect of computer language classification
should reflect both the formal syntax and the human perspec-
tive. Certainly, it is very important for the compiler implemen-
tation whether a particular language has regular, context-free
or context-sensitive syntax. Thus, syntactic properties of com-
puter languages could be attributes in the classification. These
attributes can be brought from formal language theory. But
informal annotations (attributes) like flexibility, naturalness,
style (supported by a library of good style examples), clarity
from a human standpoint (including a portion of syntactic
sugar) become much more important.

The role of semantics for computer languages is well
known. But there are several problems with the use of for-
malized semantics in classification of computer languages, the
major problems are listed below.

• Poor acquaintance with formal semantics among com-
puter languages users, more experts, but fewer general
users.

• Prejudice that formal semantics is too pure in theory but
too poor in practice.

• Too many individual semantic systems and notations with
different level of formalization are adopted for different
computer languages.

Nevertheless, we think that these problems can be solved
by development of multidimensional stratification of “paradig-
matic” computer languages1.

For example, educational semantics and formal semantics
are two particular semantic dimensions. They can be stratified
into levels and layers as follows.

• The layer hierarchy is an educational, human-centric
semantic representation. It should comprise 2-3 layers
that could be called elementary, basic, and full. The
elementary layer may be an educational dialect of the
language for the first-time study of primary concepts and
features. The basic layer may be a subset for regular users
of the language which requires skills and experience. The
full layer is the language itself, it is for advanced and
experienced users.

• The level hierarchy is a formal-oriented semantic repre-
sentation. It should comprise several levels for the basic
layer of the language and optionally for some other
layers. The levels of the basic layer could be called
kernel, intermediate, and complete. The kernel level
would have executable semantics and provide tools for the
implementation of the intermediate level; the intermediate
level in turn should provide implementation tools for
the complete level. Implementation of intermediate level
should be of semantics-preserving transformation. Please
refer to [9] for an example of a three-level hierarchy for
the programming language C#.

In contrast to syntax and semantics, pragmatics relies upon
highly informal beliefs (i.e. expertise and experience) of people
that are involved in the computer language life cycle (i. e.
design, implementation, promotion, usage and evolution). In
other words, we need to represent formally expert “knowl-
edge” (i.e. their views and beliefs) about computer languages,
related concepts, and relations between computer languages.
It naturally leads to the idea of representing this “knowledge”
with an ontology. It is just a tradition to call experts’ beliefs
knowledge, since this expertise can be just an authoritative
opinion, but not true, while (according to Plato) knowledge is
true belief. Nevertheless we will follow this tradition in spite
of inconsistency with epistemology.

1Paradigmatic languages are the most typical ones for a particular paradigm
(class).

55 of 230

Formal “ontology is the theory of objects and their ties.
Ontology provides criteria for distinguishing various types of
objects (concrete and abstract, existent and non-existent, real
and ideal, independent and dependent) and their ties (relations,
dependencies and predication)” [20]. A formal ontology (sim-
ply ontology in the sequel) of a particular problem domain is
a formalization of knowledge about objects (entities) of the
domain (computer languages for instance), their classes and
ties (relations). This knowledge could include empirical facts,
mathematical theorems, personal beliefs, etc.

Expert knowledge for pragmatics of computer languages
should be formalized in an open, evolving (i.e. versioned and
temporal) ontology that includes syntactic and semantic (both
formal and informal) knowledge in the form of annotations
and attributes. The openness means that the ontology is open
for access and editing. Temporality means that the ontology
changes in time, admits temporal queries and assertions, and
that all entries in the ontology are timestamped. Versioning
means that the ontology tracks all its changes. Wikipedia, the
free encyclopedia, is a good example an of open and evolving
ontology.

III. TOWARDS AN OPEN TEMPORAL EVOLVING
ONTOLOGY

FOR THE CLASSIFICATION OF COMPUTER LANGUAGES

A. Existing Ontologies of Programming Languages

History of Programming Languages poster by O’REILLY
[15] can be considered as a primitive ontology of programming
languages that is neither open nor evolving. Programming
languages are the objects in this ontology, but, unfortunately,
the poster does not provide any information about classes of
objects. The navigation method in this ontology is represented
by influence lines and chronology.

History of Programming Languages (HOPL) [16] is a much
better-developed ontology of programming languages, but,
unfortunately, it is, too, neither open for editing nor evolving.
HOPL represents historical and implementation information
about an impressive number (>8500) of programming lan-
guages, but hasn’t been updated since 2006, and does not deal
with any inter-language relations other than language-dialect-
variant-implementation.

The situation is different with Progopedia [21], a wiki-like
encyclopedia of programming languages. It is open for editing
and is tracing its history. But Progopedia has poor temporal
navigation means. While HOPL provides some taxonomy in-
struments, Progopedia only has a trivial one language-dialect-
variant-implementation. In comparison with HOPL and the
O’REILLY poster, Progopedia is relatively small. At present
it contains information about ∼130 languages, ∼70 dialects,
∼300 implementations, and ∼660 versions.

None of the three listed ontologies have means for con-
structing classes by users or deriving classes, and only manual
navigation among the classes is supported. We believe that a
more comprehensive ontology is needed to solve the problem
of computer languages classification, i.e. identification and

differentiation of classes of computer languages and navigation
among them.

B. Outlines of our Approach

We develop ontology for computer languages, based on
Description Logic (DL) [1], [11], [14]. The objects of our
ontology are computer languages (also their levels and layers),
concepts/classes (in terms of DL/OWL) — collections of
computer languages that can be specified by concept terms
(in DL terms), ties (DL-roles or OWL-properties) — rela-
tions between computer languages. For example, Pascal, LISP,
PROLOG, SDL, LOTOS, UMLT, as well as C, C-light and C-
kernel, OWL-Lite, OWL-DL and OWL-full should eventually
become objects of the ontology.

Since we understand computer paradigms as specifications
of classes of computer languages, and we consider classes
of computer languages as DL-concepts (OWL-classes), then
we have to adopt DL concepts as paradigms of computer
languages: Every (syntactically correct) DL concept term
defines a paradigm that is the concept specified by the term. In
this setting, computer language paradigms and classification is
not a taxonomic tree based on property inheritance from sup-
class to sub-class, but a formal ontology with navigation by
DL means.

Objects (i.e. computer languages) of the ontology could
be described with different formal attributes (e.g., formal
syntax properties) and informal annotations (e.g., libraries of
samples of good style). Let us remark that the list of formal
attributes and informal annotations is not fixed but is open
for modifications and extensions. Nevertheless, we fix certain
attributes and annotations for all objects (but allow to assign
an indefinite value for them). For example, we provide the
following attributes:

• date of birth with various time granularity,
• URL of an external link for any non-specified references,
• try-version for a link to an easy to install or web-based

small implementation (that can be freeware or shareware).
Some elementary concepts/classes in the ontology are also

fixed, for example: has context-free syntax, functional lan-
guages, specification languages, executable languages, static
typing, dynamic binding, etc. A special elementary con-
cept/class is paradigmatic computer languages, it comprises
few (but one at least) representatives for every elementary
concept/class. We expect to borrow more ideas for elementary
concepts from [22]. Elements of elementary concepts/classes
must be explicitly annotated by appropriate attributes (has a
context-free syntax, is a functional language, is a specification
language, etc.).

Non-elementary concepts/classes should be specified by
DL concept terms. For example, executable specification
languages is the intersection of executable languages and
specification languages. Since our ontology is an open-world
ontology with incomplete information then some problem
occurs with class-complement. For example, if a language has
no explicitly attached attribute has a context-free syntax, it
does not mean that the language has no CF-syntax, it just

56 of 230

means that the information is not available. To resolve the
problem, we provide every positive attribute (e.g., has context-
free syntax) by the corresponding negative attribute that is the
counterpart of positive one (e.g., DOES NOT have a context-
free syntax).

All elementary concepts/classes (including paradigmatic
languages) should be created on the basis of expert knowl-
edge and be open for editing. A special requirement for the
proposed ontology should be the following constraint: every
legal (i.e. well-formed) non-empty concept/class must contain
a paradigmatic language. This is common sense: if experts can
not point out a representative example of a paradigm, then it
should be empty.

Roles/properties in the proposed ontology could also be
natural: is a dialect of, is a layer of, uses the syntax of, etc.
For example: C-light is a layer of C, OWL uses the syntax of
XML, etc. All listed examples are elementary DL-roles/OWL-
properties. Standard (positive) relational algebra operations
union, intersection, composition, role inverse, and transitive
closure can be used and are meaningful for construction of
new roles/properties. For example, uses the syntax of a dialect
of is the composition of uses the syntax of and is a dialect of.
Again we have a problem with role complement, but we have
not fix any solution yet (in contrast to the class-compliment
problem).

Let us remark that the computer language domain has four
domain-specific ties between languages: is a dialect of, is a
variant of, is a version of, and is an implementation of. Of
course these ties must be present in the proposed ontology
as elementary DL-roles/OWL-properties. But, unfortunately,
there is no consensus about definition of these ties. For
example, Progopedia [21] considers that an implementation
can have a version, while [22] promotes an opposite view that
a version can have an implementation. Currently we adopt the
following definition.

• Dialects are languages with joint elementary level.
• Variants are languages with joint basic level.
• Version series is a partially ordered collection of variants

such that every smaller version is a compatible subset of
all later versions.

• Implementation is a platform-dependent variant of a lan-
guage.

Let us remark that several incompatible versions can coex-
ist:Object C and C++ are object-oriented variants of C, but
for sure these two languages are incompatible.

Universal and existential quantifier restrictions that are used
in OWL and DL for construction of new classes/concepts
have a natural and useful meaning. An example of existential
restriction (in DL notation): a concept (markup language)⊓
∃uses syntaxof : (¬{XML}) consists of all computer
languages that are markup languages but do not use the syntax
of the Extensible Markup Language XML; an example of a
language of this kind is LATEX. An example of a universal
restriction and a terminological sentence (in DL notation also)
follows: the sentence {XML} ⊑ is dialect of : (¬{ML})

expresses that XML is a dialect of any computer language but
the functional programming language ML.

IV. CURRENT STATE OF THE PROJECT

We started implementation of a prototype of a computer
languages classification knowledge portal (that eventually will
evolve into an open temporal evolving ontology) for classifi-
cation of computer languages a year ago [12]. At present, a
pre-alpha version of the portal is available online [23].

The prototype does not support full functionality. The
prototype is implemented as a web application, so everyone
can enter it with a web browser. The interface allows users
to view and edit information contained in the portal, which is
formed as an ontology.

The main elements of the prototype ontology are computer
languages (objects of the ontology), elementary classes of
languages (arbitrary, explicitly user-specified subsets of the set
of objects), relations between the languages (binary relations
over the set of objects), attributes (mappings from the set
of languages to some external data types, e.g. text strings,
URL’s) and the Knowledge Base (Description Logic state-
ments that represent laws of the problem domain of Computer
Languages). The data is represented internally as an RDF
repository. All these entities can be viewed and modified
directly by the user.

Two main services (that are already provided) are the
ontology model checker and visualization. The model checker
is used for computing classes of objects and ties from specifi-
cations (concept and role terms), and for checking consistency
of the ontology (data and the Knowledge Base). Visualization
is used for displaying classes and ties graphically.

The model checker is an explicit-state model checker for
a paraconsistent (i.e. inconsistency-tolerant) description logic
[6], [7], [8] extended by two special constructs for concept
terms borrowed from Formal Concept Analysis (FCA) [4],
[14], [11]. The underlying paraconsistent description logic
uses four-value semantics of Belnap logic [2]. The constructs
borrowed from FCA are upper and lower derivatives. (The
lower derivative is the same as the window operator in DL.)
The logic is chosen to handle openness of the ontology and
incompleteness and inconsistency of data in the ontology.

Why do we use a model checker as a reasoning tool instead
of any available DL inference machine (such as Fact++,
Kaon2, etc.)? Because our ontology is for empirical expert
knowledge about rapidly developing and changing domain of
Computer Languages, not a domain with a set of predefined
domain-specific laws. We use an explicit-state model checker
(not a symbolic one) since the domain numbers thousands of
objects, i.e. it fits explicit-state representation well.

Why are we developing a self-contained tool for the on-
tology instead of using some other ontology tool (Protege
for instance)? Because we are developing a tool for a small
community-oriented ontology for Computer Language experts,
where people would like to use a simple interface instead of
studying a manual or a tutorial before using the tool.

57 of 230

We would like to emphasize that at present the ontology
is an open ontology already. We expect that the ontology
eventually will also become versioned and evolving, i.e. will
support automatic timestamping, history of all edits, and
temporal queries. We would like to hope that our ontology and
portal will provide researchers by a sound and easy framework
for language specification as well as software engineers and
IT managers by tools for language choice.

ACKNOWLEDGMENT

Research is supported by Integration Research Program n.3
(2012-2013) Ontology Design and Development on base of
Conceptualization by means of Logic Description Languages
provided by Siberian Branch, Russian Academy of Science.

REFERENCES

[1] F. Baader, D. Calvanese, D. Nardi, D. McGuinness, and P. Patel-Schneider
(editors), The Description Logic Handbook: Theory,Implementation and
Applications, Cambridge University Press, 2003.

[2] N.D. Belnap, How a computer should think, Contemporary Aspects of
Philosophy: Proceedings of the Oxford International Symposium, 1977,
p.30-56.

[3] R.W. Floyd, The paradigms of Programming, Communications of ACM,
v.22, 1979, p.455-460.

[4] B. Ganter, R. Wille, Formal Concept Analysis. Mathematical Foundations,
Springer Verlag, 1996.

[5] T.S. Kuhn, The structure of Scientific Revolutions, Univ. of Chicago Press,
1970. (3rd Ed. – 1996.)

[6] Y. Ma, P. Hitzler, and Z. Lin, Algorithms for paraconsistent reasoning
with owl, Proc. of European Semantic Web Conference 2007, Lect. Not.
in Comp. Sci., v.4519, Springer, 2007, p.399-413.

[7] Y. Ma, P. Hitzler, and Z. Lin, Paraconsistent reasoning for expressive and
tractable description logics, Proc. of the 21st International Workshop on
Description Logic, CEUR Electronic Workshop Proceedings, v.353, 2008.

[8] Y. Ma and P. Hitzler, Paraconsistent Reasoning for OWL 2, Proc. of Web
Reasoning and Rule Systems, Lect. Not. in Comp. Sci., v.5837, 2009,
p.197-211.

[9] V.A. Nepomniaschy, I.S. Anureev, I.V. Dubranovskii, and A.V. Promsky,
Towards verification of C# programs: A three-level approach, Program-
ming and Computer Software, v.32(4), 2006, p.190-202.

[10] P. van Roy, Programming Paradigms for Dummies: What Every Pro-
grammer Should Know, in New Computational Paradigms for Computer
Music, IRCAM/Delatour, France, 2009, p.9-38.

[11] N.V. Shilov, Formal Models and Methods for Design and Development
of Ontologies, in Formal Logical and Linguistic Models and Methods for
Design and Development of Information Systems, Siberian Devision of
Russian Academy of Sciences, 2009, p.11-48 (in Russian).

[12] N.V. Shilov, A.A. Akinin, A.V. Zubkov, and R.I. Idrisov, Development of
the Computer Language Classification Portal, Proc. of Ershov Informatics
Conference, Lect. Not. in Comp. Sci., v.7162, 2012, p.340-348.

[13] N.V. Shilov, Make Formal Semantics Popular and Useful, Bulletin of the
Novosibirsk Computing Center (Series: Computer Science, IIS Special
Issue), v.32, 2011, p.107-126.

[14] S. Staab and R. Studer (editors) Handbook on Ontologies, International
Handbooks on Information Systems. Springer, 2nd edition, 2009.

[15] History of Programming Languages, available at
http://oreilly.com/news/graphics/prog_lang_poster.
pdf.

[16] History of Programming Languages, available at
http://hopl.murdoch.edu.au/.

[17] Taxonomic system for computer languages, available at
http://hopl.murdoch.edu.au/taxonomy.html.

[18] Ruby. A Programmer’s best friend, available at
http://www.ruby-lang.org/en/about/.

[19] The principal programming paradigms, available at
http://www.info.ucl.ac.be/∼pvr/paradigms.html.

[20] Ontology. A Resource Guide for Philosophers, available at
http://www.formalontology.it/.

[21] Progopedia, available at http://progopedia.ru/.
[22] The Language List, available at http://people.ku.edu/

∼nkinners/LangList/Extras/langlist.htm.
[23] Computer Language Classification, available at

http://complang.somee.com/Default.aspx.

58 of 230

Generating Test Cases With High Branch Coverage
for Web Applications

Andrey Zakonov and Anatoly Shalyto
National Research University of Information Technologies,

Mechanics and Optics, Saint-Petersburg, Russia
Email: andrew.zakonov@gmail.com, shalyto@mail.ifmo.ru

Abstract—Web applications have become significantly more
complex and have begun to be used in wide variety of areas
including social networks, shopping, online banking and other
safety critical systems. We present an approach for automated
white-box test generation for web applications. Our approach is
to convert problem of high branch coverage test suite generation
into a reachability problem and to utilize existing software
verification techniques to generate test data for each execution
branch. Set of Abstract Syntax Trees (ASTs) is built that
describes web application as a whole, both client- and server-
side code, by analyzing JavaScript code, its AJAX server calls
and callbacks. Constructed AST is converted into an C# function
with similar behavior and a set of arguments that represent
user inputs. Existing test automation tools are used to discover
test data that covers all the possible execution branches in a
C# function. Web application test cases are generated with the
discovered values, Selenium toolkit is used to emulate user actions
and to automatically run the program under test against test
cases.

I. INTRODUCTION

Over the recent years web applications have begun to
be used in wide variety of areas and have become safety
critical, as often contain personal or financial information.
Nevertheless relatively little tool support is available to assist
testing of web applications. Web applications are usually tested
by manually constructed test cases using unit testing tools with
capture-replay facilities such as Selenium [1] and Sahi [2].
These tools provide functionality for recording the GUI actions
performed by a user in test scripts, for running a suite of tests,
and for visualizing test results. However, even with such tool
support, testing remains a challenging and time-consuming
activity because each test case has to be constructed manually.

As a web application we consider a set of pages connected
by hyperlinks, ranging from a set of html pages display-
ing static content to a complex single page applications,
which Document Object Model (DOM) could be dynamically
modified by the application logic implemented as JavaScript
handlers for user interactions and AJAX callbacks. Originally
designed for simple scripting, modern JavaScript programs are
complex pieces of software that interact with users and servers
and play central role in a web application.

Because of web applications’ client-server model, asyn-
chronous server communication and event-driven nature tools
and approaches developed for structured and object oriented
programs can not be applied out-of-the box for web appli-
cations quality assurance. In [4] we addressed problem of

creating models of web applications and proposed to use
random-driven approach to cover different web application
states. In [3] a method to apply Genetic Algorithms to test
generation problem for a given EFSM was proposed. In
the current research we develop an approach that automates
process of test cases generation for a given web application
state and generates a test suite with high branch coverage.

There are approaches that generate test cases for structured
programs with high branch coverage [5], [6]. For web ap-
plications task becomes way more complicated and existing
approaches could not be applied as is. Business logic is divided
into client-side and server-side code. These two pieces of code
are completely different, are implemented using different pro-
gramming languages, frameworks etc. Communication is done
using only HTTP requests. Current research aims to overcome
this issues and to propose a method that would be able to
adopt existing techniques to achieve high branch coverage for
web applications. We analyze application JavaScript code to
discover set of possible user actions as well as user inputs these
actions depend on. JavaScript action handlers are analyzed
and all dependencies of webpage elements and user inputs are
extracted from source code and treated as function arguments.
Then each possible action could be treated as a JavaScript
function call with number of arguments.

If a JavaScript function makes AJAX calls to server-side
code, then client-side and server-side code are treated as a
combined function. Abstract syntax trees are constructed both
for the client-side functions and for the server-side function.
While it is not possible to automatically convert code from
one language to another, it is possible to construct ASTs for
JavaScript handler and callback, as well as for the server-side
code, and to replace AJAX request node with a subtree that
describes the server-side source code. Resulting AST would
describe client-side code together with server-side code and
could be represented as one function with a set of arguments.
Given a function that emulates behavior of the web application
problem of the test generation could be treated as a reachability
problem and exiting tools to discover test data could be
applied.

The rest of this paper is organized as follows. Section
II contains a brief overview of the existing approaches and
tools for web applications testing. In Section III the proposed
approach is presented. Detailed AST generation and post-
processing is given in Section IV. Section V tells about

59 of 230

developed and utilized tools that automate described approach.
An example of the code where presented approach could be
useful is presented in Section VI. Section VII describes current
limitations of the approach and gives an overview of the future
research plan.

II. RELATED WORK

There are number of approaches and tools aimed at testing
web applications, but none of them is able to automatically
generate tests cases that would test the web application as a
whole. Existing tools are designed to test some part of the
application but not the web application as a whole, which
consists of an GUI, client-side JavaScript, server-side code and
some tricky interaction between these parts. In the proposed
approach we make an attempt to combine different existing
tools functionality and to create a framework that would be
able to test web application as a whole and to generate test
cases automatically. Current section describes existing tools,
state their pros and cons and briefly explain how some of these
tools would be utilized in the proposed approach.

Web application is usually an event driven system where
user generates events. Selenium[1] and Sahi[2] tools could
be used as a driver that provides facilities to emulate user
interaction with a web page, that include filling out forms
with user input and mouse clicks. These tools can be used
to play given sequence of actions, but not to generate these
sequences. Manual generation of these sequences could be
useful for regression testing but it is impossible to achieve high
code coverage using them manually. In proposed approach we
generated these sequences automatically and utilize Selenium
tool to execute generated test cases.

In [8] a framework for automated testing of JavaScript
web applications is proposed. The goal of that research is to
develop scalable and effective algorithms for automated testing
of JavaScript applications to discover common programming
errors of various kinds, including uncaught exceptions, im-
proper type coercions or misuses of the browsers built-in
libraries, invalid HTML, AJAX HTTP errors, and violation
of assertions. While described tool seems to be useful for
analyzing source code of the client-side, which is implemented
in JavaScript, it does not take into consideration server-side
code of the web applications as we try to do in our approach.
That would be a serious drawback for complex applications,
as it is common to implement most of business logic of the
application on the server side. Moreover behavior of client-
side code can not be analyzed correctly as it depends on AJAX
callbacks which result could be estimated only if server-side
code is analyzed.

Other existing tools for testing JavaScript of the web appli-
cation are mentioned in [8]. The Crawljax/Atusa [9] project
uses dynamic analysis to construct a model of an applications
state space, from which a set of test cases is generated.
The Kudzu project [10] combines the use of random test
generation to explore an application’s event space with the
use of symbolic execution for systematically exploring an
applications value space (i.e., how the execution of control

flow paths depends on input values). Kudzu relies on an
elaborate model for reasoning about string values and string
operations, which are frequently manipulated by JavaScript
applications.

There are number of researches [5], [11], [3] that address
problem of generating tests with high branch coverage for
common applications code that does not have specifics like
client-server interaction. In proposed approach we treat server
side-code as a common application with a specified entry
point and set of arguments. Existing tools and frameworks are
utilized to generate set of input values to cover all possible
code branches in web application source code.

III. PROPOSED APPROACH FOR GENERATION OF TEST
SUITES WITH HIGH BRANCH COVERAGE

Our approach is to convert the test case generation problem
into a reachability problem. We observe that a web application
can be described by its DOM state and set of possible
user actions and corresponding JavaScript callbacks. Therefore
problem of testing web application as a whole is separated into
two tasks:

1) Discover all possible states of the web application.
2) For each discovered state cover each possible action and

callback with a test case.
In [4] we addressed problem of creating models of web

applications and proposed an approach to discover all possible
different web application states. In current research we address
the second task. For a given DOM state of the web application
set of tests need to be generated that would cover all feasible
execution paths. To achieve this goal we require a model of the
system that describes all possible execution paths considering
both client- and server-side code. In the developed approach
we build an AST that describes control and data flow of the
web application as a whole.

Proposed approach consists of the following steps:
1) Analyze client-side source code of the web application

and build an AST that describes all possible JavaScript
code branches.

2) For each graph node that contains an AJAX call to the
server find corresponding server-side function. Source
code of the server-side function is analyzed and also an
AST is built.

3) Each node with AJAX call is replaced with a corre-
sponding constructed server-side AST.

4) Final AST that describes the system in whole is post-
processed to discover set of user inputs that conditional
branches depend on.

5) AST is then represented as a C# or Java function that has
user inputs as arguments and all condition branches are
presented in its body. From this point of view problem
of web application testing becomes problem of testing
a common function with a set of arguments. Existing
technologies and tools are utilized to generate test data
that provide high branch coverage for the given function.

6) For each feasible execution path a Selenium [1] test case
is generated where discovered test data is used as a user

60 of 230

input that would make the web application cover the
desired branches.

7) Application specific business logic test oracles could be
optionally added to the generated test cases.

Developed approach makes it possible to automate gener-
ation of a test suite with high branch coverage for a given
web application state. Combined with earlier proposed state
discovery algorithm [4] it is possible to generate test cases
that cover web application source code in whole. Generated
test suite would be able to discover common programming
errors, including unhandled exceptions, runtime errors, unde-
fined variable dereferences, invalid function calls, violation
of assertions, invalid DOM operations and etc. Application
specific business logic test oracles is impossible to generate
automatically and need to be added by developers in the
form of JavaScript or server-side assertions that would be also
checked automatically during test execution.

Detailed description of the approach steps, problems that
were solved and developed tools are presented in the further
sections.

IV. CONSTRUCTING A SIMPLIFIED AST THAT DESCRIBES
A WEB APPLICATION AS A WHOLE

To cover web application’s source code with tests a rep-
resentation is required that describes both client-side code
and server-side code in a unified form. In general, there
is no existing technique to convert source code from one
programming language into another. Moreover, while client-
side business logic is always implemented in JavaScript, there
are wide variety of programming languages and frameworks
that could be used for server-side implementation, which
makes task of converting all the source code to one language
even more infeasible. But for the purpose of testing higher
level of abstraction could be enough, so both server and
client-side source code could be converted to some common
representation that would be enough for the given task. We
propose to use an Abstract Syntax Tree representation for this
task.

Basically to cover all possible code branches with test cases
a Control Flow Graph of the application should be analyzed.
In a control flow graph each node in the graph represents a
basic block, i.e. a straight-line piece of code without any jumps
or jump targets; jump targets start a block, and jumps end a
block [13]. But in practice such CFG representation would
not be enough to generate test data automatically because it
lacks data flow information. Condition in the flow graph nodes
depend both on global and local variables. Such variables
could be arguments to the function (like user inputs that are
not modified during the execution), but also variables could be
introduced locally that stand for loop counters, post-processed
argument values and etc. Basic blocks of CFG could contain
statements that modify such variables and excluding such
information from the model would make analysis impossible.

Another way to describe source code using higher level
of abstraction is Abstract Syntax Tree. AST is a tree rep-
resentation of the abstract syntactic structure of source code

written in a programming language. Each node of the tree
denotes a construct occurring in the source code. The syntax
is ’abstract’ in the sense that it does not represent every detail
that appears in the real syntax [17]. While CFG does not
contain all the required information for the analysis, AST often
contains superfluous information. Code statements that do not
affect data flow of control flow of the program should be left
out of the scope of the analysis.

In our approach we build a simplified AST that describes the
application behavior. An algorithm is developed to construct
an AST that describes web application page in whole:

1) Gather all the JavaScript source code in one place.
Normally a web page’s JavaScript source code could
be divided into different .js files, that are included in
the header block, as well as located in different parts of
the HTML file. All occurrences of JavaScript code are
discovered by searching for the pattern:
<script src=""></script>

2) Build AST for the given JavaScript code. In practice it
would be set of ASTs, as some parts of code will not
be connected to other. For each separate piece of code
an AST is built.

3) For each AST find an event that triggers corresponding
code. JavaScript code is mostly event driven. Part of
the code is executed on page load, but, usually, most of
the code is located in action handlers and in callbacks
for server calls. For each root node in AST a trigger is
defined: page event, like timer or on load, user action
or a server callback.

4) Locate all nodes that represent AJAX server calls. Server
url information can be extracted from this node, as
well as callback function. While in some cases server
side function could be determined automatically, there
are cases when automatic detection by given url is im-
possible (complex nginx configs, url mapping, redirects
and etc.) and developer should provide such mapping
manually to assist test data generation. An AST is
built for server-side code and corresponding node in
JavaScript AST is replaced by the constructed AST.

5) While arguments list passed from JavaScript directly
maps to server function arguments, server-side argu-
ments’ names may differ from client-side code names.
To preserve correct data flow server-side ASTs is post-
processed and all names are replaced with its corre-
sponding JavaScript names.

6) Each return node in the server-side AST is replaced with
the corresponding callback AST. If the server-side call
returns a value then function’s result is introduced as a
local variable and a corresponding assignment operator
is added.

7) DOM access operators that used to fetch user input
are replaced with function arguments. "replacedN"
is introduced as a function argument and DOM access
is replaced with variable access. For further generation
of Selenium test sequences an object is created which

61 of 230

maps introduced variables to the actual objects in the
following form:
{"replaced1":"document.getElementById(
’myTextInput’).value()",
...,
"replacedN":"$(’.ageInput’).val()"}
When generating Selenium test cases arguments to the
examined function are passed by filling corresponding
form elements with discovered by the constraint solver
values.

8) All superfluous nodes are removed. If a node does not
affect data flow or control flow of the application then
it is unimportant for the test data generation process
and could be removed. JavaScript code normally contain
a lot of DOM manipulation operators that are used to
update page correspondingly to the new state. All these
operators are useless on the desired level of abstraction
and therefore are removed.

A set of ASTs is built after the completion of the listed
steps. Constructed set describes web application page in
whole, its data and control flow both for client-side and
server-side functions. Having such description of the web
page problem of test data generation can be converted into
reachability problem. Each path in the AST is described as a
list of constrains (conditions from the conditional branches)
and a set of arguments that have to satisfy these constrains for
the execution to follow the selected path.

List of constraints and arguments need to be analyzed
to discover unsupported items. Server-side code implements
business logic and often contain external dependencies like:

• database resources;
• file system;
• session variables;
• external web services calls.

For paths in the AST that contain any of the listed dependen-
cies automatic test cases could not be generated, as tests would
not be able to emulate state of the external objects. Only paths
that do not have such dependencies would be a valid input for
the constraint solver. Listed external dependencies are a strong
limitation for any approach that attempts to automate testing,
and ours is not an exception.

We propose to solve this problem by manually introducing
mock objects that would emulate database, file system and
other dependencies. Our tool could assist in creation of such
objects by automatically creating list of required APIs for these
mock objects. Developer would be provided with the generated
class interfaces he would implement manually.

V. TOOLS TO IMPLEMENT PROPOSED APPROACH

Goal of the proposed approach is to automate testing of
web applications. Developed approach consists of number of
different steps and for each step a special tool is required
to automate the process. While for some steps existing tools
could be utilized for other steps proof-of-concept tools were
developed. A proof-of-concept framework that implements the

proposed approach is being developed using Python 2.7 and
JavaScript programming languages.

Static analysis of the web page is performed using a
developed tool, the utilizes Selenium framework functions [1]
and LXML python library [19] to parse web page and to build
a DOM tree. Earlier developed tools [4] are utilized to discover
and to compare web application states. Client-side JavaScript
code is analyzed using Treehugger library [12], which is able
to build an AST describing source code. Treehugger also
supports usage of jQuery framework in JavaScript code that
is often used to manipulate web page’s DOM.

Proposed approach would suite for any language used for
server-side development, the only requirement is that an AST
with the correct syntax could be constructed for this language.
Currently PHP and Python languages support were added
during the research. ASTs for the PHP code are built using
PHP-Parser [14]. Python source code AST representation
could be retrieved using a built-it module [15].

Once all ASTs are brought to the common format merging
and post-processing is performed by a developed python
tool: superfluous nodes are removed, DOM inputs access are
replaced by function arguments, AJAX calls and callbacks are
replaced by the corresponding ASTs. All ASTs are stored in
text files in the form of string representation.

In order to generate test data that would cover all execution
branches we utilize concolic testing tools. Concolic testing
is a hybrid software verification technique that interleaves
concrete execution (testing on particular inputs) with symbolic
execution, a classical technique that treats program variables as
symbolic variables. Symbolic execution is used in conjunction
with an automated theorem prover or constraint solver based
on constraint logic programming to generate new concrete
inputs (test cases) with the aim of maximizing code cover-
age [18]. There are list of tools that implement described
technique for different programming languages: PathCrawler,
PEX, DART, CUTE. We propose to use Microsoft Pex that
is publicly available as a Microsoft Visual Studio 2010 Power
Tool for the NET Framework [5]. PEX tool supports C# source
code therefore final AST set need to be converted to C# source
code. A converter is being developed during the research to
perform this conversion using a straightforward algorithm.

Once test data is generated test case for each data set are
generated. Test cases are implemented in python language
and utilize Selenium WebDriver, a collection of language
specific bindings, to emulate user actions and inputs in the
given browser. PyUnit tool can run the generated test suite
automatically.

VI. ILLUSTRATION OF THE PROPOSED APPROACH

Proposed approach could be illustrated with an analysis
of a part of the website registration form. User inputs are
often checked at server-side code for different business logic
constrains. For example a valid value for height of a new user
has to be more than 50cm and less than 250cm. Client-side
code contains an input form element and for its change
event a jQuery handler is introduced. Inside handler an AJAX

62 of 230

call to server is made and entered value is validated with the
following PHP code:
if (v > = 50 and v <=250) {
return "true";
} else {
return "false";
}
JavaScript callback parses returned value and displays an
error message if "false" was returned. For the given
example a combined AST is generated:
Function("handler",[FArg("v")],[If(Op(
"&&", Op(">=",Var("v"),
Num("50")),Op("<=",Var("v"),Num("250")
)),Block(...),Block(...))])

PEX tool is used to find input values for two possible
branches with the following constrains:

1) v >= 50 && v <= 250
2) !(v >= 50) || !(v <= 250)

Test data generator easily finds values that suit for
both execution paths and knowing that v stands for
$("#height-input").val() page element two Sele-
nium tests that would trigger two possible execution paths are
generated.

VII. CONCLUSION

Web applications are built using client-server model and
operate with callbacks rather than then sequential method
calls. For these reasons tools and approaches developed for
structured and object oriented programs can not be applied
out-of-the box for web applications quality assurance. In this
research we made an attempt to adapt existing test techniques
to support web applications specifics. For each possible user
action combined syntax tree is constructed to describe client-
side and server-side source code together. Existing concolic
testing tools are applied to the generated source code that
behaves similar to web application. Discovered test data and
Selenium WebDriver are used to generate a set of test cases
with high branch coverage for the given application.

In the further research it is planned to develop a strategy
that would assist developers in creating mock objects to make
it possible to test functionality that depend on external objects
like database and file system. Asynchronous nature of web
pages interaction with server-side code also needs further
investigation. Nevertheless proposed testing technique could
be used to automate testing of the web applications and
significantly improve software quality and defect detection
rate.

REFERENCES

[1] Antawan Holmes , Marc Kellogg, Automating Functional Tests Using
Selenium, AGILE 2006: .270–275

[2] Web test automation tool.
http://sahi.co.in/w/sahi

[3] Zakonov A., Stepanov O., Shalyto A.: GA-Based and Design by Contract
Approach to Test Generation for EFSMs. IEEE EWDTS 2010: 152–155.

[4] Zakonov A., Shalyto A.: Automatic Extraction and Verification of State-
Models for Web Applications. Lecture Notes in Electrical Engineering,
2012, Volume 133, Part 1, 157-160

[5] Tillmann N., Halleux J.: Pex – White Box Test Generation for .NET.
Lecture Notes in Computer Science, 2008, Volume 4966/2008, 134-153,

[6] Pandita R., Xie T., Tillmann N., Halleux J.: Guided test generation for
coverage criteria. ICSMIEEE Computer Society (2010) , p. 1-10.

[7] Bartak R., Salido M., Rossi F.: New Trends in Constraint Satisfaction,
Planning, and Scheduling: A Survey. The Knowledge Engineering Re-
view, 2004, Cambridge University Press

[8] Artzi, S., Dolby, J., Jensen, S.H., Moller, A., Tip, F.: A framework for
automated testing of javascript web applications.In ICSE(2011)571-580

[9] A. Mesbah and A. van Deursen. Invariant-based automatic testing of
AJAX user interfaces. In Proc. 31st Int. Conf. on Software Engineering,
ICSE 09, May 2009.

[10] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, D. Song, and F. Mao. A
symbolic execution framework for JavaScript. In Proc. 31st IEEE Symp.
on Security and Privacy, S&P 10, May 2010.

[11] Arcaini, P.; Gargantini, A.; Riccobene, E.: Optimizing the automatic test
generation by SAT and SMT solving for Boolean expressions. ASE, 2011
26th IEEE/ACM.

[12] JavaScript AST library.
https://github.com/ajaxorg/treehugger

[13] Control flow graph. Wikipedia.
http://en.wikipedia.org/wiki/Control flow graph

[14] PHP-parser and AST builder.
https://github.com/nikic/PHP-Parser

[15] Built-in module for AST in Python.
http://docs.python.org/library/ast.html

[16] Python module offering solvers for Constraint Solving Problems.
http://labix.org/python-constraint

[17] Abstract syntax tree. Wikipedia.
http://en.wikipedia.org/wiki/Abstract syntax tree

[18] Concolic testing. Wikipedia.
http://en.wikipedia.org/wiki/Concolic testing

[19] Feature-rich and easy-to-use library for processing XML and HTML in
the Python language. http://lxml.de/

63 of 230

MicroTESK: An ADL-Based Reconfigurable Test

Program Generator for Microprocessors

Alexander Kamkin

Software Engineering Department

Institute for System Programming of RAS

Moscow, Russian Federation

Email: kamkin@ispras.ru

Andrey Tatarnikov
1

Software Engineering Department

Institute for System Programming of RAS,

National Research University Higher School of Economics

Moscow, Russian Federation

Email: andrewt@ispras.ru

Abstract— Test program generation plays a major role in

functional verification of microprocessors. Due to tremendous

growth in complexity of modern designs and rigid constraints on

time to market, it becomes an increasingly difficult task. In spite

of powerful test program generators available in the market,

development of functional tests is still known to be the bottleneck

of the microprocessor design cycle. The common problem is that

it takes significant effort to reconfigure a test program

generation tool for a new microprocessor design. The model-

based approach applied in the state-of-the-art tools, like Genesys-

Pro, still does not provide enough flexibility since creating a

microprocessor model is difficult and requires special knowledge

and skills. The article suggests an approach to ease generator

customization by using architecture specifications that describe

the microprocessor behavior at a higher level. The approach is

aimed at facilitating development of architecture models and,

thus, minimizing time required to create functional tests. At the

moment, we are working to implement a new generation of the

test program generator MicroTESK that can be easily configured

for various microprocessor architectures.

Keywords—microprocessor design; architecture description

languages; test program generation; functional verification; model-

based testing.

I. INTRODUCTION

As modern microprocessors are becoming more and more

complex, functional verification is becoming an increasingly

difficult task. It is typical that up to half of resources spent on

microprocessor design is devoted to verification. The most

common approach to verification of microprocessors at a core

level is test program generation (TPG) [1]. Test programs

(TPs) are instruction sequences that trigger device events and

optionally check validity of the resulting state of the

microprocessor. A tool that creates test programs for a given

microprocessor architecture in an automated way is usually

referred to as a test program generator or a TPG tool. A well-

known problem of TPG tools is that test generation logic is

often tightly coupled with the architecture-specific knowledge,

which makes the tool hard to maintain. In fact, a frequent

solution to handle new microprocessor architecture is to

rewrite the existing generator from scratch. As we can

imagine, it increases cost of the microprocessor development

and causes significant delays in the delivery schedule.

To make a TPG tool more flexible, the architecture-specific
part has to be isolated from the test generation core. That is
usually called model-based TPG [1]. Platform-dependent
knowledge includes mainly an instruction set model (ISM) and
testing knowledge (TK), a collection of design-specific test
situations (conditions to be covered by tests). Typically,
scenarios for microprocessor verification are described
manually in the form of test templates (TTs). In abstracto, the
idea of the method can be expressed by the formula
TPs = TTs + TK + ISM (TPs are generated on the base of TTs,
which are described in terms of the ISM and TK). The model-
based TPG is a time-proved approach having been
implemented in the industrial tools, like Genesys-Pro [1] and
RAVEN [2]. However, creating a microprocessor’s ISM and
TK is rather difficult and requires special skills that verification
engineers are usually lacking for.

In this article, we present a concept of reconfigurable TPG
and its implementation in the MicroTESK tool. The key idea is
to use architecture description languages (ADLs), which are
commonly used in the area of functional simulation [3], for
TPG configuration. Architecture specification (AS) in ADL is
used by the tool to automatically build the microprocessor’s
ISM and TK. In addition to ASs, MicroTESK utilizes light-
weight configuration files (CFs) for some microprocessor
subsystems. This is due to the fact that some elements (e.g.,
cache memory, address translation mechanisms and others) are
difficult to describe in general-purpose ADLs. Usage of high-
level specifications and automated extraction of ISM and TK
make it easy to adapt the tool for new architectures and to
reconfigure it for several revisions of the same design. One
more important feature of MicroTESK is its ability to
automatically generate TTs of certain types. Thus, to generate
TPs, one needs only AS and CFs (TPs = AS + CFs).

The MicroTESK generation core comprises tools and
libraries that allow working with different configurations in a
uniform way. To accomplish this, a flexible tool architecture
has been proposed. It is based on a rather general
microprocessor meta-model, which makes it possible to all
architecture-dependent components (result of translation of the
AS and CFs) to be accessed via architecture-independent APIs.

The rest of the paper contains an overview of the existing
approaches to TPG and describes the MicroTESK principles
and architecture.

1This work is partially supported by RFBR 11-07-12075-ofi-m.

64 of 230

II. RELATED WORK AND MOTIVATION

Hardware verification has always been a major issue for the
research community. Over the last decades, a lot of hardware
verification methods and tools have emerged. In fact, the idea
of reconfigurable TPG is not new. It is based on a combination
of well-known techniques. In this section, we will discuss the
most significant of the existing approaches and industrial tools
such as Genesys-Pro (IBM Research Lab) [1] and RAVEN
(Obsidian Software Inc., now acquired by ARM) [2]
implementing them.

Genesys-Pro is the best known TPG tool. It follows the
model-based approach and operates with two kinds of
knowledge: architectural model (ISM and TK) and TTs. To
create an architecture model, some high level building blocks
are provided. TK serves as a basis for creating TTs that
describe verification scenarios. In TTs, it is possible to define
constraints on individual scenario instructions (e.g., boundary
conditions, exceptions, cache hits/misses, etc.). For each
instruction of the TT the tool formulates a constraint
satisfaction problem (CSP) and generates test data by solving
the CSP. A known disadvantage of Genesys-Pro is that it is
difficult to model instructions affecting memory devices [4].
Therefore, there are reasons to think that Genesys-Pro is hardly
reconfigurable if significant modifications of the memory
devices are required.

Another popular industrial solution is RAVEN. It is a tool
that can generate fully random, semi-random or user-directed
TPs for microprocessors. The tools components are separated
into architectural models and TTs. Architectural models are
developed by the tool vendor in collaboration with
microprocessor manufacturers. For custom designs the
generator construction set (GCS), a C++ API to the RAVEN
core, is provided. There is no detailed information available on
this technology. However, creating a model for RAVEN is
unlikely to be an easy task for a verification engineer. In our
opinion, it implies close interaction with the tool's developers,
which is not convenient and will inevitably cause delays in the
microprocessor verification process.

An interesting ADL-based approach to automated TPG is
discussed in the work of Prabhat Mishra and Nikil Dutt [5]. It
presents a concept of graph-based functional test generation.
The approach uses the EXRESSION ADL to build a graph-
based coverage model. The extracted model is automatically
processed to extract test situations that will be covered by
generated TPs. The test generation procedure is based on model
checking (test is constructed as a counterexample for the
negation of the target test situation). Heon-Mo Koo and
Prabhat Mishra in their work [6] discuss a TPG technique that
uses SAT-based bounded model checking (BMC) to generate
TPs. Such an approach gives better results in terms of time and
space required for counterexample generation compared to
ordinary model checking that suffers from the state explosion.

Finally, it should be said that Institute for System
Programming of RAS (ISPRAS) has already done some
research and development on the TPG topic [4][7]. The present
article summarizes the ideas that have been accumulated in

ISPRAS and provides an overview of the research project our
team is working on at the moment. The main motivation of the
work is to propose a convenient way to describe
microprocessor architectures that would reduce effort needed
to create ISMs and TK.

III. MICROTESK OVERVIEW

MicroTESK is a reconfigurable TPG tool that uses ADL
descriptions together with high-level configuration information
to represent architecture-specific parts of the generator. By
reconfigurability we mean an ability to easily switch to a new
microprocessor design without having to modify the internal
logic of the tool. General structure of MicroTESK is displayed
in Figure 1. The tool uses two main types of input data: (1)
design description and optionally (2) user-defined TTs. The
former provides information about the target microprocessor,
while the latter specifies scenarios to be reproduced in TPs.
Outputs are TPs in an assembler language. MicroTESK
functions can be divided into three major groups: (1)
translating a design description into the ISM and extracting
TK, (2) creating TTs on the base of the TK and (3) generating
TPs from the TTs. In other words, to generate tests for the
target microprocessor, we need to go through the following
stages:

 Creation of a design description in ADL and
configuration of the design subsystems. This task is
performed by a modeling engineer who possesses
knowledge about the microprocessor architecture.

 Translation of a design description and configuration
into the architectural model (ISM and TK). This is
done by a translator that uses unified building blocks
from the model library to generate a model.

 Creation of TTs. TTs are created basing on the ISM
and TK extracted from the design description. TTs can
be either created automatically by a TT generator or
provided by a verification engineer. The advantage of
TTs is that they provide a flexible way to specify
instruction sequences and instruction parameters that
can vary depending on some conditions.

 Generation of TPs. TPs are generated by processing
TTs. During this stage all CSPs formulated for test
situations are solved and all instructions have their
final parameter values assigned. In the end, a TP
generator produces an assembler program which is
compiled by a verification engineer into binary code
and executed in a simulator or on a chip.

As we can notice, at each stage the tool works with data
produced by the previous stage. This reduces dependencies
between different components of the tool and facilitates their
customization. For example, adding support for a new ADL
will affect only the translator as the architectural model
representation is independent of a particular ADL.

The next sections of the article describe the MicroTESK
components in more detail.

65 of 230

Figure 1. General structure of the MicroTESK TPG tool

IV. ARCHITECTURE MODELING

As it has already been said, MicroTESK makes use of
ADLs to specify the target design architecture. At the moment,
supported ADLs include nML [8] and Sim-nML [9]. nML is a
formalism that describes a microprocessor at the instruction set
level hiding unnecessary low-level details. The language is
flexible and easy to use. Thereby, modeling a microprocessor
architecture does not require significant effort. For example, a
description of the integer addition instruction (ADD) from the
MIPS instruction set architecture [10] looks as follows [4]:

op ADD(rd: GPR, rs: GPR, rt: GPR)

action = {

 if(NotWordValue(rs) || NotWordValue(rt)

 then

 UNPREDICTABLE();

 endif;

 tmp_word = rs<31..31>::rs<31..0> +

 rs<31..31>::rt<31..0>;

 if(tmp_word<32..32> != tmp_word<31..31>

 then

 SignalException("IntegerOverflow");

 else

 rd = sign_extend(tmp_word<31..0>);

 endif;

}

syntax = format("add %s, %s, %s",

 rd.syntax, rs.syntax, rt.syntax)

op ALU = ADD | SUB | …

As we can see, this notation is quite similar to the
instruction's specification in the MIPS manual, which is shown
below.

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
 UNPREDICTABLE
endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then
 SignalException(IntegerOverflow)
else
 GPR[rd] ← sign_extend(temp31..0)
endif

Basing on such specifications the microprocessor’s TK can
be automatically extracted. For example, analyzing the
instruction description, we can derive three conditions that
require attention:

1) The rt and rs general-purpose registers (GPRs) should

contain sign-extended 32-bit values (bits 63..31 should be

equal). Otherwise, the result of the instruction is

UNPREDICTABLE. This means that under such a condition

the microprocessor behavior is undefined and cannot be

checked. Such situations should be avoided in TPs.

2) If the addition results in 32-bit two’s complement

arithmetic overflow, the destination register rd should not be

modified and the IntegerOverflow exception should occur.

Such a situation can be specified in a TT. When a TP is being

generated the constraint solver engine will calculate exact

values of the rt and rs GPRs to satisfy the constraint.

3) If the addition executes normally (does not cause an

overflow), the sign-extended 32-bit result should be placed

into the rd GPR. Such a condition can as well be used in TTs

(for example, to be sure that some instruction does not raise

exceptions).
ADL descriptions are used to build coverage models for

individual instructions and to determine basic inter-instruction
dependencies. It should be emphasized that models are
composed from the building blocks provided by the model

66 of 230

library and independent of a particular ADL. Therefore, it is
possible to use any ADL that provides enough information
regarding the structure and behavior of microprocessors.

In addition to an instruction-level ADL description of the
microprocessor, there is a need to specify some microprocessor
subsystems, like memory management unit (MMU) and
pipeline control unit (PCU), in more details. ADLs like Sim-
nML are not suitable for describing these elements. At the
same time, they should not be overlooked as it is very
important to verify how a microprocessor handles events
related to memory management and pipeline control. To
provide specifications of these properties, special configuration
files (CFs) are used.

MMU provides memory access protections, virtual-to-
physical address translation and caching of instructions and
data. It works with the main memory, cache memory (L1 and
L2) and translation look-aside buffers (TLBs) that are used to
accelerate virtual-to-physical address translation by caching
latest translations. A cache or a TLB is represented by a
memory buffer. At a logical level, each buffer is described as
an array of sets of lines that can be specified as structures
comprising several bit vectors called fields. A line stores a
copy of memory data that has been recently read or written.
Data is accessed by its address. When a buffer contains a line
with a specified address the situation is called a hit; if it does
not the situation is called a miss. When a miss occurs, the line
is replaced with data stored in main memory at the given
address. So, buffer configuration information includes the
following attributes: set size (associativity), number of sets,
line field description, address-to-index translation rule, rule for
checking if a line and an address match and data displacement
policy. To specify this information, we use CFs of the
following kind [4]:

buffer L1 = {
 set = 4
 length = 128
 line = { tag:card(27), data:card(32) }
 index(addr:36) = { addr<8..2> }
 match(addr:36) = { addr<35..9> == tag<0..26> }
 policy = LRU
}

For the purpose of functional verification, there are two
main situations that interest us: when a hit occurs and when a
miss occurs. Both situations can be formulated as CSPs over
the address being used to access data and state of the buffer
[11][12].

Another important aspect related to architectural models is
dependencies between instructions. Instructions change the
state of the microprocessor and, thus, affect the behavior of
subsequent instructions. For example, a precondition for the hit
event is that corresponding data are loaded into cache, which is
done by a previous instruction that accesses the same data line.
To produce a complex instruction sequence that will give
predictable results, we need first to simulate its execution to
determine final parameter values of the dependent instructions.
This is done at the final stage when MicroTESK processes TTs
to produce TPs. The tool keeps a track of all events that occur
in the model and provides this information to the TP generator

Knowledge about possible dependencies between instructions
is a part of TK extracted from the CFs.

V. CONSTRAINT SOLVER ENGINE

Important part of MicroTESK is a CSP solver engine. It
facilitates generating test data and helps to achieve a better test
coverage. Architecture specifications do not usually specify
precise parameter values that lead to particular situations, but
rather specify a class of possible values expressed as a set of
conditions. For example, when we want to create a test for an
integer overflow exception in the ADD instruction, we do not
know values of parameter that cause the exception (in fact,
there may be thousands of possible values). However, we know
what conditions the resulting value should satisfy to recreate
the situation. To generate parameter values that will make a test
situation occur, the tool formulates a CSP and solves it with the
help of the solver engine. The engine returns parameter values
satisfying the constraint. Such an approach allows generating
new test data from each time a TP is generated from the TT,
which improves test coverage.

MicroTESK uses the SMT-LIB language [13] to formulate
CSPs for test situations. CSP is expressed as a set of assertions
that specify assumptions about values of input variables and
results of operations performed with them. Modern solvers
support bit vectors, which facilitates specifying constraints for
data buffers used in different parts of microprocessor models
(registers, cache, main memory, etc.). Below, there is an
example of a CSP that specifies conditions leading to an
integer overflow exception in the ADD instruction.

(define-sort Int_t () (_ BitVec 64))

(define-fun INT_ZERO () Int_t (_ bv0 64))
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))

(define-fun INT_SIGN_MASK () Int_t
 (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))

(define-fun IsValidPos ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))

(define-fun IsValidNeg ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true
false))

(define-fun IsValidSignedInt ((x!1 Int_t)) Bool
 (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))

(declare-const rs Int_t)
(declare-const rt Int_t)

; rt and rs must contain valid sign-extended
; 32-bit values (bits 63..31 equal)
(assert (IsValidSignedInt rs))
(assert (IsValidSignedInt rt))

; the condition for an overflow: the summation
; result is not a valid sign-extended 32-bit value
(assert (not (IsValidSignedInt (bvadd rs rt))))

; just in case: rs and rt are not equal
; (to make the results more interesting)
(assert (not (= rs rt)))
(check-sat)

(echo "Values that lead to an overflow:")
(get-value (rs rt))

67 of 230

MicroTESK provides a possibility to generate CSPs
automatically on the base of the TK extracted from the design
description. It should be said that TK’s constraints are stored in
a format that is independent from a particular solver. The
current version of the tool uses the Z3 solver by Microsoft
Research [14]. The TP generator interacts with the solver via
solver-independent CSP solver API. This allows the tool to use
different solvers.

VI. TEST TEMPLATES

TTs are an important part of the MicroTESK solution. The
tool provides facilities to create and modify TTs by hand.
Despite the fact that some amount of TTs can be generated
automatically based on TK, to cover all possible situations, it is
often necessary to create TTs manually or customize
automatically generated ones. Therefore, an expressive and
easy-to-understand language is needed. Generally speaking, a
TT describes a class of TPs that verify microprocessor
behavior in particular test situations. Whereas TPs represent
sequences of commands in a processor-specific assembler, TTs
provide a way to describe a test scenario at a more abstract
level. Such an approach gives a lot of advantages in terms of
flexibility. For example, it allows generating tests taking into
account dependencies between related instructions, create tests
for a whole class of similar instructions and specify test
parameters as ranges of possible values or as random values
instead of hard-coding them. It also helps organize groups of
separate test scenarios in more complex test cases and set up
parallel test execution.

To describe TTs, a special test template description
language (TTDL) is used. In the current version of the tool, it is
based on the Ruby scripting language, which is extended with
special automatically generated libraries that provide all
hardware-related features and perform interaction with the
design model. Generally, the TTDL features can be divided
into the following groups according to their purpose:

A. Achitecture-related statements

Include constructs to simulate generalized processor-
specific assembler instructions and a list of supported registers.
Both instructions and registers can be combined into families.
The TTDL allows specifying a family instead of a precise
element or an address range instead of a specific address. Thus,
it is possible to vary the level of randomness in the generated
tests from completely random to completely directed. Also, we
can specify dependencies between instructions. For example,
we can make them use the same registers or the same address,
which is selected at random when being accessed for the first
time.

B. CSP-related statements

Constraints can be applied to instructions to recreate test
situations. Typically, constraint conditions are extracted from
ADL specifications. For example, it can be a condition that
causes an integer overflow exception. Constraints are stored in
a special catalog of constraints that includes information about
instructions (or classes of instructions) they can be associated
with. Constraints can be extracted from a design specification
automatically, created manually or provided with the tools as

independent general TK which is common for different
microprocessors.

C. Generation flow statements

Provide control over instruction generation sequencing.
Sometimes the sequence of instructions in a TP may need to be
varied depending on some conditions or even to be randomized
to achieve a better level of coverage. There are several possible
ways to specify how a TP can be generated:

 As a sequence of ordered instructions (the order is
specified in the TT);

 As a sequences of specified instructions given in a
random order;

 As a sequence of instructions some of which are
repeated depending on some conditions;

 As a sequence of instructions that contain instructions
(or subsequences of instructions) randomly selected from the
specified set of instructions;

 As a set of instruction sequences that should be
executed concurrently;

 etc.
The TTDL language provides language constructs that

offer such facilities. The set of offered features can be
extended.

D. Standard language constructs

Include constructs derived from the underlying scripting
language such as control flow operators, variables, constants
and assertion statements. Such constructs are necessary to
describe complex scenarios, to specify shared instruction
parameters, to use common constants and to add validity
checks to test scenarios.

E. Infrastructure-related statements

Provide a framework for creating TTs. Include base classes
and global objects needed to organize the structure of TTs and
provide communication with design models and CSP solvers
during test generation. Some features are architecture-specific
and are generated from models automatically.

The TTDL provides facilities that suffice for most
verification tasks. To simplify the test design process,
MicroTESK provides an ability to automatically generate some
types of TTs. This includes templates for single instruction
tests (that cover all possible execution paths for all supported
instructions), combinatorial tests (that generate short sequences
represented by combinations of specified instructions) and
random tests (that produce random instruction sequences).
Automated generation of TTs is performed based on TK
extracted from the design description. To generate more
specific TTs, the design model can be extended with additional
information about test situations and instruction dependencies.

To illustrate the use of the TTDL, an example of a TT for a
MIPS microprocessor is provided below.

class MyTemplate < Template

 def test()

 data = [[0xEF, 0xFF], [0x1EF, 0x1FF], [0xFEF, 0xFFF]];

 data.each { |d|

 xor r0, r0, r0;

 ori r(2), r0, d[0];

 ori r(4), r0, d[1];

68 of 230

 ld tmp1=r(1), 0x0, r(2);; hit([L1(), L2()], [25, 50, 75]);

 ld tmp2=r(3), 0x0, r(4);; hit([L1(), L2()], [25, 50, 75]);

 dadd r(5), tmp1, tmp2;; overflow;

 }

 end

end # class MyTemplate

This TT represents a scenario that generates a set of

instruction sequences parameterized with data stored in the

array. The generated sequences load data located at the

addresses stored in the data array. For the ld instructions, the

TT specifies constraints related to cache events:

hit([L1(), L2()], [25, 50, 75]);

This statement means that the line that accesses a memory

device should cause a cache hit event to occur. It specifies a set

of target caches and probabilities of the hit event occurrence.

For this line, MicroTESK will generate a list of possible

combinations and will add an instruction for each of them to

the resulting TP. Another constraint is used to make the dadd

instruction generate an overflow exception. The TTDL

provides a wide range of facilities to express test situations that

involve complicated series of events.

VII. CONCLUSION

Verification of modern microprocessors requires a lot of
effort and efficient instruments. An ability to quickly
reconfigure a TPG tool for a new design is a crucial
requirement. In this paper, we offered a solution to the
problem. The paper contributes the following approaches: (1)
using high-level ADLs and CFs to specify the configuration of
a target design and (2) building TK from high-level
specifications basing on behavioral characteristics of the target
design and (3) automated generation of TTs and TPs based on
TK. The approaches are applied in MicroTESK, the instrument
our team is working on. It makes use of the nML/Sim-nML
ADL to describe target microprocessor designs. This formalism
uses a format similar to the notation used in microprocessor
manuals, which significantly facilitates creating configuration
description of target devices. Another important application of
ADLs is that they serve as source of behavioral characteristics
of a microprocessor. MicroTESK is able to extract TK from
ADL specifications and use it as a basis for creating test
scenarios. This simplifies the job of a verification engineer who
being armed with this knowledge can start creating tests as a
soon as MicroTESK has processed an ADL specification. TTs
are another major feature of MicroTESK. It provides a flexible
way to specify complex test scenarios. Test situations can be
formulated as CSPs, which eliminates the necessity to provide
exact values of instruction parameters to make a particular
event to occur.

The architecture of MicroTESK facilitates customization.
Designs models are created based on an API provided by the
model library. They are independent of a particular ADL and
can be processed in a uniform way. Also, MicroTESK includes
built-in TK about situations that are common for different
microprocessors. The template generation logic combines
built-in TK and TK extracted from the architecture model to
generate test scenarios, which allows automating the process of

creating tests for basic test situations. The tool can be extended
to support new ADLs and new ways to describe TK and TTs.
As we can see, MicroTESK automates most of activities
required to create tests for a target microprocessor design,
which helps significantly decrease delays in the delivery
schedule.

At the present stage of our research, we implemented a
prototype that supports only a small set of the described
features. The first version of the prototype was tried with
several industrial microprocessors and their subsystems. The
experimental results are provided in the work of Kamkin,
Kornykhin and Vorobyev [4]. Our current plans are to develop
a full featured product that could be used by microprocessor
vendors. A further direction of research is to more extensively
automate creation of TTs. This will require using more
complex models and test generation techniques. To keep in
pace with temps of growth in complexity of modern
microprocessor designs, TPG tools should provide more
facilities to automate test design.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov and A.
Ziv, Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification, IEEE Design & Test of Computers,
2004, pp. 84-93.

[2] http://www.obsidiansoft.com/pdf/Datasheet.pdf

[3] P. Mishra, A. Shrivastava and N. Dutt, Architecture Description
Language (ADL)-Driven Software Toolkit Generation for Architectural
Exploration of Programmable SOCs, ACM Transactions on Design
Automation of Electronic Systems, Vol. 11, No. 3, July 2006, Pages
626–658.

[4] A. Kamkin, E. Kornykhin and D. Vorobyev, Reconfigurable Model-
Based Test Program Generator for Microprocessors, A-MOST, Berlin,
Germany, 2011.

[5] P. Mishra and N. Dutt, Graph-Based Functional Test Program
Generation for Pipelined Processors, In Design Automation and Test in
Europe (DATE), Paris, France, pages 182–187, February 16-20, 2004.

[6] H. Koo and P. Mishra, Functional Test Generation using SAT-based
Bounded Model Checking, CISE Technical Report 05-008, Department
of Computer and Information Science and Engineering, University of
Florida, 2005.

[7] A. Kamkin. Test Program Generation for Microprocessors, Institute for
System Programming of RAS, Volume 14, part 2, 2008, pp. 23–63 (in
Russian).

[8] M. Freericks, The nML Machine Description Formalism, Techical
Report, TU Berlin, FB20, Bericht 1991/15.

[9] R. Moona, Processor Models For Retargetable Tools, Proceedings of
IEEE Rapid Systems Prototyping 2000 June 2000, pp 34–39.

[10] MIPS64™ Architecture For Programmers, Volume II: The MIPS64™
Instruction Set, Document Number: MD00087, Revision 2.00, June 9,
2003.

[11] E. Kornykhin, SMT-Based Test Program Generation for Cache-Memory
Testing, East-West Design & Test Symposium (EWDTS), 2009, pp.
124–127.

[12] E. Kornykhin, Generation of Test Data for Verification of Caching
Mechanisms and Address Translation in Microprocessors, Programming
and Computing Software, Volume 36 Issue 1, 2010, pp. 28-35.

[13] D. R. Cok, The SMT-LIBv2 Language and Tools: A Tutorial,
GrammaTech, Inc., Version 1.1, 2011.

[14] L. Moura and N. Bjørner, Z3: An Efficient SMT Solver, Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008, pp. 337–340.

69 of 230

Run-time monitoring for model-based testing of
distributed systems

Vladimir Fedotov1

Institute for System Programming
Moscow, Russia

Email: vfl@ispras.ru

Abstract—Modern enterprise systems are highly distributed
and heterogeneous. Apart from the latest attempts on leveraging
distributed systems with SOA and SOA-like enterprise integra-
tion systems, testing still represents a major challenge.

This paper discusses practical approach for managing the
testing process for distributed systems based on transparent
test environment, run-time monitoring of interactions within this
environment and interaction model generation.

We also outline an approach for test case generation based
on the interaction model and test coverage metric based on the
coverage of interaction tree.

I. INTRODUCTION

Integration technologies are rapidly advancing since early
90-s, driven by consistently faster networking and better
data storage. Being mostly a business domain, integration
technologies constantly evolve, leaving in their wake various
vendor-locked platforms as a legacy. This legacy forms a
heterogeneous environment that is common for any enterprise
company big enough.

Enterprise environment is often divided between several
technology domains, each formed around a certain kind of
solution like an integration broker, application server or service
bus. Therefore environment as a whole is highly distributed.
Bringing this environment together is a daily struggle for an
enterprise IT.

The web-service stack of protocols is the latest attempt
to deal with this issue. Centered on Web-service Definition
Language (WSDL) web-service protocols provide standard-
ized interface for integration components. Combined with
stateless design it enables the strongest feature of web-services
– compositions.

Composition is a web-service that acts as a client for several
other web-services. Compositions can be stacked over each
other to implement different tasks over existing functional-
ity of the system, creating highly distributed environment.
Enterprise systems often follow the pyramid pattern (Fig.1),
wrapping enterprise applications with web-service interfaces
and stacking several layers of compositions on top of them.

Interface complexity, the number of operations and oper-
ation parameters, grows from the top to the bottom of the
pyramid. Low-level services may wrap an entire API of the
underlying systems, requiring an expert knowledge of the

1This work is partially supported by RFBR 11-07-00084a, 11-07-12075-
ofi-m grants.

business domain for client development. Top-level services
implement very specific business processes and provide only
basic interface that requires little knowledge of the system
internals and can be exposed to the third-party developers.

Integration complexity, the number of outgoing requests
for each incoming request, as defined in [1], grows from the
bottom to the top of the pyramid. Low-level services are tightly
coupled to the applications they wrap thus having zero integra-
tion complexity. Top-level services have multiple dependencies
on the services below them that have dependencies of their
own.

Fig. 1. Pyramid pattern in enterprise application integration

In this paper we would like to discuss the testing process
for the systems described above. While web-services by them-
selves bring nothing new to the classic V-model testing pro-
cess, compositions testing present an actual challenge, shifting
focus from functional to the integration testing. Developing a
methodology adjusted for testing of web-service compositions
is a goal of the research described in this paper.

II. MOTIVATION

Distributed heterogeneous nature of the enterprise systems
presents several major issues that need to be dealt with in
order to get meaningful consistent testing process. Other
issues described below are the consequences of data-flow
centered logic of integration components that makes them
tightly coupled to data that is stored externally.

Typical enterprise system consists from several different
technology platforms, that implement various, often propri-
etary, protocols. Applications supporting these protocols form
a domain around the platform, which means that test environ-
ment is fragmented according to these domains as there are
no connections between tests from different domains. Main

70 of 230

consequence of environment fragmentation is lack of end-to-
end tests that hampers a system testing stage of the process.

While individual components contain only integration logic
i.e. transformation between different message formats, actual
business logic resides in data stored in the core systems such as
billing or resource management. Constraints that exist in this
data describe what is possible and what is not in the system.
Therefore testing of business logic requires knowledge about
these constraints and a way to mine data corresponds to a
certain set of constraints. Both of these tasks are extremely
difficult as the data structures in the core systems may be
incredibly complex. In practice constraint discovery and data
mining often done in an informal way: by brainstorming the
database structure or consulting with business experts.

The price of informality is that there are no guarantees
of completeness for discovered constraint set. It may be too
strict, so certain types of input data is not represented in test
cases. Or it may be too loose, so certain test cases will fail
for no apparent reason. The main consequence of this is that
there is no appropriate way to measure test coverage. As test
cases are data-driven, they should be executed with the same
requests but different data, so typical coverage metrics, such as
amount of covered web-service operations, become inadequate
to actual test subject – business process implemented by the
component composition.

III. OUTLINE

Approach proposed in this paper can be logically divided
into two parts: firstly we try to bring the test environment
under control by developing a transparent test framework that
offers us an ability to observe and control interactions within
the test environment; secondly, we develop a technique for
modeling these interactions, that gives us a way to formally
reason about what is happening in the system.

Test framework described above is based on existing ap-
plication integration solutions. We are extending an existing
open-source enterprise service bus, that offers us various proto-
col adapters, message routing and transformation capabilities.
By having centralized, possibly federated, test environment
we deal with test environment fragmentation. Supporting the
environment also becomes easier, as protocol adapters can
be developed independently and do not affect other parts of
the environment. Adapters are connected to the Normalized
Message Router that transforms various message formats into
canonical one, thus making end-to-end testing easier.

Another important feature of our framework is an interaction
monitoring. It provides us with a bridge between real system
and a model. As it seems impossible to derive interaction
model from component specifications, we see run-time mon-
itoring as a best possible alternative. Run-time monitoring at
the unit-testing stage of process helps us to create behavior
models for independent components. At the later stages inter-
action monitoring helps us to determine the outcome of the
test executions and coverage reached.

The goal of model generation is to provide binding between
data-driven test cases and composition behavior to deal with

data constraints discovery issue. Model is built bottom-up,
starting from request-reply pairs for individual component and
growing to composition of models of several components. It
is presumed that model generation starts at the unit testing
stage, where data mock-ups are used. At this stage, model
describes what types of behavior are possible for an individual
component, later we bind them to an actual data, representing
an equivalence class.

When interaction model for component composition is
ready, we generate test scenarios that represent a certain
interaction path within a system. Test stimulus is represented
by a message that would be sent into composition entry
point, while reaction is a set of all consequent interactions
that happened within a system. Stimuli that have the same
structure, but contain different data may produce an entirely
different interaction pattern. The power of the approach is in
testing various interaction patterns that may be hidden behind
the entry point.

Essential feature of our approach is test coverage metric.
Data complexity in an enterprise system often prevents instan-
tiation of certain classes of data as we are unable to satisfy
constraints that exist in the system. Well-managed testing
process always aims for a perfect balance between risks and
man-hours, so we need a tool to evaluate an amount of work
required for test data instantiation and compare it to risks
coming from not testing on this data. Our test coverage is
measured as coverage of possible interaction patterns in the
composition. This coverage metric includes not only coverage
of reachable request-reply pairs, but also coverage of reachable
data classes discovered on earlier stages of process.

IV. APPROACH

A. Transparent environment

Basis of our approach is the observable environment. While
evaluating properties of the components under test we presume
that interactions between these components are observable.

In practice it might be difficult to achieve such level of
transparency. For example, there is no easy way, known to
us, to observe database interactions. Also interactions over
proprietary binary protocols, common for message queues, are
observable, but not decodable. Still, most interactions are done
over HTTP, with messages formatted in XML, so they are
easily observable and readable.

Second part is to bring all the observations together in a
single framework. Surely a bunch of HTTP sniffers here and
there would not do much for our goal. As a solution we suggest
the existing open source ESB platforms like ServiceMix,
Synapse and others.

First of all, ESBs already have a lot of adapters for different
protocols, thus widening our reach for many different plat-
forms. Second, the concept of an ESB presumes existence of
single point of observation for everything that happens inside a
system. Third, messages passed into an ESB are normalized to
canonical form, so we are relieved from a burden of handling
different message formats.

71 of 230

Componen t 23

Componen t 12

1:Reques t

Componen t 9

1 :Reques t

Componen t 1

5 :Reques t

Client

7:Reply2:Reply 4:Reply

Componen t 4

2 :Reques t 3:Reply

6:Reply 0:Reques t

Fig. 2. Interaction graph

We have not yet reviewed all available ESB platforms,
Apache Synapse looks most promising due to ease of its con-
figuration by XML-based configuration language, but protocol
support is somewhat limited in comparison to other platforms.
We will also look into possibility of developing our own
solution on top of the existing ones.

The role of the framework described above is to provide
a new entity of the system - an observer. Observer should
be able to log, analyze, transform and re-route messages
passing through him. As we actually see interactions within
the environment only if they are visible to observer, modeling
the environment actually means modeling the observer’s state.
We see an observer’s state as a queue of incoming messages. In
a certain period of time message queue gets processed which
basically means that messages get sent to their destinations.
Queue-based processing gets us a handy abstraction of time
for our model. Instead of dealing with continuous time, we
have discrete time represented by a message polling interval
of the observer that can be imagined like a turn in a turn-based
computer game. For example, messages are considered con-
current if they were retrieved on the same turn and sequential
if message B followed message A exactly on the next turn.

B. Interactions model

The first and easiest step of our approach is creation of a
connection graph of the system, like the one shown on the
Fig.2, that basically represents connections between compo-
nents. This graph is created by monitoring of the message-
flow on the observer and requires almost no processing other
than message headers where message destination resides.

The second step is the creation of the interaction trees
shown on the Fig.3 that maps the whole interaction between
components to a single message that started it. To create an
interaction tree we should implement basic rules for message
correlation:

1) Messages are concurrent if they were sent on the same
turn

2) Messages are sequential if the second message was sent
on exactly next turn and destination of the first message
matches to source of the second message

3) If there is no messages in the observer’s queue, the
interaction has ended

The third step is to discover relations between actual request
data and component behavior. This step is necessary for a
meaningful model as our components are data-driven and
their behavior may depend not only on the type of incoming
data, but also on its semantics. By developing this technique

0:Client

0 :Component 23

1

1:Component 12

2

1:Component 9

3

2 :Component 23

4

2:Component 4

5

3:Component 9

6

4 :Component 23

7

5:Component 1

8

6 :Component 23

9

7:Client

1 0

Fig. 3. Interaction tree

further we hope to implement a set of behavioral heuristics
for discovering common dependencies in the input data, such
as message ordering and equivalence classes.

C. Test generation

Final step of our approach is a test generation based on
the interaction model enriched with the discovered classes of
input. To test a certain composition we need to derive the
minimal set of test stimuli from a model that is able to cover
all reachable branches of the interaction tree.

This task is achievable in case we would be able to discover
and correlate inputs properly, the problem here is that these
tests would be abstract i.e. they would contain a description
of classes of data instead of a real data. Real data gathered by
observer may become unusable in case of update operations,
as the updated data no longer represents its original class.

Currently we see no possible general approach for discovery
of concrete data instances, so we presume it is done manually.
As it is certainly possible that some classes of data would not
have concrete instances (because we were unable to find them,

72 of 230

not because they do not exist), it is vital to develop a coverage
metric for these test sets.

D. Model semantics

Finally we would like to discuss a topic somewhat unrelated
to the practical application of our approach, but essential for
its further development – formal semantics of our model.
Currently we are considering several different semantics. First
one is widely used LTS semantics [2] [3] [4]. LTS model
represents a system as a set of vertices - states and a set of
labels - actions that perform a transition from one state to the
other.

As we discussed earlier, we consider components as a
stateless entities, so it may be unclear how to model them
using LTS semantics. We propose a slightly different approach
for using the same semantics. As we are modeling a data-flow
in the system, we represent state as a message in an observer’s
queue and transition as an action performed by a component
that results in transition to a new state i.e. getting new message
in a queue. This approach is expressive enough, but there are
certain difficulties in its practical application.

First of all, as we discussed earlier, our inputs have state
of their own that should be included in the model. In reality
it is some sort of the global state represented by a set of
attributes stored in a database, but we think that modeling
a global state is not exactly a good idea, because it brings
unnecessary complexity to a model without any real value.

We deal with that issue by splitting our state, a message
in reality, in two parts: implicit and explicit. Explicit part of
the state is an actual message received, while implicit part
is an associated context that is hidden from us somewhere
in the system. By doing so we get rid of non-determinism
we showed earlier, where two same messages may produce
different reactions. Here it means that only explicit parts of
the messages were equal, and implicit parts were actually
different, so we have two different states and there is no
indeterminism in these cases. Declaring the two states different
is done solely by looking on the results of the same actions,
so we do not need to actually compare the implicit parts.

Another option we are considering is somewhat less known
actor semantics [5] [6]. Actors model was introduced by
Hewitt in 1973 [7] and was supposed to model concurrent
systems as a set of related entities – actors. Actors communi-
cate via reliable messaging and have a state of their own. For
every incoming message actor can create more actors, send
more messages or change its own state.

Most recent and successful implementation of an actor
model is done in the Scala language [8], which served for us
as an inspiration to look into actor semantics. Scala provides
an actor framework for implementation of concurrent systems
in a clear and concise way that differs a lot from a traditional
locking mechanism.

Model-checking for actors modeled in Rebeca language [9]
was successfully implemented in Modere [10] model-checking
engine. For now these are the only works in formal verifi-
cation for actors, but while recent development of an actor

model itself was not very active, we see its expressiveness
in our domain as a big advantage. Components, especially
web services, can be naturally described as actors. Message
passing as a way of communication also fits naturally in our
approach. Another big advantage is model scalability – a way
of composing smaller models into larger ones described in
[11].

V. RELATED WORK

Testing and verification of the distributed systems is a
very popular field of academic research, mostly due to recent
peak of SOA-related technologies. The formal specification
language - WSDL and the composition description language
- BPEL provided by web services attract attention as they
seem to be very prominent tools for implementation of various
model-based testing techniques.

The ideas that are closely related to ours and, more
importantly, already implemented in the Plastic Validation
Framework [12] were expressed in the works of Bertolino et
al. [13] [14] [15]. The concept of the model-based generation
of the test environment, expressed in [14] is very close to
our approach. Unfortunate downside of the proposed methods
is their limitation to the domain of web services. There also
no clear description of the data binding mechanism as web
services are described as stateful entities.

Another important work related to our topic, done by
Sharygina and Kröning and included in [16], discusses the
application of the model-checking techniques in the domain
of web-services. Being a preliminary work it only discusses
the model checking for certain properties such as deadlocks,
but can be easily extended for more practical cases.

Castagna et al. [17] developed the theory of contracts
for Web services. These contracts are used as behavioral
descriptions of Web services and offer concise and formal way
for reasoning about their properties.

Ferrara [18] developed the process algebra approach for
reasoning about BPEL services. This approach maps formal
abstracts to concrete web-service implementations done in
BPEL4WS language.

Textor et al. [19] proposed formal workflow model for
SOA monitoring. This model is used for Quality-of-Service
monitoring for enterprise applications. Described approach
was successfully implemented for self management of the
actual enterprise system.

VI. CONCLUSION

In this paper we have introduced a model-based approach
for testing distributed systems. Our approach has strong em-
phasis on practical application and is based on the run-time
monitoring of the system. To enable such monitoring in real
enterprise systems we develop transparent test environment
that acts as an observer for interactions between components
of the distributed system. We use existing open-source ESB
as a technology platform for the test environment.

We have outlined an approach for generation of a model of
distributed system that is based on observing behavior patterns

73 of 230

of the individual components. This model is composable and
can be used throughout all stages of the testing process, from
unit-testing up to end-to-end acceptance testing. The main
feature of the model is that it allows binding component
behavior to the semantics of the input data. Described model
is used for generation of tests that cover possible interaction
paths and input data classes.

We have also discussed suitable formal semantics for a
described model. LTS semantics is common for model-based
techniques, but cannot be applied in a straightforward manner
because of the stateless design of the system components.
Instead of modeling the component state, we model the state
of the observer that is represented by a message or multiple
messages for concurrent interactions. Another suitable seman-
tics is the actor model, introduced by Hewitt and implemented
in Erlang and Scala programming languages. Despite being
unpopular for means of formal verification, we see the actors
semantics superior to others mostly because of scalability of
the models defined with actors.

Presented work is still very much in progress. Description
of the model and test generation techniques is preliminary and
would be improved in future. We also plan to put more efforts
in researching the actors semantics.

REFERENCES

[1] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, no. 4, pp. 308–320, 1976.

[2] J. Tretmans, “Model Based Testing with Labelled Transition Systems.”
[3] V. Kuliamin, “Component architecture of model-based test-

ing environment,” Programming and Computer Software,
vol. 36, no. 5, pp. 289–305, 2010. [Online]. Available:
http://dx.doi.org/10.1134/S036176881005004X

[4] I. Burdonov and A. Kosachev, “Conformance testing based on a state
relation,” Proceedings of the Institute for System Programming of RAS,
vol. 18, pp. 183–220, 2010.

[5] C. Hewitt, “Actor Model of Computation: Scalable Robust Information
Systems,” pp. 1–29, 2011.

[6] S. Smith, I. A. Mason, and C. Talcott, “Towards a Theory of Actor
Computation.”

[7] C. Hewitt and P. Bishop, “A universal modular actor formalism for
artificial intelligence,” Joint conference on Artificial intelligence, pp.
235–245, 1973.

[8] M. Odersky and L. Spoon, “Programming in Scala,” 2008.
[9] M. Sirjani and M. M. Jaghoori, “Ten Years of Analyzing Actors : Rebeca

Experience.”
[10] A. Movaghar, “Modere : The Model-checking Engine of Rebeca Mo-

hammad Mahdi Jaghoori,” pp. 1810–1815.
[11] A. Gul, “A Foundation for Actor Computation,” no. July 1993, 1993.
[12] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini, “The PLASTIC

Framework and Tools for Testing Service-Oriented Applications,” pp.
106–139.

[13] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A
WSDL-based Testing Tool for Web Services,” International Conference
on Software Testing Verification and Validation, pp. 326–335, Apr. 2009.

[14] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini, “Model-Based
Generation of Testbeds for Web Services.”

[15] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
SOA Testing,” pp. 161–170, 2009.

[16] L. Baresi, Test and Analysis of Web Services, 2007.
[17] G. Castagna, N. Gesbert, and L. Padovani, “A theory of contracts for

Web services,” ACM Transactions on Programming Languages and
Systems, vol. 31, no. 5, pp. 1–61, Jun. 2009.

[18] A. Ferrara, L. Sapienza, and V. Salaria, “Web Services : a Process
Algebra Approach,” pp. 242–251.

[19] A. Textor, M. Schmid, J. Schaefer, and R. Kroeger, “SOA Monitoring
Based on a Formal Workflow Model with Constraints,” Applied Sciences,
pp. 47–53, 2009.

74 of 230

Distributed Testing of Multicomponent Systems

Boris Tyutin, Igor Nikiforov, Vsevolod Kotlyarov

Saint Petersburg State Polytechnical University, Saint Petersburg, Russia

b.tyutin@ics2.ecd.spbstu.ru, i.nikiforov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.ru

Abstract — This paper features an approach that brings together

testing of multicomponent systems, formal requirement

specifications and automated test suit generation in a one

technology.

I. INTRODUCTION

In software development testing is usually performed at the
end of the whole process. This traditional approach leads to the
increase in the costs of correction of errors found during the
testing or the program product piloting. This, together with the
high resource-intensiveness of a testing process itself can lower
the test coverage of software product and, therefore, its quality.
This problem was partially solved by test-driven software
development methods [1]. But the latter have strict limitations
(related to the development process and coding politics), which
make it unproductive to apply them for medium-size and large
industrial projects. The main issue of these methods is the
complexity of the adjustment and the scaling of software
specifications. It is caused by the requirements modification
and clarification during the lifecycle of the software product
and it dramatically increases the time necessary for testing.

Thus, the possibility of using test suites related to different
abstraction levels and their simultaneous execution gives the
possibility to perform testing during all stages of the software
product development – from the architectural design
abstractions elaboration till product release. Testing automation
in this case should significantly reduce the testing process
costs.

In telecommunication software development it is a common
practice to use a distributed architecture due to the peculiarities
of the task domain. For such systems, test procedures have to
imitate the whole environment or a part of it in order to be
efficient. Also, the possibility of substituting some of the
system components with test case entities makes it easier to
locate an error or a “bottle neck” within the software. In this
case, the testing laboratory contains the following parts:

 system under test (SUT);

 testing controlling system;

 monitoring and test data generation system;

 testing agents.

Distributed allocation and remote interconnection of
different parts of the testing system add some important
properties to the testing process:

 scalability;

 statistics collection and control of the testing process;

 test suite configuration and test result history storing.

This paper reviews the technology of automated software
testing based on automated generation of the test suite from the
formal specifications of the system in Use Case Maps notation.
Also it briefly outlines the usage of symbolic verification
technique (UCM Specification Translator or UST and VRS
[6]). Finally, the architecture of distributed testing system
(TestCommander) is described, which allows automatic test
suite execution and adjustment according to the SUT
architecture.

II. SYSTEM REQUIREMENTS FORMALIZATION

In order to be able to have an unambiguous interpretation of
the requirements during the creation of a test suite, it is
necessary to convert these requirements from an implicit or
informal form to a notation, which provides semantic
invariance when working with the specifications of the system.
At the same time, if there are manual steps in the technology,
the notation is required to be understandable by the user. The
possibility of description of parallel interactions is also
required in selected classes of testing tasks. The Use Case
Maps (UCM) notation satisfies all these requirements. It was
created by a group of scientists in the University of Ottawa [2]
at the end of the twentieth century and is widely used for
requirements engineering, system design and creation of test
scenarios. UCM is used for behavior specification in
telecommunication, distributed systems and other areas where
it is necessary to specify an intercommunication of different
entities. The notation has been standardized in 2003 by ITU-T
[4]. The main elements of UCM notation are team (object or
agent under observation), responsibility (, action under

observation), start point () and end point () of scenario,

“and fork” () and “and join” () (parallel scenario

description), failure point (, exception under observation),

timer (, system timer object) and stub (, is used for
hierarchical diagram composition).

UCM project is a set of connected and structured maps
containing a sequence of UCM elements. A set of maps
describes the behavior of the system just as it is done in the
requirements. The example of UCM map for a large
telecommunication project is depicted in the Fig.1. There are
three agents, one is for incoming request receiving (STMD),
other is for request processing (RRt), and the third one
performs exception handling (FRMP). In case of receiving of
the incoming request (responsibility HandoffRecognized), the

75 of 230

timer (TStfHotDir) is set. If it expires, a corresponding timeout
is fired (responsibility StmdHanUnsucc) and an exception
occurs (failure point Failure). It is pretty easy to specify the
behavior of a multicomponent system in terms of UCM agents
and actions. But the way it is formalized depends on the
experience and qualification of the engineer who creates the
system specifications.

Figure 1. UCM map for a telecommunication project.

UCM notation allows defining system behavior in very
convenient graphical way. In order to enable data flow, sending
and receiving signal points definition (as well as usage of
conditions for alternative behavior and exceptions), UST tool
functionality was expanded by metadata grammar. The
information from metadata is used during the process of
formalization and is fully reflected in the model. Also, the
ability to describe environment of the model, where the initial
parameters are defined, was added.

For automatic transformation of high level design in UCM
notation into formal description in basic protocol language
UST [7] tool is used. Its main features are: the UCM analysis
of errors, where the syntactic correctness of metadata and
UCM structures are checked; the optimization of base protocol
system model, which improves the efficiency of the
instruments verification and testing; component-based
approach of model structuring, which allows verification and
test generation to be independent from individual parts of the
model.

The tool helps to create the UCM model, add required
information to metadata and translate it to base protocols
(BP) [6]. One of the most important parts of the tool is UCM
analysis module. Developing the UCM model, the user is
guided by his understanding of the system requirements, his
knowledge and experience in the behavior definition. But
despite all the advantages of the developer, the model may
have errors associated with user competence in formalization.
The most common modeling errors are the ones of incorrect

conditions of alternative branches and usage of shared
resources by concurrent threads. The analyzer warns the user
about potential dangerous places before building a formal
model and helps him to make changes in order to remove the
warnings.

Completed UCM project is checked for errors by the
analyzer. After it is free of errors, it is possible to set up the
formalization parameters. After the translation, the BP model is
imported into the symbolic verification tool VRS. It performs
the verification and the generation of test cases, which cover
specified system requirements. Obtained symbolic test
scenarios are filled with real data and can be used as a test suite
specification for TestCommander tool or visual representation
of system behavior.

III. DISTRIBUTED TESTING APPROACH

Full control over a test execution and a test result analysis
are required to perform conformance testing of a system.
Therefore, it is necessary to create a test suite, which is able to
specify the interaction with the SUT in exactly the same way it
is done in the requirements. Observing the behavior of the
system during the execution of such test cases allows to
establish whether the system implementation is correct or
not[5].

For this purpose, Message Sequence Chart (MSC) language
is used in TestCommander for test suite description [3]. It
automatically generates the code of test suite modules on a
target programming language (C++, Java, tcl) from MSC
charts. These modules interact with SUT and each other using
predefined interfaces, reproducing test scenarios. These
interactions can be unambiguously and in a human-oriented
manned defined in terms of MSC and, thus, represented in
textual or graphical view.

The distributed testing method reviewed in this paper relies
on automated approach for test suite generation. This approach
is based on combined usage of UST and VRS tools and is
demonstrated in Fig. 2.

Figure 2. Automated test suite generation tool chain

76 of 230

As a combination of requirements formalization technique
described earlier and the technology of test scenario generation
based on the verification of a model in the BP notation [9], this
approach brings together the requirements management,
verification and testing in one technology. Automatically
generated tests define the complete description of the
interaction of all the components of SUT and its environment.
All of the above allows these specifications to be tested and
verified.

Figure 3. Distributed testing approach overview

TestCommander tool accepts MSC charts obtained with
various methods (assuming that they correspond to MSC
standard). However, the proposed approach has some
significant advantages, such as:

 Automation of routine and time-demanding operations;

 Simple and human-oriented formal notations usage;

 Requirements checking with verification methods [6].

Generated test suite executable file set consists of one or
more testing units and one control unit. Testing unit interacts
with the SUT according to the test logic and exchanges the
control signals with the control unit. The latter controls the test
execution process and collects testing results. Protocols of
interaction between testing system units and SUT are defined
with Protocol Specification
Language (PSL). This notation unambiguously specifies the
format of the messages passed between the entities involved in
the testing. PSL specification is created manually and is used
for test suite code generation.

For test suite configuration, code generation and test suite
deploy setup a configuration file is used. It is written in
JSON [8] and specifies the location of testing units and SUT
components. Nonetheless, the main feature of this
configuration is to specify, which of the SUT components are
substituted with the test units. It allows testing of the behavior
only of a part of the system. The configuration file is generated
automatically from UCM model, but it can be adjusted
manually.

After the test suite is configured, its code in a target
language is automatically generated and the test suite is
deployed in the test laboratory. Testing starts with the
execution of the control module of the test suite, which than
controls the test unit threads and SUT. Test results are the MSC
diagrams of test activities. The whole process is presented in
Fig. 3.

IV. TECHNOLOGY APPLICATION LIMITATIONS

This approach is highly efficient due to the high level of the
automation of routine stages of the test suite code creation and
the adjustment of the whole test suite in case of any changes in
the system specifications. However, as a result of some
peculiarities of technologies included in the tool chain, there
are limitations of its application in different tasks:

 Formal system specification can be created only in
UCM;

 Generation of test cases is performed by VRS
verification tool;

 Testing system has distributed architecture.

Pure UCM notation can be used only for functional
requirements, which describe the control flow of the program.
To alleviate this restriction, new semantic elements were
introduced in UST tool – the metadata. It allows working with
data flow of the system.

The verification tool VRS uses the state machine
representation of the system in base protocol notation. The
MSC diagrams are artifacts of the verification process and are
used as test scenarios for test suite code generation. For some
particular systems, it may take a significant amount of time to
cover all the requirements with tests. As a solution for this
problem, a new special feature was introduced in UST. By
using the UCM model of the system, it can automatically
generate special rules used in VRS during the analysis and
trace generation. Also, a branch test criteria is used for the test
suite optimization.

77 of 230

Another factor is the architecture of the testing system
itself. It is based on the remote communication of the test units,
the strict format of interconnection protocols and requires the
pre-configured testing laboratory (linked workstations with
some pre-installed software). Together with the state machine
representation-based approach used in the test suite code
generation, this allows the approach to be applied with the
highest efficiency for the telecommunication system testing.

V. CONCLUSION

Multicomponent software testing problem is the
complicated one. Computer-aided software engineering
technologies can reduce efforts required for resolving this
problem in industrial projects. Automation of different parts of
software development process significantly increases the
quality of the product. During our work a set of tools (UST,
TestCommander) was developed. After integration with the
verification system (VRS), it was used to form the semi-
automated software testing method. The latter one was applied
for various telecommunication projects (such as an
implementation of a part of LTE standard).

The method, reviewed in this paper, is a combination of
requirement management, verification and testing. It allows
performing the checking of the correctness of the system
implementation according to its specification within one
technology. Testing approach is based on the automatically
generated test suite, the correctness of which is proved during
the system formal specification verification. It reduces the cost
of regression testing needed in case of a changing or a
refinement of specifications. All stages of this method are fully
or partly automated. The developed software components used
in these stages are independent; and all data formats are
standardized. All of the above ensures that the whole method is
scalable, highly flexible and adaptive and open for

modernization. However, the technologies and implementation
of the method limit the class of software testing problems,
which can be successfully and efficiently solved with the
approach reviewed in this paper.

REFERENCES

[1] K. Beck, Test-Driven Development by Example, Saint Petersburg: Piter,

2003.

[2] R.J.A. Buhr and R.S. Casselman, Use Case Maps for Object-Oriented
Systems. London: Prentice Hall, 1996.

[3] ITU-T Recommendation Z.120: Message sequence chart (MSC).
Geneva, Switzerland, October 1996,
http://eu.sabotage.org/www/ITU/Z/Z0120e.pdf.

[4] ITU-T Recommendation Z.151 : User requirements notation (URN) -
Language definition. Geneva, Switzerland, September 2003,
http://www.itu.int/rec/T-REC-Z.151-200811-I/en.

[5] C. Kaner; J. Falk, H. Q. Nguyen. Testing Computer Software (2nd ed.).
New York: Wiley, 1999.

[6] A. Letichevsky et al, “Basic protocols, message sequence charts, and the
verification of requirements specifications”, Computer Networks: The
International Journal of Computer and Telecommunications Networking,
v. 49 n. 5, pp. 661-675, 5 December 2005.

[7] I. V. Nikiforov, A. V. Petrov, Y. V. Yusupov, “Generation of formal
model of a system from requirements specified in USE CASE MAPS”,
Scientific and technical statements STU. № 4 (103), pp. 191-195, St.
Petersburg: St. Petersburg Polytechnic University, 2010.

[8] RFC 4627: The Application/JSON Media Type for JavaScript Object
Notation (JSON), July 2006, http://www.ietf.org/rfc/rfc4627.txt

[9] A. O. Veselov, V. P. Kotlyarov, “Testing automation of projects in
telecommunication domain”, Proceedings of the 4th Spring/Summer
Young Researchers’ Colloquium on Software Engineering, Nizhny
Novgorod, June 1-2, 2010, pp. 81-86.

78 of 230

http://www.itu.int/rec/T-REC-Z.151-200811-I/en
http://en.wikipedia.org/w/index.php?title=Hung_Q._Nguyen&action=edit&redlink=1
http://syrcose.ispras.ru/2010/files/syrcose10_submission_10.pdf
http://syrcose.ispras.ru/2010/files/syrcose10_submission_10.pdf
http://syrcose.ispras.ru/2010/files/syrcose10_submission_10.pdf
http://syrcose.ispras.ru/2010/files/syrcose10_submission_10.pdf

An SDVRP Platform Verification Method for
Microprocessor-Based Systems Software

Sergey Shershakov
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

Email: sashershakov@edu.hse.ru

Scientific Advisor: Prof. Irina Lomazova
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

Email: ilomazova@hse.ru

Abstract—The correctness of embedded systems software is
of critical importance as invalid states can cause a physical
damage to hardware. One of approaches to verification of such
systems is using source code analyzers. The Static Driver Verifier
Research Platform (SDVRP), which is based on Simultaneous
Localization and Mapping (SLAM) and represents a tool that
systematically analyzes source code and allows writing custom
Specification Language for Interface Checking (SLIC) rules for
various platforms, provided a potent verification mechanism for
a thermal printer software system based on ARM Cortex-M0
microprocessor. An example of creating a custom platform plugin
and rule verification is provided for the given embedded system.

Keywords: Static Verification, SLAM, SDVRP, SLIC, Embed-
ded Systems, ARM Microprocessor, Thermal Printer

I. Introduction

In the early 2000s Microsoft seriously attended to issues
of Windows drivers reliability. Thomas Ball and Sriram K.
Rajamani, members of the Software Productivity Tools (SPT)
research group of the Programmer Productivity Research Cen-
ter (PPRC) at Microsoft Research, initiated a project called
Simultaneous Localization and Mapping (SLAM) [1], the goal
of which was to implement a rigorous performance test that
some program is subject to the use rules of interface with
which it interacts.
SLAM was based on the idea of using symbolic execution,

model checking, and program analysis for proper interface use
of programs in C language, which were represented by driver
modules for Windows.
SLAM was the basis for the Static Driver Verifier (SDV),

which is a compile-time static verification tool included in the
Windows Driver Kit (WDK). The main purpose of the SDV
is automated static testing of Windows drivers developed with
the assistance of WDK tools. The SDV uses the “platform”
ideology to determine how a driver must interact with a
system (platform), which input-output interfaces to use and
which methods of interaction with it to provide. To verify the
interaction between a driver and a specific platform, a set of
rules in the specialized SLIC language is developed.
The SDVRP (SDV Research Platform) is an extension of the

SDV, the main difference with which is the ability to develop
custom platforms and test drivers for them. The basis of the
idea presented in this paper is speculation about the possibility
of using SDVRP tools in an unusual way: for static verification

of C programs for ARM microcontrollers (MCUs), wherein the
MCU environment library is proposed to be used as a custom
platform and a software module that implements a required
functionality of MCU firmware is used as a test “driver”.
The rest of this paper is organized as follows. Section II

discusses the context in which the SLAM project took place.
Section III discusses the Static Driver Verifier (SDV) tool and
the SDV Research Platform (SDVRP) which is an extension
to the SDV that allows adapting the SDV to support additional
platforms for verification. Section IV is devoted to the research
on application of the SDVRP for verifying MCU software
(firmware) by the example of an embedded thermal printing
system based on the ARM Cortex-M0 thermal microprocessor
architecture. Practical application of the SDVRP for testing a
thermal printing complex is discussed in Section V. Finally,
Section VI concludes with an analysis of the work done and
a look at the future.

II. SLAM
The main idea of SLAM, that is checking a simple rule

for a complex program written in C (e.g., a driver), has to
be realized by streamlining the program in order to make
possible a comprehensive analysis. In other words, one needs
a mechanism to obtain an abstraction model of the program
which preserves the behavior of the original program in C.
The main question that arises at this point: „What form

should take an abstraction model of a program in C?“ An
approach based on Boolean programs was proposed.

A. Boolean Programs and “Bebop” checker
While shaping the idea of Boolean programs the developers

were guided by the following characteristics, which a model
checking tool should have [2]:

• for the modeled program there must be a representation
of R analogous to a finite state machine (FSM)1;

• a model checking algorithm in R should represent the
shortest path to the model error, if any is found;

• there should be developed a mechanism of translating
programs in high-level programming languages such as
C, C++, Java to a model in R (abstracting);

1At that time the theory of finite state models verification was well-
developed

79 of 230

• a specific model r in R can be refined to a model r′ in
R and proved correct;

• the algorithms for model validation in R should support
modularity and abstract constraints existing in the original
program.

As a result, there has been developed an ideology of
Boolean programs that have control structures common in
imperative languages (such as C) and in which the only data
type of all variables is Boolean. The Boolean programs contain
procedures with parameters called by value, recursion, and
control nondeterminism in a restricted form [3].
The Boolean programs are of interest for the following

reasons.
1) The amount of memory (number of data cells), which

the Boolean program operates, is finite (and even more
so due to the limitation of the actual computing power),
so the problem of accessibility and termination, that
does not have a general solution, is soluble for Boolean
programs (it is noted that the Boolean programs are
equivalent in power to push-down memory automata
generating context-free grammar).

2) Once the control structures of a Boolean program are
similar to those of programs written in C, the Boolean
programs are obvious candidates for testing programs
with similar structures.

3) A Boolean program can be regarded as an abstract
representation of a C program with available explic-
it correspondence between the data and control, and
Boolean variables may represent some predicates on a
generally unrestricted state of the C program.

To test Boolean program models a special model checker
Bebop was developed. Formally, given a Boolean program
B and an expression s in B, Bebop determines whether s
is accessible in B. In other words, s is accessible in B if
there exists an initial state of the program (as defined by its
Boolean variables) such that starting execution of the program
from this state, s will eventually be fulfilled. If the expression
s is accessible, the shortest route to s is built.

B. Automatic Predicate Abstraction of C Programs
As noted earlier, the Boolean programs in their control

structures are similar to programs in C. One of the main
criteria considered in the development of Boolean program
principles was the possibility of getting a model of a real C
program in the form of its Boolean equivalent.
One of the most promising approaches which allows getting

a Boolean model out of an original C program automatically
was the principle of predicate abstraction, which consists
in the following: the specific states of the system (source
program) are mapped onto an abstract state in accordance with
their assessment on a finite set of predicates.
In the continuation of the SLAM project there was devel-

oped a tool called C2BP, which performs such an operation
[4]. Given a C program P , a set of predicates E, which
are usual expressions in C without calling functions, C2BP
automatically creates a Boolean program BP (P,E), which is

an abstract model of the program P . The Boolean program
has the same control structure as the original program P but
contains only |E|-Boolean variables, each of which has its
own representation in the set of predicates E.
For example, suppose there is a predicate (x < y) in a set E,

where x and y are integer variables of a program P . Then there
is a Boolean variable in a corresponding program BP (P,E)
such that if it is true at some point p of the Boolean program,
it means that at this very point p of the original program P
the predicate (x < y) is estimated the true way.
For each expression s of the program P C2BP automati-

cally creates a corresponding Boolean transfer function, which
displays the effect of expression s on the predicates of E. The
resulting Boolean program is to be evaluated by Bebop utility
considered earlier.

III. Static Driver Verifier (SDV) and Static Driver Verifier
Research Platform (SDVRP)

The SLAM analyzing mechanism became a core part of
a new tool Static Driver Verifier (SDV), the main purpose of
which is a systematic analysis of the source code for Windows
drivers with the view of compliance with the set of rules
defining how the drivers have to interact with the OS kernel
[1].

A. Interface Temporal Safety Properties and Their Validation
An interface has a number of temporal safety properties

which have to be respected by a program that uses the
former; checking this is among the goals set by SDVRP
developers. Safety means here that nothing abnormal occurs
to the program. For instance, safety for a lock may signify
that it has to be released only when it has been acquired
[5]. Once a certain program has been attributed a safety
property to comply with, it makes sense to verify the code
does respect it, and if it does not, then to locate an execution
path demonstrating how the program would break it.
The user does not have to supply abstractions or annotations

(invariants) in order to validate or invalidate system software
safety properties with the help of model checking. This implies
that model checking is used for automatic computing of
fixpoints over a C code abstraction expressed by a Boolean
program. One constructs a proper abstraction in two steps:
first, one gets an initial abstraction from the property that has
to be validated, and then an automatic refinement algorithm
is applied to refine the abstraction.

B. Specification Language for Interface Checking (SLIC)
There is a number of ways of how reliability of an APIs-

based software system can be hindered: an API may not be
correctly executed by an implementation L or the API may
be treated wrongly by a client P [6]. Usually, only the API’s
documentation contains a set of requirements imposed on the
client as well as on the implementer.
For specifying temporal safety properties of C language

APIs a special low-level specification language SLIC was
introduced to the SLAM project.

80 of 230

Suppose a state machine defined by a SLIC specification
S monitors the behavior of a sequential composition P ||L
of two programs P and L which happens at the API’s pro-
cedural interface. This finite state automaton discards definite
sequences of interface states of P ||L if the API is not properly
implemented by L or P uses incorrectly the L-implemented
API.
A SLIC product construction Q′ has an important property:

it is such a product of a program Q = P ||L combined with the
specification S that if and only if Q satisfies the specification
S, a unique label (SLIC_ERROR) is not reachable in Q′.

C. Static Driver Verifier (SDV)
The SLAM tools enable verifying system software temporal

safety properties completely automatically. Breakdowns are
listed by the SLAM tools as paths over the program P . It
automatically refines the abstraction by using the spurious
error paths found.
The Static Driver Verifier (SDV), a tool that systematically

analyzes the source code of Windows device drivers for com-
pliance with the rules defining what it is to properly interact
with the Windows operating system kernel, is essentially based
on the SLAM analysis engine [1].
It contains, besides the SLAM engine, other constituents:
• a model of the Windows kernel and other drivers, called
the Environment Model (Fig. 1);

• a large number of rules for the Windows Driver Model;
• scripts to build a driver and configure the SDV with
driver specific information;

• a graphical user interface (GUI) to summarize the results
of running the SDV and to show error traces in the source
code of the driver.

The most important component of the SDV is the Platform
Model, which represents an abstraction of the Platform.
The Platform Model includes three components (Fig. 2):
• a Platform Manager Model responsible for exercising the
module by calling the module’s entry points. It is in a
way the entry point (main routine) of the system. For
WDM drivers this is the Windows IO Manager;

• a set of Platform API Models that the module can
use for completing requests from the Platform Manager.
The APIs normally contain functionality to access the
underlying hardware. In Windows this is the Windows
Device Driver Interfaces (DDIs), consisting of hardware
abstraction layer, APIs for controlling execution (locks,
queues, etc.) and APIs for accessing resources such as
memory;

• a Platform Model Infrastructure, which contains shared
header files, common functions and states for the Plat-
form Manager Model and the Platform API Models.

D. Static Driver Verifier Research Platform (SDVRP)
The SDV Research Platform (SDVRP) is an extension to

the SDV that allows adapting the SDV to support additional
platforms and writing custom SLIC rules for this platform
[7]. Typically, driver platforms are the platforms one would

adapt the SDV to verify, but it can also be any other module
embedded to an OS or an application. If additional settings
are made, one can use the SDV to check that API or protocol
clients comply with the protocol/API specification.

IV. Background of using the SDVRP for verification of
MCU software

A methodology for applying the SDVRP to verify embed-
ded software systems based on an ARM Cortex-M0 micropro-
cessor is hereinafter under consideration. This system is part
of a hardware-software complex which performs the function
of printing on heat-sensitive tape (thermal printing).
The correctness of this software is of particular importance

in the sense that there are states of the program which can
cause physical damage to hardware; exposing the program to
such conditions is therefore unacceptable. For example, an
incorrect sequence of pulses in the windings of the stepping
motor can lead to mechanical jamming of the shaft, and an
incorrect circuitry of the thermocouples can make them burn
out and even make the print substrate go up in flames, which
can lead to material damage and personal injury.
In light of these problems, the microprocessor firmware ver-

ification is important. This paper reflects the results of research
on the use of SDVRP tools (positioned by the developers
primarily as a tool for Windows drivers troubleshooting) for
static verification of microprocessor firmware.
The key features allowing the use of the SDVRP for these

purposes are considered as follows.

A. Source code language
The ARMs are RISC-microprocessors2. The MCU’s instruc-

tion set is implemented in ARM assembler, which is the main
programming language. At the same time, there are high-
performance optimizing compilers for high-level languages C
and C++, and the share of MCU programs developed in these
languages increases every day, which is primarily due to an
increase in MCU hardware resources.
The best is to use a C language compiler, which allows

obtaining an equally efficient code, as if it were written in
assembler. This allows, on the one hand, to use it in time-
critical applications (which include the majority of embedded
applications, including those for ARM MCUs), on the other
hand, to use the entire power and convenience of a high-level
programming language.
As it was shown in section II, SLAM, which underlies the

SDVRP, allows automatically receiving predicate abstractions
exactly for programs written in C.
It should be noted that the SDV imposes some restrictions

on the code of the programs written in C which do not
affect the expressive properties of the language but eliminate
various tricky ambiguities. In C programs for microprocessor-
based systems (in particular, those for C-to-ARM assembler
compiler) an ANSI C superset with some additional constructs
is used. Basically these are additional type identifiers and

2Restricted (Reduced) Instruction Set Computer

81 of 230

Device Driver

Interface

KeAcquire

SpinLock

KeRelease

SpinLock

Driver

Entry Point

I/O Manager

Device Driver

Interface Model

KeAcquire

SpinLock

KeRelease

SpinLock

Driver

Entry Point

I/O Manager

Model

A Module and an

Environment

A Module and an

Environment Model

state {

enum {unlocked, locked} s = unlocked;

}

RunDispatchFunction.exit

{

if (s != unlocked) abort;

}

KeAcquireSpinLock.entry

{

if (s != unlocked) abort;

else s = locked;

}

KeReleaseSpinLock.entry

{

if (s != locked) abort;

else s = unlocked;

}

SLIC Rules

Figure 1: A Module and an Environment Which Are Substituted by an Environment Model and SLIC Rules

Platform Model

MCU Firmware Module

main()
Entry Point

Platform Manager Model

P
la

tf
o

rm
 M

o
d

u
le

 I
n

fr
a

st
ru

ct
u

re

Platform API Models

(BSP Library)

DrvGPIO_Open DrvGPIO_SetBit

Figure 2: A Module and the Components of a Platform Model

keywords that govern the choice of memory to store the data.
In order for the SDV to treat such input programs, the follow-
ing workaround is proposed: to express such constructions in
lexically similar directives of the C preprocessor, which are
processed in due course while being compiled but ignored as
irrelevant during verification.
The undoubted advantage is also the fact that the soft-

ware library (the BSP library) for support of MP NUC140
(the ARM CMSIS for the kernel and Nuvoton Platform for
the peripherals blocks) comes with the source code in two
versions: in assembler and in C. The BSP library (refer to

Thermoprinter

Control Module

SM Control

Module

TE Control

Module

Application

Module

UART Debug

Module

BSP GPIO Driver

Library

BSP Timers

Library

BSP USB Driver

Library
USB Module

TE Control Pins SM Control Pins

MCU Software Scheme

USB VCOM

Driver

Control

Application

USB

Terminal

RS-232

(Debug)

PC Software Scheme

Figure 3: Thermal Printer Software Chart

Fig. 2) corresponds to the Device Driver Interface Model in
the diagram Fig. 1.

B. Modular structure of the program

Each of the units of the thermal head constituting the
thermal printer has its own specific control which defines
the rules for its programming: structures used, initialization

82 of 230

algorithms, etc (refer to SectionV). Each such unit has its own
programming model expressed as a function module, which
can be represented for clarity’s sake as a separate translation
unit — source file .c (and a corresponding header file .h).
The SDV verifies that a module interacts correctly with a

platform. The platform is essentially a set of APIs, or a library.
In this case the BSP library serves as a platform architecture
and an ARM microprocessor.
The functional purpose and specificity of control of each

unit is also a good source for developing SLIC rules which
describe its specification. Formulation of SLIC rules that are
specific for each module (and corresponding units) belongs is
one of the main current tasks.

C. A look at the system as a whole
Another source for SLIC rules are BSP library program

modules used jointly by several units/modules of programs to
verify. An example of such a module is General Purpose Input-
Output (GPIO) — routines to control the status of input-output
pins for general purpose.
In general, access to shared resources is quite common

while developing microprocessor-based software, which pro-
vides an opportunity for research on formulation of rules that
control the correctness of such operations. The sequence of
test calls is injected into the module under verification by an
element called harness.
Positioned as an important property of the SDV is the fact

that verification (while executing preliminary procedures such
as writing SLIC rules, designing harness, etc.) is carried out
automatically when building a driver project. Similarly, it is
possible to use the SDVRP as an external batch process that is
run by an IDE (e.g., Keil or IAR) while building the project.
In addition, for translation of programs one can use compiler
tools of these IDEs in conjunction with Eclipse, known for its
scalable modular structure. This allows developing a special
plug-in that performs verification on the basis of SDVRP
modules controlled from Eclipse (this is a subject of future
work).
Futher, a practical application of the SDVRP for testing a

thermal complex is considered.

V. Device Software Verification: Study Case
The hardware-software complex considered previously

(Fig. 3) includes:
• a Fujitsu-Siemens FTP-628MCL054 thermal head, which
is a complete plug-in thermal printer module with physi-
cal layer interfaces to control of a stepping motor (SM),
which feeds print substrate, and of low-inertia heating
elements (TE) engaged in short-cycle heating-cooling in
the printing zone (refer to the specification [8]);

• an interface card — a printed circuit board which was
specially designed for this project and carries out conver-
sion of control signal interfaces to physical interfaces of
SM and TE control; the card also contains the necessary
circuitry to support the functions of a comparator for
paper detector and an ADC for the thermal sensor;

• a NU-LB_002 debug board — an evaluation board
for developers of systems based on Nuvoton NUC140
microcontrollers, which provides physical access to the
microcontroller’s GPIO, CMP, ADC interfaces used to
control the thermal head through the interface card;

• a personal computer (PC) which connects to the debug
board via USB interface; another (special) interface is
used for programming the microcontroller’s USB ICE;
debugging information from the MCU connected to the
debug board is obtained via RS-232 interface.

The thermal head consists of the following functional units
(refer to [8]):

• stepping motor;
• thermal head;
• thermal head temperature detector (thermistor);
• paper detector – mark detector (photo interrupter);
• platen release (platen open switch).
These units are controlled independently from each other

through the formation of a sequence of analog-digital signals
and analysis of responses received. In most cases, to perform
functionally complete operations of the head (such as printing,
feeding tape, etc.) coordinated participation of several units
(e.g., the thermocouples and the stepping motor) is required.
Control, coordination and analysis of the current state of
the thermal head and the supporting elements (parts of the
interface card) is carried out using the software (firmware)
recorded in volatile memory of the MCU (flash memory).
A following problem of MC software correctness is consid-

ered below. Nu140-family MCU has a large number of pins,
which can be used by the developer to control a device based
on this MCU. These include the so-called GPIO pins (grouped
in a few ports), which have various types of circuit imple-
mentation, depending on the task. Modern circuitry allows
selecting an operation mode of each pin at the software level,
by setting a value of the corresponding configuration register.
In some tasks it is critical to correctly set an operation mode
of a pin before it is first used, as otherwise the pin port and the
net attached to it may be damaged. This way the correctness
of MCU software implies a code that is guaranteed to correctly
initialize a pin before its first use.
Below is shown how one can validate MCU software with

the help of the SDVRP.

A. Custom Platform Plugin
Files that belong to a certain platform can be organized into

a “plugin” if the SDV and SDVRP are implemented. A plugin
for a custom program should be created in order to apply the
SDVRP to that platform.
Let the test plugin be called XiPlatform1. Physically, three

subdirectories in the SDVRP directory correspond to it; the
path to the SDVRP directory is given by the environment
variable %SDV%. The directory %SDV%\data\XiPlatform1 is
for configuration files, %SDV%\rules\XiPlatform1 — for
rules files and %SDV%\osmodel\XiPlatform1 — for the
harness and other auxilary files.

83 of 230

Platform API Models on the diagram in Fig. 2 is a software
environment which is called by the verified module. With
respect to the system under consideration such a program
environment is the BSP Library supplied by the MCU manu-
facturer and ARM core licensee. Finally, the verified MCU
software itself corresponds to the MCU Firmware Module
element.

B. Rule verification
Pin initialization is done by calling a BSP Library function

DrvGPIO_Open with corresponding parameters. In this exam-
ple, ENA pin enabling the SM driver microchip, the state of
which is subsequently changed in a certain sequence by calling
the functions DrvGPIO_SetBit and DrvGPIO_ClrBit, is
initialized.
A rule that checks that ENA pin is initialized before its first

use looks as follows:

#include <XiGPIOUse_slic.h>
state{

enum {closed, opened} enpinout = closed;
}
DrvGPIO_Open.entry
{ if($1 == TSM_PORT_EN && $2 == TSM_PIN_EN)

enpinout = opened;
}
DrvGPIO_ClrBit.entry
{ if(enpinout == closed)

abort "The driver is calling $fname
before the pin is opened.";

}
DrvGPIO_SetBit.entry
{ if(enpinout == closed)

abort "The driver is calling $fname
before the pin is opened.";

}

The algorithm that calls pin initialization and control meth-
ods is either a separate algorithm or a part of another algo-
rithm. The call of this algorithm is carried out in a routine
which is the entry point of the module and corresponds to the
function main of the C program. This routine is part of the
Platform Manager Model harness and described in a special
way.

VI. Conclusion
In this paper there was given a review of SLAM tools and

the potential of SDV tools based on the former, as well as
that of SDVRP version ones. There was revealed a possibility
of using SDVRP tools for static verification of embedded
microcontroller software system that use source codes in C
language by the example of a control system of thermal
printing based on a NU140 microprocessor with the ARM
Cortex-M0 core. Among the tasks of current importance there
are the completion of a SDVRP plug-in which implements the
Environment Model for NU140 and the BSP library, as well
as the development of the necessary SLIC rules for modules
of the embedded system and their verification on the SDVRP
platform.
The considered study case (creating a custom platform

plugin and rule verification) is part of a larger verification
system and presented in a nutshell, due to limitations on paper
length which do not allow more scrutiny.

Acknowledgment
The author would like to thank Prof. Irina A. Lomazova for

her vital encouragement and support.

References
[1] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and static driver

verifier: Technology transfer of formal methods inside microsoft,” IFM,
pp. 1–20, 2004.

[2] T. Ball and S. K. Rajamani, “Boolean programs: A model and process
for software analysis,” Microsoft Research, Tech. Rep., 2000.

[3] ——, “Bebop: A symbolic model checker for boolean programs,” SPIN
00: SPIN Workshop, pp. 113–130, 2000.

[4] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” SIGPLAN Not., vol. 36, no. 5, pp.
203–213, may 2001.

[5] T. Ball and S. K. Rajamani, “Automatically validating temporal safety
properties of interfaces,” pp. 103–122, 2001.

[6] ——, “SLIC: a specification language for interface checking (of C),”
Software Productivity Tools, Microsoft Research, Tech. Rep., 2002.

[7] Static Driver Verifier Research Platform. Introduction (sdvrp.docx).
[8] Fujitsu Takamisawa Component Ltd. Thermal Printer FTP-628MCL054.

Product Specification, 2000.

84 of 230

Instantiation-Based Interpolation for
Quantified Formulae in CSIsat
Vadim Mutilin

Institute for System Programming, RAS
mutilin@ispras.ru

Mikhail Mandrykin
Institute for System Programming, RAS

mandrykin@ispras.ru

Abstract—The paper describes an implementation of
instantiation-based interpolation for quantified formulae in
modified CSIsat tool. The tool supports interpolation for
formulae with linear real arithmetic, uninterpreted functions
and quantifiers. We propose in this paper using external
SMT-solver CVC3 for quantified expressions instantiation, then
we describe how we modified CSIsat and CVC3 tools in order
to support quantified formulae interpolation. We also present
results of benchmarking the modified CSIsat tool on SMTLIB
test set as well as on our specially generated interpolation tasks.

Index Terms—interpolation, Craig interpolant, quantifiers, in-
stantiation, solver, axioms.

I. INTRODUCTION

Among several currently predominant model checking tech-
niques, predicate abstraction is one of the most widespread
and successful approaches. This success is significantly pro-
moted by the advance of SLAM2 [1] static verification tool,
which uses this approach and which is extensively used in
WDDK(Windows Driver Developer’s Kit) tool set for static
verification of windows device drivers. Program predicate
abstraction is built with logical predicates. The set of all
possible valuations of the predicates from the abstraction
forms an abstract domain partitioning the total program state
space into subsets with same predicate valuations[14]. The
particular challenge here in predicate abstraction is identifying
necessary predicates, since they determine the accuracy of the
abstraction. In most state-of-the-art predicate abstraction tools
predicate choice is fully or mostly determined by the program
considered. So one of the most important problems arising
with the use of predicate abstraction is the derivation of the
predicate set suitable for the verification of each particular
program. Most frequently used decision for that problem is
using the CEGAR approach [12] — Counter-Example Guided
Abstraction Refinement. The approach is based on the iterative
construction of the program abstraction starting with the most
coarse one and continuing consistently with one or several
successive abstraction refinements based on corresponding
infeasible counterexamples that arise from the verification
of the coarser abstraction. So when the coarser abstraction
gives a spurious (infeasible) counterexample, the fact of its

This work was partially supported by FTP “Research and development
in priority areas of scientific and technological complex of Russia in 2007-
2013” (contract number 11.519.11.4006)

infeasibility is somehow used for refinement of that inaccurate
abstraction.

Among the modern static program verification tools which
use predicate abstraction and implement the CEGAR ap-
proach, SLAM2[1], BLAST[7], [23] and CPAchecker[8] are
the most extensively used in practice. These tools imple-
ment abstraction refinement in two rather similar and still
a little different ways. All the tools somehow build a logi-
cal formula corresponding to the counterexample considered.
SLAM2 uses weakest precondition for the statement sequence
of the counterexample. BLAST and CPAchecker both build
a path formula based on the SSA (Static Single Assignment)
form. As soon as the counterexample is spurious, its weakest
precondition and a path formula are unsatisfiable, if build
precisely enough. This fact is used by the tools to derive new
predicates and refine current abstraction. Here software model
checkers bring some special tools into play. SLAM2 uses
heuristic predicate derivation from the unsatisfiable core (i.e. a
small unsatisfiable subset of clauses) of the counterexample’s
weakest precondition. The satisfiability check and unsatisfiable
core extraction are performed by special tool called SMT-
solver (SMT stands for Satisfiability Modulo Theories) in-
tended to decide logical formulae with respect to combinations
of background theories expressed in classical first-order logic
with equality. SLAM2 uses Z3[13] SMT solver. Other syntax-
based predicate derivation techniques[16] are used in SLAM2
as well. BLAST and CPAchecker derive new predicates locally
for selected program locations (such as loop heads, functions
calls or just any program statement) from Craig interpolants
of the two path formula parts before and after each of such a
location point. A Craig interpolant for a mutually inconsistent
pair of formulae (A,B) is a formula that is implied by
A, inconsistent with B, and expressed over their common
uninterpreted symbols (variables and uninterpreted functions
occurring both in A and in B). To find Craig interpolants
both BLAST and CPAchecker use special interpolating SMT-
solvers. An interpolating SMT-solver extends a decision pro-
cedure by taking a conjunction of a pair of logical formulae
as an input and by producing one of the two possible results:
either answer SAT — if the input conjunction turns out to
be satisfiable — or a Craig interpolant for that conjunction
(since in this case the conjunction is inconsistent and the
corresponding Craig interpolant always exists by the Craig
interpolation theorem). BLAST can use either FOCI[18] or

85 of 230

CSIsat[9] interpolating solvers and for CPAchecker the same
CSIsat and MathSAT[10] are suitable.

The predicates derived form the counterexample analysis
are intended to eliminate the spurious execution path form
the abstraction and thus prove the absence of corresponding
particular error. And when the predicates obtained from Craig
interpolation of the path formula are guaranteed to rule out
the infeasible counterexample by definition (provided that the
obtained interpolants are inductive, i.e. each subsequent inter-
polant is implied by the conjunction of the previous one with
the corresponding path formula part), the predicates produced
from the heuristic approaches not necessarily succeed. Another
advantage of interpolation as a technique for refinement is
that it not only discovers new predicates, but also determines
the control locations at which these predicates are useful. At
the same time syntax-based predicate derivation approaches
are also complete for certain classes of programs and their
actual implementations quite rarely fail to discover necessary
predicates.

One of the most significant SLAM2 advantages over current
versions of BLAST and CPAchecker tools is its good preci-
sion (which is judged by the number of given false alarms,
i.e. spurious counterexamples the tool considers feasible) in
analysis of programs with significant use of pointers, including
the ones to dynamically allocated memory regions. Meanwhile
the tool doesn’t use any special analysis for dynamically
allocated data structures (like Shape-analysis[6]) as well as
any special background logical theory for heap objects rep-
resentation (e.g. separation logic [22]). A simplified location-
based logical memory model is used instead. This model is
proposed in paper [2] to be used for efficient evaluation of
pointer predicates with a modern SMT solver (such as Z3).
The paper authors suggest using the special axiom set and
representing pointer predicates with uninterpreted functions of
integer values.

We decided to investigate the possibility of using some
similar logical memory model in BLAST or CPAchecker. As
we have already stated above, the new predicates derivation
in these tools is based on Craig interpolation of several parts
of the unsatisfiable path formula [15].

The conjunction of the ordered pair of formulae corre-
sponding to the two parts of the infeasible error path is
unsatisfiable. Hence there exists a Craig interpolant for the
pair. The predicates occurring in the interpolant are used by
BLAST and CPAchecker tools in refining current program
abstraction in order to eliminate the infeasible counterexample.
An interpolating decision procedure (also called “interpolating
prover”, “interpolating solver” or just “an interpolator”) is used
in obtaining the interpolant. Both BLAST and CPAchecker
use interpolating solvers (CSIsat and MathSAT) for quantifier
free fragments of the logical theories of linear real arithmetic
(LA) and uninterpreted functions with equality (EUF). The
solvers are able to find quantifier free interpolants for such
formulae. When using a logical memory model with an axiom
set we need also to find interpolants for quantified formulae.
At the same time, the getting of quantified interpolants for

such formulae is also acceptable.
This way we see that SLAM2 with logical memory model

for pointers needs only a good SMT solver with the support of
quantifiers and unsatisfiable core extraction. But an implemen-
tation of a similar model in either BLAST or CPAchecker tool
would essentially need an interpolating decision procedure for
quantified formulae. But even after a thorough search by the
time of our investigations we hadn’t found any suitable tool
for that purpose.

At the same time a paper [11] presents an extension of
McMillan’s algorithm[18] for instantiation-based quantified
formulae interpolation. The formulae may be given with re-
spect to an arbitrary combination of background theories for
which the original McMillan’s algorithm is applicable. The
extended McMillan’s algorithm gives us a rather simple way
to find possibly quantified interpolants for such formulae in
case the set of required quantified expression instantiations is
known in advance. This instantiations must be sufficient for
proving the given input conjunction unsatisfiable.

The idea of implementing the extended McMillan’s al-
gorithm also appeared to be interesting in account of the
fact the verifiers usually perform several corresponding SMT
solver queries just before the interpolation. And the major-
ity of modern SMT solvers implement quantified formulae
interpolation support through the instantiation of quantified
subexpressions. This means that if the solver finishes with an
UNSAT result providing a proof of the input formula unsatisfia-
bility, the interpolating solver will that way have the necessary
instantiations in advance. So long as the extended McMillan
algorithm’s implementation in case of a priori given necessary
quantifier instantiations is reasonably easy, this implementa-
tion might be as well used for preliminary benchmarking the
logical memory model efficiency in static software verifiers
using interpolation for abstraction refinement. This way we
decided to implement the extended McMillan’s algorithm
based on some existing interpolating prover and an SMT
solver with quantifier support. We also decided to estimate the
efficiency of the new tool on specially generated benchmarks
simulating the interpolation tasks a real model checker could
give to our tool.

II. OUR APPROACH

To apply an extended McMillan’s algorithm proposed in
[11] we need a resolution proof of input conjunction unsat-
isfiability with necessary quantified expression instantiations
used and so-called partial interpolants in the leafs of the tree
evaluated. The tree can be obtained in several ways. One such
way is to implement some quantifier instantiation heuristic
(e.g. e-matching[20]) in a tool currently implementing original
McMillan’s interpolation algorithm. The other way is to use
an external tool successfully implementing such heuristics, say
SMT solver. In this case the necessary instantiations can be
extracted from the unsatisfiability proof given by the solver.

If we only extract necessary instantiations from the proof,
then the formula unsatisfiability will be discovered twice:
once by the SMT solver supporting quantifiers (to obtain

86 of 230

instantiations) and then again by the interpolator, here with
necessary instantiations and without quantifiers, — to extract
the desired interpolant from the proof. Meanwhile we can’t
use the unsatisfiability proof from the SMT solver for the
interpolation directly, as according to McMillan’s algorithm
we need a specific unsatisfiability proof using inference rules
significantly different from the ones used in modern SMT-
solvers. Yet the state-of-the-art SMT solvers are significantly
more efficient than any of the interpolating decision procedures
we knew to implement McMillan’s algorithm (they were
FOCI, CSIsat and several experimental implementations). So
when using an external SMT solver the overhead of proving
the formula unsatisfiable once again is more on the interpola-
tor’s side.

Despite this significant overhead arising from using an
efficient SMT-solver together with considerably less efficient
interpolating decision procedure we eventually decided to
implement the approach due to its relative simplicity. For
that we had to choose a suitable existing interpolating solver
meeting the following requirements:

• The solver should implement the McMillan’s interpolat-
ing algorithm form the paper [18]. This was required as
the algorithm presented in [11] is an extension of this
McMillan’s algorithm.

• The solver was required to support interpolation for log-
ical formulae with respect to the combination of theories
used by verification tools BLAST and CPAchecker in
their interpolation queries. These are the theories of linear
integer (LIA) and real (LRA) arithmetics and the theory
of uninterpreted functions with equality (EUF). Their
combination is often referred as LA+EUF.

• The source code of the solver should be freely available
for modification and the solver should be distributed
under an appropriate license.

Among existing interpolating decision procedures we knew
and considered the only one to meet all the requirements was
CSIsat[9]. It’s implemented in OCaml and its components
responsible for reading an input formula, preprocessing it,
deciding its satisfiability, generating partial interpolants and
combining them are placed in several fairly independent mod-
ules. So it turned out we only needed to implement modified
versions of some of the modules and then use them whenever
an input formula included some quantifiers.

Our relatively simple approach chosen used only a set of
necessary quantifier instantiations and had no need in thorough
analysis of unsatisfiability proof produced by the SMT solver.
So the primary criteria for the choice of an SMT solver were its
support of quantifiers, high performance and also, preferably,
the availability of its source code for easy integration. Based
on the criteria we choose CVC3[5] SMT solver. There the
most relevant issue of the solver was the use of quite many
complicated and coarse-grained inference rules in its proofs.
The issue seemed to be minor at the moment as we only
needed to extract relevant quantifier instantiations and not to
process the entire proof. But later it turned out that sometimes

necessary instantiations are not included in the final proof by
the solver, which causes the modified interpolator to terminate
abruptly.

III. RELATED WORK

The significant overhead of proving the input conjunc-
tion unsatisfiable the second time in the interpolating solver
suggests the idea of another interpolation technique. The
transformation of the SMT solver proof tree into the inference
system appropriate for inductive interpolant derivation is the
another approach essentially different from the one proposed
in this paper. This approach is also greatly differs from both the
one used in CSIsat and the one described in the paper [11]. The
approach is reported in paper [19] and quite possibly performs
much better than the one we consider here. The paper [19]
proposes this approach for the Z3 SMT solver. Its application
for another common SMT solver for quantified formulae —
CVC3 — is complicated with great number of inference rules
used by the tool. We ought to mention also that the paper
mentioned was published a couple of months after we had
finished implementing the tool presented in this paper. We only
state the implementation details and efficiency benchmarking
results relevant to our modified version of CSIsat tool onwards.

IV. IMPLEMENTATION DETAILS

The modified CSIsat tool supports interpolation of quan-
tified formulae with respect to the combination of the two
background theories: the theory of linear real arithmetics and
the theory of uninterpreted functions with equality (LA+EUF).
Our implementation is based on the latest version of the tool
from its original developers, CSIsat 1.2 dated back to July,
2008. The tool uses the patched version of CVC3 SMT solver
permitting easy extraction of necessary quantifier instantia-
tions. Let us itemize the modifications we made upon the
CSIsat and CVC3 tools in order to implement our approach.

A. CSIsat tool modifications

• The modified version of CSIsat tool has the extended
input formula format compatible with the one used in the
FOCI interpolating solver (implementing the approach
presented in [18]). The input formula syntax has been
extended with the designations for existential and univer-
sal quantifiers.

• The modified tool supports interpolation for pairs of
formulae only. With the use of an extra option one
can specify three input formulae: A, B and C. The
formula C must be a conjunction of universally quantified
expressions. In this case the interpolant is produced for
the pair of formulae (A,B ∧ C), but the free symbols
from the formula C are considered to be common for
the formulae A and B ∧ C. Here universally quantified
expression from C are in this way considered somewhat
like theory axioms.

• We implemented some preliminary transformations of
the input formula before reducing it into the conjunctive

87 of 230

normal form. Each formula of the input problem is
subject for the following transformations:

– selection of the topmost quantified subexpressions,
– reduction of the selected subexpressions into the

prenex normal form,
– skolemization of the subexpressions.

Skolemization is a way of removing existential quantifiers
from a formula. Variables bound by existential quantifiers
which are not inside the scope of universal quantifiers are
simply replaced by constants. And when the existential
quantifiers are inside the universal quantifiers, the bound
variables are replaced by Skolem uninterpreted functions
of the variables bound by the universal quantifiers.
If after the transformation the formula still includes at
least one universal quantifier the extended McMillan’s
interpolation algorithm is applied. Otherwise the original
algorithm is used.

• The support for SMTLIB v.2 [4] as output format was
added. In case of quantified formula interpolation the
transformed conjunction A∧B is passed to the modified
CVC3 SMT solver. If the formula is proven unsatisfiable,
the modified tool also produces the set of essentially used
quantifier instantiations. If the conjunction turned out
to be satisfiable, both CVC3 and CSIsat terminate with
Satisfiable verdict. As the SMT solver is incomplete
in presence of quantifiers the Unknown verdict is also
possible.

• The algorithm of purification of the essential quantifier
instantiations from the mixed terms accordingly to the
algorithm presented in [11] was implemented. If the
conjunction is proven unsatisfiable, CSIsat purifies the
obtained instantiations building auxiliary hash tables that
contain the information about common symbols and new-
ly introduced variables. It also computes the reflexive
transitive closure of the inverse of the support relation
over the newly introduced variables using the Warshall-
Floyd algorithm.

• The extended McMillan’s interpolation algorithm for
quantified formulae was implemented. The algorithm
works upon the proof tree obtained from CSIsat internal
SMT solver together with the purified instantiations
and the auxiliary hash tables generated on the previous
steps. The algorithm may in general produce a quantified
interpolant.

B. CVC3 tool modifications

The interpolation implementation requires the solver to
produce necessary quantifier instantiations whenever it ends
up with an Unsatisfiable verdict. To obtain the in-
stantiations the generated unsatisfiability proof with explicit
quantifier instantiation inference rules may be used. The CVC3
inference system has four such instantiation rules:

T ` ∀x̄.e(x̄)

T ` e(t̄)
universal elimination1

T ` ∀x̄.e(x̄)

T ` ψ =⇒ e(t̄)
universal elimination2, 3

T ` ∀x̄1x̄2.e(x̄1, x̄2)

T ` ψ =⇒ ∀x̄2.e(t̄, x̄2)
partial universal instantiation

where x̄ = (x1, ..., xn) is a bound variables vector, e is an
expression in which the variables x1, ..., xn occur free, t̄ =
(t1, ..., tn) is a vector of substitution terms, whose variables
must occur free in ∀x̄.e. For the universal elimination1
rule each xi and ti for every i = 1, n must be of the same
type. For other rules they should have the same basic types and
in this case ψ is a predicate restricting the possible valuations
of the substituted terms (to the subtype domain).

But it appeared in practice that CVC3 doesn’t always
include these inference rules into the final unsatisfiability
proof, but sometimes replaces the branches emerging from
quantifier instantiations with a much simplified inference rule
of the form:

T ` e(t̄)
assump

Therefore we implemented a heuristic considering some
unfinished proof tree fragments in search for the occurrences
of quantifier instantiations. We implemented an instantiation
simplification heuristic using the CVC3 internal expression
simplification capabilities as well. The heuristics are switched
with corresponding options.

V. RESULTS

A. SMT-LIB benchmark set results

The modified tool has been tested on two distinct bench-
mark sets. The first one was obtained from the SMT-LIB[3]
benchmark set by dividing the unsatisfiable formulae from the
AUFLIA (AUFLIA stands for Arrays, Uninterpreted Functions
and Linear Integer Arithmetic) and AUFLIRA (AUFLIRA
stands for Arrays, Uninterpreted Functions, and Linear Integer
and Real Arithmetic) logics randomly into two sub-formulae
at the top-level conjunctions. The interpolation problems were
translated into the modified CSIsat input format. Here all in-
teger variables and functions were replaced with real ones and
array operations (i.e. select and update) were represented
using uninterpreted functions with the appropriate axiom set.
Some of the problems became ill-posed (as the conjunction
turned satisfiable) after the transformation and some other
yielded degenerate interpolants e.g. true and false. The
benchmarking was performed on the binary optimized version
of the tool with the time limit of 5 s and the memory limit of
1 GiB. The results of the benchmarking in both the categories
(AUFLIA and AUFLIRA together) are presented in table I.

88 of 230

TABLE I
SMT-LIB BENCHMARK SET RESULTS.

Results Number of tests %

65
.8

%
O

K Quantified interpolant 167 0.63%
Ground interpolant 551 2.09%
Degenerate interpolant true 8259 31.38%
Degenerate interpolant false 8342 31.70%
Satisfiable input conjunction 1 0.00%

34
.2

%

CVC3 gave Unknown verdict 536 2.04%
Time limit exceeded (5 s) 7846 29.81%
Memory limit exceeded (1 GiB) 71 0.27%
Insufficient instantiation set 515 1.96%
Miscellaneous errors 31 0.12%
Total 26319 100.00%

B. Performance on specially generated benchmarks

The second benchmark set was generated as a collection of
specially made-up simulated interpolation tasks a real model
checker could give to our modified CSIsat tool in case it im-
plemented a logical memory model similar to that of SLAM2
tool. The location-based logical memory model for pointer
predicate derivation uses the following five uninterpreted func-
tions:

• A(l) — returns the address of the location l,
• L(a) — returns the location corresponding the address a,
• S(x, f) — returns a location for a composite type field or

an array element, here x is the location of the composite
type (or array) as a whole and f is the desired field
number (or array index), counting from 0,

• B(l) — returns the location of the a composite type (or
an array) by the location of its element (l),

• O(l) — returns the composite type field number by its
location (l).

Here is the corresponding axiom set:

∀x.(x > 0 =⇒ A(x) > 0) (1)
∀l.L(A(l)) = l (2)
∀a.A(L(a)) = a (3)
∀x.∀f.S(x, f) > N (4)
∀x.∀f.B(S(x, f)) = x (5)
∀x.∀f.O(S(x, f)) = f (6)

Locations here are denoted with strictly positive integer
numbers. The first axiom states that the address of every
normal basic location is strictly positive. The second and the
third axioms together specify the functions A(l) and L(a) as
mutually inverse for all the locations and their corresponding
addresses. The fourth axiom states that the location of the
composite type field (or an array element) do not coincide
with any basic location. Basic locations correspond to explic-
itly allocated memory objects such as variables, arrays and
structures as a whole. They all have location numbers in the
range from 1 to a certain constant N . The composite field
locations on the other side must have location numbers strictly
greater than N , which is stated in the axiom (4). The axioms
(5) and (6) specify the functions B(l) and O(l) and state that

the elements of distinct composite values correspond to the
distinct locations. Otherwise we’d get:

S(x1, f1) = S(x2, f2) =⇒
B(S(x1, f1)) = B(S(x2, f2)),

O(S(x1, f1)) = O(S(x2, f2)) =⇒ (5, 6) =⇒
x1 = x2, f1 = f2

To denote the location values we used a set of uninterpreted
functions (Vi). Each such function corresponded to a state
of the whole program memory between its two sequential
updates. Here we didn’t anyhow optimize the memory updates,
so each of them gave an expression of the following form:

Vi+1(lupd) = v ∧ ∀l.(l 6= lupd =⇒ Vi+1(l) = Vi(l))

where lupd is the number of the location whose value is
updated to v.

The benchmarks making significant use of structures and
arrays were performed with a slightly modified axiom set to
take the structure and array first element address property into
account. The address of a structure (or an array) is equal to the
address of its first field (or element). So for such benchmarks
we changed the axioms (4), (5) and (6) with the following
ones correspondingly:

∀l.A(l) = A(S(l, 0))

∀x.∀f.(f 6= 0 =⇒ S(x, f) > N) (7)
∀x.∀f.(f 6= 0 =⇒ B(S(x, f)) = x) (8)
∀x.∀f.(f 6= 0 =⇒ O(S(x, f)) = f) (9)

Here the location of a structure or an array as a whole is
merged with the address of its first field. The axioms (4), (5)
and (6) are restricted to all the fields of an aggregate except
the first one.

Let’s illustrate the process of converting the pointer pred-
icate derivation problem into the one of interpolating the
quantified formula for one particular cut-point of an infeasible
program error path. Here we use the following example from
our benchmark set:

s_1->f_1 = 1;
s_1 = s_1->next;
s_1->f_1 = 2;
s_1 = s_1->next;
...
s_1->f_1 = n - 1;
s_1 = s_1->next;
s_1->f_1 = n;
s_2 = s_1;
s_1 = s_1->next;

check (s_2->f_1 != n);
ERROR:

Here n is a static parameter assigning the size of the test
generated. When n = 2 the test will look like this:

s_1->f_1 = 1;

89 of 230

s_1->f_1 = 1; 7→ V2

(

S
(

L(V1(1)), 0
)

)

= 1∧

s_1 = s_1->next; 7→ ∧V3(1) = V2

(

S
(

L(V2(1)), 1
)

)

∧

s_1->f_1 = 2; 7→ ∧V4

(

S
(

L(V3(1)), 0
)

)

= 2∧

s_2 = s_1; 7→ ∧V5(2) = V4(1)∧

s_1 = s_1->next; 7→ ∧V6(1) = V5

(

S
(

L(V5(1)), 1
)

)

∧

∧∀l.
(

l 6= S
(

L(V1(1)), 0
)

=⇒ V2(l) = V1(l)
)

∧

∧∀l.(l 6= 1 =⇒ V3(l) = V2(l))∧

∧∀l.
(

l 6= S
(

L(V3(1)), 0
)

=⇒ V4(l) = V3(l)
)

∧

∧∀l.(l 6= 2 =⇒ V5(l) = V4(l))∧
∧∀l.(l 6= 1 =⇒ V6(l) = V5(l))∧

check(s_2->f_1 != 2); 7→ ∧V6

(

S
(

L(V6(2)), 0
)

)

6= 2∧

ERROR: ∧∀x.(x > 0 =⇒ A(x) > 0)∧
∧∀l.L(A(l)) = l∧

∧∀a.A(L(a)) = a∧

∧∀x.∀f.S(x, f) > 1000∧
∧∀x.∀f.B(S(x, f)) = x∧

∧∀x.∀f.O(S(x, f)) = f

m
em

or
y

up
da

te
s

ax
io

m
s

Fig. 1. Path formula example.

s_1 = s_1->next;
s_1->f_1 = 2;
s_2 = s_1;
s_1 = s_1->next;

check(s_2->f_1 != 2);
ERROR:

Here we traverse a linked list of at least two elements and
sequentially assign the values 1 and 2 to its elements with
the help of the pointer s_1. The pointer s_2 is assigned
the address of the second element of the list. The check
operator is used to designate the chosen branching condition.
This means that the condition in the operator must be met on
the considered error path. This way the necessary condition
of getting onto the error label ERROR is the inequality of the
second list element value to 2. It can’t be fulfilled in case the
program behaves correctly in terms of memory operations.
The new pointer predicate proving the error path infeasibility
should be derived for the cut-point marked with the dashed
line separator.

Both the upper and the lower parts of the counterexample
path correspond to certain logical formulae. For the newly
derived predicates to make the abstraction eliminate the in-
feasible counterexample, the predicates must be implied by
the logical formula for the upper part of the path and be
unsatisfiable in conjunction with the formula for its lower
part. Also to be possibly used again to eliminate other similar
error paths the predicates should include only the values the
program variables possess in the cut-point (not before and
not after it). Otherwise it won’t be possible to make the
new abstraction independent from the currently considered

counterexample. These requirements for the derived predicates
exactly match the definition of the Craig interpolant for a
pair of logical formulae, i.e. a third formula that is implied
by the first formula, inconsistent with the second one, and
expressed over their common uninterpreted symbols (variables
and uninterpreted functions occurring in both formulae). Let’s
consider the formulae and the interpolant produced by our
modified CSIsat tool for that particular counterexample. Here
let the location number 1 correspond to the variable s_1 and
similarly for the location number 2 and the variable s_2, let
the list structure have two fields (f_1 and next) correspond-
ing to the numbers 0 and 1, and finally let the constant N
be equal to 1000. The path formula of the counterexample is
shown in figure 1.

The interpolant produced by our modified CSIsat tool is

V6

(
S
(
L(V6(2)), 0

))
= 2 ∨ S

(
L(V6(2)), 0

)
< 1000

that corresponds to the predicate

V
(
S
(
L(V (2)), 0

))
= 2

that is s_2->f_1 == 2. The condition is indeed met in the
specified program location and proves the infeasibility of the
counterexample. The same predicate can be used to prove the
infeasibility of another error path through the same program
location, e.g.:

s_1->f_1 = 1;
s_1 = s_1->next;
s_1->f_1 = 2;
s_2 = s_1;
s_1 = s_1->next;

90 of 230

Fig. 2. Results on specially generated benchmarks (simplest cases).

check(s_2->f_1 == 2); // ‘else’ branch

// in the same ‘if’
// statement

s_1->f_1 = s_2->f_1 - 2;
check(s_1->f_1 != 0);
ERROR:

The results of benchmarking our tool on the specially
generated example set are shown in figures 2 and 3. The
legends of the plots contain code snippets corresponding
to the path formulae used in each of the examples. The
parameter n specifies the sizes of the test cases so that they
contain approximately 2n lines of code. The cut-point location
dividing the counterexample path into parts is marked with a
dashed line and the check operator designates chosen branch-
ing condition the same way as in the previously considered
example. The label ERROR is unreachable in the examples so
the corresponding path formulae are unsatisfiable. They are
built the using the uninterpreted functions presented above
and are passed to the modified CSIsat tool with options
-extrInsts and -simplInsts (the options enable our
instantiation extraction and simplification heuristics in CVC3).
All the benchmarks were launched with the time limit of 600
seconds and memory limit of 1 GiB. The launching for each of
the examples was aborted after five abrupt terminations of the
tool (including time, memory limit exceeding and uncaught
exceptions).

Figure 2 presents the results for very simple cases without
manipulating any structures or arrays. They also require no
quantifier instantiations of memory update expressions (each
variable value is used just after the assignment). Figure 3
presents the results for the very similar test cases. But these
ones require the number of quantifier instantiations that is
linear in proportion to the number of lines of code in the
example. The plots show exponential growth of interpolation
time in all the tests. But the tests requiring many quantifier
instantiations took up to 45 times and even more greater
amount of time for interpolation in comparison with the similar
tests requiring very few instantiations (see the plots in figures
2 and 3 for n ≈ 176).

For the benchmarking results on less trivial cases see the
figures in the complete version of this paper ([21]).

Overall the results have shown that our modified tool can
produce interpolants for quantified formulae with relatively
small number of quantifier instantiations. But the size of real-
life counterexamples, e.g. in verifying Linux kernel drivers,
is about 1000 to 10000 lines of code and the number of
interpolator calls is about 10 to 30 per driver (see the paper
[17] for details). This supposes that to achieve a suitable
verification time of about 15 minutes per a driver, the tool
should produce interpolants for the formulae for about 5000
LoC in about 45 seconds. As the presented results have shown,
the tool can process formulae for not more than about 350
(176× 2) LoC in that time even in the very simple cases (see
figure 3). The modified tool thus turned out to be not efficient
enough to be used in a scalable model checker implementing

91 of 230

Fig. 3. Results on specially generated benchmarks (number of instantiations is proportional to n).

the logical memory model considered. This inefficiency can be
explained with relative inefficiency of CSIsat internal decision
procedure as well as the use of some heuristics for necessary
instantiation extraction. The heuristics rather frequently extract
unnecessary instantiations. They sometimes also fail to extract
the necessary ones causing the tool to terminate abruptly.

VI. CONCLUSIONS

In this paper we proposed a relatively easy approach to
implement an instantiation-based interpolating decision proce-
dure for quantified formulae based on an existing interpolating
solver and a modern SMT solver with quantifier support. We
have implemented our approach in the modified version of
the CSIsat interpolation tool using CVC3 as an external SMT
solver. The modified tool implements Craig interpolation for
quantified formulae with respect to the theories of linear real
arithmetic and uninterpreted functions with equality.

We have also performed a preliminary benchmarking of our
modified tool on two distinct benchmark sets. The first was
obtained form the SMT-LIB benchmark set while the second
contained the specially generated benchmarks simulating the
interpolation tasks that a real model checker could give to our
tool in case it implemented a location-based logical memory
model for the discovery of pointer predicates.

The tool benchmarking results on our both test sets have
shown that our proposed approach is generally functional, but
lacks enough efficiency to be used for predicate derivation in
a real industrial model checker.

The CSIsat internal decision procedure used in the tool to
derive the unsatisfiability proof tree for interpolation is a way
less efficient than that of CVC3 and other state-of-the-art SMT
solvers. Hence one of the interesting further research areas
here is more comprehensive analysis of CVC3 unsatisfiability
proof trees in order to use them for reducing the overhead of
proving the formula unsatisfiable once again in the interpolator
itself. This way we can avoid the most significant burden
bounding the efficiency of our tool.

REFERENCES

[1] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin.
SLAM2: Static driver verification with under 4% false alarms. In Formal
Methods in Computer Aided Design, 2010.

[2] Thomas Ball, Ella Bounimova, Vladimir Levin, and Leonardo De
Moura. Efficient evaluation of pointer predicates with z3 smt solver
in slam2. Technical report, 2010.

[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[4] Clark Barrett, Aaron Stump, Cesare Tinelli, Sascha Boehme, David Cok,
David Deharbe, Bruno Dutertre, Pascal Fontaine, Vijay Ganesh, Alberto
Griggio, Jim Grundy, Paul Jackson, Albert Oliveras, Sava Krstić, Michal
Moskal, Leonardo De Moura, Roberto Sebastiani, To David Cok, and
Jochen Hoenicke. C.: The smt-lib standard: Version 2.0. Technical
report, 2010.

[5] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[6] D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape analysis. Proc.
CAV, LNCS, 4144:532–546, 2006.

[7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast: Applications to software engineering.
Int. J. Softw. Tools Technol. Transf., 9(5):505–525, 2007.

92 of 230

[8] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for con-
figurable software verification. Technical report, School of Computing
Science, Simon Fraser University, 2009.

[9] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. Csisat: Interpola-
tion for la+euf. In CAV, pages 304–308, 2008.

[10] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The mathsat 4 smt solver. In CAV,
pages 299–303, 2008.

[11] Juergen Christ and Jochen Hoenicke. Instantiation-based interpolation
for quantified formulae. In Nikolaj Bjorner, Robert Nieuwenhuis,
Helmut Veith, and Andrei Voronkov, editors, Decision Procedures in
Software, Hardware and Bioware, number 10161 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[12] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Emerson
and A. Sistla, editors, Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science, pages 154–169. Springer Berlin /
Heidelberg, 2000. 10.1007/10722167 15.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
Tools and Algorithms for the Construction and Analysis of Systems,
4963:337–340, 2008.

[14] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs
with pvs. In Computer Aided Verification, 9th International Conference,
CAV ’97, Haifa, Israel, pages 72–83, 1997.

[15] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.

McMillan. Abstractions from proofs. SIGPLAN Not., 39(1):232–244,
2004.

[16] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, October 2009.

[17] Alexey Khoroshilov, Vadim Mutilin, Eugene Novikov, Pavel Shved, , and
Alexander Strakh. Towards an open framework for C verification tools
benchmarking. In Proceedings of PSI, pages 82–91, Akademgorodok,
Novosibirsk, Russia, 2011.

[18] Kenneth L. McMillan. An interpolating theorem prover. In TACAS,
pages 16–30, 2004.

[19] Kenneth L. McMillan. Interpolants from z3 proofs. Technical report,
Microsoft Research, 2011.

[20] Leonardo Moura and Nikolaj Bjørner. Efficient e-matching for smt
solvers. In Proceedings of the 21st international conference on Au-
tomated Deduction: Automated Deduction, CADE-21, pages 183–198,
Berlin, Heidelberg, 2007. Springer-Verlag.

[21] Vadim Mutilin and Mikhail Mandrykin. Instantiation-based interpolation
for quantified formulae in csisat. In Proceedings of the Institute for
System Programming of the Russian Academy of Sciences (in Russian),
2012.

[22] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[23] Pavel Shved, Vadim Mutilin, and Mikhail Mandrykin. Static verfication
“under the hood”: Implementation details and improvements of BLAST.
In Proceedings of SYRCoSE, volume 1, pages 54–60, 2011.

93 of 230

Translation of UML Statecharts to UPPAAL

Automata for Verification of Real-time Systems

Daniil A. Zorin

Department of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

juan@lvk.cs.msu.su

Vladislav V. Podymov

Department of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

vvpodymov@gmail.com

Abstract — In this paper we present a tool to transform UML

statecharts to UPPAAL automata. The tool allows one to check

temporal properties against statecharts modeling a real-time

system. We give the constraints on statecharts, the tool

description, and the results of testing it on a well-known traffic

control example.

Keywords — verification, UML, UPPAAL, modeling, real-time

systems

I. INTRODUCTION

Usually verification tools work with models written in
specialized languages intended for convenient application of
verification algorithms. On the other hand, during the design
stage systems are often modeled with universal modeling
languages (such as UML) or industry-specific modeling
languages. UML statechart diagrams are an example of
universal models describing the behavior of systems
communicating with the environment via shared memory and
message passing. Real-time systems are often modeled with
such diagrams. Since the cost of correcting an error increases
over the course of system development, verifying the
properties of the system as early as possible one improves its
quality and simplifies its development.

In this paper we present a tool for converting UML
statechart diagrams to timed automata used in the UPPAAL
verification system [1, 2]. In section 2 we define the syntax of
expressions we use in UML diagrams. The algorithm is
discussed in section 3. Experimental results obtained with the
algorithm are given in section 4.

II. UML STATECHARTS

Unified Modeling Language (UML) is used to design a
wide range of systems implemented in various languages and
in different environments. Therefore, the authors of the
standard of UML deliberately avoid defining syntax and
semantic of the language completely [5, ch. 13]. The language
defines a metamodel comprised of syntactical constraints on all
models in UML notation. Generally it is only possible to say
whether the model is syntactically correct. The behavior of a
correct model might be undetermined in some cases: guards,
actions and triggers can be defined in a natural language which
tolerates different interpretations.

The authors of the language suggest creating a separate
profile for every class of systems without changing the general
notation. However, in the case of statechart diagrams, creating
the profile does not solve interpretation problems. To prove the
properties formally it is necessary to define a strict syntax and
semantic of all used primitives of statecharts. In this study,
additional constraints on the structure of the diagrams and the
syntax of expressions are imposed, thus the ambiguity is
avoided.

Simple states are the same as in the standard UML
metamodel. There are two types of composite states: sequential
and parallel. Automata residing in a parallel state are executed
simultaneously. Composite states have special entry and exit
states.

Some states are marked with logical formulae called
invariants; a system can reside in such state only while its
invariant is satisfied.

Each transition between states may be provided with a
guard, an action, and a synchronization. Guards express
requirements that must be satisfied to enable the transition.
Actions are the operations performed after the transition is fired.

The syntax of guards, invariants and actions is similar to
the syntax of the C language. There are three types of
variables: an integer type over a certain range (e.g., int [4..9] x
= 5;), the boolean type (e.g., bool b = false;), and the clock type
(e.g., clock c;). All variables must be defined in the comments
section of the UML model. Expressions admitted in guards
include all types of comparison as well as logical NOT, AND
and OR operations. Actions may contain assignment statements
including complex arithmetic expressions and the C-style
ternary operator ‘? :’. Invariants have the same syntax as
guards do, though the expression must be marked with the
keyword ‘assume()’.

There are two additional expressions in the syntax. The
boolean expression 'in(S)' borrowed from STATEMATE
language [3] denotes that the state S is active in the system.
The operation of random assignment, written as ‘x=random();’
non-deterministically gives a value to an integer or boolean
variable admitted by the type.

The syntax and the meaning of macros are similar to the
ones in C language. They are defined in the comments section

94 of 230

along with the variables. The macro ‘#define X Y’ replaces all
occurrences of X with Y before other stages of the translation.

The examples of expressions can be found in the Figure 9.

The operation of sending a signal is identical to the
hardware-like message broadcast [3]. Every signal must be
defined in the model. When signal S is sent by a transition
(denoted by the synchronization section), the automaton marks
signal S as sent, and on the next step all the automata that can
activate a transition with the receiving of signal S (written as
‘!!S’) must do that. If none of the automata can receive the
signal, it is considered lost. For instance, on figure 10 the
system moves from state AHome to state AToGreen only at
receiving a signal AtoG.

III. TRANSLATION OF UML STATECHARTS TO UPPAAL

AUTOMATA

The UML to UPPAAL translator works with UML
statecharts in the widespread XMI format. When a file is
parsed and an internal representation is constructed, the
translation is performed in two phases. First, the statechart is
transformed to the intermediate form – an hierarchical timed
automaton (HTA) [4] – and then this automaton is translated to
a network of timed automata (NTA) according to the algorithm
similar to the one introduced in [4].

Since the structure of statecharts differs significantly from
the structure of hierarchical timed automata, an additional step
of transformation of UML statecharts should be carried out
before translating them to UPPAAL.

Firstly, during the parsing of UML, the expressions that do
not belong to UPPAAL model language are translated. All
macro substitutions take place before parsing the guards and
actions. The 'in(S)' expression in guards is replaced by
checking the value of a special flag variable which is unique
for each 'in(S)' statement.

Further, all references to automata are replaced by their
unique copies. If one automaton is nested into another one, it is
inserted as well. Name collision on this step is avoided: if the
names of two states in two nested automata coincide, then one
of the states is renamed, and if two variables with the same
name are declared in different scopes (e.g. in two automata
referenced in the third one), then one of them is renamed. As a
result a single hierarchical UML statechart is formed.

The next step is to modify composite states (figure 2-3). In
HTA, only transitions between simple states, entry and exit
states are allowed, so it is necessary to change the arcs which
start or end in composite states to match them with the
corresponding entries and exits. Adding several new entries or
exits might be necessary. In HTA transitions into a composite
state are allowed if they end in its entry state, similarly,
transition out of a composite state into its parent is possible if it
starts in an exit state. All other transitions must begin and end
inside of the same composite state, i.e., the source and target
states remain in the same composite state. However, in UML
statecharts it is possible to perform transitions to a deeply
nested state; hence it is important to add all exits and entries in
between.

Finally, guards, actions, and synchronizations should not be
present on transitions ending in exit states according to HTA
definition. In such cases, a new state, like tmp in the Figure 2,
is added and the guards, actions and synchronizations are
assigned to the transition ending in the new state.

Figure 1. Correction of composite states: before

Figure 2. Correction of composite states: after

When HTA is obtained, it is translated into NTA used in
UPPAAL.

NTA consists of processes, variables, channels and clocks.
A process is a certain timed automata which has finite sets of
locations and transitions.

Some locations are marked with invariants, and some
transitions are supplied with guards, actions, and
synchronizations. Invariants, guards, actions, and
synchronizations are similar to those in HTA.

Three kinds of locations are possible: ordinary, urgent, and
committed. When an urgent location is active in NTA, no time
can advance, and if the location can be deactivated, it is left at
once. Committed locations are similar to urgent locations, but
they have the highest priority in deactivation.

95 of 230

Each channel has its own type, either broadcast or
handshake. Broadcast channels are similar to those in HTA.
Handshake channel is used to synchronize the execution of
exactly two transitions in NTA.

The translation HTA to NTA is as follows.

Before state translation, variables, channels and clocks are
copied from HTA directly to NTA. According to translation
algorithm, auxiliary variables and channels are added. Some of
them are mentioned below.

Every composite state S in HTA corresponds to a process
P(S) in NTA. Every such a process has an initial location ‘idle’
which corresponds to inactivity of a composite state.

Consider a parallel composite state S in HTA. A special
location ‘active’ is created in P(S). The ‘active’ location can be
reached from the ‘idle’ location by performing a sequence of
transitions via committed locations ‘start(X)’, one for each
composite state X nested in S. The first transition in the
sequence carries a synchronization ‘activate(S)?’ that activates
P(S). Other transitions in the sequence carry synchronizations
‘activate(X)!’ for every nested state X. Also there is exactly
one transition from the state ‘active’ to the state ‘idle’ that
carries a synchronization ‘deactivate(S)?’ deactivating P(S).

When P(S) is activated, the whole sequence of transitions is
executed with no time advancing, every nested state is
activated, and then P(S) reaches the ‘active’ location which
corresponds to activity of all states nested in S.

Consider a sequential composite state S in HTA. A process
P(S) includes locations ‘active(X)’ for every state X nested in S
as well as committed locations ‘start(X)’ for every composite
state nested in S. Locations ‘start(X)’ and ‘active(X)’ are
connected via a transition decorated with a synchronization
‘activate(X)!’. The ‘idle’ location is connected with either a
location ‘start(X)’ in the case of a composite state X or with a
location ‘active(X)’ in the case of a basic state X via transition
with synchronization ‘activate(S)?’.

When P(S) is activated, it activates exactly one of its nested
states and reaches one of ‘active(X)’ locations which
correspond to the activity of X.

To deactivate a state X nested in S, the process P(S) uses a
set of deactivation sequences of committed locations.
Transitions in each sequence carry synchronizations
‘deactivate(Y)!’ for every composite state Y nested at any level
in X. Thereby when a deactivation sequence is executed, all
inner states which can be deactivated simultaneously in HTA
are deactivated in NTA. If S has to be deactivated as well, the
final location of the sequence is connected to the ‘idle’ location.
Otherwise it is connected to one of ‘start(X)’ or ‘active(X)’
locations.

To initialize the NTA defined above, an additional process
‘Kickoff’ is created. This process is a sequence of committed
locations which ends with an ordinary location. Transitions in
this process carry special synchronizations ‘init(X)!’ for every
initial state X of HTA. Special initial transitions are also added
into other processes to reach a correct initial state.

IV. EXPERIMENTAL RESULTS

To be certain that the implementation of our translation
algorithm is correct and well suited for composition with
UPPAAL we tested it on several case studies. The simple
examples were used to make sure that the output of the
algorithm satisfies the expectations and to check the behavior
on various sample cases. Some more complex tests were aimed
to simulate the whole process of verification of a system
defined by a UML statechart diagram. Below we present the
results of our experiments with the model of traffic lights
control system described in [4].

A. Simple tests

An example of a simple test is given on figures 4-5.

Figure 3. Example 1: UML

Figure 4. Example 1: UPPAAL

96 of 230

Figure 5. Example 2: UML

Figure 6. Example 2: UPPAAL

B. Traffic lights example

The traffic lights control system consists of two traffic
lights on a crossroad. The lights are controlled by a processor
supplied with some sensors. Lights on the street and on the
avenue change colors customary to let cars pass by in both
directions. Further, in the case an ambulance car arrives from
any direction, the lights must turn to green on that direction in
order to let the ambulance pass as soon as possible.

The UML diagrams for this system are shown in the
Figures 10-11. The first diagram contains state loops for the
lights and the ambulance and a reference to the diagram of the
light controller. The lights are changed in the usual order
(green to yellow to red) according to the signals of the light
controller. The ambulance appears non-deterministically and
passes through the street crossing.

The light controller normally sends signals to the lights to
switch their colors in order. When the ambulance appears, the
system exits the normal cycle and enters the
AmbulanceArriving composite state where the light colors are
changed arbitrarily in order to turn the light on the street where
the ambulance is waiting green.

In [4] the authors constructed a UPPAAL model for this
system manually to verify its properties. We used our translator
and obtained the model automatically.

Figure 7. UPPAAL diagram for AvenueTurn composite state

97 of 230

Figure 8. UPPAAL diagram for Ambulance behavior

Some of the UPPAAL automata are shown on figures 7-8.

The following properties were tested.

A[]! deadlock

This property guarantees the absence of deadlocks.

A[]! (stg==1 || sty==1) imply avr==1

A[]! (avg==1 || avy==1) imply str==1

The lights are synchronized: if the avenue light is green or
yellow, the street light must be red and vice versa.

E<> stg==1 && avg==1

This property means that there exists a trace where both
lights are green at the same time and it was proved to be false.
At the same time the seemingly contrary property

A[] (stg==1 || avg==1)

is not fulfilled also, because there can be a situation where one
light is red and the other one is yellow.

Ambulance_process_proc.Approaching_active_in_Ambula
nce -->

Ambulance_process_proc.Home_active_in_Ambulance

Home state for the ambulance car is reachable from the
Approaching state, which basically means that the ambulance
will always eventually pass the crossing.

CONCLUSIONS

Experiments with our tool testify that translation of UML
statecharts to UPPAAL timed automata is possible. We
reproduced the results that were obtained manually in [4] with
our automatic translation and showed that the tool is applicable
to models of relatively simple real-time systems with parallel
interacting processes. Further work includes formal proof of
the correctness of the algorithm based on [3] and testing the
tool on practical examples of real-time systems.

REFERENCES

[1] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–
152, October 1997.

[2] Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. A tool
architecture for the next generation of UPPAAL. In 10th Anniversary
Colloquium. Formal Methods at the Cross Roads: From Panacea to
Foundational Support, LNCS, 2003.

[3] David, M. Moller Oliver, Wang Yi. Verification of UML Statechart with
Real-Time Extensions / Uppsala: Department of Information
Technology, Uppsala University. IT Technical Report 2003-009, 2003.

[4] A. Furfaro, L. Nigro. A development methodology for embedded
systems based on RT-DEVS, Innovations in Systems and Software
Engineering, vol 5, P. 117-127, June 2009.

[5] Grady Booch, Ivar Jacobson & Jim Rumbaugh. OMG Unified Modeling
Language Specification. Addison Wesley, 1997

98 of 230

Figure 9. Example of a UML diagram containing all syntactic features

99 of 230

Figure 10. Traffic lights UML diagram

100 of 230

Figure 11. Traffic lights UML diagram (2)

101 of 230

Enhancement of automated static verification
efficiency through manual quantifiers instantiation

Denis Buzdalov1

Institute for System Programming
of the Russian Academy of Sciences

Moscow, Russia
Email: buzdalov@ispras.ru

Abstract—Checking of a program conformity with a contract
specification is a hard problem. Usually this check requireshigh
time and memory expenses. This work describes a technique
that allows to lower verification costs through usage of some
information known by people who verify a program and contains
suggestions of the way how to organize it.

I. I NTRODUCTION

Nowadays a lot of computer systems perform quality critical
tasks. It means that bad quality of work of these systems can
lead people’s deaths and injuries or financial losses. That’s
why such systems need to beverified.

Verification requires checked properties and possibly some
additional info to be specified in some formal language. Such
collection of formal statements is called aformal specification.
Formal specification has precisely defined semantics which is
used by a verification instrument.

There is a lot of ways of verification. They vary on resources
requirements and quality of a result.Formal static verification
differs from e.g. testing in confidence of specification confor-
mity in case of positive verification verdict. Unlike the model
checking this approach can be used for verification of a target
system itself but not its model. Also, this approach can be
used for a wide class of target systems (e.g. for checking of
embedded systems).

There are many types of specifications.Contract specifi-
cations [1] is a popular type which has a lot of supporting
instruments. Contract specification is a set of statements of
the following types:

• preconditionis a condition which holding is required for
an operation (function, method, subroutine) execution;
e.g. a function of real square root computation will have
a non-negativity of its argument as a precondition;

• postconditionis a condition which have to be held at the
end of an operation execution;the square root function
can have a condition that the result multiplied by itself
must be equal to the input argument as a postcondition;

• invariant is a condition that have to be held at some time
or on some events arising

Instruments of contract-based static verification reduce the
program correctness proving task to the task ofsatisfiability

1This work is partially supported by RFBR 11-07-12075-ofi-m,10-07-
1047a, Minorbnauki RF 07.514.11.410.

of sometyped predicates(these predicates can contain some
operations and relations of some typed values).

Satisfiability is a laborious task. This task is usually not
solved manually because of usually big number of predicates
which satisfiability have to be proved. Also manual proofs are
not stable to changes of program, so it cannot be used during
the program development. That’s why automatic or automated
solversare used for such tasks (e.g. SMT-solvers [2]).

II. M OTIVATION

Specification itself is usually not enough for successful
verification of a correct program. For example, Floyd methods
[3] and Hoare rules [4] expect each loop to be marked by a
loop invariant (a predicate which is hold before each loop
condition check). Ability and time of proving highly depends
on which loop invariants are chosen.

But even if every loop has an invariant allowing to prove a
program correctness it may be not enough for the successful
verification.

A person that wants to prove a program correctness has to
add lemmataand assertionsto a specification to help solver.
These additions may reflect different properties of data and
its operations which solver it not able to understand itself.
For instance, if we have af : List → Multiset operation
and List and Multiset types have an addition operation
(concatenation and union correspondingly), then lemma of
linearity of f relatively to the addition operation will have
form of ∀l1, l2 : List · f(l1 + l2) = f(l1) + f(l2)

These lemmata are conjuncted with a precondition during
proving of a fact that a precondition implies a postcondition
(ppre ∧ plemma1 =⇒ ppost). This allows lemmata statements
to be used in the verification process.

Assertions are similar to lemmata but unlike them are
defined inside operations and hold only inside them. Conse-
quently, assertions can represent properties connected with lo-
cal data and also consider a precondition to be held (be implied
by it). Assertions also are conjuncted with a precondition for
the verification process.

There are some instruments that support the described
correctness proving technique and can be used for the formal
static verification of software e.g. frama-c [5] and Dafny [6].

Lemmata and assertions often are statements with the uni-
versal quantifier.

102 of 230

One of the main difficulty of the satisfiability problem
solving is a successful usage of such statements. The way
how to instantiate an expression of the quantifier is not defined
by algorithms that are used in solvers [7]. But effectivity of
satisfiability proving highly depends on how instantiationis
performed. There are some heuristic methods of instantiation
that increase the proving speed [8], [9] but they give positive
results not often in the practice. That’s why verification usually
requires high resources amount (both time and memory).

There can be a lot of lemmata but not all of them are
required for a check of each postcondition. But still, solver
will try to instantiate useless statements with the universal
quantifier. This can considerably increase proving costs.

This work offers a technique that makes verification easier
by reducing of quantified statements usage in lemmata and
assertions and also by limiting of usage of useless lemmata.

III. SUGGESTED TECHNIQUE

Technique is based on the fact that a person who is trying
to verify a program unlike modern solvers usually knows
namely which lemmata help or can help for the postcondition
or invariant checking. Also he usually understands how a
statement with the universal quantifier should be instantiated
to use lemma properly.

Consider a lemma of linearity of af function from the
example above. To prove that removing of the first element
from a list leads a multiset of its elements to decrease its size
by one, it is enough to take a sublist containing only the first
element of the original list asl1 and a tail of the list asl2.

To use such knowledge it is offered to rewrite lemmata that
are formed like

∀x1 : X1, x2 : X2, . . . , xn : Xn·

·A(x1, x2, . . . , xn) =⇒ P (x1, x2, . . . , xn)

as pure functionsof form t : X1 ×X2 × . . .×Xn → ∅ and
having theA(x1, x2, . . . , xn) predicate as a precondition and
the P (x1, x2, . . . , xn) predicate as a postcondition. Pre- and
postconditions have the same set of parameters because of a
function purity and the fact that it does not return any value.
Let’s call functions of the described type that represent some
lemma afunction-lemma.

Such lemmata representation allows to move statements that
help to prove a lemma but useless for proving other lemmata,
inside the function-lemma. That makes solver’s task easier
because it reduces count of statements that it can but shouldn’t
use. That allows to reduce verification costs.

Besides, this representation allows to use once proved
lemma without rewriting a proof.There’s a lack of such ability
in existing instruments, e.g. in frama-c [5]. This fact makes
lemmata usage difficult and increases a solver’s work amount.

But still, if the lemmata meaning isn’t changed, namely
that all lemmata can be used for the verification, the problem
of instantiation of parameters (the same problem with the
problem of instantiation of quantifier variables) remains.To
solve this problem it is suggested to use lemmata only in places

pointed by a person that verifies a program (except situation
mentioned below).

When some lemma is pointed to be used, parameters of the
function-lemma have to be explicitly defined. At the place
of pointing applicability of the lemma should be checked
(through the function-lemma’s precondition check) and if the
check is successful the main lemma statement (represented by
the function-lemma postcondition) have to be considered tobe
held (because the lemma is proved separately).

Such lemmata usage can be both standalone and inside a
composite statement.

No statements with the universal quantifiers appear where
they are not needed if such lemmata semantics is used. If
statements with the universal quantifier are essential, then
instantiation variants count is not increased comparing tothe
existing lemmata semantics. Moreover, verificating personcan
considerably decrease this count if he thinks that it is enough
for proving. Consequently verification resources requirements
are decreased if lemmata are used properly.

However usage of the described semantics can reduce
proving quality (compared to the existing semantics) when
lemmata are used improperly. To make this semantics to be
not worse that the existing one, it is modified.

If proof that uses pointed by a man function-lemmata is
unsuccessful, then statements of function-lemmata can be
interpreted as statements with the universal quantifier andafter
that proving should be continued. So if a program correctness
can be proved without usage of the suggested technique, then
it can be done with the suggested technique too. In that case
difference of verification resources expenses will be not big
because the suggested technique does not increase instantiation
variants count (and often decreases it up to the single one).

Right function-lemma usage can considerably decrease the
verification expenses of a correct program because it elim-
inates usage of statements with the universal quantifier and
usage of useless lemmata.

Moreover this technique allows to use named properties in
a convenient way. This allows to standardize and describe lots
of widely used data and operation properties.

For instance, consider a lemma of the square operation
sqr : real → real being converse to the square root
operation sqrt : real → real. Let the lemma be named
sqrT oSqrtConversity. It has a single parameter, let it be
namedx. The precondition will bex > 0, and the postcondi-
tion will be sqr(sqrt(x)) = x.

Consider an operation that has an argumenta and
property of sqr being converse tosqrt have to be held for
this argument. Then thesqrT oSqrtConversity(a) statement
should be added as a precondition. If some operation returns
a numbers sets which all are numbers that the converse
property have to be applicable to, then if is enough to write
∀x ∈ s · sqrT oSqrtConversity(x) as a postcondition.

Consider a function evaluating(
√
x+

√
y)2. Then to prove

a property of “y = 0 implies the result to be equal tox”
we can use thesqrT oSqrtConversity lemma with thex
number as a parameter (also thesqrt(0) = 0 property will

103 of 230

be required).

IV. CASE STUDY

Considering existing instruments, Dafny [6], a static verifi-
cation instrument, partially supports the suggested technique.
It supports an ability of defining of functions that can be used
as a function-lemma. However these functions cannot be used
inside composite statements. That fact does not allow to use
some technique abilities.

These limited abilities were, however, enough to prove
permutation correctness of the Shell sort algorithm [10] with
Sedgewick coefficients [11] using acceptable time (approx.10
min.) and memory (approx. 300 MB) amount. Author hasn’t
managed to do this without the suggested technique using up
to 3 hours and 4 GB of memory.

V. CONCLUSION

A technique that widens ability of automatic verification
instruments (on appropriate instruments modernization) was
suggested.

This technique was used in practice, as far as it is possible
using existing instruments. The technique allowed to provea
program correctness which couldn’t be done without usage of
this technique.

REFERENCES

[1] B. Meyer, “Design by contract,” Interactive Software Engineering Inc.,
Tech. Rep. TR-EI-12/CO, 1986.

[2] C. Barrett, A. Stump, and C. Tinelli, “The satisfiabilitymodulo theories
library (SMT-LIB),” http://www.smtlib.org/, 2010.

[3] R. W. Floyd, “Assigning meaning to programs,” inIn Proceedings of
Symposium on Applied Mathematics, vol. 19. A.M.S., 1967, pp. 19–32.

[4] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[5] “Frama-c,” http://frama-c.com/.
[6] “Dafny,” http://research.microsoft.com/en-us/projects/dafny/.
[7] M. Davis, G. Logemann, and D. Loveland, “A machine program for

theorem-proving,”Communications of the ACM, vol. 5, no. 7, pp. 394–
397, Jul. 1962.

[8] Y. Ge and L. Moura, “Complete instantiation for quantified formulas in
satisfiabiliby modulo theories,” inProceedings of the 21st International
Conference on Computer Aided Verification, ser. CAV ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 306–320.

[9] L. Moura and N. Bjørner, “Efficient e-matching for smt solvers,” in Pro-
ceedings of the 21st international conference on AutomatedDeduction:
Automated Deduction, ser. CADE-21. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 183–198.

[10] D. L. Shell, “A high-speed sorting procedure,”Commun. ACM, vol. 2,
no. 7, pp. 30–32, Jul. 1959.

[11] R. Sedgewick, “A new upper bound for shellsort,”Journal of Algorithms,
vol. 7, no. 2, pp. 159–173, June 1986.

104 of 230

http://www.smtlib.org/
http://frama-c.com/
http://research.microsoft.com/en-us/projects/dafny/

Symbolic computations in .NET Framework
Igor Medvedev, Yuri Okulovsky

Ural Federal University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—The computer algebra system (CAS) is a software
that is used for various symbolic computations like simplification
and differentiation. CAS are based on the transformation rules
that rearrange expressions according to the mathematical laws.
We consider development of CAS in the .NET Framework.
Currently, there is only one .NET software product with some
features of symbolic computations, and no full-fledged imple-
mentation of the transformation rules in .NET. In the same
time, the .NET framework provides many features for innovative
techniques of rules’ development, and therefore a .NET solution
for the transformation rules can offer the new approaches to
the computer algebra systems. In this paper, we describe these
techniques and their implementation.

Index Terms—symbolic computations, computer algebra sys-
tems, transformation rules, .NET framework

I. INTRODUCTION

The computer algebra system is a software that performs
symbolic computations. Typical examples of such computa-
tions are simplification of an expression into a smaller one,
operations like differentitation and integration, logical inter-
ference and so on [1]. The computer algebra systems (CAS)
are widely used in mathematics and computer sciences. In
CAS, mathematical structures are represented in the symbolic
form. It differs CAS from numerical analysis systems, which
manipulate numbers. The most typical data representation in
CAS is the syntax tree, an example of which is shown in
Figure 1. Simplification, differentiation and other symbolic
computations are performed as sequences of the elementary
transformation rules, each rule rearranges a tree. The example
of such transformations is given in Figure 2.

For the standard tasks, like simplification or calculus op-
erations, many CAS systems are developed. In this area, the
market has many solutions, including big enterprise packages

+

~~ ��
sin

��

·

�� ��
x 5 y

Fig. 1. Example of syntax tree for function f(x, y) = sinx + 5y. Here
x and y denote variables, 5 - a constant, and other nodes are operations of
addition, multiplication and sine function.

like Mathematica, Maple or Mathlab, and small open-source
projects. However, sometimes we need a computer algebra
system not only to make a reasearch with its aid, but also
to study CAS itself. For example, in [4] we propose a new
genetic programming algorithm that combines simplification
and induction as the uniformed parts of the evolutionary com-
putations. To do so, we implemented the new transformation
rules for mutation and crossover, and used them together with
the simplification rules in the evolutionary algorithm. With
the existing CAS, we would need the access to the system’s
core structures, because new rules should be programmed
and merged with the existing ones, and then used in the
completely new algorithm. For research of the transformation
rules and computer algebra we need a different kind of
CAS. The graphical user interface and the amount of the
supported algorithms are not so important, while the easy and
understandable access to the core structures is.

In this article, we present our approach to the transforma-
tional rules and the computer algebra algorithms. The most
prominent distinction from the existing solutions is implemen-
tation in the C# language and the .NET framework [5]. The
.NET Framework is a modern developing tool, widely used in
science and education as well as in the commercial software
development. .NET offers many convenient features, and some
of them, like expression trees and lambda expressions, seem
to be especially useful for the computer algebra. However,
most of the existing CAS are programmed in old, maybe even

∂
∂x

��
+

~~
x y

⇒ +

�� ��
∂
∂x

��

∂
∂x

��
x y

⇓
1 ⇐ +

�� ��
1 0

Fig. 2. A chain of transformations that computes ∂(x+y)
∂x

.

105 of 230

obsolete, languages like C, LISP or C++. We believe that the
usage of the modern programming techniques for the computer
algebra gives a fresh look on the symbolic computations, and
could be resulted in the new approaches to computer algebra
systems.

To our knowledge, only one .NET solution exists, named
Math.NET [2]. However, it could hardly be considered as
a full-fledged computer algebra system. The transformation
rules are not programmed as a separate entity, and are sub-
stituted by Visitor pattern [3], that processes nodes in a tree
according to its function. This decision hampers the system’s
expanding, because the addition of new operations demands
alterations in the existing code. Moreover, even operations
like differentiation of the exponential function are still not
implemented. Of course, we do not need a new CAS system
to perform simplification or differentiation when writing a
.NET application. In most cases, we can just run the CAS
application, perform all the necessary computations, and write
the result back to the program. Or, we can use CAS system on
the lower level and run the corresponding methods using .NET
legacy code interoperation. However, seamless integration of
computer algebra into .NET framework can be usable for some
applications.

II. RULE DEFINITION IN C#

Application of the rule can be subdivided into the following
stages. In the sampling stage, the system that applies rules
(which is called the driver below) selects some tree-like
structure from the syntax tree, and presents its nodes as a
tuple. In the selection stage, the driver sort out the tuples that
do not meet the specified criteria. In the third stage, called
modification, the driver transforms the tree according to the
rule. In the most widespread case, the rule processes one tree.
For such unary rules, the tree is rearranged with replacements.
In some cases, the rule processes more than one tree. For
example, the modus ponens rule in logical interference accepts
two trees A → B and A and produces B. In this case, new
tree is to be created from the selected nodes.

A. Sampling

To perform the sampling stage, we should specify the tree-
like structure that we are searching for in a tree. Also, we
need to map the nodes in the structure into a positions in a
tuple. We used query strings of our own syntax to do that. Let
us demonstrate the syntax of query string with the examples,
shown in Figure 3.

The sampling algorithm is a depth-search algorithm that
builds a correspondence between a given tree and a parse tree
of a query string. Suppose the algorithm observes some node.
It proceeds further according to the following rules:

• if the corresponding query substring has a form
(A1, . . . , An), the algorithm checks that the count of
observed node’s children is n, and assigns Ai to cor-
responding child.

• if the corresponding query substring has a form
(.A1, . . . , .An), the algorithm checks that the count of

1

����
2

����

5

��
3 4 6

A (1) The root of the tree
?A (1), (2), (3),

(4), (5), (6)
An arbitrary node in a
tree

?A(B) (5,6) An arbitrary node with
its unique child

?A(B,C) (1,2,5),
(2,3,4)

An arbitrary node in a
tree with its two children
in the fixed order

?A(.B,.C) (1,2,5),
(1,5,2),
(2,3,4),
(2,4,3)

An arbitrary node with
its two children in the
unconditioned order

?A(.B) (1,2), (2,3),
(2,4), (5,6)

An arbitrary node with
its arbitrary child

?A(?B) (1,2), (1,3),
(1,4), (1,5),
(1,6), (2,3),
(2,4), (5,6)

An arbitrary node with
its arbitrary descendant

?A(?B(?C)) (1,2,3),
(1,2,4),
(1,5,6)

An arbitrary node, its
descendant and the de-
scendant of the descen-
dant

?A(?B(C,D)) (1,2,3,4) An arbitrary node that
has a descendant with
two children

Fig. 3. Various examples of query strings. Queries are applied to the
presented tree, its output is specified in the table.

node’s children is greater than or equals n. Then it runs
through all possible assignments of Ai to observed nodes
children. For all such assignments, further search will be
performed.

• if the corresponding query substring has a form
(?A1, . . . , ?An), the algorithm assigns Ai to every possi-
ble combination of the node’s descendants. For all such
assignments, further search will be performed.

To encode the rule, we should specify the query string in
the program. It could be done by encoding of the query as a
constant string. However, it is not convenient due to the possi-
ble mistakes in the query’s syntax, such as brackets mismatch
or incorrect letters. To eliminate such errors, we implement
query strings definition with square brackets overriding.

Consider the code in Listing 1 that specifies a query string.
Here Rules is a static class that is purposed to create
rules. Static method Select accepts a query and creates a
SelectClause instance, which is used to define selection
and modification, as is shown below. AnyA, ChildB and

106 of 230

Listing 1 Specification of sampling in the program.
public class Creator : RulesCreatorBase {

public void Create() {
Rules.Select(AnyA[ChildB,ChildC])...

} }

INode

��
Node

��

''

"" ''
Constant UnaryOp

��

BinaryOp

��

vv

Variable Minus Plus

And

Fig. 4. A fragment of operators’ type hierarcy, used to selection procedures.

ChildC are defined in RulesCreatorBase as properies
that corresponds to ?A, .B and .C elements of query strings.

B. Selection

The selection stage can be further subdivided into the type
selection and the custom selection. The type selection checks
the types of nodes in the selected tuple and rejects the tuple
in the case of mismatch. The custom selection can check
additional conditions, e.g. a value of a constant. The type
selection must be performed prior to the custom selection,
because the appliability of the custom selection depends on the
node’s type. For example, to check that the constant’s value
is zero, we have to be sure that the node corresponds to a
constant, not to an operator.

The operations in our solution follows the type hierarchy
that is shown in Figure 4. Each operation type has also its
generic-analog that specifies the type of returning value. For
example, INode<T> inherits INode and is implemented
by Plus<T> that inherits Plus. Hence we can select
operations either by their function (Plus), their returning
type (INode<T>), or the combination of these properties
(Plus<T>).

When programming selection, a challenge emerges of how
to subject the tuple to the selection’s condition. We cannot
store selected nodes in the array or the list structures, because
they do not allow specifying different types for elements. With
the array representation, selection could only be performed in
the following way:

array =>
array[0] is Plus &&
array[1] is Constant &&
(array[1] as Constant).Value==0

Of course, constant casting and addressing is a potential

cause of the type errors. We have developed an elegant
solution for the selection with the aid of generic methods
and code generation. Consider the code in Listing II-B. Here
SelectClause is a class, which instances are created by
Rules.Select(...) method. We can then call the Where
method as shown inside the Main method. Note how naturally
and easy-to-write this rule’s definition is in comparison with
casting of array elements.

Listing 2 Code pattern for selection stage, given on the
example of three arguments
class WhereArg<T1,T2,T3> {
public T1 A; public T2 B; public T3 C;}

class WhereClause<T1,T2,T3> {

Func<WhereArg<T1,T2,T3>,bool> selector;

public bool Where(object[] nodes) {
if (!(nodes[0] is T1)) return false;
if (!(nodes[1] is T2)) return false;
if (!(nodes[2] is T3)) return false;
var arg=new WhereArg<T1,T2,T3> {

A=(T1)nodes[0],
B=(T2)nodes[1],
C=(T3)nodes[2] };

return selector(arg);
} }

public class SelectClause {
public static WhereClause<T1,T2,T3>
Where<T1,T2,T3>

(Func<SelectionArg2<T1,T2,T3>,bool)
{...}

}

public class Creator : RulesCreatorBase {
public void Create() {
Rules.Select(A[B,C])
.Where<Plus,Constant,INode>

(z=>z.B.Value==0);
} }

When we specify generic-arguments of Where method, we
define the type selection that should be performed. If the type
is not important, we just specify INode, since it is a basic
interface for all nodes. Setting Plus as a type for the first
element of the selected tuple allows us to specify a desired
operation. Settings Constant as a type of the second element
throws away all the tuples where the second element is not
constant. Also, we may specify the custom selection condition
z.B.Value==0, because the type of the second node is
known to compiler after the type selection. Therefore, cast
errors are catched on a compile stage. In addition, we can use
the same letters for elements in selection that we have used

107 of 230

in sampling.
Declarations of WhereArg and WhereClause classes

as in Listing II-B must be done for all different count of
the arguments. We have used a code generation technique to
produce declarations for up to 20 arguments, which is believed
to be enough for our purposes.

Listing 3 Code pattern for modification stage, given on the
example of three arguments.

class NodeDecorator<T> {
public T Node { get; private set; }
public void Replace(INode newNode) { }
}

public class ModInput<T1,T2,T3> {
NodeDecorator<T1> A;
NodeDecorator<T2> B;
NodeDecorator<T3> C;
}

public class WhereClause<T1,T2,T3> {
public RuleInstance

Mod(Action<ModInput<T1,T2,T3>> action)
{...}

}

public class Creator : RulesCreatorBase {
public void Create() {
Rule.Select(A[B,C])
.Where<Plus,Constant,INode>

(z.B.Value==0)
.Mod(z=>z.A.Replace(z.C));
} }

C. Modification

When the selection stage is over, we obtain several tuples
that could be modified in the modification stage. However,
only one of them will be actually processed, because appli-
cation of the rule may invalidate other tuples. Therefore, the
modification stage processes only one of the selected tuples.
We have developed a “clean” modification, which does not
affect the initial trees. Instead, in the modification stage we
create a copy of the selected trees, and perform modification
on the copy. To do that, we must find the roots of the nodes,
presented in a given tuple, clone them, and further process a
newly created tuple with a corresponding clones of the nodes.

For unary rules, modification turns into one or several
replacements, which replace one of nodes with another. The
method for replacement could not be placed in the INode
interface, since it would give to the user an access to insecure
replacements of the node. Therefore, we create a decorator
class that wraps each node, and ModInput generic class that
contains several decorators, as shown in Listing 3.

As we see, generated WhereClause class
contains Mod method that processes a given
typified tuple of decorators. Inside the
given action, we have access both to the
typified node (and therefore to the values
and other type-specific content of the
node) and to the Replace method. We can
now declare a rule as in the Main method.
In case of not unary rules, we include

the Produce method into WhereClause with
the same approach: accept lambda that
transforms ModInput into a node, and
this node is considered as the root of
the resulting tree.

III. CONCLUSION

The concepts above were successfully
implemented and tested on various
rules, mainly for simplification and
differentiation. The computer algebra
library for the .NET framework was
written, with the following features:

• conversion of the .NET lambda
expressions into the operation trees;

• simplification and differentiation of
the .NET lambda expressions;

• linear regression of the .NET lambda
expressions.

The developed rules were also
successfully used in the genetic
programming experiments, described in [4].

ACKNOWLEDGMENTS.
The work is supported by the program

of President of Russian Federation
MK-844.2011.1.

REFERENCES

[1] J. Grabmeier, E. Kaltofen and V. Wiespfenning.
Computer algebra handbook Springer-Verlag, 2003

[2] Math.NET Project. http://www.mathdotnet.com/
[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides

Design Patterns: Elements of Reusable
Object-Oriented Software Addison-Wesley, 1994

[4] Ya. Borcheninov and Yu. Okulovsky Genetic
programming with embedded features of symbolic
computations, In Proceedings of international
conference of Knowledge Discovery and
Information Retrieval, 2011.

[5] A. Troelsen Pro C# 2010 and the .NET 4 Platform
Apress, 2010

108 of 230

The Bufferbloat Problem and TCP: Fighting with
Congestion and Latency.

Anatoliy Sivov
Yaroslavl State University

Yaroslavl, Russia
mm05@mail.ru

V.A. Sokolov (research supervisor)
Yaroslavl State University

Yaroslavl, Russia

Abstract—The bufferbloat is a serious problem of the modern
nets with complex organization. The persistent saturation of the
net with an excessive buffering on hops results in a huge latency
which can make interactive and realtime connections practically
unusable. Most research in this area is devoted to Active Queue
Management (AQM) which is used to keep the packet queue size
correct on the bottleneck of the network path. This article gives
the other look on the bufferbloat. It suggests to fight with the
congestion – the reason of buffer saturation. It states that
currently most widely used TCP loss-based congestion control
algorithms have the problem which is shown in impossibility to
correctly estimate the bandwidth in the presence of excessive
buffering, and suggests to use the delay-based approach for
congestion avoidance. It presents ARTCP which is delay-based
and does not use burst sends limited by the congestion window,
but transmits data on the adaptive rate estimated with pacing
intervals.

TCP; congestion; latency; bufferbloat; AQM; ARTCP.

I. INTRODUCTION

The bufferbloat is a term introduced by Jim Gettys which is
very popular now and means the existence of excessively large
and frequently full buffers inside the network. The bufferbloat
influences the latency, an important parameter in the
networking experience, very much. The latency consists of
three kinds of delays: transmission delay, processing delay and
queuing delay. The latter is the time the network packet spends
waiting to be processed or transmitted. This time obviously
depends on the queue size which can grow huge in the case of
the bufferbloat.

The reason of this growth is a congestion the network path
can suffer from. Paths between communicating endpoints are
typically made up of many hops with links of different
bandwidth. In the fast-to-slow transition hops we can have the
situation when there are packets arrived to be queued or
dropped, because they can not be immediately transmitted due
to the previous arrivals being not processed (passed to the next
hop) yet. The buffers (that carry the queue) are necessary in the
“burst send” scenarios to maintain the flow of packets at the
maximum rate and achieve the throughput. However, incorrect
bandwidth estimation can lead to too many packets being sent,
that results in buffers overpopulation or packets drops. If the
buffers are too big, the packets are not dropped, and the queue
grows, as well as the queuing delay. In this case we have

unnecessary latency growth which does not lead to any benefits
in throughput.

So, it is easy to conclude that in the presence of congestion
in the net with excessive buffering the resulting delay can grow
very high. As reported in [1], most network hops suffer from
the excessive buffering. The other problem is that the network
congestion is a usual case.

TCP is the most widely used transport protocol in the
world. This protocol tries to use all the existing bandwidth to
be efficient. To do that, it increments the transmission rate
(actually, increases a congestion window) and provides the net
with more and more data (that come out as burst sends limited
by the congestion window) until a packet loss occurs. So, this
protocol is one (and, possibly, main) of the reasons of
congestion. TCP loss-based congestion avoidance algorithm
surely uses the loss occurrence to slow down the transmission.
This approach proved to be very efficient on reliable links with
small buffers.

Today's networks generally do not meet the requirements
listed above . With excessive buffering a packet loss in reliable
links occurs on the complete saturation of the bottleneck buffer
instead of the moment, when the congestion really occurred.
This packet drop postponement results in bandwidth
overestimation by TCP connection and consecutive packet
losses that come from persistently full buffers. Moreover, this
saturation of large buffers causes a delay increase, and big
latency is surely experienced not on this TCP connection only,
but on all network activities that share with it the same part of
the network path.

To illustrate the situation, we can mention that 1 MB buffer
is able to carry 8 seconds of data for 1 Mb/s connection.
Provided that this is a bottleneck buffer and it stays full
because of some big data transmission, we have 8 seconds
queuing delay for any packet that passes this hop. This delay is
much greater than common RTT for continental connections
(about 100 ms). This huge latency makes interactive sessions
(like ssh or web surfing) practically unusable and surely
disallows the use of realtime networking like VoIP.

There are several approaches to fight with this problem.
One of them is traffic prioritization or, more generally, Quality
of Service (QoS) [2] which is out of scope of this article,
because it does not help to improve the bufferbloat situation

The work is supported by the RFBR grant #11-07-00549-a

109 of 230

and does not decrease the latency for general applications.
However, QoS is a very important mechanism which is used by
realtime applications such as VoIP, IP-TV or online gaming.

The other approach is Active Queue Management (AQM)
which attempts to set correct queue limits and either drop
packets that overcome these limits or notify the sender about
the congestion with ECN. These techniques try to eliminate the
bufferbloat problem by removing the excessive buffering.

And finally, the last approach is to try to avoid the
congestion without exhaustion of buffers. This is the most
complex approach, because congestion can be of different
nature. Despite the fact that congestion and excessive buffering
are two different problems, and the best practice is to combine
queue management and early congestion avoidance, congestion
avoidance itself may solve the bufferbloat problem, if
congestion is detected early, before buffers are saturated and
latency heavily increased.

This paper consists of three sections. The first section very
briefly discusses the current AQM solutions. The second
section is devoted to the TCP congestion problem. It lists
present-day TCP congestion avoidance algorithms and covers
the latency increase problem. The last section introduces a
version of ARTCP revised by the authors – the delay-based
congestion avoidance algorithm that separates congestion
avoidance and reliable delivery logic, and thus can be very
efficient in lossy networks. The revised version does not use
RTT for congestion avoidance, but uses pacing interval
measurements only. So, it does not use indicators measured in
the reverse direction and, unlike most other delay-based
algorithms, behaves well, when a reverse direction path suffers
from the congestion or delayed acknowledgments are used.

II. AQM SOLUTIONS

The problem of the excessive buffering is not new, it was
discussed by John Nagle in 1985 [3] with an introduction of a
“fairness” concept that suggested replacing a single FIFO with
multiple queues (one per each source host) and service them in
a round-robin fashion. This suggestion could limit the latency
increase problem with one host and help to prevent a
misbehaving host from making packet switch totally unusable
for the others. Surely, there were no suggestions on single
queue limitation and attempts to overcome the host bufferbloat
problem.

The problem of bufferbloat became more serious today,
when RAM is much cheaper and there are hops tuned for
highspeed links (i.e. 1 Gb/s or even 10 Gb/s interfaces) that
have to deal with relatively slow connections (about several
Mb/s). So, this problem has been “rediscovered” today [1] and
is actively discussed [4] by networking experts, giving a born
for projects like bufferbloat.net.

Unfortunately, the excessive buffering can not be solved by
simple static buffer management in several scenarios [4], and
there is a need in Active Queue Management (AQM). The idea
to detect congestion by the queue size and try to manage this
size (and congestion) by dropping packets or marking them
and, thereby, notifying the connection about congestion is not
new. It is actively used in Random Early Detection (RED)

algorithm presented by Van Jacobson and Sally Floyd in 1993
[5].

This AQM scheme monitors the average queue size and
drops (or marks if ECN is used) packets based on statistical
probabilities. It became a classic AQM implementation that
was considered useful and strongly recommended for
deployment in RFC 2309 [6]. Despite this fact, there is a strong
criticism of RED [7, 8, 9, 12], mostly because of the difficulty
in its configuration and the necessity of a rather large buffer in
the bottleneck for RED to have time to react.

Nevertheless, RED is the most widely deployed and
available AQM, which is the base for a wide variety of AQM
algorithms. Some of them are presented in [10].

However, it should be mentioned that according to [4] “as
much as 30 percent of residential broadband networks run
without any queue management”. Jim Gettys in his blog [11]
names the main reason of “spotty deployment of AQM by
network operators.” It is a requirement of tuning and possibility
of “trouble if not tuned properly”. Also, he says with reference
to Van Jacobson about two bugs in the classic RED discovered
and proved by Kathy Nichols.

Van Jacobson considers [4], that RED can not be used with
wireless nets because of the huge dynamic range presented by
them. Also, he states there about the lack of the information
helpful for determining the correct queue size RED can
acquire: “I helped put people on the wrong track with RED
which attempts to extract some information from the average
queue size, but it turns out there's nothing that can be learned
from the average queue size.” He names the indicator used by
BLUE and its successors “much more reliable” and pronounce
his work with K. Nichols on RED Lite.

BLUE [12] is the AQM algorithm that uses the packet loss
and link utilization history to manage congestion. BLUE
maintains a single probability which it uses to mark (or drop)
packets, when they are queued. If the queue is continually
dropping packets due to a buffer overflow, BLUE increments
the marking probability, thus increasing the rate at which it
sends back congestion notification. Conversely, if the queue
becomes empty or if the link is idle, BLUE decreases its
marking probability.

BLUE, as any other single-queue AQM algorithm, treats all
flows as a single aggregate. It brings unfairness to its behavior,
because some single aggressive flow flooding the packets into
the queue can push out some packets, that belong to other
flows. To overcome this unfairness, the authors of BLUE
presented the other AQM algorithm – Stochastic Fair Blue
(SFB) which is a BLUE modification that hashes flows with a
Bloom filter and maintains different mark/drop probabilities
for every bin.

The other AQM algorithm, that attempts to save the
protection provided by per-flow scheduling mechanisms, but
combine it with its own simplicity, is RED-PD [13] which is
the acronym for RED with Preferential Dropping. This is an
AQM algorithm based on RED that uses the packet drop
history at the router to detect high-bandwidth flows at the time
of congestion and preferentially drops packets from these

110 of 230

flows. This AQM was designed to be effective at controlling
high-bandwidth flows using a small amount of state and very
simple fast-path operations in an environment dominated by
end-to-end congestion control and a skewed bandwidth
distribution among flows in which a small fraction of flows
accounts for a large fraction of bandwidth.

Despite the intensive research in this area, there are still a
lot of questions [4, 14, 15, 16] in AQM efficiency. Some of
them are related to AQM performance, its behavior in
heterogeneous, dynamic or unreliable environments; others
consider security problems. One of such problems is DDoS
attack vulnerability. Considerations of [17] states that the
existing AQM algorithms are “rather vulnerable to spoofing
DDoS attacks”. However, this paper presents Resilient SFB
(RSFB) algorithm as a solution of this problem, but there is
surely the area for further research.

III. TCP CONGESTION AND QUEUING

TCP is the most widely used transport protocol. Designed
to efficiently consume available bandwidth of dynamic nets
with an unknown topology, it tries to achieve the goal by
continuous monitoring of the network capacity. Until a packet
loss occurs, TCP constantly increases its congestion window as
a reaction on the acknowledgment. Unless limited by a
receiver's window or application providing data for
transmission, it will supply a link with more and more data
being sent in a burst limited by the congestion window.

This technique is used to determine the bandwidth, starting
with a small value and increasing it until a drop caused by
congestion happens. As a reaction on the drop, TCP decreases
its congestion window (halves it or drops to initial value
depending on the use of “fast recovery”). After that, it
increases its window again. The idea of this balancing
determined by four intertwined essential TCP algorithms: slow
start, congestion avoidance, fast retransmit, and fast recovery –
defined in [18], is to keep the network operating near the
inflection point, where the throughput is maximized, the delay
is minimized, and a little loss occurs.

This point is known to be a bandwidth-delay product
(BDP), the value that corresponds to the amount of data “in
flight” exact for total link capacity consumption without
congestion. BDP was a recommendation for the buffer size,
and internet researchers and engineers had to advocate for
sufficiently large buffers [1], because TCP uses burst
transmissions and the lesser buffers could result in heavy
losses.

However, these buffers lead to another problem: with their
presence, they became a part of a “pipe” that TCP tries to fill to
be efficient. The drop indicator used to estimate the available
bandwidth triggers, when the bottleneck buffer is full. It results
in three problems: TCP overestimates the link throughput, the
latency increases due to the growth of the queuing delay, there
is no space in full buffer to absorb the burstiness of the
network.

Despite this fact, firstly recognized in 1989 [1], the packet
loss remains to be the congestion indicator in modern TCP
implementations. So, CUBIC [19] is a default congestion

control algorithm in Linux. This congestion avoidance
algorithm is loss-based, and thus it suffers from the pointed
problems. For instance, [1] demonstrates the bufferbloat
problem in CUBIC.

The reasons of such a behavior are understandable, and
there is a strong interest in better behaving algorithms that take
the delay indicator into account. The problems of existing such
an efficient congestion control were, for example, discussed at
the Linux Plumber Conference in 2011 [21], where the
suggestion about refining a delay-based portion of hybrid
congestion control algorithms was declared.

The idea of a delay-based congestion control is apparently
not new, it was considered by Raj Jain in 1989 [22]. He
suggested using a black-box model of the network, where
changes in round-trip delays can be used as an implicit
feedback, and stated that achieving congestion avoidance in
heterogeneous networks is difficult, because the congestion
feedback from one subnetwork may have no meaning to
sources on other subnetworks.

The delay-based congestion control is promising for the
networks where the latency is important, because delay-based
algorithms tend to minimize queuing delays. It includes the
networks with an active use of realtime data connections like
VoIP or interactive sessions where latency degrades experience
very much. Also, the connections with delay-based congestion
control are known to be more efficient than loss-based in
scenarios, where many connections share the same network
path, because of being more fair and thus being more capable
in an effective cooperation consuming a limited resource.
However, these algorithms are less aggressive (that is
considered as their plus from one point of view) and so, sharing
the link with the greedy loss-based algorithm (like TCP
CUBIC), they will get the less part of an available bandwidth.

These considerations underlie the growing interest in
hybrid congestion avoidance algorithms. The research in this
area resulted in the appearance of several hybrid congestion
control algorithms in the second half of 2000's. Microsoft
Research introduced Compound TCP [20] in 2005. And
University of Illinois developed TCP-Illinois [23] in 2006.
Both algorithms were designed for high-speed links as a
reaction of TCP Reno too slow bandwidth utilization. They are
rather aggressive and neither TCP-Illinois (see 'Background
and motivation' section of [23]) nor Compound TCP (see
Section III of [20]) were designed with a small latency goal in
mind. Moreover, they are considered [24] rather unfair in some
circumstances.

The other interesting congestion avoidance algorithm, that
is to avoid latency increase problem, is TCP-NV [25] presented
by a host networking team member from Google, the main
developer of TCP Vegas [26] Lawrence Brakmo in 2010. The
goal of this algorithm is to prevent queue build-up and packet
loss, while making full utilization of the available bandwidth.
TCP-NV is based on TCP-BIC [27] and behaves like it, unless
the queue build-up is detected. On queue build-up detection, it
decreases the congestion window proportionally to the amount
of the detected build-up. The main problem in this approach,
named by Brakmo, is a noise in RTT measurement caused by

111 of 230

such optimization techniques as TSO, LRO, and interrupt
coalescence. Since TCP-NV is optimized for data-centers, it
has to deal with these hardware tricks inherent to 10G NICs
and has to filter affected measurements with various quirks.

The other problem RTT-based congestion control engines
suffer from is the reverse congestion which results in ACK
delivery delays and thus can be falsely treated by these engines
as forward congestion indication. This problem was mentioned
by Brakmo at the Linux Plumbers Conference in 2010 and is
well illustrated for TCP Compound in [24]. Brakmo's
suggestions for this problem were to prioritize pure ACKs in
host and switches/routers and to measure reverse delay with the
help of a new TCP option and adjust appropriately.

Besides hybrid congestion avoidance algorithms, there are
some delay-based that worth mentioning. The most famous
delay-based algorithm is TCP Vegas [26]. It can not rival with
loss-based algorithms on the same link due to its lesser
aggressiveness, does not fit high-speed links, is not efficient in
nets with very variable delays and can lead to persistent
congestion in some circumstances [28]. However, it is a sign
algorithm, that showed vitality of the delay-based approach and
gave a birth to the whole family of delay-based congestion
avoidance algorithms.

FAST TCP [29] is one of Vegas-derived algorithms. It is a
delay-based algorithm designed for networks with large
bandwidth-delay product with responsiveness in mind, that
seeks to maintain a constant number of packets in queues
throughout the network by measuring the difference between
the observed RTT and the “base RTT”, which is RTT observed
without queuing. It is a promising algorithm, but its fairness is
very sensitive to correct “base RTT” estimation [30] and, being
TCP Vegas descendant, it suffers from some inherent problems
[28]. Another issue of FAST TCP, because of which it can not
be widely used, is patent restrictions imposed by its authors.

The other attitude to delay-based congestion avoidance is
made by the authors of a new CDG algorithm [31] developed
by CAIA, Swinburne University of Technology (Melbourne).
They claim that the biggest limitation of the most delay-based
congestion control algorithms is to infer congestion, when the
path delay hits or exceeds certain thresholds. This approach
suffers from the circumstance, that it is very hard to set the
meaningful threshold, unless there is a reliable information
about the path that packets will take. (It is mentioned above,
for an instance, that FAST TCP suffers from relative unfairness
in case of inability to accurately estimate path “base RTT” or
TCP Vegas causes persistent congestion, when its threshold is
set incorrectly.) They suggest that the threshold should be
abandoned and “delay-gradient” congestion control, that relies
on relative movement of RTT and adapts to particular
conditions along the paths each flow takes, be used. The CDG
algorithm is very interesting and seems to utilize the available
bandwidth rather efficiently compared with loss-based CUBIC
and NewReno algorithms [32]. However, available results of
tests are ambiguous (especially from latency point of view) and
there are few experiments to make a conclusion.

One of the queuing reasons (excluding congestion, when
any queue will obviously become full) is the burstiness. To

decrease this effect, TCP pacing may be worth applying. TCP
pacing is the technique consisting in spreading the transmission
of TCP segments across the entire duration of the estimated
round trip time instead of having a burst at the reception of
acknowledgments from the TCP receiver. Despite offering
better fairness, throughput and low drop rate in some
situations, pacing may be dangerous and, contrary to intuition,
can cause significantly worse throughput because of congestion
signal postponement and synchronized losses [33]. However,
these results vary for different congestion control algorithms
and pacing rates. From [34] it can be concluded that pacing can
cause throughput degradation in mixed (both paced and non-
paced flows) scenarios for various loss-based congestion
control algorithms. On the contrary, [34] shows the better
characteristics for delay-based congestion control algorithms,
when pacing is used, including fairness enhancements due to
the effect of reducing queue variation.

Let us summarize the above observations on TCP
congestion and latency. Loss-based congestion avoidance
algorithms saturate the bottleneck queue, that results in a great
deal of queuing delays in the case of excessive buffering.
Hybrid algorithms are promising in competing with loss-based
in bandwidth utilization. However, their fairness must be
revised, and they have a danger of issuing problems of both
loss-based and delay-based approaches in different scenarios
depending on the way, in which they combine loss-based and
delay-based portions. In general, delay-based congestion
control algorithms obviously have the best latency. These
algorithms issue several difficulties: if they are designed to rely
on a certain threshold, this threshold must be correctly
estimated, otherwise the errors in estimation may result in
algorithm work degradation and even persistent congestion,
delay-based algorithms need rather precise time interval (i.e.
RTT) measurement, the work of delay-based algorithm that
uses RTT may be severely degraded by the reverse congestion,
so forward-only indicators like “single trip times” are much
more reliable. TCP pacing may lead to a worse behavior for
loss-based congestion avoidance algorithms and even increase
latency, but it improves characteristics of flows controlled by
delay-based algorithms.

IV. INTRODUCING ARTCP
Taking into account the above considerations, we introduce

a revised variant of ARTCP – the TCP modification with
delay-based congestion control that uses pacing and pacing
intervals, which is a low latency loss-insensitive solution with a
good throughput.

Adaptive Rate TCP (ARTCP) [35] does not use the
congestion window at all. Instead, it uses pacing intervals
measurement, so called “duty factor”, to determine the
congestion and control the data flow speed. The idea of
ARTCP is to remove burstiness by applying pacing with an
adaptive rate. The pacing here is a key element, because it
determines a sender's speed, and the analysis of its alteration is
used to detect the congestion. To achieve this goal, we
calculate pacing intervals in two points. The first point is a
sender itself, here, pacing interval is just a time difference
between the transmission of two successive segments, which is

112 of 230

determined by currently used transmission rate. The second
point is a receiver. On its side, we calculate the time difference
between two successive arrivals and send it back to the sender
with an acknowledgment [36]. To prevent incorrect calculation
of pacing intervals the sender provides the receiver with
additional information, so called a “packet sequence number”
(PS), so that the receiver could determine (invisible for it in
some cases without this information) losses and packet
reordering efficiently, and thus filter out packets that are not
successive and avoid incorrect estimation of pacing intervals.

We treat these pacing intervals estimation as measures of
transmission and reception rates. Thereby, we can use them on
the sender as a congestion indicator. The situation when the
reception rate is stabilized in the presence of the growing
transmission rate can be certainly taken in as congestion. This
variant is attractive comparing with the fallback RTT-based
delay estimation, because it strictly uses forward direction time
measures only, and thus, it is totally insensitive to the reverse
congestion which causes troubles for most delay-based
congestion avoidance algorithms.

Because ARTCP is not so sensitive to reverse direction
delays, it has no limitations of RTT-based congestion
avoidance algorithms that need immediate acknowledgment
dispatch and behave badly, if delayed acknowledgments are
used. So, with ARTCP we can delay acknowledgment in case
receiver is expecting, that it will transmit data soon, or it is
waiting for a start of the scheduled data transmission, and
piggyback this acknowledgment, as well as pacing interval
information, with these data, thus increase the efficiency of
bandwidth utilization.

To behave well, ARTCP must follow the several states:
slow start, initial multiplicative decrease, recovery, fine tuning,
and multiplicative decrease. Slow start stage is to rapidly
determine the available bandwidth. This state is the first after
the connection setup, and there the sender increases its
transmission rate exponentially. Here, we have to deal with two
contradictory challenges: the first one is to occupy the
available bandwidth as soon as possible, the second is to
prevent big latency growth which is inescapable, if the slow
start caused a congestion. Congestion is mandatory in order to
find the throughput limit. Our goal is to examine it as early as
possible and to drop the transmission rate accordingly to
compensate the congestion.

Compared with loss-based TCP congestion avoidance
algorithms, ARTCP has a better chance to achieve the smaller
transmission rate oscillation in the slow start, because it has no
need to saturate the bottleneck queue to discover the
congestion. Instead, it examines the pacing intervals sent back
by the receiver and checks whether they are not increasing,
while transmission rate still continues increasing. Since we
found the transmission rate we can rely, estimated with pacing
intervals taken from the receiver, we have a bandwidth
estimation. The current transmission rate will be surely greater
than the estimated rate, because congestion is mandatory. So,
we must compensate the congestion by reducing the
transmission rate to the value that is less than the estimated
one.

To perform the compensation, we do the initial
multiplicative decrease which reduces the transmission rate,
and goes to the recovery state in order to return to the estimated
rate, when congestion compensation is over. Congestion
compensation here is the amount of “superfluous” packets we
sent, while the transmission rate is greater than our estimation.
So, we must set the transmission rate lower than the estimation
and increase it to the estimation in the way that allows the
exact compensation we need.

It is a difficult question to what value it's better to drop the
rate and how then it should increase. As a current solution, we
suggest setting the rate as low as necessary, so that the
recovery finishes as soon as possible, and increasing it linearly.
This will allow the bottleneck queue size to decrease more
rapidly, and thus have a propitious impact on the experienced
latency. While linear increase is performing, we must
constantly monitor the receiver's feedback, because the
estimated bandwidth can be reduced by the other connection
activities. The lack of doing that will result in bandwidth
overestimation and in this case it will bring the network to the
congestion. To detect bandwidth reduction in the recovery
state, we can examine, whether the receiver's pacing intervals
do not go down, while we proceed with transmission rate
increasing. Since we achieved the estimated rate or the new
estimation is discovered, we accept this rate as transmission
rate and move to a fine tuning state.

Fine tuning is the most challenging state. It must adjust the
transmission rate to changes in the available bandwidth and be
able to rapidly react to heavy changes (decreases and
increases). We suggest making adjustments in a probabilistic
manner, and at the same time have the guards that can detect
big changes of available bandwidth. Unless delay increase is
detected (increase of the receiver's pacing intervals is
observed), we set positive transmission rate speedup
probability, so that the transmission rate can be increased. This
allows us to increase the transmission rate, when the available
bandwidth grows.

There is an interesting question, how we can inspect that
the available bandwidth heavily increased. As a solution, we
can increase the speedup portion, while we have a positive
feedback from these actions, and reset it on any negative
feedback. Applying these actions, we must be very careful not
to provoke a congestion. To deal with this problem, we may
address to the speedup portion increase only after we are
assured about absence of negative impact on latency with
acknowledgments of the data sent after previous increase.
However, this speedup portion manipulation needs a further
investigation, and we currently do not implement it, but deal
with the probability of (mainly) a linear speedup.

At the same time we are looking for a delay increase. If it is
detected, we set up slowdown probability, instead of speedup.
As opposed to speedup, slowdown portion can be proportional
to the current transmission rate, that makes us rather rapidly
react on latency increases. In any case we must provide two
mechanisms for slowdown: one – for a small tuning of the
transmission rate, and another – for multiplicative decrease.
The first is applied when we have a small receiver's pacing
interval increase or have no decrease after the transmission rate

113 of 230

was increased. We call it “speedup undoing”. The other
mechanism must be invoked if we observe big latency increase
which is considered as a heavy congestion. In this case ARTCP
yields the portion of its bandwidth share by exponential
transmission rate drop. This drop is done by multiplicative
decrease state which divides the current transmission rate by a
certain ratio and then checks, whether it solved the latency
problem. If not, it continues multiplicative decrease, otherwise
it passes the connection to the fine tuning state.

This ends up a concise overview of ARTCP flow control
states. As it is presented above, ARTCP uses the only indicator
of congestion: latency increase which is examined by
calculation of forward direction characteristics only. So,
ARTCP is insensitive to packet losses and reverse congestion,
what makes its idea very attractive. It is designed for lossy
networks and solutions that require low latency, and it is
supposed to be the right approach to the solution of the
bufferbloat problem for links, where congestion is caused by
TCP traffic. The main limitation of ARTCP is that it is a
sender+receiver solution and it requires that both ends
implement ARTCP, in the contrary to many sender-only TCP
congestion avoidance solutions. However, ARTCP is designed
to make it possible to use any TCP congestion avoidance
algorithm as fallback and to switch to it on the fly, if the other
end does not implement ARTCP [36].

[1] J. Gettys, K. Nichols, “Bufferbloat: Dark Buffers in the Internet” //
Magazine Queue – Virtualization, vol. 9, issue 11, New York: ACM,
2011

[2] M. Marchese, QoS over heterogeneous networks, N.J. : John Wiley &
Sons, 2007

[3] J. Nagle, On Packet Switches With Infinite Storage. // RFC 970, 1985.
[4] V. Cerf, V. Jacobson, N. Weaver, J. Gettys, “BufferBloat: What's Wrong

with the Internet?” // Magazine Queue – Log Analysis, vol. 9, issue12,
New York: ACM, 2011

[5] S. Floyd, V. Jacobson, “Random Early Detection gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking, V.1
N.4, August 1993, p. 397-413

[6] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.
Floyd, V. Jacobson, G. Minshal, C. Partridge, L. Peterson, K.
Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang, Recommendations
on Queue Management and Congestion Avoidance in the Internet. //
RFC 2309, 1998.

[7] V. Jacobson, K. Nichols, K. Poduri, “RED in a Different Light”,
unpublished, 1999.

[8] M. May, J. Bolot, B. Lyles, “Reasons not to deploy RED”, technical
report, 1999

[9] S. Harhalakis, N. Samaras, V. Vitsas, “An Experimental Study of the
Efficiency of Explicit Congestion Notification” // PCI '11 Proceedings
of the 15th Panhellenic Conference on Informatics, pp. 122-126

[10] S. Floyd, References on RED (Random Early Detection) Queue
Management, web page, 2008 // url: http://www.icir.org/floyd/red.html

[11] J. Gettys, blog of the author of bufferbloat.net project, web page // url:
http://gettys.wordpress.com/

[12] W. Feng, D. Kandlur, D. Saha, K. Shin, “BLUE: A New Class of Active
Queue Management Algorithms”, U. Michigan Computer Science
Technical Report (CSE–TR–387–99), 1999

[13] R. Mahajan, S. Floyd, D. Wetherall, “Controlling High-Bandwidth
Flows at the Congested Router”, Proceedings to 9th International
Conference on Network Protocols (ICNP), 2001

[14] S. Bohacek, K. Shah, G. Arce, M. Davis, “Signal Processing Challenges
in Active Queue Management” // IEEE Signal Processing Magazine,
2004, pp. 69-79

[15] K. Shah, S. Bohacek, E. Jonckheere, “On the performance limitation of
Active Queue Management (AQM)” // 43rd IEEE Conference on
Decision and Control, 2004, pp. 1016-1022

[16] A. Kuzmanovic, “The power of explicit congestion notification” // ACM
SIGCOMM Computer Communication Review, vol. 35, issue 4, New
York: ACM, 2005

[17] C. Zhang, J. Yin, Z. Cai, “RSFB: a Resilient Stochastic Fair Blue
algorithm against spoofing DDoS attacks” // International Symposium
on Communication and Information Technology (ISCIT), 2009

[18] M. Allman, V. Paxson, E. Blanton, TCP Congestion Control // RFC
5681, 2009

[19] S. Ha, I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant” // ACM SIGOPS Operating Systems Review, vol. 42, issue 5,
2008

[20] K. Tan, J. Song, Q. Zhang, M. Sridharan, “Compound TCP: A Scalable
and TCP-friendly Congestion Control for High-speed Networks” // 4th
International workshop on Protocols for Fast Long-Distance Networks
(PFLDNet), 2006

[21] S. Hemminger, “A Baker's Dozen of TCP bakeoff?” // Linux Plumbers
Conference, 2011

[22] R. Jain, “A Delay Based Approach for Congestion Avoidance in
Interconnected Heterogeneous Computer Networks” // Computer
Communications Review, ACM SIGCOMM, 1989, pp. 56-71

[23] S. Liu, T. Basar, R. Srikant, “TCP-Illinois: A Loss and Delay-Based
Congestion Control Algorithm for High-Speed Networks” //
Proceedings of the 1st international conference on Performance
evaluation methodolgies and tools, 2006

[24] D. Leith, L. Andrew, T. Quetchenbach, R. Shorten, K. Lavi,
“Experimental Evaluation of Delay/Loss-based TCP Congestion Control
Algorithms” // Proceedings of the 6th International Workshop on
Protocols for Fast Long-Distance Networks (PFLDnet 2008), 2008

[25] L. Brakmo, “TCP-NV: Congestion Avoidance for Data Centers” //
Linux Plumbers Conference, 2010

[26] L. Brakmo, L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet” // IEEE Journal on selected Areas in
communications, vol. 13, 1995, pp. 1465-1480

[27] L. Xu, K. Harfoush, I. Rhee, “Binary Increase Congestion Control for
Fast, Long Distance Networks” // INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, vol. 4, 2004, pp. 2514-2524

[28] R. La, J. Walrand, V. Anantharam, “Issues in TCP Vegas”, UCB/ERL
Memorandum, No. M99/3, UC Berkeley, 1999

[29] C. Jin, D. Wei, S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance” // INFOCOM 2004. Twenty-third Annual
Joint Conference of the IEEE Computer and Communications Societies,
vol. 4, 2004, pp. 2490-2501

[30] L. Tan, C. Yuan, M. Zukerman, “FAST TCP: Fairness and Queuing
Issues”, IEEE Communications Letters, vol. 9, no. 8, 2005, pp. 762-764

[31] D. Hayes, G. Armitage, “Revisiting TCP Congestion Control using
Delay Gradients” // Proceedings of 10th International IFIP TC 6
Networking Conference, 2011

[32] G. Armitage, “A rough comparison of NewReno, CUBIC, Vegas and
‘CAIA Delay Gradient’ TCP (v0.1)”, CAIA Technical report 110729A,
2011

[33] A. Aggarwal, S. Savage, T. Anderson, “Understanding the Performance
of TCP Pacing” // Proceedings of the IEEE INFOCOM 2000 Conference
on Computer Communications, 2000, pp. 1157 – 1165.

[34] D. Wei, P. Cao, S. Low, “TCP Pacing Revisited” // Proceedings of the
IEEE INFOCOM 2006 Conference on Computer Communications,
2006, pp. 56-63

[35] I. V. Alekseev, V. A. Sokolov Compensation Mechanism for Adaptive
Rate TCP. // 1-St International IEEE/Popov Seminar "Internet:
Technologies A and Services". P. 68-75, October 1999

[36] A. Sivov, “ARTCP packet structure. Features of the Formation and
Processing of ARTCP Headers in Linux Network Subsystem” //
Modeling and Analysis of Information Systems, vol. 18, №2, Yaroslavl:
Yaroslavl State University, 2011, pp. 129-138

114 of 230

Detecting faults in TFTP implementations using

Finite State Machines with timeouts

M. Zhigulin, S. Prokopenko, M. Forostyanova

Radio-physical department

Tomsk State University

Tomsk, Russia
maxzh81@gmail.com, s.prokopenko@sibmail.com,

mariafors@mail.ru

Abstract—In this paper, we consider a test derivation strategy for

testing protocol implementations based on Finite State Machines

with timeouts. The strategy is applied for testing TFTP

implementations.

Keywords-Finete State Machine (FSM); FSM with timeouts

(timed FSM); transition tour

I. INTRODUCTION

FSM-based test derivation strategies for conformance
testing of protocol implementations are well known [see, for
example, 1-3] and a number of formal methods were developed
for deriving tests which check time constraints of a discrete
event system implementation. Some of them use FSM-based
strategies for test derivation [4-11]. One of such strategies uses
the model of a timed FSM (TFSM) with so-called timeouts [7-
11], i.e., if no input is applied during an appropriate time period
the FSM can move to another prescribed state.
Correspondingly, the behavior of an FMS significantly depends
on a time instance when an input is applied, i.e., the behavior
of the FSM is specified for timed input sequences. In [12], it is
shown how this behavior can be described by an ordinary FSM
with an additional input symbol (a time unit) and thus, despite
of the fact that a test suite derived for such an abstract FSM
using black-box testing methods returns highly redundant tests,
FSM-based test derivation methods can be directly used when
deriving tests from an FSM with timeouts. In this paper, we
derive a test suite as a transition tour of an appropriate FSM,
since W-based testing methods [3] ask for the specification
FSM to be complete and deterministic and this usually does not
hold for FSMs which describe protocol behavior. We then
analyze the fault coverage of a transition tour for TFTP (Trivial
File Transfer Protocol) [13] implementations where the
behavior significantly depends on timeouts. The contributions
of the paper can be summarized as below.

 In this paper, we manually extract an FSM with
timeouts from the description of TCTP, transform the
obtained TFSM into a classical FSM and derive a test
suite as a transition tour of the latter.

 The obtained test suite is then applied to available
TFTP implementations and the set of detected faults is
described.

The structure of the paper is as follows. Section 2 contains
the preliminaries for FSMs with timeouts (TFSMs) and a brief
description of the transformation of such TFSM into a classical
FSM. In Section 3, the TFCP behavior as a timed FSM is
presented and the set of faults which were detected in protocol
implementations using a derived test suite is described. Finally,
we conclude the paper in Section 4.

II. FINITE STATE MACHINES WITH TIMEOUTS

In this paper, we consider Finite State Machines (FSMs)
which are augmented with timeouts in order to explicitly take
into account timed aspects of the system behavior. A timed

FSM S (or TFSM) is a 6-tuple (S, I, O, S, s0, S), where S, I
and O are finite non-empty sets of states, inputs and outputs,

respectively, s0 is the initial state, S S I O S is a

transition relation, S: S S (N {}) is a timeout function

where N is the set of nonnegative integers.
1
 The function S

has two projections S(s)N and S(s)S. If no input is applied at

a current state s before a timeout S(s)N expires then the

TFSM will move to another state S(s)S as it is prescribed by

the timeout function. If S(s)N = then the TFSM can stay at
the state s infinitely long waiting for an input, i.e., in this case,

S(s) = (s,). As usual, the notation s – i/o s is used for a

4-tuple (s, i, o, s) S while using s – t s for a triple S(s)
= (s, t).

Example. Consider a TFSM in Figure 1. If an input ACK_3
is applied at state Wait2 at time instances 0, 1, 2 then the
TFSM produces the output ERROR and moves to state Init.
However, if an input ACK_3 is applied at state Wait2 at time
instance 3 then the TFSM is at state Init and thus, input ACK_3
cannot be applied, since a transition under this input is not
specified at state Init.

 If for each pair (s, i) S I , there is at most one pair (o,

s) O S such that (s, i, o, s) S then the TFSM is
deterministic; otherwise, the TFSM is nondeterministic. If for

each pair (s, i) S I , there is at least one pair (o, s) O S

such that (s, i, o, s) S then TFSM is complete; otherwise,

1 An abstract output can contain a positive integer for describing a

delay of producing an output after an input is applied.

115 of 230

the TFSM is partial. The FSM in Figure 1 is partial and
nondeterministic.

Figure 1. A TFSM for TFTP.

In order to describe the TFSM behavior we use the notion
of a timed input that indicates that an input i is applied at time

t. Correspondingly a timed input is a pair (i, t) I Z+ where
Z+ is the set of nonnegative integers. In order to extend the
transition relation to timed inputs we have to know at which

state s is an FSM when applying an input i at time t and the

state s is determined based on the timeout function [12].

Correspondingly, there is a transition (s, (i, t), o, s) if and only

if there is a transition (s, i, o, s) S. The behavior of the
TFSM is then extended to timed input sequences in a usual
way. Consider the TFSM in Figure 1, state Wait2, input PRQ
and t = 5. At time instance 3 the FSM will move to state Init

with the timeout and thus, there is a transition (Wait1, (PRQ,
5), ERROR, Init) in the TFSM. Given a timed input sequence

, a pair (,), O*, is a timed trace at state s if there exists

state s such that (s, , , s) S. The set outS(s,) is the set of
all possible output responses of the TFSM at state s to the

timed input sequence : outS(s,) iff / is a timed trace
at state s.

Given a TFSM S, state s of the TFSM is an input-reachable

state (ir-state) if there exists a timed trace (,) such that (s0,

, , s) S [12]. If a state is not input reachable then it is an
input-unreachable (iur-state). Iur-states are not stable: we only
can implicitly check that a TFSM has passed this state. The

TFSM is connected if each state s is an ir-state or there exists

an ir-state s such that s = timeS(s, t) for some t. In this paper
we consider only connected FSMs. Given a TFSM S, a finite
set TS of timed input sequences is a transition tour of S if for
each connected submachine B of S, each ir-state b of B and
each input i specified at state b, it holds that the set TS has a

timed input sequence .(i, 0) such that takes the TFSM B
from the initial state to state b.

Given a transition tour TS of the TFSM S, the test suite TS
can detect all output faults at each ir-reachable state. Moreover,
as we illustrate in the next section, such a test suite can also
detect other functional faults. A transition tour of a TFSM can
be derived in different ways. A TFSM can be transformed into

a classical FSM in such a way that there is the one-to-one
correspondence between timed traces of the TFSM and traces
of the abstract FSM with the tail input symbol different from 1
[12]. In this case, similar to [4], a special input 1 that
corresponds for waiting 1 time unit is added. Since an FSM has
to provide an output to each input, we also add a proper output
N that corresponds to the case when the FSM does not produce
anything. If a timeout at state is more than 1 then we add
copies of the next state: the number of copies equals to the
value of timeout minus 1. For each other input, there is the
same transition at a copy of a state s as at the original state s. If
there is an output delay T for a transition i/o then we consider a
timed output (o, T) instead of the output o.

In this paper, given a TFSM we derive a test suite TS using
the following steps.

Step 1. Derive a corresponding classical FSM adding the
designated input 1 (WAIT_1_time_ instance) and
output N.

Step 2. If a derived FSM is nondeterministic derive a set
of deterministic submachines in order to cover
each transition of the initial FSM.

Step 3. For each deterministic submachine:
- derive a test suite as a transition tour;
- replace each chain 1…1i of k transitions 1…1
and an input i as a timed input (i, k);
- merge all the test suites into a single test suite TS.

For each conforming TFTP implementation P and each

input sequence TS, it holds that outP(p0,) outS(s0,). If

for some input sequence TS, it holds that outP(p0,)

outS(s0,) then an implementation under test is faulty and the
fault is detected by the test suite TS.

III. TESTING TFTP IMPLEMENTATIONS

The TFTP brief description is taken from [13]. The TFTP
(Trivial File Transfer Protocol) is a simple file transfer protocol
and it can read and write files (or mail) from/to a remote server.
At the first step, there is a request for connection and when the
connection is opened the file containing a sequence of blocks
of 512 bytes can be sent. If a data packet has less than 512
bytes then there are no packets to be transferred. Each packet
contains one data block, and must be acknowledged before the
next packet can be sent. A loss of a data packet is prevented by
the timeout functions; a lost packet can be retransmitted and
the sender has to keep just one packet at hand for
retransmission. According to RFC, both connected machines
are considered as senders and receivers: one sends data and
receives acknowledgments; the other sends acknowledgments
and receives data. When an error occurs an error packet is sent.
Most errors cause the termination of the connection, and
timeouts are used to detect such a termination when the error
packet has been lost. Errors are caused by three types of events.
The request cannot be satisfied, i.e., the file is not found, there
is access violation etc. Another error type occurs when an
incorrectly formed packet is received or there is no access to
necessary resources. The only error condition that does not
cause termination is a situation when the source port of a
received packet is incorrect. This protocol is very restrictive, in

116 of 230

order to simplify implementation. Nevertheless, its available
implementations still do not conform to the specification.

Five kinds of packets are supported:

 Read request (RRQ);

 Write request (WRQ);

 Data (DATA);

 Acknowledgement (ACK);

 Error (ERROR).

Packages RRQ and WRQ are sent by a client for
connection establishment. The connection is established if after
sending a packet RRQ (WRQ) the server replies with the first
data packet DATA_1 (or after the acknowledgement ACK_0 to
zero data packet). Each data packet DATA has the designated
number that is an integer started from 1. Correspondingly,
when acknowledging the receipt of a data packet a recipient
sends the response ACK with the same number. Thus, when
the server sends the response ACK_0 as a reply to the request
to read the file this only means that the request is confirmed
and the server is ready to transfer data. If the server replies with
ERROR then the connection is broken and a client has to ask
for the connection again. The server uses a special port for
requests that is 69 by default. When getting a positive response
the server a new port is randomly assigned for data
transmission. The latter allows other clients using the main
port.

In order to simplify the TFSM that is obtained when
describing the protocol behavior we will test only the part that
is responsible for getting files from the server (the request
RRQ) under the following assumptions. Not more than three
packages are transferred as a sequence, no retranslation is
allowed and the timeout for waiting a packet equals three
seconds. As we show below, even such limitations allow the
derivation of a TFSM based test suite that detects faults in
known protocol implementations.

Figure 1 represents a TFSM that describes the TFTP
behavior when getting the request RRQ. State Init is the initial
state. At this state only one input is specified that corresponds
to the request to read the file. According to the protocol
description, when the first part of DATA (DATA_1) is sent
after the request and the FSM enters state Wait1. If there is no
such a file or no access to the file, then the server responses
with the message about an error (ERROR) and returns to the
state Init. The behavior is mostly the same at states Wait1,
Wait2, Wait3: the system is waiting for the acknowledgement
of the sent data packet. If there is no acknowledgement after 3
seconds then the connection is broken (since due to the above
restrictions, the retranslation is not allowed in the simplified
TFSM description). Otherwise, the second packet DATA_2 is
sent and the system enters state Wait2. If this packet is
acknowledged (there is the input ACK_2) then the third packet
Data_3 is sent and the system enters state Wait3. If there is the
acknowledgement ACK_3 then all the packets have been
received and the connection can be closed. Duplicated
acknowledgements are ignored by the server.

A transition tour derived for the FSM in Figure 1 has total
length of 674 inputs. This has been used for testing some TFTP
implementations.

The following implementations being tested:

 class TFTPServer defined in the commons-net-2.0.0
library developed by Apache;

 atftpd Linux server developed by Jean-Pierre
Lefebvre.

Both implementations have been declared to support TFTP
[13]. However, the derived FSM with timeouts only partially
describes the behavior of the adftp server, since there is no
parameter in the implementation for changing the number of
retranslations. Some mismatching has been detected between
the protocol specification [13] and an implementation under
test.

When testing the class TFTPServer defined in the
commons-net-2.0.0 library the following mismatching has been
detected. An acknowledgement with the unsent packet number
has been ignored while according to the specification [13],
these packets have to be declared as ERROR packets and the
corresponding message has to be sent.

When testing atfdp another mismatching has been
detected. When the acknowledgement with any number has
been applied the server responded with a DATA packet with
the next number. In other words, for example, after applying an
input sequence (PRQ,0)(ACK_3,0) the output sequence
DATA_1.DATA_4 has been observed which does not match
the protocol specification [13].

IV. CONCLUSIONS

In this paper, we have studied a test suite that is derived
based on the TFSM specification that is extracted from the
TFTP description. The test suite has been derived as a
transition tour of a corresponding FSM. As the performed
experiments show, such test suites can be efficiently used for
conformance testing of protocol implementations. A similar
approach has been used for testing IRC and SMTP
implementations [14, 15] and a number of inconsistencies have
been detected. As a future work, we are going to study the fault
coverage of test suites which are derived using other ‘black
box’ testing methods.

REFERENCES

[1] M. P. Vasilevskii, “Failure diagnosis of automata,” translated from
Kibernetika, No.4, 1973, pp. 98-108.

[2] T. S. Chow, “Test design modeled by finite-state machines,” IEEE
Trans. SE, vol. 4, No. 3, 1978, pp. 178-187.

[3] M. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, N. Yevtushenko.

FSM-based conformance testing methods: A survey annotated with

experimental evaluation. Information and Software Technology, 52,
2010, pp. 1286-1297.

[4] J. Springintveld, F. Vaandrager, P. D'Argenio,.Testing Timed Automata.
Theoretical Computer Science, 254(1-2), 2001, pp. 225-257.

[5] A. En-Nouaary, R. Dssouli, F.Khendek. Timed Wp-Method: Testing
Real-Time Systems, IEEE TSE 28(11), 2002, pp. 1023-1038.

117 of 230

[6] K. El-Fakih, N. Yevtushenko, H. Fouchal. Testing Timed Finite State

Machines with Guaranteed Fault Coverage. TestCom/FATES, 2009, pp.
66-80.

[7] M. G. Merayo, M. Nunez, I. Rodriguez. Extending EFSMs to Specify

and Test Timed Systems with Action Durations and Time-outs. IEEE
Transactions on Computers, 57(6), 2008, pp. 835-844.

[8] M. G. Merayo, M. Nunez, I. Rodriguez. Formal testing from timed finite
state machines // Computer Networks. 52 (2), 2008, pp 432-460.

[9] M. Gromov, D. Popov, N. Yevtushenko. Deriving test suites for timed

Finite State Machines. Proceedings of IEEE East-West Design & Test
Symposium’08.,2008, pp. 339-343.

[10] M. Gromov, K. El-Fakih, N. Shabaldina, N. Yevtushenko.

Distinguishing Non-deterministic Timed Finite State Machines, 11th

Formal Methods for Open Object-Based Distributed Systems and 29th

Formal Techniques for Networked and Distributed Systems,
FMOODS/FORTE, LNCS 5522, 2009, pp. 137-151.

[11] M. Gromov, N. Yevtushenko. Synthesis of distinguishing test cases for

timed finite state machines // Programming and Computer Software,
2010. – V. 36. – №.4. – P. 216-224.

[12] М. Zhigulin, N. Yevtushenko, S. Maag, A. Cavalli. FSM-Based Test

Derivation Strategies for Systems with Time-Outs // 11th International
Conference On Quality Software – Madrid, July 2011. – P. 141-150.

[13] RFC1350 – The TFTP Protocol (revision 2). URL: http://www.rfc-
editor.org/rfc/rfc1350.txt

[14] M.V. Zhigulin, A.V. Kolomeez, N.G. Kushik, A.V. Shabaldin. Testing

IRC implemintations based on extended finite state machine // Bulletin

of the Tomsk Polytechnic University. – 2011. – V. 318, № 5. – P. 81-84
(in Russian).

[15] A. Nikitin, N. Kushik. On EFSM-based Test Derivation Strategies //

Proceedings of the 4
th
 Spring/Summer Young Researchers’ Colloquium

on Software Engineering. – Nizhny Novgorod, Russia. – 2010. – P. 116-
119.

118 of 230

Formalization of Initial Requirements

for the Design of Wireless Sensor Networks

Kislyakov, M.A.

Vladimir State University named after

Alexander and Nikolay Stoletovs, VSU

Vladimir, Russian Federation

kislyakov.maxim@gmail.com

Mosin, S.G.

Vladimir State University named after

Alexander and Nikolay Stoletovs, VSU

Vladimir, Russian Federation

smosin@ieee.org

Abstract — The paper discusses methods for the formal

representation of the initial requirements for wireless sensor

networks at the design stage. The main objective of the

formalization is generating the basic mathematical tool and

optimization criteria for individual stages of the design process.

The automation of the design procedures with the use of

computer technology is planned in terms of the proposed basis.

Keywords – wireless sensor network; formalization;

automation; optimization criterion

I. INTRODUCTION

Wireless sensor networks (WSN) are among the most
relevant technologies at present. The applications of this
technology are systematized, classified and include such basic
directions as military defense, agriculture, industry, medicine
and household sector [2, 3]. Moreover, the significance of the
systems based on sensor networks is high in developed as well
as in developing countries [1].

Currently, there are several manufacturers who offer their
solutions on the market. Such solutions have a number of
technical parameters which determine the range of use. It
should be noted that the existing hardware and software
complexes of sensor networks are created with the use of
computer technology, but only individual stages of the design
process are subject to automation. Consequently, the complex
automation of the design procedure set is a relevant issue.

The task of automating the WSN design process involves
the generation of the flow to be performed by the system under
the supervision of a developer. In other words, the automation
system is a software implementation of the design flow, where
the developer is only a user.

The design of complex objects is based on the application
of ideas and principles presented in a number of theories and
approaches. The most common one is the system approach
which determines the number of automation system
components [4]. Firstly, the system must have a hierarchical
structure. The hierarchical representation allows identifying a
number of subsystems that can be designed independently.
Secondly, the system must include analysis and simulation
procedures. The purpose of these procedures is to identify a set
of object parameters which will allow deciding on the next
stage. Thirdly, the system must contain synthesis and

optimization procedures which solve the problems of
generating and modifying the object in order to achieve the
parameters meeting the optimization criteria.

The automation design system allows for the development
of the target object, but this is impossible without the formation
of fixed criteria. Such criteria may be formed only on the basis
of a number of a developer’s initial requirements to the
designed object. However, such requirements have a user-
oriented format that is not suitable for the system. Therefore,
the formalization of initial parameters is necessary.

The paper presents methods for the formalization of the
initial requirements to a designed WSN object. The structure of
the paper includes four sections. Section II contains a brief
description of the design flow of WSN, according to which the
optimization criteria based on the initial requirements for an
object are proposed. Five key parameters that must be entered
into the system by the user are identified in Section III. The
proposed number of parameters is considered as sufficient to
form a complete network object. Section IV concludes the
paper.

II. DESIGN FLOW OF WSN

A detailed description of the design flow of WSN is not the
purpose of this paper, but the general idea of the design process
is necessary.

The automation design system is primarily determined by
its flow. The flow determines the order of the design
procedures and all the transitions between them. Consider the
sequence of procedures applicable to WSN design.

The design flow of WSN comprises the following steps:

 Entering the initial requirements for WSN;

 Determination of a component basis;

 The synthesis of the basic structure;

 The use of the strategy for reliability;

 The use of the strategy for energy efficiency;

 Simulation;

 Generating the final project.

119 of 230

The stages of providing reliability and energy efficiency are
iterative, which determines the presence of synthesis
procedures as well as analysis procedures in the form of
components. The design flow is also presented as a cycle,
which ensures the process of parameter convergence of the
designed object to the initial requirements.

III. FORMALIZATION OF INITIAL REQUIREMENTS

Entering the initial requirements of the project is the first

procedure to be performed. The automation of entering the

information is difficult. It is based on the full interaction of the

developer and the system. However, the formalization of the

input data can be automated with the use of mathematical tool

proposed in the paper.

Five main parameters necessary for the design of WSN

must be singled out of the set of initial requirements. The

parameter list is given below:

 Life cycle of the network;

 Coverage area;

 Degree of information relevance;

 Data transmission rate;

 Level of network reliability.

The initial requirements are the basis for generating the

internal parameters of the system. Their formalization is given

below.

A. Life cycle of the network

The life cycle of the network determines the maximum

uptime of the designed object. Theoretical calculation of the

uptime of the network is presented in (1).

)min(yc TT (1)

where Тс is the total uptime of the network, Ту is the set of
uptime values of the nodes such that Ту = {ty1, ty2, … , tyn},
n is the number of network nodes.

On the other hand, the life cycle of the node corresponds to
the number of periods in the schedule (2).

ypiyi tmt (2)

where i = {1..n} is the index of the node, tуp is the duration of
one period in accordance with the schedule, mi is the number of
periods for the i-th node.

Five components of tуp must be distinguished:

 tуp0 – sleep period;

 tуp1 – waiting period;

 tуp2 – period of reading sensor data;

 tуp3 – period of data reception from another node;

 tуp4 – period of data transmission to another node;

 tуp5 – period of information processing.

Parameter mj matches period tуpj. This parameter specifies
the number of repetitions of period tуpj for the node. Equation
(3) is the calculation of period tуp.

5

0

)(
j

ypjjyp tmt (3)

Each period tуpj is characterized by its indicator of energy
consumption. Thus, parameter Sj which determines the
discharge rate of the independent power supply unit
corresponds to period tуpj. In turn, the power supply has a
certain capacity of P. Let the capacity of power supply for all
nodes be equal to P. Then the optimization criterion has the
form represented by (4).

5

0

)(
j

jypjj StmP
 (4)

The values of parameters tуpj and Sj are known. Parameter
mj is calculated based on the simulation of the object. Based on
the initial formulation of the problem, the number of schedule
periods m corresponds to the number of sleep periods m0 of the
node. Thus, the parameters of the life cycle of each node in the
network can be calculated based on (2) and (4). The total
uptime of the network is formed based on (1). Comparing the
calculated parameter Tc with the initial requirements for the life
cycle of the network, the system selects the next stage of the
design flow.

B. Coverage area

The coverage area determines the spatial arrangement of
network nodes which perform the role of sensors. Considering
it, the network has a static topology, and location of nodes does
not change with time. Then the network coverage can be
represented as three sets: X = {x1, …, xn}, Y = {y1, …, yn},
Z = {z1, …, zn}.

Each node contains a transmitter with a certain power level.
The power level of the transmitter determines the node action
radius R in open space. Let the action radius for all nodes be
equal to R.

Consider the case where all nodes can act as relays of
information. Then the distance between nodes i and j in the
three-dimensional space will be calculated by (5).

 222)()()(jijijiij zzyyxxD (5)

where i, j = (1..n) and i ≠ j.

If the nodes connected to the sensors can not receive the
information via radio channel, the relay must be added to the
network. In this case, the calculation of the distance between
the nodes is performed by (6).

 2'2'2')()()(jijijiij zzyyxxD (6)

where i = (1..n), j = (1..l), l is the number of relays added to the

network,),,('''
jjj zyx are coordinates of the j-th relay. It

120 of 230

should be noted that the relays can be added in the case of
equivalent nodes.

To fulfill the initial requirements of the coverage the system
should ensure network connectivity. Each node must have at
least one route for the transmission of information over the
network. This requirement can be expressed by (7) and (8) for
equivalent and nonequivalent nodes, respectively.

n

j

iji DRfQ
0

)((7)

l

j

iji DRfQ
0

)((8)

where f(x) is the function of condition calculation. If the
condition is satisfied, then f(x) = 1, otherwise f(x) = 0. Thus, the
network connectivity is provided, if set Q contains no elements
equal to zero. If the connectivity condition is not satisfied, an
extra relay is added to the network.

C. Degree of information relevance

The transmission time from the source to the receiver
determines the degree of information relevance. It is considered
that for a period of scheduling a network node can receive and
transmit no more than one information packet.

Let M = {m1, …, mn} be the set which defines the same
route for each node in the network. For each route mi parameter
hi is the dimension. The route dimension is numerically equal
to the number of relays on the path from the source to the
destination node.

Parameter Ta is the initial requirement to the degree of
information relevance. This parameter is numerically equal to
the maximum information transmission time. Then the
relevance criterion can be determined by (9).

ypa tHT)max((9)

where H = {h1, …, hn} is a set of route dimensions.

If (9) is fulfilled, the relevance is provided, otherwise
generating new routes is necessary.

D. Data transmission rate

The user forms the requirements to data transmission rate Sp
in accordance with the target function of the network. In
general terms, the user specifies the maximum transmission
rate of each sensor node. The initial parameters are limited only
by the bandwidth of the radio channel. However, the routes
may overlap using shared relays. Thus, the bandwidth is
reduced in proportion to the number of overlapping routes.

The bandwidth of the radio channel is defined as Sr. The
next step is to define set U = {u1, …, un}, where ui – the
number of the routes which include the i-th network node.
Then the initial requirement criterion for the data transfer rate
is expressed by (10).

)max(/ USS rp (10)

If (10) is fulfilled, the transfer rate is provided, otherwise
generating new routes is necessary.

It should be noted that the parameters of relevance and data
transmission rate are interrelated. Set Hm = {hm1, …, hmn} is
added. Its elements are calculated according to (11). Then (9)
takes the form of (12).

iimi uhh (11)

ypma tHT)max((12)

Consequently, the parameters of relevance and data
transmission rate depend on set M. Reducing the number of
intersections of the routes increases the data transmission rate
and reduces the total time of message delivery.

E. Level of network reliability

The reliability of the network is one of its most important
parameters. The failure probability of the network is defined as
Pc. The failure probability of the node is defined as Py.
Parameter Py is determined by the selected component basis. It
is formed on the basis of specifications.

When generating a static network topology the routes can
be calculated at the design stage. If each node doesn’t use more
than one route, then Pc = Py. If the system provides a number
of reserved routes, the value of Pc is reduced, but the exact
mathematical representation is quite difficult to make. The
simplest way to assess the reliability of the process will be
running a simulation considering Py and iterative analysis of
the network connectivity. The reliability is supposed to be
estimated based on statistical data.

IV. CONCLUSION

The methods for the formal representation of the initial
requirements for WSN have been proposed in the paper.
Mathematical models of optimization criteria which ensure the
convergence of the design process have been examined. The
proposed mathematical tool is aimed at automation of the
project procedures in accordance with the design flow of WSN.

The development of CAD tools for WSN design based on
the proposed mathematical models is the next task of the
authors.

REFERENCES

[1] S. Taruna, Kusum Jain, G.N. Purohit, “Application Domain of Wireless
Sensor Network: - A Paradigm in Developed and Developing Counties,”
IJCSI International Journal of Computer Science Issues, vol. 8, issue 4,
no 2, July 2011, pp. 611–617.

[2] I. Khemapech, I. Duncan, A. Miller, “A Survey of Wireless Sensor
Networks Technology,” in PGNET, Proceedings of the 6th Annual
PostGraduate Symposium on the Convergence of Telecommunications,
Networking & Broadcasting, (Liverpool, UK), EPSRC, June 2005.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless
Sensor Networks: a Survey,” Computer Networks, vol. 38, 2002,
pp. 393–422.

[4] I.P. Norenkov, V.B. Manichev, “Osnovi teorii proektirovaniya SAPR
[Basic Theory and Design CAD],” Moscow: High school, 1990, p. 335.
(rus).

121 of 230

On Temporal Properties of Nested Petri Nets
Leonid Dvoryansky

Department of Software Engineering
National Research University Higher School of Economics

Moscow, Russia
leo@mathtech.ru

Daniil Frumin
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

difrumin@edu.hse.ru

Abstract—Nested Petri nets is an extension of Petri net formal-
ism with net tokens for modelling multi-agent distributed systems
with complex structure. Temporal logics, such as CTL, are used
to state requirements of software systems behaviour. However,
in the case of nested Petri nets models, CTL is not expressive
enough for specification of system behaviour. In this paper we
propose an extension of CTL with a new modality for specifying
agents behavior. We define syntax and formal semantics for our
logic, and give small examples of its usage.

Index Terms—Petri nets, nested Petri nets, temporal logic, CTL

I. INTRODUCTION

Petri nets is a popular formalism for modelling concurrent
systems. Different extensions of Petri nets are extensively
studied in the literature. The most popular are coloured Petri
nets [5]. Nested Petri nets [6] is a formalism for modelling
hierarchical multi-agent systems. There is a variety of tem-
poral logics for specifying behavioural properties of discrete
systems, such as HML, CTL, LTL, µ-calculi [4], [1], [3].
However, they are not convenient for expressing some natural
properties of nested Petri nets.

The paper is organized as follows. To start with, we give
some necessary foundations of labelled transition systems and
Petri nets. Then we describe nested the Petri nets formalism.
After that we give some examples of nested Petri nets proper-
ties we would like to express, and define nCTL – an extension
of CTL for nested Petri nets. Finally we describe a formal
semantics for nCTL. The paper ends with a conclusion.

II. BACKGROUND

Definition 1. A Labelled Transition System (LTS) is a tuple
(S, q0, R,Act) where
• S – a set of states (worlds);
• Act – a set of actions;
• q0 ∈ S is an initial state;
• R ⊆ S ×Act× S is a transition relation.

For convenience we write s a−→ s′ instead of (s, a, s′) ∈ R.

Definition 2. A Petri net (P/T-net) is a 4-tuple (P, T, F,W)
where
• P and T are disjoint finite sets of places and transitions,

respectively;

The research is partially supported by the Russian Fund for Basic Research
(project 11-01-00737).

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;
• W : F → N \ 0 – an arc multiplicity function, that is, a

function which assigns every arc a positive integer called
an arc multiplicity.

We denote by W̃ the extension of W by zero

W̃ (x, y) =

{
n, xFy ∧W (x, y) = n

0, ¬xFy

A marking of a Petri net (P, T, F,W) is a multiset over P ,
i.e. a mapping M : P → N. By M(N) we denote a set of all
markings of a P/T-net N .

We say that the transition t in a P/T-net N = (P, T, F,W)
is active in the marking M iff for every p ∈ {p | (p, t) ∈ F}:
M(p) ≥ W̃ (p, t). An active transition may fire, resulting in
a marking M ′, such as for all p ∈ P : M ′(p) = M(p) −
W̃ (p, t) + W̃ (t, p).

III. NESTED PETRI NETS

In this section we define nested Petri nets (NP-nets) [6]. For
simplicity we consider here only two-level NP-nets, where net
tokens are usual Petri nets.

Definition 3. A nested Petri net is a tuple
(Atom,Expr,Lab, SN, (EN1, . . . , ENk)) where
• Atom = Var ∪ Con – a set of atoms;
• Lab is a set of transition labels;
• (EN1, . . . , ENk), where k ≥ 1 – a finite collection of

P/T-nets, called element nets;
• SN = (PSN , TSN , FSN , υ,W,Λ) is a high-level Petri

net where
– PSN and TSN are disjoint finite sets of system

places and system transitions respectively;
– FSN ⊆ (PSN × TSN) ∪ (TSN × PSN) is a set of

arcs;
– υ : PSN → {EN1, . . . , ENk}∪{•} is a place typing

function;
– W : FSN → Expr is an arc labelling function;
– Λ : TSN → Lab ∪ {τ} is a transition labelling

function, τ is the special “silent” label;

The arc expression language Expr is defined as follows. Let
Con be a set of constants interpreted over A = Anet ∪ {•}
and Anet = {(EN,m) | ∃i = 1, . . . , k : EN = ENi,m ∈
M(ENi)}, i.e. Anet is a set of marked element nets. Let

122 of 230

Var be a set of variables. Then an expression in Expr is
a multiset over Con ∪ Var. The arc labeling function W is
restricted in such way that constants or multiple instances of
the same variable are not allowed in input arc expressions
of the transition, constants and variables in the output arc
expressions should correspond to the types of output places,
and each variable in an output arc expression of the transition
should occur in one of the input arc expressions of the
transition.

A marking M in a NP-net NPN is a function mapping each
p ∈ PSN to some (possibly empty) multiset M(p) over A. By
abuse of notation, a set of all markings in a NP-net NPN is
denoted by M(NPN).

A behavior of an NP-net consists of three kinds of steps. A
system-autonomous step (resp. element-autonomous step) is a
firing of a transition, labeled with τ , in the system net (resp.
in one of the element nets).

An element-autonomous step is a transition firing according
to the standard firing rules for P/T-nets.

To describe a system-autonomous step we need the concept
of binding.

Definition 4. Let Vars(e) denote a set of variables in an
expression e ∈ Expr. For each t ∈ TSN we define W (t) =
{W (x, y) | (x, y) ∈ FSN ∧ (x = t∨ y = t)} – all expressions
labelling arcs incident to t.

A binding b of a transition t is a function b : Vars(W (t))→
A, mapping every variable in the t-incident arc expression to
some value.

We say that a transition t is active w.r.t. a binding b iff
∀p ∈ {p | (p, t) ∈ FSN}: b(W (p, t)) ⊆ M(p). An active

transition may fire (denote M
t[b]−−→ M ′) yielding a new

marking M ′(p) = M(p) − b(W (p, t)) + b(W (t, p)) for each
p ∈ PSN . An autonomous step in a net token changes only
this token inner marking. An autonomous step in a system net
can move, copy, generate, or remove tokens involved in the
step, but doesn’t change their inner markings.

A (vertical) synchronization step is a simultaneous firing
of a transition, labeled with some λ ∈ Lab, in a system net
together with firings of transitions, also labeled with λ, in
all net tokens involved in (i.e. consumed by) this system net
transition firing. For further details see [6]. Note, however, that
here we consider a typed variant of NP-nets, when a type of
an element net is instantiated to each place.

IV. TEMPORAL LOGICS

In this section we describe CTL – computational tree logic,
which is widely used for specifying temporal properties of
reactive systems.

A CTL formula is defined by the following grammar:
Φ ::= true | (¬Φ) | (Φ1 ∨ Φ2) | EU(Φ1,Φ2) | AU(Φ1,Φ2) |
EX(Φ) | p
where p is an atomic proposition.

A CTL formula is interpreted over Kripke structures. Kripke
structure is a labelled transition system (c.f. definition 1) where
Act is a singleton {τ}.

We can recursively define interpretation of a given CTL
formula φ over a Kripke structure K and a current state s.
We suppose some fixed interpretation of atomic propositions
I : S ×AP → {true, false}.
• (K, s) |= true;
• (K, s) |= p iff I(p, s) = true;
• (K, s) |= (φ1 ∨ φ2) iff (K, s) |= φ1 or (K, s) |= φ2;
• (K, s) |= (¬φ) iff (K, s) 6|= φ;
• (K, s) |= EX(φ) iff ∃(s, s′) ∈ R. (K, s′) |= φ;
• (K, s) |= EU(φ1, φ2) iff there exists a path s1s2 · · · in
K (that is s1

τ−→ s2, s2
τ−→ s3, · · ·) such that: s1 = s and

∃n. (∀j ∈ 0, n− 1.(K, sj) |= φ1) ∧ (K, sn) |= φ2;
• (K, s) |= AU(φ1, φ2) iff for every path s1s2 · · ·

in K the following holds: s1 = s and ∃n. (∀j ∈
0, n− 1.(K, sj) |= φ1) ∧ (K, sn) |= φ2.

We can also define additional useful operator weak un-
til: AW(φ, ψ) = ¬EU(φ ∧ ¬ψ,¬φ ∧ ¬ψ), EW(φ, ψ) =
¬AU(φ ∧ ¬ψ,¬φ ∧ ¬ψ). Intuitively, if model satisfies
AW(φ, ψ) (resp. EW(φ, ψ)) then for all paths (resp. there
exists a path) in which either φ is true until we encounuter ψ
or φ is always true. The difference between AW(ψ, φ) and
AU(ψ, φ) is that in the former it’s not necessary that φ is
reached.

V. TEMPORAL PROPERTIES OF NP-NETS

Let’s consider the following example (Fig.1). Here the left
net is a system net with the net token α residing in p1, and α
depicted in the right part of Fig.1.

p1 p2
λ

T1

x x

T2

x x

λ

t1

t2

Fig. 1. NP-net NPN1

LTS representing the behaviour of this NP-net is shown in
Fig.2.

Imagine, we want to check that in every net token transitions
t1 and t2 fire by turns. We could try the formula AG((t1 =⇒
AXAW(¬t1, t2)) ∧ (t2 =⇒ AXAW(¬t2, t1))). Although
this approach might look attractive at the first sight, it does
not work in many cases.

To show why our approach does not work here let’s take a
closer look at the LTS (Fig.4) corresponding to NPN2 (Fig.4).

Since t1 appears “before” t2 in LTS Σ2, we can conclude
that NPN2 satisfies our formula. However, actually in the
second net token t2 fired before t1. The problem is that
transition firings in different net tokens are indistinguishable
in our model: t2 in figure 4 refers to the firing of t2 in the net
token which originally resided in q3, but Σ2 does not contain
any information about that.

To handle such properties we introduce a new modality in
the next section.

123 of 230

M0start

T1,t1

M1

t2

M2

T2 M3

Fig. 2. LTS corresponding to NPN1

q1

q2

q3

q4

λ

T1x

x

ψ T2

xy

1 λ

t1

ψ

t2

Fig. 3. NP-net NPN2

VI. NCTL

In the following section we present a solution to the problem
described in the previous passage by introducing additional
modality.

A. Syntax

To specify properties concerning states (markings), system
transitions and transitions in element nets we introduce a logic
with three categories of formulae. Just like in CTL we make
use of path quantifiers in both state and transition formulae.

We define the syntax of nCTL with a fixed nested Petri net
NPN in mind.

State formulae: A ::= true | ω | ¬A | (A1 ∨ A2) | 〈B〉 |
[C] | EU(A1,A2) | AU(A1,A2)

Transition formulae: B ::= true | χ | ¬B | (B1 ∨B2) | 〈A〉 |
EU(B1,B2) | AU(B1,B2)

Element transition formulae: C ::= true | γ | ¬C | (C1∨C2) |
[A] | EU(C1, C2) | AU(C1, C2) | AXC

Here true is a boolean constant, ω is a function, called
a marking predicate, with the type M → {true, false}, i.e.
a predicate on the set of all markings. A function χ maps
transitions T of SN to booleans. γ is a predicate on set of all
transitions of all element nets (we do not need a predicate on

M0start

T1,t1

M1

T2,t2

M2

Fig. 4. LTS Σ2 of NPN2

markings of element nets, since every marking of an element
net can be characterized by a subset ofM). EU and AU are
familiar from the conventional CTL.

A nCTL formula is a well-formed state formula.

B. Examples

The idea of using both state and event modalities were first
developed in ASK-CTL library for coloured Petri nets [2]. We
extend this idea to NP-nets.

Intuitively, when we encounter an element transition sub-
formula, we switch our interpreting context to an LTS of an
element net. Nesting of the modalities allow us to switch
back and forth between contexts. [φ] means that there exists a
path in the LTS of the NP-net along which φ holds for every
element net.

Now we can express the “switching” property for the NPN2

(Fig.3): [AU(¬t2, t1) ∧ AG(t1 =⇒ AXAU(¬t1, t2)) ∧
AG(t1 =⇒ AXAU(¬t1, t2))]. The AU(¬t2, t1) part is
necessary to check whether t1 is the first transition to be fired.

In order to properly verify whether the LTS, corresponding
to NPN2, is a model for our formula, we should change
the way we construct the LTS. Firsly, we introduce a set
N = {n0, n1, . . . } every member of which represents a single
element net token (note that N is different from Anet, since
the latter contains only types of element nets together with
their markings, while the former also distinguishes between
individual tokens). Now we mark arcs in a LTS with tuples of
the form (τ, ni), where τ a name of transition in an element
token ni ∈ N . From here on in we use notation τ [ni] to denote
(τ, ni).

The new LTS corresponding to the NPN2 is shown in Fig.5.
The element net tokens residing in q1 (resp. q3) is denoted
as n0 (resp. n1). If we check the only path generated by
transitions – (T1, t1[n0])(T2, t2[n1], t2[n0]) – we see that it
does not satisfy our formula.

It is worth mentioning that our approach is not equivalent
to model checking of element transition formulae on LTSs
corresponding to element nets. This is caused by the fact

124 of 230

M0start

M1

M2

T1,t1[n0]

T2, t2[n1], t2[n0]

Fig. 5. New LTS of NPN2

that the LTS corresponding to an element net should be
considered only w.r.t. transitions in the system net due to
vertical synchronization. In addition, nCTL provides an ability
to switch back to system context, based on the properties
of an element net. Consider this example: [(AXt1 =⇒
[M1]) ∨ (AXt2 =⇒ [〈EXT2〉])]. NP-net N ′ models that
formula if either t1 fires in the next step in the element net
and N ′ reaches marking M1 or t2 fires in the next step in the
element net and T2 is enabled in the system net after that.

We need to construct LTS with respect to information about
specific element nets. Let us consider some concrete problems
conected with that.

p1

p2 p3

p4

T1

x

x x

λ

T2
x x

Fig. 6. NP-net NPN3

Fig.6 represents an example of a nested Petri net, where the
firing of transition T1 yields two copies (n0 in p2, n1 in p3)
of the same element net, therefore in both copies we need to
keep the history of the old net token. For example, if the net
token κ (Fig.7) resides in the place p1 in NPN3, we get the
LTS shown in Fig.8.

t1 λ t2

Fig. 7. Net token κ in NPN3

M0start

M2 M1

M3

M4

M5

M6

M7

T1t1[n0],t1[n1]

T1

t1[n0]

t1[n1] t2[n1],T2

t1[n1] t2[n1],T2

t1[n0] t1[n0]

Fig. 8. LTS corresponding to NPN3

VII. NCTL SEMANTICS

nCTL formulae are interpreted over a pair (LNPN,m), where
LNPN is a LTS corresponding to NPN and m is a reachable
marking of the latter. We say that NPN satisfies formula φ iff
(LNPN ,m0) |= φ, where m0 is the initial marking in NPN.
State-transition modalities allow us to switch between different
types of formulae.

Interpretation for state formulae:

• (LNPN,m) |=A true
• (LNPN,m) |=A ω ⇐⇒ ω(m)
• (LNPN,m) |=A ¬φ ⇐⇒ (LNPN,m) 6|=A φ
• (LNPN,m) |=A φ1 ∨ φ2 ⇐⇒ (LNPN,m) |=A φ1 or

(LNPN,m) |=A φ2
• (LNPN,m) |=A 〈φ〉 ⇐⇒ ∃a .m a−→ m′ ∧

(LNPN, (m, a,m
′)) |=B φ

• (LNPN,m) |=A [φ] ⇐⇒ ∃a .m a−→ m′ ∧
(LNPN, (m, a,m

′)) |=C φ
• (LNPN,m) |=A AU(φ1, φ2) ⇐⇒ ∀σ =
a1a2 · · · ∈ Pm .∃n ≤ |σ| .m a1−→ m1

a2−→
m2 . . .mn−1

an−−→ mn . (∀i ∈ 0, n− 1 . (LNPN,mi) |=A
φ1) ∧ (LNPN,mn) |=A φ2

• (LNPN,m0) |=A EU(φ1, φ2) ⇐⇒ ∃σ =
a1a2 · · · ∈ Pm .∃n ≤ |σ| .m0

a1−→ m1
a2−→

m2 . . .mn−1
an−−→ mn . (∀i ∈ 0, n− 1 . (LNPN,mi) |=A

φ1) ∧ (LNPN,mn) |=A φ2
Interpretation for transition formulae:

• (LNPN, (m, a,m
′)) |=B true

• (LNPN, (m, a,m
′)) |=B χ ⇐⇒

∧
{χ(τ) | τ ∈ ST (a)},

where ST (a) is a set of system transitions, involved in
the step a.

• (LNPN, (m, a,m
′)) |=B ¬φ ⇐⇒ (LNPN, (m, a,m

′)) 6|=B
φ

• (LNPN, (m, a,m
′)) |=B φ1 ∨ φ2 ⇐⇒

(LNPN, (m, a,m
′)) |=B φ1 or (LNPN, (m, a,m

′)) |=B φ2
• (LNPN, (m, a,m

′)) |=B 〈φ〉 ⇐⇒ (LNPN,m
′) |=A φ

• (LNPN, (m0, a1,m
′)) |=B AU(φ1, φ2) ⇐⇒

∀σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈

125 of 230

0, n− 1 . (LNPN, (mi, ai,mi+1) |=B φ1) ∧
(LNPN, (mn, an+1,mn+1) |=B φ2)

• (LNPN, (m0, a1,m
′)) |=B EU(φ1, φ2) ⇐⇒

∃σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈
0, n− 1 (LNPN, (mi, ai,mi+1) |=B φ1) ∧
(LNPN, (mn, an+1,mn+1) |=B φ2)

Interpretation for nested transition formulae:
• (LNPN, (m, a,m

′)) |=C true
• (LNPN, (m, a,m

′)) |=C γ ⇐⇒
∧
{γ(τ [n]) | τ [n] ∈

NT (a)}, where NT (a) is a set of element net transitions
involved in a step a.

• (LNPN, (m, a,m
′)) |=C ¬φ ⇐⇒ (LNPN, (m, a,m

′)) 6|=C
φ

• (LNPN, (m, a,m
′)) |=C φ1 ∨ φ2 ⇐⇒

(LNPN, (m, a,m
′)) |=C φ1 or (LNPN, (m, a,m

′)) |=C φ2
• (LNPN, (m, a,m

′)) |=C [φ] ⇐⇒ (LNPN,m) |=A φ
• (LNPN, (m0, a1,m

′)) |=C AU(φ1, φ2) ⇐⇒
∀σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0

a1−→
m1

a2−→ m2 . . .mn−1
an−−→ mn . (∀i ∈

0, n− 1 . (LNPN, (mi, ai,mi+1) |=C φ1) ∧
(LNPN, (mn, an+1,mn+1) |=C φ2)

• (LNPN, (m0, a1,m
′)) |=C EU(φ1, φ2) ⇐⇒

∃σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈
0, n− 1 . (LNPN, (mi, ai,mi+1) |=C φ1) ∧
(LNPN, (mn, an+1,mn+1) |=C φ2)

• (LNPN, (m0, a1,m
′)) |=C AXφ ⇐⇒ ∀σ = a1a2 · · · ∈

Pm . (m0
a1−→ m1

a2−→ m2 . . .)∧ (LNPN, (m1, a2,m2) |=C
φ)

From a practical perspective, nCTL logic enables us to state
properties of agents in multiagent systems.

VIII. CONCLUSION AND FUTURE RESEARCH

The temporal logic nCTL, described in this paper, is an
extension of CTL for specifying semantic properties of nested
Petri nets. Logic nCTL may be helpful for describing be-
havioural properties of multi-agent systems with complex
structure. nCTL allows to express both system net and element
nets properties directly. This gives a straightforward way of
formalizing NP-net specific temporal properties.

Our next goal is to develop an algorithm for constructing
LTS describing semantics of a given NP-net. We also plan
to investigate the expressive power of nCTL and study the
possibility of developing effective verification algorithm for
nested Petri nets.

REFERENCES

[1] Julian Bradfield, Colin Stirling, Modal mu-calculi, In: Patrick Blackburn,
Johan Van Benthem and Frank Wolter, Editor(s), Studies in Logic and
Practical Reasoning, Elsevier, 2007, Volume 3, Pages 721-756.

[2] A. Cheng, S. Christensen, and K. H. Mortensen, Model Checking
Coloured Petri Nets Exploiting Strongly Connected Components. – Cite-
seer, 1997.

[3] Edmund M. Clarke, Orna Grumberg, Doron Peled. Model Checking, MIT
Press, 2001.

[4] Ian Hodkinson, Mark Reynolds, Temporal logic, In: Patrick Blackburn,
Johan Van Benthem and Frank Wolter, Editor(s), Studies in Logic and
Practical Reasoning, Elsevier, 2007, Volume 3, Pages 655-720.

[5] K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[6] I. A. Lomazova, Nested Petri nets: Modeling and analysis of distributed
systems with object structure. – Moscow:Scientific World, 2004. – 208p.

126 of 230

 Checking service compatibility via resource

conformance

Ivan Romanov

Software Engineering School

National Research University Higher School of Economics

33/5 Kirpichnaya, st. Moscow, Russian Federation

Email: romanov.ekb@gmail.com

Scientific Advisor: Prof. Irina A. Lomazova

Software Engineering School

National Research University Higher School of Economics

33/5 Kirpichnaya, st. Moscow, Russian Federation

Email: ilomazova@hse.ru

Abstract — In this work we consider modeling of services with

workflow modules, which are a subclass of Petri nets. Service

compatibility problem is studied. Quasi-regular expressions are

used for checking service compatibility via resource

conformance.

Keywords – service composition; service compatibility;

workflow net; workflow module

I. INTRODUCTION

Service-Oriented Computing [1] is an emerging computing
paradigm that supports the modular design of (software)

systems. Complex systems are designed by composing less
complex systems, called services.

A service consists of a control structure describing its

behavior and of an interface to communicate asynchronously
with other services. Component interaction necessitates a

mechanism of communication between services. An interface
is a set of (input and output) channels. In order that two

services can interact with each other, an input channel of the
one service has to be connected with an output channel of the

other service

There are a lot of algorithms for checking services

compatibility. They allow, for example, to check deadlock

freedom property, termination property, and others. Very often
there methods have high computational complexity, affecting

the speed of their implementation. It is assumed, that for
service execution resources consumed from external

environment are needed. In this paper a property of service
compatibility via resource conformance is checked in the init ial

stage, it may help to avoid further verification because of

evidently incompatible services.

In this work we consider modelling of services with

workflow modules, which is a special subclass of Petri nets.
Service compatibility problem is studied. Quasi-regular

expressions are used for service compatibility via resource
conformance analysis.

II. FORMAL MODEL FOR SERVICES

While analyzing and verifying service compatibility, let us

abstract from underlying technologies and implementations and
consider formal model based on Petri nets .

Petri nets is a popular formalism for modeling and analysis

of distributed systems. A Petri net consists of a

set of transitions , a set of places P, and a flow relat ion
 . Graphically, a place is represented by a

circle, a transition by a box, and the flow relation by directed
arcs between them. Whilst transitions represent dynamic

elements, for example, an activity of a service places represent
static elements for example, a condition to perform an activity

of a service. A state of a Petri net is represented by a marking,
which is a distribution of tokens over the places. Graphically, a

token is depicted by a black dot.

Workflow net (WF net) is a special Petri net. This
formalism is used to model workflow systems [3]. A workflow

net has one initial and one final place, and every place or
transition in it is on a directed path from the initial to the final

place.

Figure 1. Example of workflow net. Model of a vending machine that sells,

either a cup of tea, or coffee.

Modeling workflow [5] consists of modeling case
management with the help of parallelism, sequential routing,

conditional routing and iteration. To express it explicit ly
building blocks such as the AND-split, AND-join, OR-split and

OR-jo in can be used. The AND-split and the AND-jo in are
used for parallel routing. The OR-split and the OR-join are

used for conditional routing. When we model an OR-split in

terms of a Petri net, the OR-split corresponds to a number of
transitions sharing the same set of input places. Other

constructs also can be easily expressed in Petri net formalism.

To guarantee, that we get ’good’ workflows, we are to

balance AND/OR-splits and AND/OR-joins. Clearly, two
parallel flows initiated by an AND-split, should not be joined

by an OR-join. Two alternative flows created via an OR-split,
should not be synchronized by an AND-join. When we follow

these rules we obtain structured WF nets (see [3] for more

127 of 230

details). It is shown there, that structured WF nets are sound by

construction.

A stateful service defines an internal process (i.e. activities

building its internal structure), and an interface to communicate
with other services. To model services we will use a special

subclass of Petri nets called workflow module.

A Petri net is called workflow module

[2],[4] if the following conditions hold:

1) The set of places is d ivided into three disjoint sets:

internal places , input places and output places
2) The flow relat ion is divided into internal flow

 and communicat ion flow
 .

3) The net is a workflow net.

4) No transition is connected both to an input place and an

output place.

Within a workflow module M, the workflow net is called

the internal process of M and the tuple is
called its interface.

Figure 2. Example of a workflow module.”Money”,”Tea”,”Coffee” are input
places, “Beverage” is output place.

Denote structured workflow module (SWFM) as a
workflow module, where the net is a

structured workflow net.

In this paper we consider the class of services, which
can be modeled by SWFM.

Figure 3. Example of service composition

Figure 3 illustrates an example of service composition. It

shows situation when customer wants to buy coffee.

III. SERVICE COMPATIBILITY VIA RESOURCE

CONFORMANCE

Let be a finite set. A multiset over a set is a mapping

 , i.e. a multiset may contain several copies of the

same element. By we denote the set of all finite

multisets over .

Let N is structured workflow module with two disjoint sets

 of input places and of output places. Consider some run
 , states sequence from in itial to final state, of the . For each

run pair of input and output resources
 where

) and are defined. Denote

 as resource of N [2].

For the considered class of services, let us denote quasi-

regular expression defining a set of all possible resources for a
service. For such type of resources, inner workflow net is

structured, therefore, it becomes possible to identify the
expression recursively by its structure:

1) Expression takes the form for atomic net where

transition consumes and produces resources. Thus,

rewrite this expression as

where – input resources; output

resources; If the transition does not produce/consume resources
it is denoted as .

2) For sequential routing

Figure 4. Sequential routing.

3) For parallel routing

Figure 5. Parallel routing.

4) For selective routing

Figure 6. Selective routing.

5) For iteration

Figure 7. Iteration.

128 of 230

Proposition 1. Let expressions e1 and e2 define a set of

resources for two structured workflow modules and .

Then after application of described operations deduced SWFM
will possess the following resource sets: for sequential,

parallel routing, for selective routing and

 for iteration.

Describe some properties of the algebra that we have:

1)
2)

3)

4)

5)

6)

7)

For this class of quasi-regular expressions, as opposed to

regular languages, a sequence of producing/consuming
resources does not matter. That is why property 5 is true for

quasi-regular expressions, while it is false for regular ones .

 Using rules described, we may similarly compose a quasi-

regular expression for the service investigated. To make
representations more compact, we suppress interface

conditions. Depicting a transition by a set of necessary

resources is quite sufficient.

Figure 8. SWFN.

For example let us build quasi-regular expression for
SWFN illustrated in Figure 8. We will consider resulted

formula by parts P1, P2, P3, P4.

Expression for SWFN:

To check services equivalence and other properties, we

need a unified representation for services. In order to achieve
this, it is necessary to develop an algorithm for expressions

reduction to normal form.

Two resources with equal representation, which is

symmetric about ‘?’ and ‘!’ we denote as complementary. For
example, and are

complementary.

Two services we denote as compatible via resource
conformance if their quasi-regular expressions contain two

complementary resources.

Proposition 2. If service behaviors are compatible to each

other, then two services are compatible via resource

conformance.

Thus it is prerequisite condition for service compatibility.

IV. CONCLUSION

In this paper a service formal model is built and expression

algebra for analyzing service compatibility via resource
conformance, abstracting from underlying technologies and

implementations is described. Detecting resource
incompatibility in one of the first stages allows to avoid further

verification consuming significant computing resources.

Further investigation in this field will be devoted to normal

form construction for expressions, exploring new expression

properties and compatibility proposition corroboration.
Besides, a piece of software is planned to be developed. Its

main functions will concern service model and service
expression construction, and compatibility checking by the

properties described.

REFERENCES

[1] C. Stahl. Service Substitution – A Behavioral Approach Based on Petri
Nets Dissertation, Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät II; Eindhoven University of
Technology, December 2009.

[2] V. A. Bashkin and I. A. Lomazova. Resource equivalence in workflow
nets Proc. CS&P'2006. Vol.1. Informatik-Bericht 206. Humboldt-
Universitat zu Berlin. Berlin, 2006, pp. 80-91.

[3] W. van der Aalst and K. van Hee. Workflow Management: Models,
Methods and Systems MIT Press,2002.

[4] Axel Martens. Analyzing Web Service based Business Processes. In
Maura Cerioli, editor, International Conference on Fundamental
Approaches to Software Engineering (FASE 2005), volume 3442 of
Lecture Notes in Computer Science, Edinburgh, Scotland, April 2005.
Springer. [36, 40, 216, 217]

[5] I. A. Lomazova. Interacting Workflow Nets for Workflow Process Re-
Engineering. Fundamenta Informaticae, 2010. Т.101. №1-2. C.59—70

[6] Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An Operating
Guideline Approach to the SOA. In 2nd South-East European Workshop
on Formal Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia,
2005.

129 of 230

Elaborating on the alias calculus
Alexander Gerasimov

Saint Petersburg State University,
Computer Science Chair

and
Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics,

Software Engineering Laboratory
Email: asgerasimov@gmail.com

Abstract—In this research-in-progress report, we elaborate on
the alias calculus introduced in [1], [2]. The alias calculus is
to determine whether two reference expressions at the given
program point may address the same object at the run-time (in
other words, whether one expression may be an alias of the other
expression). The main intended application of the alias calculus
is to support deductive verification of object-oriented programs.
We show how aliases may be used in Hoare-style reasoning, hence
derive at what program points we are to compute aliases and
propose an algorithm that computes the required aliases. Wealso
state future work directions.

I. I NTRODUCTION

To perform deductive verification of an object-oriented
program we need to know whether two reference expressions
at the given program point may address the same object at
the run-time (in other words, whether one expression may be
an alias of the other expression). For example, we should take
care of such a situation. Ifx andy are aliased and an operation
modifies the value of the attributex.f , then the opertation also
modifies y.f , thoughy is not mentioned in the text of the
operation. The alias calculus introduced in [1], [2] is to give
an answer on the formulated question.

[2] suggests to represent possible aliases at a program point
as a symmetric and irreflexive relation over a set of reference
expressions (such a relation is called analias relation) and
formulates rules of the alias calculus for a model of a pro-
gramming language.

There are following instructions in the model of a program-
ming language: skip, forget, create, assignment, compound,
conditional, cut, loop, and procedure call.

Each rule is of the form

(a ≫ p) = A,

whereA denotes an alias relation that may hold just after
the execution of a program instructionp provided an alias
relation a holds just before the execution. Let us formulate
some of the rules.

The rule for an assignment in the non-object-oriented alias
calculus (where every reference expression is a variable) is

(a ≫ x := y) = a[x : y],

where

• a is an alias relation,x andy are variables,
• a[x : y] = b ∪ ({x} × (b/y)),
• b = a \− {x} = a \ {〈u, v〉 ∈ a | u = x ∨ v = x},

• b/y = {y} ∪ {u | 〈u, y〉 ∈ b},
• c = (c ∪ {〈v, u〉 | 〈u, v〉 ∈ c}) \ {〈u, u〉 | 〈u, u〉 ∈ c} for

a relationc.
The rule for a compound instruction is

(a ≫ (p; q)) = (a ≫ p) ≫ q,

wherep andq are instructions.
A conditional instruction in the model language is of the

form ”then p else q” (there is no boolean condition in it).
The rule for it is

(a ≫ then p else q) = (a ≫ p) ∪ (a ≫ q).

The alias calculus may say that some expressions are aliased
though in fact they cannot because the boolean condition in a
real conditional and loop is not taken into account. Such an
imprecision may be handled by means of a cut instruction in
the model language. The instruction ”cut e1, e2” asserts that
the expressionse1 ande2 are not aliased at the given program
point. In the non-object-oriented alias calculus the rule for
”cut e1, e2” is

(a ≫ cut e1, e2) = a \ e1, e2,

where s = s× s for a sets of expressions and the braces
enclosing a list of the elements ofs may be omitted.1

A. Related work.

The following approaches to handling references for
program verification are known (see [2], [3]): separation
logic [4], shape analysis [5], ownership types [6], and dynamic
frames [7]. However separation logic and shape analysis tryto
reveal a more detailed structure of pointers than it is necessary
for alias analysis [2]. Separation logic, ownership types,
and dynamic frames require a programmer to write additional
annotations besides Hoare assertions.

The alias calculus is formulated in terms of a model of a
high-level programming language and additional annotations
(i. e., cut instructions) are rarely required.

1Thuse1, e2 = {〈e1, e2〉, 〈e2, e1〉}. The notations is also used below.

130 of 230

B. Our work.

We analyse the alias calculus [2] and its prototype imple-
mentation (mentioned in [2]) and elaborate on some aspects of
the alias calculus in order to provide a solid basis for further
implementation and integration of the alias calculus into Eiffel
Verification Environment [8]. These aspects are:

• Hoare-style reasoning with aliases;
• computing aliases for calls to (mutually) recursive proce-

dures;
• coping with the infinity of some alias relations in the

object-oriented alias calculus.
These aspects and some of our results achieved are described
in the subsequent sections.

II. ON HOARE-STYLE REASONING WITH ALIASES

Consider the following Eiffel code fragment:

if b then y := x

−− true

x.set

−− x.f = c

Suppose the precondition and postcondition of the qualified
procedure callx.set are given in the comments above (the
comments are the lines starting with ”−−”). Let us try to infer
the weakest precondition of this fragment for the postcondition
y.f = c.

If we do not know thatx andy may be equal just after the
call x.set, then we cannot weaken the postconditionx.f = c

to y.f = c.
Suppose we have computed aliases that may hold just before

and just after the callx.set: x andy may be aliased at these
program points. Then we addx = y to the precondition and
postcondition ofx.set via conjunction. Now we obtain the
preconditionb ∨ x = y of the whole code fragment using
Hoare rules [9]:

−− b ∨ x = y

if b then y := x

−− true ∧ x = y

x.set

−− x.f = c ∧ x = y

−− implies

−− y.f = c

Thus in order to perform Hoare-style reasoning for a pro-
gram, whose routines are specified with their preconditions
and postconditions, we propose (at least) to compute aliases
that may hold just before and just after each routine call.
(Other details of Hoare-style reasoning with aliases are tobe
elaborated in future.)

III. H ANDLING PROCEDURE CALLS IN THE

NON-OBJECT-ORIENTED ALIAS CALCULUS

[2] introduces the following rule for a callcall r(l) to a
procedurer with a list l of actual arguments:

(a ≫ call r(l)) = (a[r• : l] ≫ r),

where

• r• is the list of formal arguments of the procedurer,
• r is the body of the procedurer,
• a[l̃ : l] = (. . . (a[x̃1 : x1]) . . .)[x̃m : xm] for lists of

variablesl̃ = (x̃1, . . . , x̃m) and l = (x1, . . . , xm) (see
the definition ofa[x : y] for variablesx, y in Section I).

We elaborate on how to extend this rule to handle possibly
mutually recursive procedures. First of all, from Section II we
know that we must compute alias relations that may hold just
before and just after each procedure call of a program. Next
we introduce some definitions and notation and then propose
an algorithm that computes required alias relations.

Any alias relation that may hold at the program point just
before/after (the occurrence of) the procedure callc is called
theinput/output alias relation for (the occurrence of) the proce-
dure callc. (In this definition and in what follows we assume
that the aliasing semantics of (possibly mutually recursive)
procedures is intuitively clear, however the semantics is to be
precisely defined in our future work.)

Let c1, . . . , cn be all the occurrences of procedure calls in
the program. Letc0 be an (implicit) occurrence of theMain
procedure call, which is performed when the program starts
its execution.

For eachj = 0, . . . , n we need to compute
(1) the maximal (w. r. t. inclusion) input alias relationacjmax

for the procedure callcj (obviously,ac0max = ∅) and
(2) the maximal output alias relationAcj

max for the procedure
call cj .

To obtain these alias relations, Algorithm 1 takes into
account all possible sequences of procedure calls by itera-
tively computing an input alias relationacj and output alias
relationAcj for the procedure callcj (j = 0, . . . , n) so that at
the termination of the algorithm

acj = acjmax and Acj = Acj
max for eachj = 0, . . . , n.

For an occurrencec of a procedure call in the program
we denote byrc the procedure and bylc the list of actual
arguments of the call.

Algorithm 1 Computes the maximal input and maximal output
alias relation for each procedure call.
(1) for eachj = 0, . . . , n

(1.1) acj := ∅;
(1.2) Acj := ∅;

(2) while all Acj (j = 0, . . . , n) are not stabilized

(2.1) for eachj = 0, . . . , n

(2.1.1) Acj := (acj [(rcj)• : lcj] ≫ rcj),
where acj [(rcj)• : lcj] ≫ rcj is computed using
calculus rules and whenever a subtask of com-
puting āck ≫ call rck(lck) is encountered at a
program point just beforeck (for somek):

(2.1.1.1) āck ≫ call rck(lck) is treated asAck ;
(2.1.1.2) ack := ack ∪ āck .

Algorithm 1 terminates since the set of expressions (i. e.,
variables in case of the non-object-oriented alias calculus) that

131 of 230

may be in the computed alias relations is finite. Note also that
if all Acj (j = 0, . . . , n) are stabilized, then obviously allacj

(j = 0, . . . , n) are stabilized too. The algorithm is a variant of
the Chaotic Iteration algorithm (see [10]) and it is subjectto
some optimization, e. g., maintaining a worklist of what really
needs to be recomputed.

A. An example.

Let us illustrate how Algorithm 1 works on the model
language program given on Fig. 1.

procedure Main −− c0
then

x := y

else

x := a;
call q −− c1

end

end

procedure q

x := b

then

call Main −− c2
else

a := c

end

end

Fig. 1. An example program [2, Example 13].

1. For j = 0, 1, 2: acj := ∅; Acj := ∅.
2. Ac0 := (ac0 ≫ rc0) = (∅ ≫ Main) =

(x, y, (x, a ≫ call q)) = x, y

as currently(x, a ≫ call q) = Ac1 = ∅;
ac1 := x, a.

3. Ac1 := (ac1 ≫ rc1) = (x, a ≫ q) =

((x, b ≫ call Main), x, b ≫ (a := c)) =
x, y, x, b, a, c

as currently(x, b ≫ call Main) = Ac2 = ∅;
ac2 := x, b.

4. Ac2 := (ac2 ≫ rc2) = (x, b ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c

as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

5. Ac0 := (ac0 ≫ rc0) = (∅ ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c

as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

6. Ac1 := (ac1 ≫ rc1) = (x, a ≫ q) =

((x, b ≫ call Main), x, b ≫ (a := c)) =
x, y, x, b, a, c

as currently(x, b ≫ call Main) = Ac2 = x, y, x, b, a, c;
ac2 := x, b.

7. Ac2 := (ac2 ≫ rc2) = (x, b ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c

as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

Items 8–10 (not shown) are the same as items 5–7 respectively,
so Ac0 , Ac1 , Ac2 given in items 5–7 are stabilized and equal
to the maximal output alias relations sought for; the maximal
input alias relations areac0 , ac1 , ac2 given in items 1, 7, 6
respectively.

IV. CONCLUSION AND FUTURE WORK

We are elaborating on the alias calculus and in this research-
in-progress report presented how aliases might be used in
Hoare-style reasoning, derived at what program points we
were to compute aliases and proposed an algorithm that
computed the required aliases.

Future work includes:

• elaborating on the overall process of Hoare-style reason-
ing using the alias calculus;

• precisely defining the aliasing semantics of (possibly
mutually recursive) procedures; optimizing Algorithm 1,
which computes alias relations for calls to (possibly
mutually recursive) procedures; proving its correctness;
and adopting the algorithm for qualified calls;

• coping with the infinity of some alias relations in
the object-oriented alias calculus (e. g., after assigning
cur := first and then iteratingcur := cur.next, the
variablecur may be aliased to any element of the infinite
set described by the regular expressionfirst(.next)∗).

ACKNOWLEDGMENT

The author would like to thank his scientific supervisor
Professor Bertrand Meyer, the head of the Software Engineer-
ing Laboratory at Saint Petersburg National Research Univer-
sity of Information Technologies, Mechanics and Optics, and
Alexander Kogtenkov for helpful discussions. The Software
Engineering Laboratory is supported by a grant from Mail.Ru
Group.

The author is grateful to the anonymous referees for their
useful comments on the original version of this paper.

REFERENCES

[1] B. Meyer, “Towards a theory and calculus of aliasing,”Journal of Object
Technology, vol. 9, no. 2, pp. 37–74, 2010.

[2] ——, “Steps towards a theory and calculus of aliasing,”Int. J. Software
and Informatics, vol. 5, no. 1-2, pp. 77–115, 2011.

[3] ——, “Towards a calculus of object programs,”CoRR, vol.
abs/1107.1999, 2011.

[4] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” inLICS. IEEE Computer Society, 2002, pp. 55–74.

[5] S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric shape analysis via
3-valued logic,”ACM Trans. Program. Lang. Syst., vol. 24, no. 3, pp.
217–298, 2002.

[6] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership typesfor flexible
alias protection,”SIGPLAN Not., vol. 33, no. 10, pp. 48–64, Oct. 1998.
[Online]. Available: http://doi.acm.org/10.1145/286942.286947

[7] I. T. Kassios, “Dynamic frames: Support for framing, dependencies and
sharing without restrictions,” inFM, ser. Lecture Notes in Computer
Science, J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085.
Springer, 2006, pp. 268–283.

[8] Eiffel verification environment. [Online]. Available:
http://eve.origo.ethz.ch

132 of 230

[9] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 583, 1969.

[10] F. Nielson, H. R. Nielson, and C. Hankin,Principles of program analysis
(2. corr. print). Springer, 2005.

133 of 230

Internal and online simplification in genetic
programming: an experimental comparison

Yaroslav Borcheninov, Yuri Okulovsky

Ural Federal University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—Genetic programming is an evolutionary algorithm,
which allows performing symbolic regression — the important
task of obtaining the analytical form of a model by the data,
produced by the model. One of the known problems of genetic
programming is expressions’ bloating that results in ineffictevely
long expressions. To prevent bloating, symbolic simplification of
expression is used. We introduce a new approach to simplification
in genetic programming, making it a uniform part of the evolu-
tionary process. To do that, we develop a genetic programming on
the basis of transofmation rules, similarly to computer algebra
systems. We compare our approach with existed solution, and
prove its adequacy and effectiviness.

Index Terms—genetic programming, symbolic computations,
computer algebra systems

I. INTRODUCTION

Symbolic regression is an approach to data mining, which
accepts a data, generated by some model, and produces an
analytic form of this model. Probably, the most known and
earliest successful application of the symbolic regression is
Johannes Kepler’s astronomical laws, which mathematically
describe observations made by Tycho Brahe. Symbolic re-
gression is an important step in the scientific method that
prescribes explaining observed data through the construction
of their mathematical model. By the close examination of such
mathematical model, scientists understand its internal structure
and suggest hypotheses about their underlying nature.

We should stress the difference between the symbolic re-
gression and numerical regression methods, like the linear,
segmented linear or polynomial regression. In case of numeri-
cal regression the model is fixed, and only its quotients are to
be found. For example, by applying polynomial regression to
the data, we explicitly suggest that the model is a polynomial
function. If the actual model is a trigonometric function,
line sinus, the regression can be made arbitrarily accurate
by choosing the appropriate polynom’s degree. However, no
matter how accurate it is in the sense of mean square error,
the polynomial regression is still incorrect, because it will
unavoidable miss the fact that the observed model is the
trigonometric function. Symbolic regression allows finding
the model itself, and therefore the sinus function will be
recognized as sinus.

Until recently, the symbolic regression could be
performed only manually, and no algorithm of symbolic
regression was available. With the discovery of genetic

programming technique by John Koza [Poli et al., 2008],
it becomes possible to automate symbolic regression.
Now automated symbolic regression is widely used in
natural sciences [Schmidt and Lipson, 2009], robotics
[Robertson and Dumont, 2002], economics [Koza, 1994],
medicine [Zhang and Wong, 2008], etc.

The algorithm processes versions about the actual data’s
model. These versions are expressions, encoded as trees and
stored in the pool. Initially, these expressions are random.
Then, the algorithm alters expressions with the following
procedures.

• Mutation. The randomly chosen expression is changed
by a replacement of a node.

• Crossover. Two randomly chosen expressions exchange
subtrees.

• After all the mutations and crossovers are performed, the
resulting expressions’ set is subjected to the selection,
which evaluates how each expression fits the experimental
data. The least valuable expressions are then removed
from the population.

With the time, expressions become better until the satisfiable
solution is found.

The known problem of genetic programming is expressions’
bloating, which means that expressions become ineffectively
long. For example, expression (x + 1)2 − (x − 1)2 − 3x is
bloated, because it actually equals to x and should be replaced
by x in the pool. One result of bloating is unacceptable
form of the algorithm output. It can be resolved with the
simplification of the algorithm’s result. However, bloating also
hampers the algorithm’s work by increasing the expression
length and therefore the time required to compute them, and
also by leading the algorithm along the blind alley. It can be
resolved with the online simplification [Zhang et al., 2006],
[Kinzett et al., 2008], when all expressions in the pool are
simplified with some frequency. There exist other approaches
([Poli et al., 2008], [Mori et al., 2009]), however online sim-
plification is considered to be more effective.

We argue that online simplification is too rough. Simpli-
fying the expression inevitably leads to the elimination of
potential growing points. For example, while approximating
the function (x+ 1)y2, the intermediate solution (1 + 1)y1+1

can be found. This solution will be simplified to 2y2, which
requires at least two mutations to become a correct answer,

134 of 230

'&%$!"#?
����

��
��

��

�� ��?
??

??
??

?

/.-,()*+>
�� ��?

??
??

??
?

'&%$!"#x /.-,()*+−
��'&%$!"#x '&%$!"#0 '&%$!"#x

Fig. 1. The tree representation of the function f(x) = |x|.

e.g. 2y2 ⇒ xy2 ⇒ (x+1)y2. The initial solution (1+1)y1+1

requires only one mutation (1+1)y1+1 ⇒ (x+1)y1+1. Hence,
the simplification hampers the evolution in this case. On other
hand, the partial simplification (1 + 1)y1+1 ⇒ (1 + 1)y2

does not produce such effect for the function (x + 1)y2,
but does so for 2yx+1. Therefore, the question of where to
apply the simplification depends on the problem specification,
on the particular found expression, etc. In other words, the
simplification can alter evolution of expressions in the same
way the mutation and crossover do.

In [Borcheninov and Okulovsky, 2011], we introduce an
approach of integration of simplification into genetic pro-
gramming as uniform part. We call our approach internal
simplification genetic programming (ISGP), as opposed to
online simplification genetic programming (OSGP). The key
aim of this paper is to measure the advantage of ISGP in
comparison with OSGP.

Simplification is based on the rules, which describe ways
of correct expressions’ transformation. Since we use the sim-
plification inside the algorithm, we must base our algorithm
on the rules. In section 1, we show how to implement OSGP
and ISGP an instances of more general rule-based algorithm.
In section 2, we describe experiments to compare internal and
online simplification.

II. ALGORITHM ESSENTIALS

A. Expressions, trees and rules

An expression is represented as a tree of nodes. The
example of such tree that encodes the function f(x) = |x|
is shown in the Fig. 1. Three types of nodes are considered:
constants, variables and operators. In Fig. 1, node '&%$!"#x is a
variable node, '&%$!"#0 is a constant node. The remaining nodes are
operators: addition /.-,()*++ , comparison /.-,()*+> and ternary logical
operator '&%$!"#? , defined as follows

?(x, y, z) =

{
y, if x
z, if ¬x .

Each node has a return type, which is an arbitrary C#
type. Different return types can be used in one expression.
For example, in Fig. 1, all nodes have double return type,
except for the node /.-,()*+> that has the bool return type.

We define numerous rules to transform these expressions.
Some of these rules are universal, and can be applied to the
tree regardless of data types or operations that are used in it.

(I-Re)
select ?A(?B)
where A.Type=B.Type
mod A→B

(I-Cr)
select ?A,?B
where A.Type=B.Type
produce A→B; ret A.Root

In I-Re rule, the select clause specifies the nodes that will
be selected as a tuples (A,B), and then processed by the rule.
The notion ?A(?B) specifies that A is an arbitrary descendant
of root (i.e., and arbitrary node in the tree), and B is an
arbitrary descendant of A. Then, selected tuples are subjected
to selection according to where clause. In I-Re, we accept only
the tuples (A,B) such that they returning types coincides. To
selected tuples, we can apply mod clause. In the case of I-Re,
it replaces A with B. The tree remains correct, because of
the selection in where clause. In I-Cr rule, the select clause
?A,?B denotes that the rule accepts two trees, and selects an
arbitrary node from each of them. Therefore, this rule is binary,
while I-Re rule is unary. Then we demand the equality of their
returning types, and finally replace A with B and return the
root of A as an output. Using produce clause means that we
specify directly the output of the rule. It is necessary, because
binary rules accept two trees, and it is not clear which one of
them should be the output.

Most of the rules, however, are not universal. With each
data type T , the following rules are associated

(I-Co)
select ?A
where A.Type=T
mod A→new Const(v)

(I-Va)
select ?A
where A.Type=T
mod A→new Var(i)

(I-Tu)
select ?A
where A is Const
mod A→new Const(R(A.Value))

I-Co rule replaces the node with the return type T with the
constant of the same type. Here v is a randomly selected value
of the constant. I-Va rule replaces the node with the return type
T with the variable. The argument i is a number of the variable
in the argument array of the expression. Instances of I-Va rule
have to be created for each variable of type T .We can also
define tunning rules that adjust the constants. For Boolean and
integer data types, such rules seem to be redundant, because
they are just instances of I-Co. However, for floating point data
type, rule I-Tu can be written. Here R is a random function
R(x) that returns a random number from [x(1− c), x(1+ c)].
I-Tu rule allows changing the constant value gradually, near
its initial value, and therefore differs from I-Co rule that does
not take the previous value into account.

Some rules are even more specific, and are associated not
with data types, but with the operations domain. The domain
is a set of operations that are commonly used together and are
bound by some mathematical laws. Examples are arithmetic

135 of 230

domain (addition, multiplication, etc.); trigonometric domain
(sinus, cosinus, etc.); logical domain (conjunction, negation,
etc.).

For each operation, we need an introduction rule. Two
approaches to operation’s introduction are possible.

(G-In)
select ?A
where A.Type = double
mod A→new Mult(A,new Const(1))

(G-In*)
select ?A
where A.Type = double
mod A→new Mult(A,new Const(v))

G-In rules selects a node with floating point return type,
and replaces it with a new multiplication operation. G-In rule
differs from all the rules above, because it does not change
the function, encoded by the expression. It only inflates the
expression and adds potential growing point in it. Of course,
we could combine G-In rule with I-Co, therefore obtaining
G-In*. However, it is not convenient. Suppose our task is to
transform x into 2x. With the modified G-In rule, we need
the double luck to do that: we need to guess correctly both
the operation and the constant. Wrong choice of constant may
lead to significant decrease of the expression correctness, and
therefore the expression will be removed, without a chance
to adjust the constant. Original G-In rule does not affect
correctness, and therefore modified rule can remain in the pool
for a long time, so different mutations by I-Co rule can occur
in the future and a right constant has more chances to be
chosen.

For each operation, we also define simplification rules,
for example transforming a multiplication of two constants
into a constants with their multiplication, or transforming the
multiplication of any node and zero into zero. We call such
simplifying rules S-rules. They are known from computer
algebra systems, so we will not study them deeply. Some
rules are developed not for a single operations, but for several
operations in the domain. The example is distributivity of
addition and multiplication, which is G-rule for transformation
a · (b+ c)→ ac+ cb and S-rule for reverse transformation.

Aside from simplification rules, we can also define a
crossover rules for domain, with a very natural meaning:

(I-CA)
select A,B
where A.Type=double and B.Type=double
produce new Div(new Plus(A,B),2)

The absence of quotation marks before A and B means that
they are not descendants of the root, but the roots themselves.
Crossover I-CA is reasonable: if two expressions fit the task,
their halfsum may fit even better.

B. Implementation of genetic programming algorithms

To define a concrete algorithm in the genetic programming
algorithms’ family, we need to specify the operations, men-
tioned in the Intoduction: mulation, crossover and evaluation.
We define mutation and crossover operations on basis of rules
collection. The algorithm has two sets of rules: the set of
unary rules for mutation, and the set of binary rules for

crossover. In order to perform mutation, algorithm randomly
selects expressions for mutation. Then, for each expression,
we randomly select a rule, and perform it to obtain a mutated
expression. Correspondingly, in order to cross two randomly
selected expressions, the algorithm chooses a binary rule from
the collection and performs it.

From the start of observations it becomes clear that different
rules must have different probability to be applied. Each rule
has multiple tags that describe the place of the rule in our
classification. Then we assign to each tag its weight, and
calculate the weight of the rule as the product of associated
tags’ weights. The greater the rule’s weight is, the more the
probability of rule’s application is.

The most important tags are Inductive and Simplification
tags. Inductive tags marks all the rules, which enlarge the
expressions (G-rules from section 1.1), or changes the function
the expression encodes (I-rules). Simplification rules make
the expression shorter (S-rules). The ratio of Inductive and
Simplification tags κ is the first important parameter of our
algorithm.

The evaluation of the expression is performed by calculating
several metrics and obtaining their weighted total. The fitness
metric describe, how good the found expression g fits given
data (x1,j , . . . , xn,j , yj), and is calculated as

µf (g) =

(
1 +

n∑
i=1

(g(xi,1, . . . , xi,m)− yi)2
)−1

.

Taking the reciprocal value is important, because it allows
bounding the value of ρ, and provides correspondence between
a higher value of ρ and a better expression. The length
metric µl is a reciprocal to the count of operations in g.
Valuation of an expression is determined as a weighted total
e(g) = wfµf (g) + wlµl(g). The ratio between the fitness
metric and the length metric λ = wl/wf is the second
important parameter of our algorithm.

To perform online simplification, we modify the described
algorithm. First, only I- and G-rules are allowed to be used
in the algorithm. Second, the weight of length metric is set
to zero, because algorithm does not have necessary means to
decrease the expression’s length. Finally, after each ξ itera-
tions, we apply a simplification algorithm to each expression
in the pool. Namely, we apply S-rules to expression until it
is possible, and return the resulting expression in the pool.
Online simplification algorithm has only one parameter ξ.

III. EXPERIMENTAL RESULTS

We conducted the following experiments to compare online
and internal simplification in genetic programming. At first,
we prepared test sets to run the algorithm on. Then, we
found the optimal parameters of both algorithms to fetch best
performances. Finally, we compared the performance of both
algorithms.

In order to achieve a reasonable ratio between the repre-
sentativeness of experiments and the time of computations,
we followed the guidelines below. We limited the domain

136 of 230

of expressions by algebraic expressions that contain addi-
tion, subtraction, multiplication, division and power operations
and integer constants. The reason is limiting the amount of
parameters of algorithms. Two parameters are unavoidable:
length/evaluation metrics ratio λ and inductive/calculation κ
tags ratio. Introducing floating point constants demands us to
use tunning rule (I-Tu). Our observations showed that intensity
of this rule should be much greater than others’, in order to
find the appropriate values of constants. This adds one more
parameter. Correspondingly, the introduction of trigonometric
functions leads to various expressions like sin(sin(cos(. . .))),
and therefore these operations need to have their own tag
with reduced value. Therefore, widening the domain requires
increase of parameters. Since we needed to obtain the optimal
parameters in order to compare approaches, we decided to
limit the domain.

On the other hand, we made a high demand to the algo-
rithm’s outcome. The algorithm was provided with a very
strict amount of data points: 10 for unary function and 100 for
binary. The amount of iteration was limited by 10000, which
takes about 15 minutes to compute. We also demanded the
algorithm to find the exact function, used to generate the data,
not its good approximation. The function may be presented as
different expressions, however. It is a very strict requirement:
sometimes the algorithm found the solution that was very close
to data (root mean error is about 2-3%), and nevertheless,
we neglected such solution and demanded the exact solution
to be found. Summarizing, we can say that algorithm had to
find an exact function with a limited data set in a short time.
We believed that the complexity of this task compensates the
domain narrowness.

To build the test set we made a rundown over different
expressions, tested them with our algorithm and therefore
obtained a knowledge about ”complexity” of these expressions
in terms of the algorithm. The considered parameters of
expressions was the number of expression’s arguments; the
number of operations, used in the expression; the level of white
noise, applied to data. At first, we builded a random tree with
desired count of operations and tested, if the expression truly
depends on all its arguments. Then, we formed test set as an
array

x1,1, . . . , xn,1, y1
x1,2, . . . , xn,2, y2

. . .
x1,m, . . . , xn,m, ym

where
{(x1,j , . . . , xn,j | j ∈ 1, . . . ,m} = Kn,

the set K is {0, 0.1, . . . , 1}, yj = f(x1,j , . . . , xn,j) · (1 −
p + 2pα), p is white noise level and α is a uniform random
number between 0 and 1. If f cannot be calculated for some
j, we dropped the expression and searched again. On each
data set, we run the algorithm several times and measure the
average success rate. If the algorithm had accidentally found
the form of expression containing least operation that planned,

Variable count = 1
p=0 p=0.01 p=0.02 p=0.05

c=2 96.67 95.38 90.87 95.62
c=3 29.47 30.63 33.93 25.68
c=4 11.67 0 0 0

Variable count = 2
p=0 p=0.01 p=0.02 p=0.05

c=2 98.62 97.39 98.24 98.67
c=3 25.58 39.46 31.19 29.02
c=4 2.4 2.45 3.65 5.74

TABLE I
SUCCESS RATE, IN PERCENTS, FOR DIFFERENT VARIABLE COUNT, COUNT

OF OPERATIONS c AND WHITE NOISE LEVEL p

Function Success
rate,
%

Description

(x2)(x+ 4) 80 Simple polinom
y
2
(x+ 2) 80 A simple polynom with two variables

xx−y 80 A simple non-rational function
x2 − (y + 3) 50 Intermediate polynom with two variables

x
2(x−3)

50 Intermediate rational function
(3x)2y 50 Intermediate non-rational function
2xy − y − 2 20 Hard polynom
x(x+4)
x−5

20 Hard rational function(
x
4

)4x 20 Hard rational function

TABLE II
FUNCTIONS, SELECTED TO TEST SET

the data set was also considered invalid and was excluded from
experimental result.

For each set of parameters, we run 50 successful data set,
and each data set was processed by the algorithm 10 times.
Obtained result are presented in Table III. The overall tendency
is clear. The complexity is determined mostly by count of op-
erations, then by the level of white noise. Additional variables
seem to reduce the complexity, probably because of widening
data set from 10 to 100 samples. We can also conclude that the
algorithm is functional, even though initial parameters could
be far from optimal.

We selected 9 expressions as test set for the OSGP and
ISGP comparison. Selected expressions are listed in Table III.
We did not selected expressions with 0% success rate, because
it this case the difference between hard and impossible is not
clear. For the same reason, we omited expressions with 100%
success.

We ran ISGP algorithm with different length/fitness metrics
ratio λ and calculation/induction tags ratio κ and obtained the
resuls, presented in Table III. We see that the algorithm is in
tote stable, and its success rate varies in range 60–70%. It
is unlikely to find some local maxima outside the considered
parameters’ range. Parameters λ and κ by definition are greater
that zero. When λ = 0 or κ = 0, the simplification is simply
not performed, and expressions bloat rapidly, blocking the
algorithm. When λ > 1 or κ > 1, the simplification is too
strong: by out observation, no expressions of length more than
3 can be produced. Therefore we believe that the best success

137 of 230

κ 0.01 0.02 0.05 0.1 0.2 0.4
λ = 0.01 66.67 71.67 64.44 63.89 63.33 56.67
λ = 0.02 67.22 68.33 66.11 62.22 65 59.44
λ = 0.05 66.67 66.67 67.22 67.78 64.44 58.89
λ = 0.1 66.11 62.22 63.89 70 60 56.11
λ = 0.2 63.89 66.67 65.56 64.44 62.22 53.89
λ = 0.4 68.89 66.67 65.56 66.11 65.56 62.78
λ = 0.8 66.67 63.33 65.56 65 67.22 61.67

κ 0.02 0.04 0.06 0.08 0.1
λ = 0.01 68.33 73.89 68.89 67.22 66.11
λ = 0.0333 66.11 63.89 62.22 63.33 68.89
λ = 0.0666 66.67 63.89 61.67 62.22 64.44
λ = 0.1 73.33 65 63.33 70 63.33

TABLE III
SUCCESS RATES, IN PERCENTS, OF OSGP WITH VARIOUS VALUES OF THE

PARAMETERS κ AND λ. THE LOWER TABLE GIVES A CLOSER LOOK TO
THE AREA, WHERE LOCAL MAXIMA SEEM TO BE.

ξ = 10 ξ = 20 ξ = 30 ξ = 40 ξ = 50 ξ = 60
36.11 55 70.56 70 71.67 68.89

ξ = 70 ξ = 80 ξ = 90 ξ = 100 ξ = 160
68.89 65 70 68.33 65.56

TABLE IV
SUCCESS RATES, IN PERCENTS, OF ISGP WITH VARIOUS VALUES OF THE

PARAMETER ξ.

rate of our algorithm is about 70% on our test set.
For OSGP, we need to determine the count of iterations

between simplifications, ξ. The results of OSGP for different ξ
are presented in Table III. Again, it is unlikely that the optimal
value of ξ is greater than 160, because such rare simplification
is hardly noticeable. On other hand, when the simplification
is performed too often (ξ < 5), long expressions are almost
never appear in the pool.

In table III we present the success rate of best algorithm’s
variants on test set. We can conclude, that the algorithms
are very close in terms of performance. It is also obvious
that accurate choise of parameters is important, and improves
effectiveness significantly, at least for some functions.

IV. CONCLUSION

The research, presented in this article, proves the internal
simplification genetic programming to be an operational tech-
nique that prevents bloating of expressions and provides ef-
fective symbolic regression. The only way to implement ISGP
is to found genetic programming on the basis of expressions’
transformation rules, as it was described in section 1.

The performance comparison states that ISGP is not worse
than existed online simplification approach. ISGP also open a
road for further research in the following areas. At first, we
plan to explore the more presice devision of rules into groups,
and finding the appropriate tags for such devision. This task
can be considered even for the algebraic domain: for example,
we could consider different tags for I- and G-rules. For the

Function ISGP,
κ = 0.5,
λ = 0.1

ISGP,
κ = 0.04,
λ = 0.01

OSGP,
ξ = 50

(x2)(x+ 4) 80 100 100
y
2
(x+ 2) 80 100 100

xx−y 80 100 100
(3x)2y 50 100 100
x2 − (y + 3) 50 95 100

x
2(x−3)

50 95 95(
x
4

)4x 20 25 25
2xy − y − 2 20 50 5
x(x+4)
x−5

20 0 20

TABLE V
SUCESS RATES, IN PERCENTS, OF ALGORITHMS ON TEST SET. THE

SECOND COLUMN REPRESENTS THE INITIAL SUCCESS RATES, GENERATED
WHEN BUILDING TEST SET. THE THIRS AND FOURTH COLUMNS ARE BEST

RESULTS OF OSGP AND ISGP, CORRESPONDINGLY.

greater domains, this task is even more important, because
additional tags emerge anyway.

The more intriguing branch of research is adjusting the tag’s
weights during the algorithm’s work. The tentativ observations
show that such adjusting can sometimes drive the algorithm
out of the local minimun by speeding up induction, or narrow
the search around the best expression by increasing of the
fitness metric weight.

We also plan to develop a distributed version of our OSGP
implementation, and test it in real-world problems, mostly
from robotics field.

ACKNOWLEDGMENTS.

The work is supported by the program of President of
Russian Federation MK-844.2011.1.

REFERENCES

[Borcheninov and Okulovsky, 2011] Borcheninov, Y. V. and Okulovsky,
Y. S. (2011). Genetic programming with embedded features of symbolic
computations. In KDIR 2011 — Proceedings of the International Confer-
enceon Knowledge Discovery and Information Retrieval.

[Kinzett et al., 2008] Kinzett, D., Johnston, M., and Zhang, M. (2008).
Numerical simplification for bloat control and analysis of building blocks
in genetic programming. Evolutionary Intelligence, 4.

[Koza, 1994] Koza, J. R. (1994). Genetic programming for economic
modeling. In Intelligent Systems for Finance and Business.

[Mori et al., 2009] Mori, N., McKay, B., Hoai, N. X., Essam, D., and
Takeuchi, S. (2009). A new method for simplifying algebraic expressions
in genetic programming called equivalent decision simplification. Jour-
nal of Advanced Computational Intelligence and Intelligent Informatics,
13(14):237–238.

[Poli et al., 2008] Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R.
(2008). A Field Guide to Genetic Programming.

[Robertson and Dumont, 2002] Robertson, A. P. and Dumont, C. (2002).
Design of robot calibration models using genetic programming. In
Mayorga, R. V. and Rios, A. S.-D. L., editors, Proceedings of the Third
International Symposium on Rob. and Autom., volume 3, pages 449–454.

[Schmidt and Lipson, 2009] Schmidt, M. and Lipson, H. (2009). Distilling
free-form natural laws from experimental data. Science, 324(5923):81–85.

[Zhang and Wong, 2008] Zhang, M. and Wong, P. (2008). Genetic program-
ming for medical classification: a program simplification approach. Genetic
Programming and Evolvable Machines, 9(2):229–255.

[Zhang et al., 2006] Zhang, M., Wong, P., and Qian, D. (2006). Online
program simplification in genetic programming. Simulated Evolution and
Learning - SEAL, pages 592–600.

138 of 230

Execution Analysis of ARPC Programs in the
Environment of the Recursive Parallel

Programming∗

A. G. Sedov
Yaroslavl State University

Yaroslavl, Russia
E-mail: agsedov@gmail.com

Abstract—This article examines the analysis of an execution of
a program written in the recursive parallel RPC language and
the RPC extension for algebraic calculation facilities.

An RPC program execution model named a Trace Graph has
also been examined, as well as tools for its construction and
rendering.

The Trace Graph formal definition is given in terms of
Recursive Parallel Program schemes described in [1].

Next, the conception of the RPC language extension named
ARPC is offered, main additional statements are described.

Furthermore, the author made a review of changes both in the
execution model and the execution model construction algorithm
which could be caused by RPC extension.

I. INTRODUCTION

The recursive parallel programming is a fairly easy and
somewhat elementary method of distributed system develop-
ment. This method was first introduced in the second half of
the XX century. It spares a programmer from the designing
of a distributed system architecture, needed, for example,
when using the MPI. Instead of it, a programmer breaks the
calculation task into some parts — recursive parallel proce-
dures, which will be distributed among calculation facilities
as necessary by Recursive Parallel environment.

To develop this method, the conception of the Recursive
Parallel C language (shortly RPC) was offered[2]. The lan-
guage fulfills the requirements stated below:
• it is a recursive parallel language designed for a virtual

multiprocessor computing system with dynamic paral-
lelization, hereinafter referred to as a recursive parallel
machine (RPM).

• a parallel RPC program can be translated by a standard
C compiler both into a parallel code for RPM and a
sequential code for a common computer.

• it should be a tool for the program concurrency analysis
(and program models). The language should also support
specified RPM program performance analysis (and pro-
gram models).

To implement the RPC language, the RPM Shell environment
was created [3].

∗ This work is supported by the RFBR grant # 11-07-00549-a.

It should be noted that a programmer needs some tools to
check the effectiveness of the calculation distribution among
processors. These are construction and rendering tools for the
program execution model and a simulation tool. A Trace Graph
serves as an execution model for the RPC programs.

The Trace Graph is a directed graph formed out of the
vertices associated with events occurred during the program
execution and edges which are associated with a control
flow relation. The Graph is used for attaining a bunch of
goals related to analysis of the recursive parallel program
behavior and its debugging: simulation, examining of potential
concurrency, collection and rendering the statistical data. Trace
Graph construction is a process of gathering information about
the stucture of recursive parallel program execution and its
performance during the run. Supporting the Trace Graph
construction and its rendering is an essential part of this
environment.

All functionality applied to work with the Trace Graph was
implemented in the old version of RPM environment. It con-
tained a library for graph construction representing the Graph
in a binary format, a Trace Graph rendering module, and an
RPM simulator. These solutions became outdated because they
are not compatible with modern operation systems. However,
the recursive parallel programming conception is still relevant,
and the key element of the environment — a library for
concurrent execution of the RPC programs — keeps on beeing
upgraded.

This paper describes a new version of the Trace Graph
construction tool and the Trace Graph renderer. The new Trace
Graph constructor and renderer use the old Trace Graph format
to make it compatible with the RPM Shell environment.

There are two main future directions: the Trace Graph struc-
ture revision and the RPC language extension. Their overview
is given in Sections IV and V. A new Trace Graph formal
definition is given in terms of Recursive Parallel Program
schemes (RPPS) examined in [1]. Being defined in that way,
the Trace Graph can be easily associated, vertex to vertex, with
the RPPS. This will make all execution analysis applications
much more visual.

The RPC language extension is aimed at realizing the
ideas stated in [2], making the RPC more powerful. The new

139 of 230

language will be named ARPC (Algebraic RPC) because it
is intended for simplifying the development of applications
for algebraic calculations. The RPPS extraction should be a
feature of ARPC-to-RPC compiler. The requirements for the
RPC extension are stated in Section V.

II. RPC PROGRAM STRUCTURE

In this section we are going to give some basic information
about the RPC. A recursive parallel program may be thought
of as a set of mutually recursive procedures.

The computational process which is performed in a compu-
tational system supporting the recursive parallel programming,
is a hierarchical concurrent process. The process consists of a
number of system functions (such as functions for memory
access) and activations of procedures. We will define an
activation as a parallel procedure invocation with specified
input parameters. An activation which makes a recursive call
is located higher in the hierarchy than a called activation. Any
component that corresponds to procedure activation can be
a hierarchical concurrent process. There are several types of
parallel process components:
• concurrently invoked activations of user recursive parallel

procedures;
• sequentially invoked activations of user recursive parallel

procedures;
• operators for the concurrent shared memory access;
• Wait() operator. Being called from parent activation, the

operator makes it wait for the completion of all child
activations.

The activation of a procedure will be concurrent if it is
called by using a special parallel process call operator
(PCall(ProcedureName)). After invoking the parallel proce-
dure call, computations will proceed without stopping until
the synchronization point is reached. The procedure can be
also invoked in a sequential mode, so its execution will start
eventually in the same process, from which it was invoked.

The exit from the child procedure to the parent one returns
the control to synchronization point. Computations in the
parent procedure and the child ones can be concurrently
executed.

A hierarchical model of the concurrent computations de-
scribes a process interaction as follows: each activation can
have control relations only with the parent and child activa-
tions. The activation can only be completed when all its child
activations are completed. The parent activation can pass data
to the child activation, when it is generated, and it gets data
from the child activation, when it is completed.

Every activation executed at any moment has a unique
number.

One of RPC characteristics is a block of parameters — a
structure containing local data for their transmission from a
calling procedure to a called one, and vice versa. The name
of a local variable of a given type (the name of a parameter
block) is declared in the calling procedure. The access to the
elements of the parameter block in a child procedure can be

done only by the command P (elem), where elem is the name
of a structure element.

Example 1: The structure of a recursive parallel pro-
gram (RPP). Let us consider a recursive parallel program for
the explicit solution of the heat conduction equation using the
finite difference method. Its alghorithm consists in repeated
computation of a new heat distribution array using the previous
array and the initial condition arrays (the main function). The
NextLayer procedure either divides a given array part or gets
an array from the shared memory and executes computations.

struct NLParam
{

int begin,end,min;
int branching;
float tau,h;

}
parallel(NextLayer, NLParam)
{
if (P_(end) - P_(begin) > P_(min))
{//If the segmentation
//limit is not reached.
for(int i=0;i<P_(branching);i++)
{
struct NLParam pbl;
//...Copying the parameter
// block to pbl.
//Calculation of the begin
//and end of the vector.
pbl.begin = P_(begin)
+ i*(P_(end)-P_(begin))
/P_(branching);
pbl.end = P_(begin)
+ (i+1)*(P_(end)-P_(begin))
/P_(branching);
PCall(NextLayer, &pbl);

}
Wait(); //Synchronization
}
else
{
//Loading the array segment
//from the shared memory.
//Calculations and writing the results
//to a temporary array in the shared memory.
}

}
int main(...)
{
//...Heat distribution array creation.
//Writing the array to the shared memory.
//...Temporary array creation.
for(int i=0;i<IterCount;i++)
{
PCall(NextLayer, &pbl);
Wait();

140 of 230

Figure 1. A fragment of the Trace Graph for the RPP from example 1 rendered in RPC Viewer (branching = 4).

//Writing a new distribution
//array to the file
//Copying the temporary array
//to the distribution array.

}
}

III. TRACE GRAPH CONSTRUCTION AND REPRESENTATION

The Trace Graph is a directed graph formed out of the ver-
tices associated with the events occurred during the program
execution, and the edges which are associated with transitions.

The following events are captured during RPC program
execution, each event corresponding to a specific vertex type:
• forks — one or several calls to concurrent procedures;

after call invocation, execution splits into a few parallel
branches;

• synchronization operator calls — the parallel branches
merge in a Wait vertex;

• calls to the shared and static memory management oper-
ations: allocation, deallocation, load, store;

• basic blocks — other sequential computations inside
activations;

Specific data needed for modeling are saved as a file in
addiction to vertices and relations between them. For example,
a basic block vertex contains information about time taken to
execute calculations. The vertices associated with the memory
access operators contain statistics of the used memory volume.

A Trace Graph constructor is a library of functions for the
sequential execution of an RPC program. It fully realizes the
RPM functionality on a single computer. To compile an RPC
program in a Trace Graph construction mode, the environment
simply includes the library header file, instead of the header
file for a standard mode library.

A Trace Graph is constructed by the GraphBuilder class.
A GraphBuider instance is created before a call to the main

program activation. As soon as any of the events from the list
above occur, a new vertex is created and passed to the Graph
builder.

The GraphBuilder handles an open-ended vertex list and a
list of vertices that are ready to be written to a file. We will
call a vertex open-ended, if new children may still appear. The
open-ended vertex list contains one vertex from every process
executed at the moment. We can consider it as a slice of the
Trace Graph. After removing them from the open-ended vertex
list, vertices are inserted into the ready-to-be-written list.

For each new vertex to be inserted into the open-ended list,
its predecessor from the same activation is searched for. If a
predecessor has not been found, the new vertex is recognized
as a new activation beginning, and it is just inserted into the
list. Else predecessor is removed from list.

To make a clear Trace Graph representation, the RPC-
Viewer application was developed. It renders the Trace Graph
as a hierarchical structure, allowing us to collapse or expand
the chosen activations, and to view information mapped with
the vertices. A format description for the Trace Graph file is
passed to the RPC-Viewer in a special XML configuration file.

A Trace Graph rendering example can be seen in Figure 1.

IV. RPPS MODEL

As we mentionted above, maintaining a Trace Graph con-
struction in a format that is compatible with the old analysis
tools was a goal of the first stage of work. However, the com-
patibility requirement appreciably limits the library facilities.
For example, the information about associations between the
Trace Graph structure and the code is not collected, so it is
impossible to associate concrete recursive parallel procedures
and their activations in the renderer.

Let us consider an RPPS (Recursive Parallel Program
Scheme) model for describing the recursive parallel program
structure and its execution in common terms.

A program scheme is a finite graph G = (QG, q0, 7→G, LG),
where

141 of 230

Figure 2. RPPS for example (1)

• QG = {q0, q1, ..., qn} — a finite set of vertices; every
vertex being one of five types: action, selection, call,
synchronization or ending;

• q0 — the entry vertex (root);
• 7→G: QG → Q∗G — a function that maps every q ∈ QG

with its successors;
• LG : QG → Λτ × Q∗G — the function labelling

graph vertices with symbols from Λτ . LG also associates
pcall vertices with the invoked vertex. Λτ is a basic set
— alphabet containing abstract action names and silent
actions τ .

A vertex q′ is the successor of a q vertex, if 7→G assigns the
q vertex to the vertex q′. The end vertices have no successors.
Call vertices (pcall) are connected with two vertices: one
vertex is the successor, another one is the called vertex.

The RPPS for the RPP of the heat equation solving can be
seen in Figure 2. Here vertices q1-q6 correspond to the main
function; q7-q14 correspond to the NextLayer function. The
solid lines designate 7→G transition, the dot lines designate
LG(Pcall).

A set of hierarchical states of G ∈ RPPSΛτ is a set MG =
{(q1, ξ1), ..., (qn, ξn)} , where q1, ..., qn are vertices from QG,
and such that
• ∅ ∈MG;
• ξ1, ..., ξn ∈MG.
Example 2. The scheme from figure 2 generates ξ =

{(q4, {(τ, {(q9, ∅), (q9, ∅), (q9, ∅)})})}, a multiset correspond-
ing to the situation in which the main function calls the
Recursive Parallel procedure NextLayer, and NextLayer func-
tion, in turn, calls other three activations of NextLayer. These
activations perform the calculations q9.

Recursive-parallel program execution can be described as a
sequence of hierarchical states X = ξ1 7−→ ξ2 7−→ ξ3...ξn.

Let us give a formal definition of a new Trace Graph model.
We will define the Trace Graph of a recursive program as

a finite graph T = (QT , q0, 7→T), where
• QT = {q0, q1, ..., qn} — a finite set of vertices. There

exists a function f : QT → QG, such that it establishes
a mapping of each vertex in QT to exactly one vertex in
QG.

• q0 — the entry vertex (root);
• δ : QT → Q∗T — a function which maps every q ∈ QT

to its succesors.
If f(qi) is an action vertex, or a synchronization vertex,
or a choice vertex, then |δ(qi)| = 1. If f(qi) is an end
vertex, then |δ(qi)| ≤ 1

The T structure differs from the existing Trace Graph structure
first of all by a new vertex type, which was previously ignored
during the Trace Graph construction — a choice vertex.

The RPPS for the RPC code will be constructed by means
of the compiler. GT will be shown in the renderer together
with T .

V. A BRIEF OVERVIEW OF REQUIREMENTS TO THE RPC
EXTENSION. ARPC.

To make the RPC language convenient for algebraic calcu-
lations, new statements are planned to be embedded. We will
call the extended language Algebraic RPC (ARPC). Let us
consider some of these statements.

A. Stencil statement

A stencil is a special statement that specifies the way in
which the work is divided into parts in a procedure. The aim of
introducing the stencils is to separate the logic of the recursive
parallel dividing of work from calculations.

The ARPC is a macrodefinition language, where every
stencil is a parameterized macro. Here, the notion of a macro
has a more general meaning than it is usually accepted in C.
The ARPC language allows us:
• to declare macros with parameters, where another macro

can be used as a parameter;
• to use the nesting of macros;
• to declare a macro in a code both before and after its

call;
For instance, we can write the VectorDivision stencil, which

specifies the manner of vector division for the RPP from
Example 1, giving us an opportunity to specify calculations
on a lower level of the recursion later.

$stencil VectorDivision(procedure,begin,
end,min,branching,Computing)

if (P_(end) - P_(begin) > P_(min))

142 of 230

{//If the segmentation
//limit is not reached.
for(int i=0;i<P_(branching);i++)
{
struct NLParam pbl;
pbl.begin = P_(begin)+i*(P_(end)
-P_(begin))/P_(branching);
pbl.end = P_(begin)+(i+1)*
(P_(end)-P_(begin))/P_(branching);
PCall(procedure, &pbl);
}
Wait(); //Synchronisation.

}
else
{
$Computing

}
}

Here, the $stencil macro declares a stencil named VectorDivi-
sion with input parameters procedure, begin e.t.c.

The $def ... $endd command is used in the ARPC to declare
a macro, and the $ins command is used to include a library
stencil.

struct NLParam
{

int begin,end,min;
int branching;
float tau,h;

}
parallel(NextLayer, NLParam)
{

$ins stencil VectorDivision(NextLayer,
begin,end,min,branching,COMPUTING)
$def COMPUTING//Macros definition
//...calculations in the
//deepest recursion level
$endd

}
int main(...)
//...

The $stencil macro implementation requires solving a prob-
lem of limitations which will constraint the code to be substi-
tuted in the stencil and a problem of protection of variables the
values of which should be affected only by the stencil logic.

B. Generic procedures

One more type of a parameterized macro which is planned
to be embedded in the ARPC is a generic procedure. The
purpose of this construction is to declare a recursive procedure,
the structure of which depends on specific input parameters.
In practice, it means that the compiler generates several
procedures for different levels of the recursion from the macro.

The generic procedure can be used to vary the shared
memory type, a task type and a semantic structure. To vary a

procedure structure in accordance with parameters, the ARPC
command $if〈condition〉 ... [$else ...] $endif should be used.

The way in which the compiler will reduce the number
of generated procedures could be of great interest for further
research.

C. Other suggestions

The RPC compiler implementation will probably allow to
hide bulky work with parameter blocks. In [2] there are some
other constructions, such as procedure specialization and a
sticking-together command. They are planned to be developed
further.

VI. CONCLUSION

In this paper we considered some requirements for RPC
extension through macrodefinitions for algebraic calculations.
For programs written in this language the automatic construc-
tion method of the execution model is described.

Let us take a look at the further research directions.
• The ARPC statement designing.
• The ARPC to RPC compiler implementation.
• The RPPS constructor implementation.
• Further research work with the Trace Graph format and

renderer.
• Investigation of benefits of the created tools for the RPC

program verification.
New opportunities and problems arise from expanding the
RPC and implementation of the ARPC to RPC compiler. The
compiler would enrich the Trace Graph construction algorithm
by adding special trace operators to the RPC code. New ARPC
statements should also be represented in the Trace Graph.

For the development of a verifying compiler we suppose to
use of such formalisms as a hierarchical system of interacting
automata or Nested Petri Nets[4].

REFERENCES

[1] O. B. Kushnarenko Recursive Parallel Program semantic and methods of
it analysis // Ph. D Thesis Grenoble, France 1997

[2] Badin N.M, Brodsky G.M., Sokolov V.A. A Recursive Parallel Program-
ming Language and its application to algebraic computations // Joint
NCC and IIS Bulletin Computer Science Vol. 11, Ershov institute of
informatics systems SB RAS, Novosibirsk, Russia, 1999, pages 1-14.

[3] Vasilchikov V.V. Parallel programming facilities for computing systems
with dynamic load balancing // Yaroslavl, YSU, 2001.

[4] I. A. Lomazova. Nested Petri nets: modeling and analysis of the dis-
tributed systems with object-oriented structure//Moscow, Science world,
2004

143 of 230

Towards a HLA-based Hardware-In-the-Loop

simulation runtime

Eugene Chemeritskiy

The Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

tyz@lvk.cs.msu.su

This paper considers the possibility of the Distributed Real-time

and Embedded (DRE) system simulation with CERTI, a general-

purpose distributed simulation runtime based on the High Level

Architecture (HLA) standard. Although it does not address DRE

simulation and a number of issues should be resolved, the paper

focuses on CERTI performance in the first place and compares it

with a specialized DRE simulation tool. During the analysis of the

comparison results, we make proposals on CERTI attuning and

the design of an efficient HLA-based runtime.

Hardware-In-the-Loop Simulation; High Level Architecutre;

CERTI;

I. INTRODUCTION

A. DRE simulation

Distributed Real-time and Embedded systems (DREs) are
used in a wide range of electronic devices. Although DREs of
household appliance usually contain only a few sensors and
processing units, some complex equipment, e.g. onboard car,
plane, and ship systems, is often composed of hundreds of
devices connected to each other by dozens of diversified data
transmitting channels.

The wide scope of DREs often imposes various restrictions
on its components. Some DREs have to provide a certain
performance, using a limited amount of power, resist an
aggressive environment conditions, or keep within certain
limitations on physical sizes and weight. In case the existing
equipment does not meet these requirements, some devices
have to be redesigned.

The missing DRE devices are usually developed by several
independent workgroups. Their tasks have significantly
varying complexity and assigned periods of time. As a result,
devise prototypes constantly have different readiness degrees,
and their joint trials are often impossible. However, the
majority of errors are detected at the stage of component
integration, when the prototypes are nearing its completion and
the cost of error correction is reaching its maximum.

DRE simulation provides a common approach for early
detection of integration errors. It includes the following steps.
At the stage of DRE blueprinting, developers create its coarse
component-wise simulation model. It serves for verification of
the simplest DRE properties and detection of the related design
errors. The further development goes, the further device

models are refined. Simulation accuracy gradually grows, and
verification reveals more and more tricky errors. Finally, as the
hardware prototypes become available, they join the simulation
instead of their software counterparts. To sum it up, exploring
the current model properties at each stage, DRE developers can
identify and shortly fix device integration errors as soon as it
possible.

Considered Hardware-In-the-Loop Simulation (HILS)
composes the software models with the hardware equipment
and requires a specialized simulation hardware-software
environment to interconnect them to each other. The software
part of this environment, the simulation runtime encapsulates
the details of communication with the diverse DRE
components and provides a common API over it. However, the
runtime cannot hide their difference completely. Hardware
devices are often unable to work properly without a strict
binding to astronomical clock. For example, its implementation
may accept the reply for only a short period of time after the
request send. These real-time constraints impose additional
requirements to the simulation runtime. Therefore, HILS
runtime significantly differs from a general-purpose one [1].

B. The HILS STAND simulation environment

For years the Computer Systems Laboratory (CS Lab) of
Lomonosov Moscow State University has been developing its
own hardware-software environment for Hardware-In-the-
Loop simulation called HILS STAND [1]. Actually the roots of
HILS STAND go to more general discrete-event simulation
system DYANA [2], developed by CS Lab in early 1990s.
Since, DYANA has been serving as a basis for a number of
experiments on applicability of new approaches to simulation
of the diverse computer systems. Started as one of the proof-of-
concept DYANA branches, HILS STAND has been used to
accomplish a number of HILS projects and gradually evaluated
into a powerful simulation suite.

The core of the HILS STAND suite is formed by the
specialized discrete-event runtime. This runtime provides
several independent model execution modes. While in as-fast-
as-possible mode, the HILS STAND runtime provides an
efficient execution of software-only models and acts similar to
a general-purpose runtime. The soft, hard and scaled real-time
modes address the different kinds HILS in the first place.
Being in any of this mode, the runtime executes device models

This work was supported in part by the Ministry of education and science

of the Russian Federation under Grant “Development of an integrated
environment and complex analysis methods for distributed real-time computer

systems functioning”.

144 of 230

mailto:tyz@lvk.cs.msu.su

with the corresponding time constraints and allows their
interactions with the connected hardware devices.

Besides the runtime, the suite includes a number of
subsidiary simulation tools. For example, HILS STAND
provides an integrated simulation data collector and a dynamic
visualizer with the ability to modify model parameters during
its execution and enables a human-controlled simulation.
Although the runtime provides C++ API and encapsulates the
details of interactions among the simulation participants, HILS
STAND does not imply the model to be developed in a pure
general-purpose language. Instead, it provides a specialized
high-level model description language, its translator, and the
corresponding IDE. Actually, these developments have a rich
history either [3].

Because of the large number of DRE devices and a certain
complexity level of their models, HILS STAND instances
usually include a number of nodes connected by a private
LAN. The nodes have a similar configuration, except some
additional interfaces for external hardware simulation
participants. The additional hardware channels can also
interconnect several nodes directly. This configuration is used
for experiments with the corresponding channel controllers and
the other switching equipment [1].

C. An advanced simulation runtime

Although the HILS STAND is actively used in a number of
different HILS projects, CS Lab has never ceased to follow the
trends and test new simulation approaches. Recently it started
new project on the rethinking of HILS environment and the
development a new tool-chain, combining the experience
gained in over twenty years of simulation experiments with
latest applicable technology efforts. The research list of this
large-scale project includes a new language for DRE
simulation models; integrated trace tracking and visualizing
tools; new verification engine; and an advanced HILS runtime,
which is the subject of this paper.

During the last 60 years, discrete-event simulation runtimes
made a significant advance [4]. There are several different
classifications, but it is a common practice to divide them into
a number of generations associated with some historical trends.
One of the most noticeable trends now is a standardization of
the runtime API. Thus, we believe it is giving a birth to the new
runtime generation. Unfortunately, there is no any off-the-rack
and well-fitted standard for HILS runtimes. However,
exploring of adjoining simulation areas revealed some attempts
to use High Level Architecture (HLA) for real-time simulation
[5] and it is pretty close to HIL. So the idea of HLA adoption
for HILS runtime appeared.

Although there are a lot of different HLA-based simulation
runtimes, each of them requires a large amount of additional
work. As it was shown by the analysis [6], CERTI happened to
be the best initial approximation for the advanced HILS
runtime we want to make. However, CERTI do not initially
target real-time and HILS, and a number of related issues have
to be resolved. Briefly considering their whole scope, the paper
gives the first priority to performance of a HILS runtime. In
particular, the paper introduces a couple of benchmarks that
revealed significant advantage of HILS STAND over the

CERTI. Due to a lower performance, out-of-the-box CERTI
version cannot be used for the scope of simulation tasks HILS
STAND can easily manage. Therefore, the paper contains the
analysis of its architectural drawbacks and introduces a number
of proposals on their reduction.

II. A HLA-BASED HILS RUNTIME

A. Standardization trends

Simulation as a method for exploration of diverse object
properties and regularities among them outruns the advent of
computers for many years. However, its rapid development
started after the complex mathematical calculations had been
assigned to fast and reliable computers. In the beginning of the
1950s, the term simulation acquired the default meaning of
digital computer simulation. Subsequently the simulation was
defined as a combination of designing of the observed system
model and holding the necessary experiment set on digital
computers [7].

From the very beginning of the simulation history the
observed systems always tended to be represented in deeper
detail level. This tension results in the increasing size and
complexity of developed simulation model. This growth
required a respective performance increase from computer
systems, and this fact resulted in emergence of parallel
simulation systems. These systems share the simulation task
across multiple computing nodes. Typically such systems were
implemented locally within the organization that wanted to use
it.

The complexity of the models was not the only factor
leading to computer simulation tool evolution. The scope of
simulation has been growing either. After new simulation
problem types appeared, the related requirements were
imposed to modeling and simulation tools. For instance,
distributed simulation is often required in case of joint product
development when different product component are produced
by a number of workgroups located in different organizations.
This type of simulation intends encompassing of several
geographically separated simulation systems, which in turn
may consist of a single compute node, or be a parallel system.
Historically, the appearance of this task type led to the creation
of distributed simulation systems that provide an essential set
of services to the simulation participants and ensure its
consistent behavior [8].

Currently we believe that the next step in the runtime
evolution is a standardizing of the distributed system interfaces.
Uniform interfaces provide possibility to combine among a
variety of independent simulation systems and create general
models that can be handled by every distributed system
corresponding to the standard specifications. One of these
standards is described in the next section.

B. The HLA distributed simulation standard

HLA is a conventional standard in the field of distributed
simulation. The roots for the HLA stem from distributed virtual
environments. Such environments are used to connect a
number of geographically distant users. The HLA standard is a
conceptual heir of Distributed Interactive Simulation (DIS),

145 of 230

which is a highly specialized simulation standard in the domain
of training environments [8]. The primary mission of DIS is to
enable interoperability among separated simulation systems
and to allow the joint simulation of their participation. HLA
standard remains relevant to the DIS principles and even
extends them.

HLA appeared in 1993, when the Defense Advanced
Research Projects Agency (DARPA) designated an award for
developing of an architecture that could combine all known
types of simulation systems into a single federation. The HLA
standard initially addressed all kinds of as-fast-as-possible, soft
and hard real-time, discrete-event and time-driven, fully-
synthetic, human- and hardware-in-the-loop distributed
simulations. However, hard real-time constraints were not
supported until the latest HLA standard version, namely IEEE
1516-2010 (Evolved) released in the very end of 2010 [9]. The
majority of HLA-based simulation tools were built on the
previous HLA standard versions and do not offer a full HLA
Evolved support yet.

Thereby, HLA-based HILS became possible quite recently
and any researches in this area are innovations in some sense.
However, these researches seem to be prospective because of a
number of benefits HLA gives. At first, HLA strict support by
both the runtime and the models provides their guaranteed
compatibility. It means that HLA model developed with one
runtime can also be used with other runtimes without any
modification. In fact, HLA forms an independent market of
out-of-the-box simulation models which can be used with any
HLA-compatible simulation runtime.

Secondly, HLA is used as an external simulation interface
by some non-distributed runtimes. This peculiarity enables
joined simulation encompassing diversified runtimes and,
consequentially, different model types. For example, a single
simulation can include both time-driven fully-synthetic and
discrete-event hardware-in-the-loop models simultaneously,
and their developers do not have to adjust their models for this
cooperation.

In addition, there are a lot of subsidiary runtime-
independent HLA-based simulation tools, such as statistic
collectors, simulation analyzers, high-level model describing
languages and corresponding IDEs. These tools operate at the
model level over the HLA API and do not require any
additional support from the simulation runtime. Therefore, they
can be reused with any runtime implementation.

HLA specification introduces its own terminology
generally used by the developers of HLA-based simulation
tools, and CERTI is not an exception. Therefore, we include a
short notion of fundamental HLA terms. The simulation
runtime specified by HLA is named the Run Time
Infrastructure (RTI). RTI provides services a number of joined
federates - simulation participants of any kind. The association
of all federates forms federation.

C. CERTI brief description

CERTI is a HLA-compliant RTI developed by the French
Aerospace Laboratory (ONERA). The project started in 1996
and its primary research objective was the distributed

simulation itself whereas the appeared HLA standard was the
project experiment field. CERTI implementation started with
the implementation of the small subset of RTI services, and
was used to solve the concrete applications of distributed
simulation theory [10].

Since the CERTI project was open sourced in 2002, a large
distributed simulation developer community has been formed
around the project. In many ways due to contributions of
enthusiasts, the CERTI project has grown from basic RTI into
a toolset including a number of additional software components
that may be useful to potential HLA users.

The CERTI project has always served a base for researches
in the domain of distributed simulation, and a number of
innovative ideas have been implemented with its use. Thus, the
problem of confidential data leak was solved in context of
CERTI RTI architecture, and the considered RTI guarantees
secure interoperation of simulations belonging to various
mutually suspicious organizations [11]. The certain interest for
the considered project is a couple of application devoted to
high performance and hard real-time simulation.

In spite of HLA is initially designed to support fully
distributed simulation applications, it provides a framework for
composing not necessarily distributed simulations. Thereby
there was created an optimized version of CERTI devoted to
simulation deployed on the same shared memory platform and
composed simulation running on high-performance clusters
[12].

Some experience could also be adopted from ONERA
project on simulation of satellite spatial system. Each federate
in this federation is a time-stepped driven one. It imposes an
additional requirement of hard real-time: the simulation system
should meet the deadlines of each step and synchronize the
different steps of the different federates [13].

Despite the distribution of commercial products, the project
development is still continuing in accordance with the HLA
simulation standard progress. Thus, CERTI supports HLA
IEEE 1516-2000 version since 2010 in addition to previous
DMSO 1.3 version.

D. Designing a CERTI-based Runtime

There are a lot of difficulties on a way to a CERTI-based
HILS runtime. First of all, the supported version of HLA
standard does not currently address real-time simulation and a
fortiori it does not address HIL. First, IEEE 1516-2000
specifications do not provide any method to specify end to end
prediction requirement for federate. Second, CERTI encodes
reliable and best-effort transportation types with TCP and UDP
network protocols which are not suitable for real-time
simulation. Finally, CERTI works over the operating system
and is unable to control its resources. All the listed paragraphs
have a significant affection to amount and predictability of the
runtime overhead crucial for any real-time simulation [5].

Second group of issues concerns the hardware integration
during the HILS. The runtime should have an extendable
support of the diverse data transmitting channels. This fact
implies a number of additional restrictions to both hardware
and software components of the simulation system. For

146 of 230

example, the hardware devices usually have strict data message
format specifications. Therefore, RTI cannot use the only
message to transmit both internal service data and federation
one.

The final design challenge is the reuse of legacy tools from
the HILS STAND software suite. Some of its components,
such as the dynamic simulation visualizer and the generator of
fault injections, cannot be efficiently implemented over the
existing HLA interface and should be integrated into the RTI.
Actually, their integration leads to additional research and
development subtasks and requires a number of problems to be
resolved.

Although each of the listed problems is important, this
paper is devoted to the provision of the HILS STAND-
comparable runtime performance level. Currently, HILS
STAND is used to perform HILSs by a number of different
DRE development projects and we are curios if the HLA-based
simulation runtime is able to execute models with the similar
complexities and real-time constraint sizes. The remainder of
this paper is devoted to this issue.

III. CERTI PERFORMANCE EVALUATION AND

ARCHITECTURAL ANALYSIS

A. Runtime benchmarking

During the HILS, each of the hardware participants
interacts to the other DRE components according to a
predefined time-related behavior specification. If the runtime
does not meet requirements of this specification, the device
may work incorrectly. It is simple to slow down a fast software
model to correspond the device speed, but it is not possible to
meet these requirements if the model works slower than the
hardware expects. Thus, the speed of event handling is a
crucially important property for any HILS runtime. Actually,
its value can be used to determine the complexity of simulation
tasks the runtime can efficiently solve. The smaller event
handling time of the runtime, the wider range of simulation
tasks it can solve. Moreover, the faster runtime works, the
smaller its requirement to the hardware. For example, a slower
runtime may need more nodes to run the same simulation
model.

Making an assessment of CERTI applicability to the range
of usual HILS STAND tasks, we choose two simple time-
regulated client-server models from the HILS STAND test-suit
and run them in as-soon-as-possible mode in both runtimes.
Each of these models consists of a single server and a single
client. The client sends messages to the server. Each message
contains one integer parameter, whose value is decremented
after each send, until it reaches zero. Thereby, the initial value
of this parameter also sets a number of client messages to be
transmitted. In the first model the server records the received
values and works as a simple registrar. In the second model
server also sends back to the client every message it receives,
and the client do not send the next message until it gets a reply.
The remainder of this paper refers these models as
“Avalanche” and “Ping-Pong” tests respectively.

Although the described models are pretty simple, the
similar simulation models are often used for the same purposes

[14-15]. Federates of the Ping-Pong test are actually executed
consequently. After the message send, client waits for a server
reply. In a similar manner, server waits for the message
instantly replies back to the client. Thereby, the time of
simulation reflects the speed of message transmission rather
accurate and can be used as a performance index for a runtime
response time. Avalanche, in contrary, allows a fully parallel
and logically unrestrained federate execution. Thus, the whole
runtime can be considered as a media for data message
transmission. Therefore, the simulation time can be treated as a
reflection of a runtime throughput.

Both systems were tested using a hardware bench
composed of two identical nodes. Each node ran a single model
component, either client or server. The simulation time was
measured by each model component independently of each
other. The timer started right after the initial synchronization
and stopped when the component had been ready to resign.
Final results were formed as an average of two component
readings for each model configuration.

As it is clearly shown by the benchmark results (Table I),
overall CERTI performance is a several times lower than the
one of HILS STAND. Although these results reduce the range
of acceptable simulation tasks dramatically, the usual real-time
requirements still accept CERTI as a HIL runtime. However,
increase of its performance becomes an important direction of
further development. The remainder of this segment presents a
deeper CERTI analysis and introduces some proposals on its
refinement.

TABLE I. THE AFFECTION OF MESSAGE NUMBER TO SIMULATION

EXECUTION TIME, MS

Message

number

Avelanche Ping-Pong

CERTI HILS STAND CERTI HILS STAND

10 4,1 1,6 10,2 2,3

100 38,1 7,6 94,4 22,8

1000 399,7 84,8 884,6 228

10000 6063 1127,6 8770,7 2280

100000 60601 11722,1 87643,2 22800

B. CERTI architecture analysis

Being a distributed simulation middleware, RTI provides a
number of joined federates with API specified by the HLA
standard. The main purpose of this API is to encapsulate any
details of communication among the joined federates, network
communication included. Thus, RTI includes a number of
remote components corresponding to a number of federates
joined. These components are generally known as Local RTI
Components (LRCs).

Maintaining the federation consistency, RTI constantly
synchs a set of joined federates. Therefore, the efficiency of
their coordination affects the overall RTI performance
significantly. Fully distributed architecture implies equal and
self-sufficient LRCs, and its implementation requires
complicated consensus algorithms. Developers usually avoid
the excessive complexity by introducing the Central RTI
Component (CRC) that stores shared data and implements
some synchronization algorithms locally. Both centralized and
decentralized RTI architectures have certain weak and strong
sides, and their reasonable combination is a first cornerstone of

147 of 230

libRTI

RTIA 1

Federate 1

RTIG

Socket UNIX

Socket TCP

libRTI

RTIA 2

Federate 2
libRTI

RTIA n

Federate n

the efficient RTI implementation [13]. This segment considers
the approach implemented by CERTI.

Figure 1. CERTI RTI architecture

Generally speaking, CERTI RTI consists of three
components: RTI Gate (RTIG), RTI Ambassador (RTIA) and
libRTI. RTIG is a process that runs on a separate host and
serves as CERTI CRC. RTIA is a process that runs on the same
host federate runs. Therefore, the number of RTIAs equals to
the amount of joined federates. Both RTIG and RTIA are
single-thread processes. Whereas they form RTI internals,
libRTI runtime library implements API specified by HLA.
libRTI links to the joined federate and connects it to the
corresponding RTIA process by pipe (Unix socket). An
aggregate of RTIA and libRTI forms CERTI LRC.
Communication between CRC and LRCs goes through the
network sockets [10]. Figure 1 presents a visual representation
of the described architecture.

RTIA processes never communicate to each other directly.
All data exchange among them goes through the RTIG. Thus,
CERTI bases on a fully centralized architecture and its CRC
component coordinates the joined federates single-handedly.
Indeed, RTIG implements the most of RTI services whereas
the sole purpose of RTIA and libRTI is the formation of a
convenient communication infrastructure between RTIG and a
number of joined federates. In other words, LRCs of CERTI
generally serve as connectors between CRC and the end
simulation participants.

Summing it up, CERTI RTI uses a fully centralized
architecture and has a strong CRC. The simplicity of this
organization gives a number of benefits to the RTI developers.
First of all, concentration of all the control inside of a single
process simplifies the implementation of RTI services. The
absence of any direct links among the LRCs does not require
network consensus algorithms and reduces the corresponding
synchronization overhead significantly. Modification of a
federation state made by RTIG is instantly propagated among
all the related federates and all data received by LRCs can
always be used without any additional conformation.

The second centralization profit is the simplicity and
deterministic of communication among the distributed RTI
components. Each data exchange among the joined federates
always go through RTIG, where all the synchronization issues
are solved locally and, therefore, do not require any network
communication at all. Thus, coordination of the joined

federates with RTIG always requires a certain and relatively
small number of network messages, and uses network
bandwidth rather efficiently. In contrast, fully distributed
architecture, that include a number of equal self-sufficient
LRCs and does not include any CRC, requires a complex
synchronization algorithms, that are usually imply an intensive
network communication to the consensus.

Third, strong CERTI centralization allows accelerated
implementation and testing of the innovations. The proof-of-
concept for a new runtime algorithm can be implemented
locally inside RTIG. The developers get rid of complex
network interactions and asynchronous changes of federation
state. Their implementation should run in context of a single
threaded process only. This peculiarity of CERTI, composed
with its open source code, has proved this RTI as good
foundation for the diverse simulation researches.

Finally, the centralized single-host execution of RTIG
provides a convenient way to isolate the certain RTI subsystem
and develop a number of diverse “surgical” benchmarks for
them. The distributed kind of some RTI services (such as time
and object management services) makes it really hard to get a
fair estimation of their in-field implementation efficiency. The
true results are often shaded and distorted by the network
communication overhead that is hard to predict and, a fortiori,
to avoid.

However, the same centralized architecture causes a
number of problems. The most crucial of them is an excessive
load of the RTIG. In case of small federations, composed of a
few federates, RTIG does its service well. But the more
federates join, the more RTIG is loaded, and the dependency is
not linear. Each joined federates results in a new
communication flow, and an increase in the complexity of its
processing. For example, a single interaction send often leads
to a number of notifications to its recipients. There comes a
moment RTIG is unable to process the incoming data flow fast
enough and becomes a bottleneck. In this case, it constantly
makes the joined federates wait, and, as a result, federation is
executed merely consequently. The next segment presents
some approaches that can conceptually improve the current
CERTI architecture and in some ways mitigate its problems.

IV. CERTI ATTUNING PROPOSALS

A. Layered architecture

As it was shown in the previous section, fully centralized
architecture of CERTI results in an excessive CRC load during
the execution of large federations, and it is a serious design
drawback. There are a lot of RTI implementations that
compose centralized and decentralized approaches in a more
equitable way and get better performance in return [14].
However, architectural mixture requires a revolutionary
alteration of CERTI internals and eliminates all the benefits of
its clear and simple component structure. This section presents
an alternative approach to CRC load reduction based on a
layered RTI architecture.

Although each federate represents a certain component of
real system, the level of their abstraction can be volatile and do
not reflect logical structure of the system. For example, a

148 of 230

model of onboard system may include one coarse federate
corresponding to a number of its secondary subsystems and a
bunch of fine-grained federates corresponding to components
of the most important subsystem simultaneously. Fine-grained
federates are clearly less abstract than the coarse one because
they correspond to smaller elements of the logical structure.
Only their aggregate may form the new logical subsystem that
can interact to the other subsystems on equal footing. Thus,
federates of the aggregate depend on each other. They are
logically linked.

During the simulation federate aggregation can be
distinguished by the intensity of their interaction. As it is
shown by the practice, members of a certain aggregate interact
to the each other far more frequently than to any external
federate. Federates are clustered into a number of aggregates
and encapsulate the majority of communication traffic inside of
them. Only a little part of traffic goes beyond and connects
members of different aggregates.

CERTI has a centralized architecture and implements
federate interaction of any kind using its CRC regardless to the
model logical structure. In case the number of data exchanges
is large enough, CRC is overloaded, becomes a bottleneck, and
slows the simulation down. However, federates do not really
care about the inner communication of aggregates they do not
belong. Thus, the simulation traffic can be separated according
to the model logical structure. The only thing we need is a
dedicated middle-level CRC for each federate aggregation.
From one hand, it will control the aggregated federates,
encapsulate their inner traffic, and take some load of the real
CRC. From the other hand, the real CRC will see it as a regular
federate that runs in accordance to the common HLA execution
rules and generates traffic flow corresponding to the bunch of
aggregated federates. The middle-level CRC can be
implemented as a new LRC frontend and does not result into
significant increase of the RTI complexity.

There are several natural extensions of the described idea.
First, federates can be clustered by a number of attributes
differed from logical structure of the simulated system. For
example, the non-uniform distribution of the federate
communication intensity is a sufficient aggregation criterion.
Second, the same trick can be used several times. In their turn,
aggregated federates can be separated into a number of smaller
groups, and form a new simulation control layer. Therefore, the
described RTI architecture is referenced as a layered
architecture.

To sum it up, introduction of the layered architecture results
into a number of benefits. First of all, it solves the excessive
CRC load problem and increases scalability of RTI. Indeed, the
middle-level CRCs process the internal aggregate traffic
independently and take a part of responsibilities from the real
CRC. Each middle-level CRC can be executed by a separate
host, thus, the RTI control is distributed automatically without
any data replication or sophisticated coherence control
algorithms.

Second, aggregation allows reducing of the synchronization
losses. Internal interaction of aggregated federates goes
through the middle-level CRC and does not take into account
the most of external dependencies. Therefore, it is more

efficient than the regular one. However, their external
interaction is less efficient and includes two mediators, namely,
the middle-level CRC and the regular one. If aggregation can
be chosen sufficiently well, the synchronization losses can be
reduced respectively.

Third, aggregation allows accurate RTI attuning. Federates
can be clustered according to a set of services they use. Unused
RTI components can be safely removed from the middle-level
CRC and its complexity will reduce respectively. The
remaining services can be also attuned to the requirements of
the joined federates. For example, each middle-level CRC may
implement its own time management algorithm that is effective
for the aggregated federates independently of other RTI
components. In case of HILS, the main CRC should always use
conservative time management algorithms as a core. However,
middle-level CRC component may use optimistic algorithms in
case it is more efficient.

Finally, aggregation is a way to increase the efficiency of
interactions within a single node. Centralized architecture does
not take into account the relative position of federates. Even in
case they are running on a single node, every data exchange
goes though the RTIG. Thereby, RTI uses two network
communications to transmit data between two processes on a
single host. This wasteful data handling results into a
significant performance decrease. Aggregation of all federates
on the node actually allows their direct interaction without any
network involvement. Thereby, the concept of node
aggregation brings some advantages of the decentralized peer-
to-peer architecture without any changes in a current CERTI
logic.

The weak side of the layered RT architecture is
indeterminism of RTI structure and its dependence on the
executed model structure. It also requires some automated
static and dynamic model analysis tools responsible for the
criterion selection and the corresponding suboptimal federate
segregation. However, the benefits it may give seem to worth
efforts, and this approach appears to be rather prospective.

B. Thread-based LRC

CERTI LRC consists of libRTI library and RTIA process
connected by UNIX pipe. Although libRTI is linked to federate
process and provides HLA API, the library does not really
implement RTI logic. The library just redirects the incoming
method calls to the connected RTIA. In more details, every
time federate calls RTI service, libRTI sends to RTIA a
message with the associated method identifier and a set of
supplied arguments. RTIA handles these queries and replies
back with results. Thereby, libRTI can be considered as LRC
frontend whereas RTIA corresponds to LRC backend. Due to
this modular LRC structure, changes of HLA API will not
affect the LRC backend directly and the corresponding RTI
changes will require a minimum of effort. Currently CERTI
uses this flexibility to maintain both DMSO 1.3 and IEEE 1516
2000 HLA versions.

Another advantage of the two-component LRC against the
single-component one is the increase of simulation security and
reliability. Both libRTI and RTIA run in their own context and
verify every incoming message. Therefore, there is no way the

149 of 230

federate can read or modify any internal RTI data, except the
calls of the HLA API. For the same reasons, failure of the
joined federate never leads to a failure of the whole RTI.

However, the flexibility of the composed LRC decreases an
overall RTI performance. Every time the federate calls RTI
method, at least two internal messages are generated, and this
number may increase in case of RTI callback requests.
Transmission through the pipe requires message parameters to
be serialized during the send and deserialized on its reception.
These data format conversions inevitably result into
undesirable memory copying and additional CPU load.

There are several ways to avoid the unnecessary
communication overhead. The first one is to replace the pipe
with a set of queues in a shared-memory. This approach does
not require any data reformatting during the transmission and,
therefore, decreases CPU load. However, it requires a support
from operating system and a number of corresponding system
calls. A more performance emphasized approach is to include
RTIA right into the federation process as the additional thread.
Thereby, libRTI and RTIA will automatically share the same
address space. Thread-level data exchange can be more
effective than the process-level one. Moreover, modern multi-
core CPUs are able to provide multi-threaded execution with
the additional performance gain. Unfortunately, integration of
libRTI and RTIA in a single process breaks the simulation
security and reliability. Still, this solution fits the purposes of
HILS development and seems to be a preferable option.

Although it is not obvious at the first glance, both
considered approaches require serious modification of RTIA
process. RTIA is a single-thread process, and it has to wait both
RTIG and libRTI messages simultaneously. There are two
well-known paradigms of its implementation, namely, polled
and related waiting. During the polled waiting, process just
looks for incoming messages in a cycle. This requires
additional CPU time. During the related waiting process asks
the system to notify it when the message comes, and suspends
until reception of this notification. This approach is more
complicated and its efficiency is inversely proportioned to the
frequency of incoming messages. RTIA receives message rare
enough, thus CERTI uses related waiting. However, there is no
standard way to implement related waiting of the socket and
either shared memory or thread using the simple single-
threaded process. Thereby, any of them requires RTIA to use
polling or implement related waiting using multiple threads.

V. CONCLUSION

According to the conducted performance benchmarking,
out-of-the-box CERTI RTI lags far behind the HILS STAND.
Although CERTI cannot be used as a runtime for the same
range of simulations, the absolute values of its latency and
throughput are acceptable for the average HILS model.
Therefore, the performance gap between two systems is not a

critical one and can be further reduced after implementation of
the stated proposals.

ACKNOWLEDGMENT

Special thanks to Dmitry Volkanov for reading the paper
and giving many helpful remarks.

REFERENCES

[1] V. V. Balashov, A. G. Bakhmurov, M. V. Chistolinov, R. L.
Smeliansky, D. Yu. Volkanov, N. V. Youshchenko, “A hardware-in-the-
loop simulation environment for real-time systems development and
architecture evaluation,” International Journal of Critical Computer-
Based Systems (IJCCBS), vol. 1 - issue 1/2/3, 2010.

[2] A. Bakhmurov, A. Kapitonova, R. Smeliansky, “DYANA: An
Environment for Embedded System Design and Analysis,” in
Proceedings of 5-th International Conference TACAS'99, Amsterdam,
The Netherlands, March 22-28, 1999. pp.390-404.

[3] R.L. Smeliansky, Yu. V. Bakalov, “A Language for Specifying
Distributed Programm Behavior,” Proceedings of the VII. International
Workshop on Parallel Processing by Cellular Automata and Arrays,
Parcella ’96, Berlin, 1996, pp.85-92.

[4] R.E. Nance, “A history of discrete event simulation programming
languages,” Blacksburg, USA, 1993.

[5] M. Adelantado, P. Siron, and Chaudron J.B., "Towards an HLA Run-
time Infrastructure with Hard Real-time Capabilities," in Proceedings of
International Simulation Multi-Conference, Ottava, Canada, 2010.

[6] Chemeritskiy E.V., Savenkov K.O. Towards a real-time simulation
environment on the edge of current trends // In Proceedings of the 5-th
Spring/Summer Young Researchers' Colloquium on Software
Engeneering, SYRCoSE-2011, Yekaterinburg, Russia, may 12-13 2011,
pp. 128-133.

[7] R.G. Sargent, "Requirements of a Modeling Paradigm,", Winter
Simulation Conference WSC’92, Arlington, USA, 1992, pp. 780- 782.

[8] Richard D. Fujimoto, “Parallel and Distributed simulation systems,”
2000.

[9] IEEE Std 1516-2010, “IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) - Federate Interface
Specification,” 2010.

[10] E. Noulard, J.Y. Rousselot, and P. Siron, “CERTI, an Open Source RTI,
why and how,” Spring Simulation Interoperability Workshop, San
Diego, USA, 2009.

[11] P. Bieber, D. Raujol, and P. Siron, “Security Architecture for Federated
Cooperative Information Systems,” Annual Computer Security
Applications Conference, New Orleans, USA, 2000.

[12] M. Adelantado, J.L. Bussenot, J.Y. Rousselot, P. Siron, M. Betoule,
“HP-CERTI: Towards a high Performance, high Availability Open
Source RTI for Composable Simulations,” Fall simulation
interoperability workshop, Orlando, USA, 2004.

[13] B. d’Ausbourg, P. Siron, and E. Noulard, “Running Real Time
Distributed Simulations under Linux and CERTI,” European Simulation
Interoperability Workshop, Edimburgh, Scotland, 2008.

[14] L. Malinga and WH. Le Roux, “HLA RTI Performance Evaluation,”
European Simulation Interoperability Workshop, Istanbul, Turkey, 2009,
pp. 1-6.

[15] M. Karlsson, P. Karlsson., “An In-Depth Look at RTI Process Models,”
in Proceedings of 2003 Spring Simulation Interoperability Workshop.
03S-SIW-055, 2003.

150 of 230

The Spruce System: quality verification of Linux file
systems drivers

Karen Tsirunyan
Russian-Armenian (Slavonic)

University, RAU
Yerevan, Armenia

ktsirunyan@gmail.com

Vahram Martirosyan
Russian-Armenian (Slavonic)

University, RAU
Yerevan, Armenia

vmartirosyan@gmail.com

Andrey Tsyvarev
Institute for System Programming

of RAS
Moscow, Russia

tsyvarev@ispras.ru 1

Abstract — This paper is dedicated to the problem of dynamic
verification of Linux file system drivers. Alongside with some
existing solutions, the Spruce system is presented, which is
dedicated to verification of drivers of certain Linux file systems.
This system is being developed in the System Programming
Laboratory of Russian-Armenian (Slavonic) University in
Armenia. Spruce provides a large variety of tests for file system
drivers. These tests help not only verify the file system
functionality, but also watch the behavior of the driver in case of
system failures and in rare paths.

Keywords - Linux, file system, driver, Spruce, KEDR, fault
simulation.

I. INTRODUCTION

Linux-based operating systems are widely used all over the
world. Linux supports several file systems, including not only
own file systems (ext2, ext3, ext4) and those of other Unix-
like OSs (XFS, BtrFS, JFS), but also MS Windows file
systems (FAT32, NTFS). As Linux is a Free Software, it is not
developed by a specific company or a developer, but rather by
a community of developers, which includes thousands of
system programmers. Each kernel module is developed by a
certain programming team, which is responsible for its
technical support. This brings us to the situation where there is
no centralized quality control of source code. This makes it
possible for some kinds of errors to appear in Linux. For
example, no one performs integrity verification of the system
in its entirety. That can usually be avoided in other operating
systems, which are developed and maintained by certain
companies.
File system modules are one of the most widely used
components of Linux. Each Linux user needs these modules to
operate correctly. Errors in file system drivers can lead to
serious consequences - from data distortion and loss to critical
security vulnerabilities. The change log of Linux kernel [1, 6]
shows that errors in file system modules are still quite
common.
Linux is a monolithic OS kernel with support of dynamically
loadable modules (Loadable Kernel Modules – LKM).
Usually there can be hundreds of threads working
concurrently in Linux. It leads to the well-known problems of

race conditions. Besides, there are no protection mechanisms
between modules and the kernel itself. All the code is being
executed in privileged mode which allows any of the modules
to have direct access to all the others modules and the kernel.
Also there is no garbage collector in Linux. All these factors
make Linux module development a very hard process from the
point of view of correctness. It is really easy to make mistakes
in such situations but it is really hard to find those mistakes
later.
Linux file system modules usually consist of two parts:
common functionality and FS-specific part. The common
functionality implements the back end of general-purpose
system calls while the FS-specific part implements such
operations as defragmentation (on-line or off-line), partition
resize, migration, etc. Each of these parts in its turn consists of
two parts: normal execution and error checking and handling.

Because of the complexity of Linux kernel modules there
are several kinds of critical errors usually found there. First of
all there can be fatal errors, which make the module no longer
operational (e.g. dereferencing a null pointer). These errors
usually occur because of low quality code; for example, when
the error checking and handling is not there.

There are certain resources (such as memory or system
objects) which need to be manually returned to the system;
otherwise a leak of resources in the kernel modules is said to
have occurred. The reason for the occurrence of such errors is
that Linux is developed in “C” programming language which
does not have its own garbage collector. On the other hand the
kernel itself is not responsible for freeing resources after the
module is unloaded. Next, as there are multiple threads
working in the kernel concurrently, the race conditions are
usual. It is one of the hardest errors to discover in kernel
modules. This problem is troublesome even in user-space.

 Also, there is another kind of errors in kernel modules
which probably are the easiest to find and correct –
incompliance with the documentation.

1 This work is partially supported by RFBR 10-07-1047a,
11-07-12075-ofi-m, Minobrnauki RF 07.514.11.410.

151 of 230

mailto:tsyvarev@ispras.ru
mailto:vmartirosyan@gmail.com
mailto:ktsirunyan@gmail.com

Testing is one of the existing methods of maintaining the
desired quality level of software components. Naturally, the
kernel itself and its parts are tested prior to the release, but
these tests cover only the basic functionality. A system which
allows to check a file system driver more thoroughly and
to reveal above errors would be useful for quality assurance of
Linux-based OS. This system would be used both by
developers and maintainers of existing file system drivers, and
by developers of the new ones.

II. OVERVIEW

Let us briefly present some of the most popular Linux
testing systems.
Autotest [7] is a framework for fully automated testing. It is
designed primarily to test the Linux kernel, though it is useful
for many other purposes such as qualifying new hardware,
virtualization testing, and other general user space program
testing under Linux platforms. It's an open-source project
under the GPL and is used and developed by a number of
organizations, including Google, IBM, Red Hat, and many
others.
The Linux Test Project (LTP) [8] is a joint project started by
SGI TM and maintained by IBMR, that has a goal to deliver
test suites to the open source community that validate the
reliability, robustness, and stability of Linux. The LTP test
suite contains a collection of tools for testing the Linux kernel
and related features.
The Phoronix Test Suite (PTS) [9] is the most comprehensive
testing and benchmarking platform available that provides an
extensible framework for which new tests can be easily added.
The software is designed to effectively carry out both
qualitative and quantitative benchmarks in a clean,
reproducible, and easy-to-use manner.

All of the testing systems mentioned above cover only that
part of file system drivers, which is responsible for normal
execution. These systems do not test the driver behavior in
case of system failure and other rare execution paths.

Along with the testing systems there are certification systems
developed by some major GNU/Linux distribution companies.
These systems usually check complete GNU/Linux
distributions for compatibility with hardware. There are
certification systems developed by Novell, Red Hat, Oracle,
Canonical, Google. Because operations with hardware are
performed via drivers corresponding to this hardware, these
systems also check drivers.
Most certification systems for Linux simply use testing for
verification of hardware. They use external test suites,
including Autotest, LTP and PTS, and test suites specially
developed for a specific system. So, such systems suffer from
the same problems as described above for test suites.
But some certification systems pay more attention to checking
device drivers.
While testing storage hardware, SUSE Yes Certified
Program[12] examines the work of its driver for memory

leaks (chunks of memory which have been requested by the
driver, but have not been freed by it) and accesses memory
areas outside of allocated ones. Also, some tests are performed
in a mode in which some memory requests from the driver
may return failure. Such tests verify the operability of the
driver in case of memory pressure.
For checks and for memory pressure emulation
instrumentation of driver object file is used.
Allocation/deallocation function calls are replaced with calls
of special stubs.
Certification program Oracle Linux Test (OLT)[13], beside
testing of OS in normal conditions, also performs testing in
conditions of system-wide memory pressure.

The checking of internal properties of driver work during
testing gives much for quality driver verification in
comparison with testing only.
For example, the rate of leaked memory per one device
operation may be low. So, for revealing a leak, a normal test
should perform many device operations before the total
memory leak becomes sufficient for making the test fail.
Indeed, simply increasing the number of device operations
may be insufficient for triggering test failure, because not all
operations may cause memory leaks (and even not in any
condition).
Checking memory leaks while the driver is working changes
the situation dramatically. In that case a single operation is
guaranteed to be sufficient for revealing memory leaks.
Moreover, error reporting in that case becomes more
informative than that in case of test failure caused by memory
exhaustion.
In SUSE Yes Certified program internal properties of driver
work are checked for memory leaks and write-past-end/write-
before-begin errors. The disadvantages of the implementation
are: small number of intercepted allocation/deallocation
functions (this leads to missing memory leaks) and inability to
reuse implementation of those checks separately from the
certified program itself.

Testing under memory pressure also improves the quality of
driver verification, allowing triggering driver code which is
responsible for error-processing. This, in turn, allows for
verification for otherwise unexecuted code.

Linux kernel and kernel modules, which implement drivers,
request memory from a common pool, and are strongly
interconnected with one another.
Because of this, system-wide memory restriction applied by
Oracle Linux Test is not very effective for single driver testing
– there is no guarantee that concrete failure in memory
allocation affects the given driver.
Memory restriction simulation based on making only those
requests fail, which are performed by the driver, is much more
effective. Every such failed request affects the guarantees of
driver execution.

152 of 230

There are the following disadvantages of such simulation
implementation in SUSE Yes Certified program: restriction in
simulation scenarios choice (only scenarios based on random
generator are available), and again inability to reuse
implementation separately from the certified program itself.

The certification systems mentioned above are summarized in
Table1.

TABLE 1.

Whole modules
checking

Tests

Suse Exists Own

Red Hat not exists Own

Oracle Only out-of-memory
imitation in a whole

system
Own

Canonical
(Ubuntu) not exists

mainly external(LTP,
Phoronix, ...) + own shell

Google
(Chrome OS)

not exists own + external(LTP,
Autotest, Unixbench, ...)

There are also systems for dynamic analysis of Linux kernel.

Kmemleak is a memory leak detector included in the
Linux kernel. It provides a way of detecting possible kernel
memory leaks in a way similar to a tracing garbage collector
with the difference that the orphan objects are not freed but
only reported via /sys/kernel/debug/kmemleak.

Kmemcheck will trap every read and write to memory that
was allocated dynamically (i.e. with kmalloc()). If a memory
address is read that has not previously been written to, a
message is printed to the kernel log. Kmemcheck is also part
of Linux kernel.

Fault Injection Framework which is included in Linux
kernel allows for infusing errors and exceptions into an
application's logic to achieve a higher coverage and fault
tolerance of the system.

KEDR Framework [5] is an extensible system for dynamic
analysis of kernel modules (device drivers, file system
modules, etc.) in Linux on x86 systems. KEDR tools operate
on the modules chosen by the user and can detect memory
leaks, perform fault simulation as well as other kinds of data
collection and analysis. KEDR-based tools have already
proven their effectiveness by finding errors in several widely
used kernel modules [3]. KEDR framework is Free Software

and is distributed under the terms of GNU General Public
License Version 2.

All of these tools have different abilities. None of them is
strictly superior to the others. The advantages of the KEDR
Framework include the following:

 Operation with a specific module.
On execution KEDR waits for the target module to be
loaded into the kernel. On module load KEDR finds
out the calls of the kernel functions from the target
module and replaces them with calls to the
corresponding functions from the KEDR framework.

 Possibility to define well-tuned scenarios of fault
simulation.
KEDR tools support configuration files which can
define some specific conditions for the fault
simulation to be activated. For example, it can
simulate failures for a single kernel function with
some probability or exact frequency or even when
some conditions on function arguments are met.

 Possibility to extend the functionality.
KEDR framework and KEDR Tools can be extended
by new call monitors, fault simulators, trace
analyzers etc.

Our goal is to verify both the normal functioning of the
drivers and their behavior in critical situations. The revealing
of driver errors is vital, insofar as a single error in the driver
can result in the failure of the whole system. Additionally,
approximately half of errors found in the kernel are
statistically in the drivers and file systems [9].

III. SPRUCE SYSTEM

All the testing systems mentioned above are operating only
with the part of normal execution of FS modules (they verify
the kernel drivers’ functionality according to documentation).

One of the most important parts of the drivers – the one
that is not covered by existing systems – is the error checking
and handling. It is clear that any function call (in our case
kernel functions) can fail. For example, there can be lack of
resources (memory, internal kernel objects) which makes
resource allocation functions fail. In theory, everyone should
check the return values of all the functions called in code. In
practice, however, developers often forget to add checks and
handle error cases. This is very dangerous in case of drivers,
since an unhandled error can result in the corresponding driver
module becoming unloadable or disabled. This, in turn, will
lead to undefined behavior of the corresponding device.

It is therefore very important to be certain that the file
system driver handles all possible errors and faults.

The Spruce project [2, 3] is designed to verify several
Linux file system drivers, including Ext4, BtrFS, XFS, JFS.
The system consists of several modules.

153 of 230

Every module has two execution scenarios – normal
execution and fault simulation. In normal execution mode, the
module verifies the functionality of the driver according to the
documentation. In this case each error in the driver is deemed
as a test failure. This case is more or less included in existing
testing systems.

The main advantage of the Spruce system is that it can also
cover the error checking and handling part of the code, which
comprises about one third of the whole source code.

Below is the description of the Spruce system modules:

• Main module. Implements the user interface. Allows
to define some configurable values (which modules
should be executed, which file system drivers should
be checked, where to store the execution log).

• System call checker. This is the module which
provides the major part of the code coverage. It
verifies the system calls which concern to the file
systems such as creat, open, fsync. The verification is
done based on the POSIX manual pages. This module
covers almost all the code except some of the error
handling lines. (Only with normal execution scenario).

• Common operations. This module checks the
functionality of the common system utilities which
concern to the file systems such as cp, mkdir, ln.

• Benchmark. This module provides benchmark testing
of a wide variety of operations including creating and
removing large files, compression and decompression
of files, reading and writing large amount of data etc.

• File system specific modules. This is not just a module
but a set of modules, which cover all the FS-specific
code in the corresponding kernel modules. The
specific features include online resize, online
defragmentation, delayed allocation, migration from
other file systems.

The Spruce system is implemented mainly in C++
language using object-oriented design. Each test is executed in
its own process. It makes the whole system much more stable.
If any of the tests crashes or runs for too long it will not affect
other tests. The parent process takes care of the test.

Each module can be configured to be executed in different
ways. For instance, the user can decide which system calls
should be verified, or which test should be performed.

In an ordinary environment, it is almost impossible to
simulate fault situations, error paths, rare execution paths etc.
In order to solve this problem the KEDR framework is to be
used.

There are of course several tools which could also be used
to achieve this goal. They are KmemLeak, KmemCheck and
Fault Injection tools provided by the Linux kernel itself. Let's
see why KEDR framework is preferable to these tools.
Verification of a kernel module (in our case a single file
system driver) must be done in separation from the other parts
of the system. This means that if something must be modified
in the system it had better concern only the module to be
verified.

Except for the module-based issues, Spruce system needs
some mechanism to make the file system driver execute all the
rare execution paths and error handling parts of code. This
means that there is a need for some kernel functions to fail
under certain conditions. For example, to make the file system
driver execute all its memory allocation error handlers, it is
not enough to make all the calls of kmalloc (and similar
functions) to fail. In that case usually only the first error
handling code would be activated. That is because such errors
(memory allocation failures) make the driver’s current
function execution impossible. Such error handlers usually
stop the function execution, returning some error code to the
user.

Besides the memory allocation failures there can be other
kinds of kernel functions which would also need to be
simulated. This means that there can be need to extend the set
of the supported functions.

It is usual for Linux file system drivers to check for some
capabilities prior to the operation execution. That is why some
parts of the file system driver source code are really rarely
executed, because users usually have some basic capabilities.
So Spruce needs the corresponding kernel function (capable)
also to be simulated.

The list of the necessary functionality is quite similar to
the feature list of the KEDR Framework and KEDR-based
Tools. It makes KEDR really suitable for the Spruce system.
On the other hand, all the other kernel module analyzing tools
provided by the Linux kernel cover only some of the presented
needs. That's why KEDR was chosen as a supporting
framework for the Spruce system.

With KEDR, one can artificially simulate memory
allocation errors (and potentially any other errors in kernel
functions used by the driver). KEDR can be configured to
make the driver pass through all errors which would be
impossible in normal execution. Nevertheless, in normal
execution mode, the Spruce system cannot cover more than
70% of file system driver code. This is because in any well-
designed and well-implemented system, approximately one
third of the code is dedicated to error checking and handling.
However, the system call testing module covers some error
cases, since it analyzes a number of argument value sets for
system calls. So with KEDR-based tools Spruce system could
be able to cover also part of the remaining 30% of code.

After analyzing all the above mentioned aspects of file
system driver verification, the quality verification system can
be defined. Such a system must make the driver pass through
all the possible execution paths (even those not developed in
the source code). This means the following:

 Make the driver perform all the normal execution
paths.

 Make the driver operate in out-of-resources and other
faulty situations to make sure that the driver does not
fail.

 Make the driver confront some really rare situations
during the execution.

154 of 230

So, our purpose is to develop a verification system which
can test several Linux file system drivers in scenarios
mentioned above. That can be achieved by testing all the
possible use cases of the drivers (according to the
documentation) and using the KEDR framework and KEDR
tools (if necessary extending the KEDR tool set).

It is clear that if a verification system covers only some
parts of the driver source code, missing such important parts
as error checking/handling and rarely executed code, it does
not qualify to be a high quality verification system. On the
other hand a 100% code coverage does not necessarily mean
high quality verification. There can be pieces of code which
should be there but are missing. For example, if the driver
does not check the status code returned by a function, even a
100% code coverage cannot find out that error. To reveal such
errors the testing system should do something more: make the
called function fail. None of the mentioned testing systems are
able to do such a thing.

Still, it can be stated that (under even conditions) the
verification system which brings to higher percent of code
coverage is better than the others.

IV. CURRENT STATE

As of now, the modules Main, Benchmark, and Syscall
have been implemented (normal execution mode only).
Verification methods for FS-specific drivers capabilities are
being investigated.

Code coverage analysis has been performed to calculate
the Spruce system quality. That could show how the Spruce
system is competitive with the existing Linux testing systems.

Table 2 and Table 3 present the coverage values for drivers
of several file systems in kernel version 3.2.9 according to the
execution of above mentioned verification systems and the
Spruce system. The data has been acquired by means of Gcov
tool [11], which is a part of GCC.

TABLE 2.

OS x64 Ext4 Btrfs Xfs

LTP 40.1% 42.9% 42.9%

PTS 34.6.% 36.2% 32.3%

Spruce 40.9% 36.8% 44.0%

TABLE 3.

OS x86 Ext4 Btrfs Xfs

LTP 42.8% 39.2% 39.3%

PTS 34.5% 35.7% 32.5%

Spruce 40.7% 35.4% 40.8%

The figures in tables show that even the partially
developed Spruce system is already competitive with the
existing solutions (coverage analysis for Autotest is not done
because our goal was not to get those values but to be able to
compare Spruce with some of the leading testing systems).
Moreover, in its current state, the Spruce system execution
takes less than 4 seconds. For a sample comparison, it takes
LTP two minutes. Of course the figures are acquired by
running the systems under the same conditions, i.e. LTP is
executed only on those tests which check those and only those
system calls that Spruce does. Also in those conditions LTP
gives only 34% code coverage, when Spruce gives 41%.

V. FUTURE DIRECTIONS

We are planning on implementing the incomplete modules
of Spruce system. It is also planned to utilize the KEDR-based
tools for fault simulation scenarios in those kernel functions
which are often used in file system drivers. If necessary, we
will upgrade KEDR to provide broader functionality
convenient for the Spruce system. It will allow for gaining
higher quality of Linux file system drivers verification using
the Spruce system.

VI. CONCLUSION

In this paper we have analyzed the errors which usually
occur in Linux kernel modules and especially in file system
drivers. Later several testing and certification systems were
presented and analyzed to find out in what way and how well
they perform verification. Also for that reason the source code
coverage was calculated for several file system drivers. Then
the Spruce system was presented which is designed to perform
high quality verification of Linux file system drivers. The goal
is to be achieved using the KEDR framework and tools.

REFERENCES

[1] A.V. Khoroshilov, V.S. Mutilin, E.M. Novikov, P.E. Shved, A.V.
Strakh. Linux Driver Verification Architecture.
Proceedings of the Institute for System Programming of RAS, volume
20, 2011 г. ISSN 2220-6426 (Online).

[2] Martirosyan V., Shatokhin E., Gishyan S. Dynamic verification of linux
file system drivers. Proceedings of Computer Science and Information
Technologies conference, Yerevan, 2011.

[3] Rubanov V., Shatokhin E.. Runtime Verification of Linux Kernel
Modules Based on Call Interception. Proceedings of IEEE International
Conference on Software Testing, Verification and Validation (ICST'11),
Berlin, Germany, March 2011.

[4] Spruce system, https://code.google.com/p/spruce.

[5] KEDR framework, http://code.google.com/p/kedr/

[6] The Linux Kernel Repository - Change Logs, http://git.kernel.org/?
p=linux/kernel/git/torvalds/linux-2.6.git

[7] Autotest Framework, http://autotest.kernel.org.

[8] Linux Test Project, http://ltp.sourceforge.net.

[9] Phoronix Test Suite, http://www.phoronix-test-suite.com.

[10] Linux Kernel Bugzilla, https://bugzilla.kernel.org

[11] Project Gcov, http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[12] Storage Test Tools for SUSE YES Certified Program,
http://www.novell.com/developer/ndk/storage_test_tools.html

155 of 230

http://www.novell.com/developer/ndk/storage_test_tools.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://bugzilla.kernel.org/
http://www.phoronix-test-suite.com/
http://ltp.sourceforge.net/
http://autotest.kernel.org/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git
http://code.google.com/p/kedr/
https://code.google.com/p/spruce

[13] Oracle Linux Test Project, http://oss.oracle.com/projects/olt/

156 of 230

Deterministic replay of program execution based on
Valgrind framework.

Research-in-progress report
Maksim Ryndin

Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
Scientific supervisor: S. S. Gaisaryan, Institute for System Programming, Moscow, Russian Federation

Abstract—Deterministic replay is execution of the same se-
quence of instructions with the same arguments as at the first
run.

Developers spend a lot of time in trying to fix bugs in their
software. Sometimes it is very difficult even to reproduce the
bug. This often occurs in multithreaded applications. According
to NIST[1] errors in software are estimated $59.5 billion annually.
Therefore deterministic replay of program execution has become
a problem of interests of many researches recently. Deterministic
replay could help to solve the problem of bug reproduction and
provide more abilities for program analysis.

Valgrind is a framework for dynamic binary analysis. It
provides infrastructure for translation and instrumentation of
executable code.

The goal of the work is to create a tool providing deterministic
replay of program execution based on Valgrind infrastructure.

I. INTRODUCTION

Application programs are widely used in modern world: for
automation of business processes, for scientific calculations,
for processing large amount of data, etc. The programs become
more and more complex and large to provide all needs of
people they are used by. The larger the program the more
difficult to implement it without errors. So bugs occur quite
often and it is necessary to be able to find and fix them quickly.

Finding of bugs’ causes could be complicated by unre-
producible behavior. Such errors are the most painful for
developers and can take a lot of time to fix them.

Multi-core processors become the norm recently. So there
is an interest in writing parallel programs. Such programs are
more efficient for wide class of applications. Threads in one
program must be synchronized in a proper way to prevent race
conditions. But it is difficult to guarantee correct synchroniza-
tion and threads in real programs behave differently from run
to run. Often such differences are invisible and never cause
errors. But sometimes they may cause or may not cause an
error depending of some circumstances. In that case it becomes
unreproducible bug.

By deterministic replay one should mean execution of the
same sequence of instructions with the same arguments as
at the first run. Deterministic replay would provide ability to
reproduce bugs at each run.

Several generic dynamic binary instrumentation frameworks
exist, such as Pin[2], DynamoRIO[3] and Valgrind[4][5].
These tools make possible to detect variety of errors. E.g.
Valgrind distribution includes the following debugging and

profiling tools: Memcheck, Cachegrind, Massif, Helgrind,
DRD[6]. Memcheck detects wrong memory accesses (e.g.
when accessed region of memory is not allocated), usage of
uninitialised values, memory leakages, etc. Cachegrind profiles
the cache, Massif profiles the heap. Helgrind and DRD both
detect race conditions with some differences.

Pin is a proprietary program and it is free for non-
commercial use only [7]. Copyright restrictions may also
complicate code modifications for research goals.

All these frameworks, however, do not provide deterministic
replay of program execution.

BugNet[8][9] and PinPlay[10] both provide deterministic
replay. However, at the moment of writing this paper author
couldn’t find neither source code nor executables of any of
them. PinPlay is a proprietary program too, so it would have
all license limitations of Pin.

II. EXISTING TOOLS

Several research papers describing architecture of BugNet
and PinPlay are available.

A. BugNet

BugNet is based on the observation that the following
information is sufficient to replay a program’s execution in a
deterministic way: initial architecture state (program counter
and register values), architecture state updates from system
calls and interrupts and used load values[8].

Architecture state can be kept in a consistent state by record-
ing of register values and program counter after servicing
system calls and interruptions.

Logging of each memory load causes overheads, so BugNet
logs only the first access to a memory location. To accomplish
that the tool marks logged memory addresses. Taking into
account the external updates of logged memory such as system
calls, DMA and shared-memory interactions, BugNet unmarks
corresponding location’s address when such events occur.
Than it logs again when the location is accessed next time.

BugNet breaks a thread’s execution into checkpoint inter-
vals. For a checkpoint interval BugNet stores enough infor-
mation to start replaying program’s execution from the start
of the checkpoint. An interval is terminated by system call,
interrupt, context switch or when size of stored data exceeds
some predefined value.

157 of 230

In addition to data, BugNet records information about the
code executed during logging. The information contains name
and path of the binary or library loaded, a checksum to
represent the version of the binary or library and the starting
address where it was loaded. This information goes to code
log.

Replay of a checkpoint interval starts with reading the
code log and restoring of code space. Then architecture state
(program counter and register values) is set. Then executions
starts. For every load instruction the replayer obtains the load
value from load-log if the value was not obtained earlier. At
the end of the checkpoint interval a new one starts.

B. PinPlay

PinPlay consists of two Pintools[10]: a logger and a re-
player. The logger stores information about program execution
in a set of files called pinball. The replayer repeats program
execution using information from pinball.

A very powerful feature of PinPlay is ability to combine the
logger and replayer with most existing Pintools and GDB. It
gives lots of useful information about a bug and helps fixing
it easily.

The PinPlay logger stores only minimal information nec-
essary to reproduce the non-deterministic events and thus
does not generate too large pinballs. The sources of non-
determinism are:

• Initial stack location: the location is assigned by the
kernel and may differ from run to run

• Data location changes: addresses of allocated memory
may also differ

• Program code changes: code of shared libraries may
change from machine to machine

• CPU specific instruction behavior
• Signals: signals are delivered by the kernel, so they are

not guarenteed to arrive at the same execution point
• Uninitialized memory reads
• Behavior on system calls: it may change over time, e.g.

gettimeofday()
• Behavior on shared memory accesses
The approaches to handle these sources used in PinPlay are:
• PinPlay logs addresses of the memory ranges in use and

then preallocates them before replaying
• Code of shared libraries is captured during logging and

restored during replay
• Log changes in registers’ values after CPU-specific in-

structions
• Time of signal arrival is logged in terms of instruction

count since beginning of execution
• PinPlay skips most of the system calls and restores

architecture state after each of them during replay

III. VALGRIND OVERVIEW

Valgrind is an instrumentation framework for building dy-
namic analysis tools. The program distribution includes six
tools, one can also create a new one. Valgrind is licensed under
the GNU General Public License, version 2.

The key concept of the framework’s architecture is the
division between its core and tools.

The core does low-level work for program instrumentation.
It contains: the JIT compiler, low-level memory manager,
signal handling unit and a thread scheduler. It also performs
system calls for the tool.

The tool is responsible for program instrumentation. Val-
grind provides tool programming interface: functions to be
called when certain event of interest occurs. The arguments of
the functions contain sensible information about the event.

The Valgrind translates code blocks on demand. The trans-
lation unit is a block of code ending with one the followings:
an instruction limit is reached, a conditional branch is hit,
branch to an unknown target is hit. The code translation may
be splitted into several phases:

• Disassembly: converting machine code into intermediate
representation (IR) tree

• Optimisation 1: flattening the tree IR, copy and constant
propagation, redundant code elimination

• Instrumentation: the code block is passed to the tool
which transforms it (except the Nullgrind – the tool which
does not instrument anything)

• Optimisation 2: constant folding and dead code removal
• Tree building
• Instruction selection: converting tree IR into a list of

instructions which use virtual registers
• Register allocation: replacing virtual registers with host

registers
• Assembly: encoding the selected instructions into exe-

cutable code and writing it to a block of memory

IV. IMPLEMENTATION PROGRESS

The key idea of implementation is to use existing tool
programming interface. Not only it gives an ability to track
events such as system calls and signal arrivals, but also event-
aggregators such as memory reads (which can be caused by
different system calls). This significantly simplifies logging of
memory accesses. At the moment regrind (tool for determinis-
tic replay) prototype can work in two modes: prepare-replay-
mode and perform-replay-mode.

In the first mode regrind tracks following events:
• Signal arrival

1) Before arrival
2) After arrival

• System calls
1) Before system call
2) After system call

• Accesses to memory:
1) Before memory reads
2) After memory write

The first two types of events are tracked only for statistic
collecting at the moment. But as for the third type of events –
accesses to memory – the tool prototype also records accessed
memory regions.

158 of 230

Every log point starts with an instruction counter which
equals the number of executed guest instructions. “Guest”
means that only instructions of program in question are taken
into account, not those added by Valgrind. At the moment the
log file is written in plain text to simplify debugging.

In the perform-replay-mode regrind restores data about
memory accesses. When a memory read occurs regrind gives
value from the log file to the tracker functions and thus
substitues current value of the memory.

The current implementation does not guarantee exact the
same instruction sequence yet but makes visible behavior of
some simple programs the same from run to run.

Let’s consider an example: linux command date.
At first regrind runs in a prepare-replay-mode. The events

of interest are memory reads and memory writes. Information
about one of them looks like:
4e83a:pre_mem_read:tid[1]
:base[4025000]:size[1d]
Fri Mar 30 23:54:50 MSK 2012

The first number 4e83a is an instruction counter.
pre_mem_read indicates the type of the event. Then argu-
ments of the callback follow: tid is thread identifier, base
is address of memory range and size is it’s size. Content of
the memory region (dump) is presented at the next line of the
log file.

In perform-replay-mode regrind executes instrumented
guest code. If one of tracked events occurs the tool reads the
next checkpoint from the log file, allocates memory and fill
it with dump content. Valgrind’s core passes arguments to the
tool: thread identifier, address and size of the accessed region.
Address and size are replaced in the tool with new values.

Thus printed value of the command date will not be equal
the actual date and time, but it will be the same as it was at
the first run.

Valgrind provides integration with GDB. One can monitor
execution of instrumented program. So at the moment it is
possible to use both regrind and GDB to perform analysis of
reproduced exectuion.

V. FUTURE RESEARCH

The log file in plain text format is large. It is planned to log
data in a binary form to decrease this overhead and provide a
simple tool to convert it to a human readable format.

At the moment the regrind prototype does not skip system
calls with known results. It is useless work to perform such

system calls, so they are to be eliminated in the final version
of the tool.

It is also planned to use more information about non-
determinism:

• Deliver signals at the same moment as they were deliv-
ered at the first run

• Preallocate stack location and used memory regions
Intergation of regrind and GDB allows analyze non-

reproducible bugs more efficiently. But integration of regrind
with other Valgrind tools will give more powerfull abilities.
So it is planned to be implemented in the future too.

VI. CONCLUSION

The aim of the work is to provide open source tool for de-
terministic replay of program execution. Existing tools solving
the problem are proprietary and not fully available.

The key concept is to use Valgrind – a framework for
dynamic binary instrumentation. The framework provides tool
programming interface which makes possible to track different
events during program execution.

The current implementation reproduces execution of some
programs in a seemingly deterministic way (print out does
not change from run to run). Some features in the tool are
planned to be implemented. The features include covering
more sources of non-determinism, improvements of tool ar-
chitecture and integration with other Valgrind tools.

REFERENCES

[1] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing, National Institute for Standards Technology, 2002

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lance, V. J. Reddi, K. Hazelwood, Pin: Building Customized Program
Analysis Tools With Dymanic Instrumentation

[3] D. Bruening, T. Garnett, S. Amarasinghe, An Infrastructure for Adaptive
Dynamic Optimization, Proceedings of CGO’03, San Francisco, USA,
2003

[4] N. Nethercote, Dynamic Binary Analysis and Instrumentation, PhD thesis,
University of Cambridge, UK, 2004

[5] N. Nethercote, J. Seward, Valgrind: A framework for Heavyweight Dy-
namic Binary Instrumentation, 2007

[6] http://valgrind.org/
[7] http://pintool.org/
[8] S. Narayanasamy, G. Pokam, B. Calder, BugNet: Recording Application-

Level Execution for Deterministic Replay Debugging, University of
California, USA, 2006

[9] S. Narayanasamy, G. Pokam, B. Calder, Software Profiling for Determin-
istic Replay Debugging of User Code, University of California, USA

[10] H. Patil, C. Pereira, M. Stallcup, G. Lueck, J. Cownie, PinPlay:
A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs

159 of 230

Simulation Analysis Framework Based on
TRIAD.NET

Grigorii Kolevatov
Department of Mechanics and Mathematics

Perm State University
Perm

kolevatov@prognoz

Elena Zamyatina
Department of Mechanics and Mathematics

Perm State University
Perm

e_zamyatina@mail.ru

Abstract — the objective of using simulations is to produce true
knowledge about complex dynamic systems. Due to increasing
popularity of simulation, complexity of simulation models is
increasing too. In recent years there were researches with
simulations which consist of thousands of interacting objects. The
process of analysis such models becomes too complicated and
makes the whole modeling process more expensive. That
influence tends to be very strong if, as usual, an iteration process
is used. Moreover, simulation output analysis based on number
of math statistics techniques which creates extra requirements to
analysis team members and makes simulation too difficult to
mass implementing. This paper is dedicated to attempt of the
problem resolving.

simulation, simulation output analysis, data mining, time
series, linear regression

I. INTRODUCTION

Computer simulations have many applications in many
areas, such as: logistic, manufacturing, medicine and service
operations. Simulation is used when traditional Operations
Research tools such as linear programming, stochastic
modeling or queuing network models cannot capture the details
or the dynamic of the system [1].

Although simulation is good for representing complex
systems, analysis of simulation seems to be too complicated.
As shown in paper [2] traditional simulation analysis looks like
selection the best variant by some criteria from different
scenarios. Setting the set of scenarios and selection criteria has
a major influence on analysis results. Decision, which criteria
is most appropriate and what scenarios need to be considered,
is often made on basis of intuition and modeler experience.
That form of analysis does not help researcher to understand
why the selected scenario is the best and if the number of
scenarios is enough or not.

On the other hand, in last three decades, a huge number of
data analysis techniques called Data Mining have been
developed. Application of those techniques to the problem of
simulation output analysis could significantly decrease analysis
complexity and improves real profit of simulation applications.

Many attempts to solve the problem were made in recent
scientific researches. Paper [3] shows the benefits of using
heuristic-based automated optimizations for finding better
scenario with pre-set selection criteria, called objective

functions. New approach to automate selection criteria was
described in [4]. Offered approach helps to reduce the
requirements to the modeler due to automating statistic’s
calculations. In [1] the way of reducing simulation output log
by mining information about entire model variables
relationships were demonstrated. Number of data mining
techniques, which was applied in [1], estimate the correlation
between model variables. The approach was tested on complex
model with huge number of interacting elements. It earnestly
shows how significantly data mining applications can decrease
volume of output data without losing important information.

All of described here approaches have one main
disadvantage – they were designed for particular specific tasks
and have not got facilities to simplify the analysis process in
general case. The decision of the problem could be a special
designed simulation analysis framework which could provide
an expert with set of instruments which would help an expert to
answer every question about simulation model that an expert
could have. It should be able to adjust dynamically to particular
area specifications. This framework should combine
information about analyzed system (extracted from model
describing) and new data mining techniques. Also it should be
able to adapt dynamically to an expert needs. This paper
describes the attempt of creating such framework. Also it is
necessary to mention, that developing the most common
framework which suits to every particular case is a very
difficult task. Thus, in the paper only attempt of creating such
framework is considering. Framework creating activities were
undertaken on base of discrete-event simulation environment
TRIAD.NET. In section II formal problem definition is
described. TRIAD.NET Special features’ description is put into
Section III. Suggested problem solution is described in Section
IV. Section V is dedicated to particular framework architecture.
At the end of the paper brief conclusion is made.

II. PROBLEM DEFINITION

A. User Dialog

At first, it is necessary to mention that all knowledge about
the real system: its purpose and its place in the world is situated
in expert’s mind. Modeling environment has only information
about model itself. That’s why it is impossible to put all of
research activities into environment. Only an expert can
determine what information is important: if model reflects real
system in proper way, if all necessary information is delivered

160 of 230

or not. So, the expert should deliver to the environment
necessary information about research objectives. The second
assumption is that the expert’s knowledge grows dynamically
since research was started. It means that an expert needs
system to automatically adapt to expert’s requirements. By that
reasons it’s logically to decide that the interaction between an
expert and the environment should be organized in terms of
dialog: expert asks questions about his filed of interest,
environment makes an investigation and returns answers [5].

In traditional analysis all questions, that analyzer could ask
an environment, in general, was: “Is A true?” where A is some
statement about model values. It’s not enough, because usually,
expert develops simulation not only for checking some
suggestion, but for changing suggestion to a more appropriate
value. That’s why it is necessary to add another type of
question: “Is A determined by B?” It means that A is true when
B is true, and when B is false – A is false too. There is one
more is “Is A conditioned by B?” It means that A is true when
B is true, and A is undefined when B is false. To answer this
question an expert usually does many different experiments
with different parameters. But model parameters’ domain is
known to environment, model is also known. That means,
consequently, environment could answer these questions itself.
In fact, even answering these questions can make analysis
process simpler and clearer. But also those types of question
could be combined into more general: “What determine A” and
“What condition A”, and replaced by one: “Why A is true”.
Thus, we have two general questions:

1) Is A true?

2) Why A is true?

B. Statements.

Simulation models consist of some objects of different
types and connections between them. Model variables reflect
states of these objects or groups of objects or model in general.
Thus, every statement about a model could be impressed by
first-order predicate language. Therefore, such statements
could consist of:

• the quantifier symbols and ;

• the logical connectives;

• parentheses, brackets, and other punctuation symbols;

• an infinite set of variables;

• an equality symbol;

• first-order predicates;

• functions.

Before saying a word about sense of those symbols we
should determine that there are two types of simulations
analysis: single experiment analysis (SEA), multiply
experiment analysis (MEA). In different situations the
particular sense of alphabet symbols should be defined in
different ways.

Let M is a model, and X is a set of model variables:

X = { }, . . .1 nxx (1)

In SEA case, particular value of variable ix depends of
system time and could be written as:

)(: ii xDTx → , (2)

where T is system time. Hence, in SEA situation we have only
one variable – t, and variables)(txi would be the function of
t.

In MEA case, value of a variable depends on experiment
where it is calculated and system time. Experiment itself is
determined by model parameters value and initial values for
random numbers generator (RNG). To not depend from
probability factors, better determine ix in such way:

)(: ii xDETx →∩ , (3)

where E is set of all possible experiments.

 Also, it’s usually necessary to use some integrated
characteristic, such as average or divergence. Set of those
variables could be called Y, and every iy could be defined in
that way:

)(: ii xDEy → , (4)

We can easily translate our question “Is B determine A”
into first-order predicate form as it shown on (5) and “Is C
determine A” as it shown on (6).

AB ⇔ (5)

AC ⇒ (6)

Thus, answering question “What determine A”, we should
find such statement B that suit next condition:

1:)|(=∨⇔∀∨⇔ SBASSAB (7)

Analogically, question “What condition A” could be
defined as:

1:)|(=∨⇒∀∨⇒ SCASSAC (8)

Thus, we can define our objective as:

1) calculate value of statement A;

2) find statemnts B and C which satisfy to (7) and (8).

III. TRIAD.NET FEATURES

Distributed simulation system Triad.Net includes
following components: TriadCompile – compiler from Triad
modeling language, TriadCore – simulation core, GUI,
TriadDebugger – validating and debugging system,
TriadBalance – distributed components synchronization
system, TriadEditor – remote access system, TriadSecurity –
external and internal security threats detection system,
TriadBuilder – automated model redefining system and
TriadMining – simulation output analysis system.

Simulation model in Triad defined as:
),,(MESROUTSTRM = , (9)

where STR – structure layer, ROUT – routine layer, MES –
message layer. Structure layer represents itself as objects’

161 of 230

http://en.wikipedia.org/wiki/Logical_connective

aggregate, interacting to each other sending messages. Each
object has input and output poles which servers as receivers
and senders messages. Structure layer representation based on
graphs. Separate objects play a role of graph nodes. Graph
arches determine connections between objects.

Objects’ behavior is determined by routine layer. Routine
is a sequence of events which plans each other. When event
occurs state of associate object changes. Routine layer is
separated from structure layer, thus, routines could be reused
when structure is defined, and different routines could be
associated with different nodes in structure layer. Message
layer is used for complex message defining.

One of the advantages of Triad, which play the main role in
choosing Triad as a platform for analysis framework is its
special feature: special objects, called information procedures
and simulation conditions. Information procedures are objects
that collect information about model variables changing.
When change of a model variable occur information procedure
is executed and data is saved in modelling output. Specific
content of data depends on an algorithm of specific
information procedure. Triad has facilities to code every
formal algorithm as an information procedure. Simulation
conditions determine a situation when simulation ends. They
also have special algorithmic faculties that help to set
complicated conditions.

 Simulation conditions and information procedures are
separated from model definition. Hence, information
procedures could be changed without model changing and the
same simulation conditions could be used for different models.
Algorithmic facilities of information procedures and
simulation conditions and their separate (from model
definition) character has not got analogues in other modelling
environment and languages such as GPSS, ProModel,
Witness, AnyLogic and etc. This is the main reason, why
analysis framework should be developed on base of Tried.

IV. PROBLEM SOLUTION

As described in Section III problem consists of two parts:

1) Calculate statement value;

2) Find determining and conditioning statements.

Further, an approach of solution each part of the problem is
considered.

A. Statement Value Calculation

When SEA case is considered, there are no difficulties in
calculating statement value. After an experiment took place it’s
easy to calculate actual value of statement, based on values
collected through the experiment. All model variables depend
on system time, since experiment is finite then system time is
finite, and we got a finite number of variables’ values.

Situation becomes difficult when MEA case took place.
Due to probabilistic nature of experiment, E is infinite. It
makes it impossible to calculate the sentence using all of
possible data. In [4] it’s earnestly shown that it’s simple to
determine the necessary value of replications by specifying the
significance level and deviation of confident interval which is

suitable for situation. Back to Section II, modeling
environment does not have enough knowledge about what
significance level and deviation is enough to be confident in
results. Hence, these parameters should be user-defined.

The second problem connected with parameters’ domain.
Since it can be infinite or too large it becomes too difficult to
calculate all possible experiments. Problem could be solved by
setting number of intervals, which could divide the domain into
finite number of values.

Hence we can calculate any value of any variable, function
or predicate both in SEA and MEA cases. Consequently we
can calculate the actual meaning of statement.

B. Determinating and Conditioning Statement Search

The corner stone of DE terminating and conditioning
statement search is to find a statement which satisfy criteria,
defined in (7) or (8). These criteria could be divided into two
separated criteria: dependence criteria and completeness
criteria. Dependence criteria for (7) described in (5) and
dependence criteria for (8) described in (6). Completeness
criterion for (7) is shown in (10), and completeness criterion
for (8) is shown in (11).

1:)|(=∨⇔∀ SBASS (10)
1:)|(=∨⇒∀ SCASS (11)

Total search algorithm for (7) could be described in follows
way:

1) Let B be false.

2) Find new S, which suits for (5).

3) If S was found then continue, else exit.

4) Check (10) criteria.

5) If (10) criteria is false then let B = BvC, simplify B.

6) Return to step 2.

The only undefined step in these criteria is step 2. It could
be divided into two steps:

1) Make new suggestion.

2) If it is impossible to make new suggestion then exit.

3) Check criteria (5).

4) Return to step 1.

Step 1 is still undefined. The way we can define it is to
make father suggestion: “Variables from statement A and from
statement B should have dependence”. Dependence estimation
is widely spread technique used in data mining problems.
Different types of correlation could be estimated by special
measures which are described in next section. In common way
dependence estimator could be defined as it shown in (12).

RXXde →×: (13)

Thus, dependence estimator de is reflecting all possible
pairs of model variables into real numbers. Thus, using
dependence measure of some kind, it’s possible to estimate
relationships between variables and choose set of variables that
could be used for creating possible B-statement.

162 of 230

C. Dependance estimation

The objective of using dependence estimator is to estimate
function dependence between variable. Consider the offered
approach.

Let M – certain model. Model has parameters
),...,(1 nPPP = . Each parameter is determined on

domain iPD
 and domains organize space PD . Model also

has set of variables),...,(1 nXXX = each variable

determined on iXD what construct space XD . Let’s declare
'
iX which satisfy the follows:

'
ii XX ∉ , ijXX ij ≠∀∈ ,' (14)

The result of experiment e would be matrix:

),...,(1
e
m

ee XXX =
, (15)

),...,(,,1 iT
ee

i
e
i xxX =

, (16)

We can determine now a dependence estimation problem in
such way: for the results of experiment e on model M find
functions Fi which satisfy (17):

iA
e

i DDF →'
iA

:
,

[]∂+∂−∈ e
i

e
i

e
i AAAF ,)('

,
)(jAD∈∂

(17)
Hence, dependence estimator should have a view:

)',...,'(' 1 mFFF = (18)

V. TRIAD.MINING ARCHITECTURE

In general, Triad.Mining algorithm is follows:

1) Get an expert request.

2) Translate request into set of information procedures and
modeling conditions.

3) Simulate with conditions and information procedures from
step 2.

4) Process the result:
a) Calculate statement if request type is 1;
b) Start the algorithm from section IV B.

To solve the problem from section II TRIAD.Mining uses
four components:

1) Analyzer
2) Executor

3) Calculator
4) Knowledge Base

Picture 1. The Architecture of Triad.Mining

Relationships between components are shown on picture 1.
Analyzer gets the request from an expert in a first-order
predicate form. Then it translates the request into particular
modeling conditions and information procedures and sends it to
the executor. Executor does simulation tasks and collects the
results. Results go to Calculator. Calculator interprets the
results and calculates statement value or checks the criteria.
The result of the calculations goes to analyzer, which formulate
the final answer to the expert.

VI. CONCLUSION

Triad.Mining shows a better result in understanding the real
message of simulation output and improves efficiency of
simulation research significantly in comparison with traditional
simulation analysis tools. It based on common approach and
does not depend on specific research area, such as logistic. It
also forms up communications with and expert with and
natural question-reply way, and does not demand an expert to
have a deep knowledge in mathematical statistics. All of these
arguments say that Triad.Mining could be used for improving
efficiency of simulation research process.

[1] T. Brady, E. Yellig, Simulation Data Mining: a new form of simulation
output, 37th Winter Simulation Conference, Orlando, USA, 2005, pp
285-289.

[2] Akbay, S. Kunter, Using simulation optimization to find the best
solution. Industrial Engineering Solutions 28, San Fernando, Argentine,
1996, pp 24-29.

[3] Brady, Thomas F. and Bowden, Royce A. The effectiveness of generic
optimization routines in computer simulation languages. In Proceedings
of the 10th Industrial Engineering Research Conference, [CD-ROM],
Dallas, USA, 2001.

[4] Robinson S., Automated Analysis of Simulation Output Data,
proceeding of the 37th Winter Simulation Conference, Orlando, USA,
2005, pp 763-770.

[5] G. Neumann, J. Tolujew, From Tracefile Analysis to Understanding the
Message of Simulation Results, proceeding of the 7th EUROSIM
Congress on Modeling and Simulation, Prague, Czechia, 2010.

163 of 230

Meta-database for the information systems

development platform

Yury Rogozov, Alexander Sviridov, Sergey Kucheov

System analysis and Telecommunications dept.

Taganrog Institute of Technology, Southern Federal University

Taganrog, Russian Federation

rogozov@tsure.ru, sviridov@tsure.ru s.a.kucherov@gmail.com

Abstract — For today conditions of using information systems

presuppose availability of tools, by which developers can quickly

adjust their products in accordance with the updated

requirements. In connection with this arises the problem of

automating the information systems development and reducing

the share of labor expenditures for writing the source code. The

paper presents a solution for this problem, which is based on the

modernization of data and knowledge storing technologies. The

concept of the meta-database is proposed. The requirements for

the meta-database are formulated. The formal and the graphical

model are given; features of the meta-database implementation

with using relational technology are described. The questions of

constructing and utilization a development platform based on the

meta-database are examined

Keywords – metamodel; metamodelling; meta-database;

information systems development platform; automation

I. INTRODUCTION

The problem of automating the information systems

development and reducing the share of labor expenditures for

writing the source code actively discussed in scientific and

research works recently. This is evidenced by the emergence

and development of Model-driven-architecture (MDA) [1]. It

is worth noting that each author sees the problem through the

prism of their own knowledge. Considerable imprint on the

vision of the problem leave and subject area in which the

researchers works. Thus, for example, experts in the field of

requirements management [2,3] trying to automate the process

of user requirements fixation through specialized tools and use

them for generating of application source code. Specialists in

the field of software design and development [4] concentrate

their efforts on creating of universal abstract application

model, and then realize information system through

configuring and customization of this abstract model.

Analysis of these papers shows that common idea of

authors consist in an attempt to capture the acquirements about

specific domain in the form of some models, that underlie the

static structure of a development platform.

Due to this realization created models have generalizing

character and serve as a means of constructing models specific

information system, i.e. they are situated at a higher level of

abstraction - a meta-level. Therefore, they can be called

metamodels. There is some examples of the meta-model's

definition:

─ Metamodel is a model that defines the language for

expressing a model [5]

─ Metamodel is a model of model [6]

─ In MDSD, a metamodel is a “model of the modeling

language.” [7]

─ Metamodel describes the possible structure of models

written in that language, i.e., the “constructs of the

language and their relationships, as well as constraints

and modeling rules” [8]

The concept of metamodeling can also be correlated with

data storage technologies. This will open up new possibilities

for design and development of information systems in general.
In this paper the meta-database – the tool of storing

description of the subject domain at the different levels of
detailing – from domain metamodel to user data are proposed.
In the first section of this paper we describe features of
development environments based on meta-database, in the
second section – meta-database concept. The third and fourth
sections of this article describe models of meta-database.

II. META-DATABASE BASED DEVELOPMENT PLATFORM

From the viewpoint of information systems development,

the metamodel is primarily the knowledge ontology of the

developers about particular domain with its activities and

tasks. Also, the metamodel is a tool for describing information

systems and data models.

Today the process of creating and using a development

environment consists of the following steps:

1. Formation of the metamodel based on the acquired

experience and knowledge. Metamodel, as a rule, is

represented as a set of classes, and by this reasons it

presents the static structure of the environment.

2. Static structure of classes is supplemented by components

that will allow to work with the metamodel. Such

components can be tools for interface specification,

configuration metamodel, input/output data, etc.

3. Metamodel, supplemented by components, implemented

into the finished form - development environment.

4. The metamodel is supplemented by description of specific

business processes by means of the appropriate

164 of 230

mailto:rogozov@tsure.ru
mailto:sviridov@tsure.ru
mailto:s.a.kucherov@gmail.com

components, configuration of this metamodel occurs. The

complete product (information system) is formed in the

result.

Visually, the process is as follows (fig. 1):

Knowledge

Developers Metamodel

Component

Development
environment

Complete
product

User

Business-
processes

D
o

m
a

in

T
e

ch
n

o
lo

g
ie

s

T
a

sk
s

Component Component

Figure 1. Metamodel-based development environment building

process

Approaches that use a metamodel as a static structure of

the development environment have capabilities to reducing the

share of labor expenditures for writing the application source

code. However, fig. 1 shows that the universality of these

environments is limited by the range of problems from a

particular subject domain, for example in the field of corporate

web applications [4].

The problem of limitation this approach is fixing the

metamodel as a static structure of a development environment.

Creating more versatile metamodel - the task that is solved for

today only in the development environment for object-oriented

programming languages. Object-oriented paradigm allows to

specify the elements of subject domain on abstract level, but it

does not solve problem that is noted at the beginning of this

paper - writing source code in such environments is the base

component of the development process. Multiple approaches,

such as code reuse and patterns are also oriented on source

code, and it is not consistent with the direction of research

outlined in the beginning of the paper.

In our opinion, the solution consists in empowering

development platform by adding abilities to create new or

modify existing therein metamodels. For this meta-model

should be separated from the static structure of the

development environment and is represented as object with

complex structure stored in permanent memory (for example,

like records in database), and the environment itself - have a

means to describe and store metamodels (for example, a set of

mechanisms for manipulating data and their structure). Such

database, giving developers tools for describing metamodels

of any structure, similarly to the metamodel can be called the

meta-database. For the first time this term was formulated by

Cheng Hsu et al. in 1990 [9], in those work were designated

common meta-database properties, which is the integration

into one the following aspects:

─ knowledge about the company or the information system

(i.e., operating, control, and decision);

─ All models obtained at each stage of the development

life cycle, ranging from multistage analysis to design and

implementation;

─ Data obtained in the process of using information

system.

In our understanding, in terms of designated problem of

automating the information systems developing process, meta-

database is a tool that allows to represent a permanent

memory descriptions of subject domains at various levels of

detailing (the various meta-levels) - from metamodels to

configuration of information system and user data.

In using the meta-database there could appears more

abstract development tool - development platform.

Development platform is a mechanism that reflects

metamodels into the meta-database and thus it can allow to

produce a less abstract development environments. These

environments, in turn, give a complete product via

concretization of metamodel to the level of current tasks

(business processes) (fig. 2).

DEVELOPMENT
PLATFORM

META-DATABASE

Figure 2. The concept of meta-database based development environment

Taking into account that the metamodel can be changed

dynamically, without alteration the information system

development platform, the process of building a development

environment should look like this:

1. Existing meta-database based development platform that

has a predefined set of basic components, if necessary,

depending on the technologies knowledge complemented

by missing components;

2. Domain experts (platform's users) placed metamodel into

the development platform's meta-database, which is

detailed to the level of selected implementation

technologies.

3. The platform is configured to the level of the development

environment which is oriented to concrete technology and a

certain subject domain metamodel.

4. Users put the knowledge about current tasks in the form of

business processes models into the development

environment, and then they can try complete product

(information system).

Visually, this process of creating a development

environment may be shown as follows (fig. 3).

165 of 230

Knowledge

Knowledge

Domain experts metamodels

Development
environment

Complete
product

users

Business-
processes

Meta-database

Development platform

Domain

technologies

Tasks

components

Complete
product

Figure 3. Using of meta-database to construct a development environment

Fig. 3 shows that the development platform can exist

without any metamodel (in fact, the development platform in a

static structure is described by the meta-metamodel, i.e.,

metamodel of higher level of abstraction). Knowledge of the

developers from a particular subject domain, represented in

the form of metamodel, are sort of configuration file for the

platform. There can be several of such configuration files and

in one platform we may have multiple development

environments. In this way the development environment is

constructed in accordance with the principles of meta-design

and socio-technical environments [10,11].

This statement allows us to call the fig. 3 a meta-design

model and to formulate the meta-database concept.
.

III. THE META-DATABASE CONCEPT

So, the meta-database is a tool that allows a unified strict

way to represent in permanent memory knowledge about

subject domains and results of operation their business

processes. These two big aspects are divided into:

─ metamodels of information system' classes for different

range of tasks in any domain;

─ logics of subject domain business processes;

─ structure of the information system that is described in

terms of the metamodel;

─ user data collected as a result of business processes.

Thus unified representation may be entities (the objects

with some structure information about which should be

stored), attributes (characteristics of an entity) and relations

(between entities), which may be a special kind of entity.

Entities are relevant to the classes, entity instances - to the

objects of classes, etc.
Such properties set up the number of requirements to the

meta-database:

5. Existence of manipulating mechanisms not only for data

but also for their structure. Since on the upper levels of

detailing the domain structure is described primarily, and

the data appears at the lowest level;

6. Standard format for querying the meta-database. Since the

meta-database is integrated with a development platform,

then regardless of its content should be standard ways to

access data and their structure;

7. Independence from the structure and composition of stored

information. As can be seen from fig. 3, the meta-database

is constantly updated by some information; structure of

whose can not be determined in advance that in the case of

depending the meta-database structure on stored

information will lead to malfunction of platform as a whole.

Implementation of these requirements depends on

separation methods, which will be applied to divide storing

instruments on the meta-levels. For example, in database

technology, there is one meta-level - metadata. This meta-

level strictly define the access path to the data and data

structure. Often, metadata is a declarative tool that is

supported on DBMS level. As a result, the metadata becomes

static element of database and its changing leads to redesign

software that uses data from database.

Meta-database should provide means of storing metadata,

which can take an arbitrary structure, depending on the

metamodel. By this reason, structure of the meta-levels

described above is unusable - it has to be modified. To ensure

the creation of meta-database the metadata, which is a tool for

fixing the knowledge about data, should be descriptive and be

contained inside the database (fig. 4).

DBMS

Meta-database

Data
<Employee1,Smith,…,male>
….
<Dept1,Insurance,…,3491,…,room 201>

Metadata
Relation1=<Attr1,Attr2,…,AttrN>

...
RelationN=<Attr1,Attr2,…,AttrN,…,AttrK>

Metalevel

Data level

Meta-metalevel
Meta-metadata

Figure 4. Meta-database concept

Fig. 4 shows that in process of using meta-database appear

two meta-levels:

─ Metalevel. Metadata - a means of representing

knowledge about the database data. They are descriptive

and are stored in the meta-database in a similar way with

the data.

─ Meta-metalevel. Meta-metadata - a means of describing

the various metadata. It is a declarative tool that contains

elements of the language for describing arbitrary

metadata.

We can assert that the meta-database concept showed in

fig. 3 is applicable for creating the information systems

development platform since the metamodel, placed in the

166 of 230

permanent memory (in the meta-database), it is nothing else

than the metadata, and configuration of metamodel reflecting

particular application – the data in the database. In this case,

there is a meta-metalevel – meta-metadata reflecting the meta-

database structure and defining thereby a means of describing

the various metamodels.

IV. THE META-DATABASE MODEL

Now turn to a more detailed presentation of the meta-

database - its model. Here the key role is played by the strict

representation in permanent memory of such aspects as

domain knowledge and results of business processes

operation. This strictness can be achieved by creating a formal

meta-database representation model at the level of meta-

metadata structure. Such formal representation will also allow

to define accessing and manipulating methods for structure of

stored metamodels and data.

As we told in second section of this paper, representation

of any aspect from subject domain can be made with entities,

attributes and relationships. Therefore, a formal tool for

describing meta-database model may be of Codd's relational

algebra [12], in which exist most similar concepts: entity -

relation, attribute - attribute, connection - equal values of key

attributes for two entities.

On the basis of the proposed concept, meta-database

should combine in itself the lower level of representation -

data of domain, and the first metalevel - metadata that store

knowledge about data. When we create a formal model, this

should be a fundamental requirement.

After analyzing several metamodels, described by the

authors [4,13,14,15], we can define a unified set of their

components:

8. Metamodel alphabet - entities reflecting the main aspects of

information system produced by a specific metamodel. For

example, use cases, data elements, reports, business logic,

etc.

9. Entity attributes, adding of which leads to specification of

metamodel.

10. Relationships between entities that define the

structure of metamodel.

11. Hierarchy of entities, determining the order and

direction of relationships.

12. Entity instances, reflecting the certain components of

finished information systems.

13. Attribute values of entities by which metamodel is

configured to the level of complete product.

14. Links between instances that represent structure of

finished information system.

On the base of this classification meta-database model can

be defined in terms of Codd's algebra by following system of

relations:

VRLSAEM ,,,,,

where:

E – relation «Entities»

 ieE

A – component «Attributes»

},{ ji taA Tti

S – component «Entity structure»

),,(FAES EEEF ',')(1 AAAF ',')(2

L – component «Relationship structure»

),,(FAEL EEEF ',')(1 EEEF '','')(2

AAAF ',')(3

R – component «Entity instances»

),,(FIER EEEF ',')(1 IF)(2

V – component «Attribute values»

),,,(FDAIV
it
 IIIF '','')(1

AAAF ',')(2
iСDDDDF ',''','')(3

To prove the applicability of this model, consider the

Ecore metamodel – the base for Eclipse Modelling Framework

[14].

For example, we take two objects form Ecore:

ENamedEement and ETypedElement, which is connected by

hierarchical relationship without inherited characteristics (fig.

5).

Figure 5. Ecore metamodel elements

Selecting entities:

E = { ENamedEement, ETypedElement}

167 of 230

Selecting the attributes and matching them with data types:

A = {<name,t3>,<ordered,t1>,<unique,t1>,<lowerBound,t2>,

<upperBound,t2>,<many,t1>,<required,t1>}, где

t1=’boolean’, t2=’integer’, t3=’string’

Matching the attributes and entities, defining the structure

of entities:

S = {<ENamedEement,name>,<ETypedElement, ordered>,

<ETypedElement, unique>,<ETypedElement, lowerBound>,

<ETypedElement, upperBound>,<ETypedElement, many>,

<ETypedElement, required>}.

Defining link structure:

L = {<ENamedEement, ETypedElement,0>}

Thereby, we described two objects of Ecore metamodel

[14] by using of proposed formal model.

Let us suppose that in process of metamodel configuration

appears certain instance of ENamedEement class and related

to it instance of ETypedElement class. In our formal model

this will be represented by next way:

Fixing of class instances:

R = {<ENamedEement,instanceID1>,<ETypedElement,instanceID2>}

Filling in values of attributes:

V = {<instanceID1, name,

MyObject>,<instanceID2,ordered,true>,

<instanceID2,unique,true>,<instanceID2,lowerBound,-1>,

<instanceID2,upperBound,1><instanceID2,many,false>,<insta

nceID2,required,true>}

Fixing of relationship between class instances:

V = {<instanceID1, 0, instanceID2>}

Thereby, we showed creating of two class instances that
appear in the process of metamodel configuring by using of
proposed formal model. Such class instances could represent
certain aspects of information systems or data. The given
example and analysis of other known metamodels shows
applicability of proposed formal model for its unified
representation. More detailed representation of meta-database
formal model and its utilization is described in [16].

V. THE META-DATABASE REALIZATION AND UTILIZATION

Guided by the fact that relations in Codd's algebra may be

mapped in corresponding database tables and their attributes -

in the fields of these tables, we implemented meta-database on

the base of relational DBMS.

The principal difference between a simple relational

database and meta-database is showed by three-dimensional

representation in basis "entity-attribute-value" (fig. 6,7).

A
tt
ri
b

u
te

s

E
nt

iti
es

Instances

Structure

 (metadata)

Data

Instances
a)

Figure 6. three-dimensional representation of a relational

database in basis "entity-attribute-value"

A
tt
ri
b

u
te

s

E
nt

iti
es

Instances

Data

Instancesb)

Structure

 (metadata)

Figure 7. three-dimensional representation of a meta-database

in basis "entity-attribute-value"

Fig. 7 shows that describing domain metamodel a-priori is

not necessary for the meta-database – meta-database is ready

for utilization even if it has no one entity and no one attribute.

Using of a relational database (Figure 6) require pre-determine

the structure of metadata and by this reason it is not suitable

for resolving problem outlined in this paper.

We make some assumptions before giving the meta-

metadata structure (structure of meta-database tables):

168 of 230

15. Metadata can be grouped and be represented by

following corresponding tables:

─ Hierarchical directory, which includes all metadata,

barring "entity-entity" and "entity-attribute"

relationships. Metadata stored in this directory is

applicable for representing entities and attributes with

the same efficiency, and therefore they may be

represented by a single table.

─ Attributes and relationships directory, which entries will

refer to ascribable elements of hierarchical directory.

Implemented as a separate table.

─ Entity instances directory that refers to the elements of a

hierarchical directory. Implemented as a separate table.

─ Attribute values may be grouped by types into the

similar tables for the purposes of efficiency. Ownership

of these values will be defined by references to the

metadata tables – name of field, which stores values, is

not an attribute name. Attribute values make up the

appropriate subschema of tables.

Whereas these assumptions, we represent the structure of

meta-database as follows (fig. 8):

Figure 8. Logical model of meta-database

Such structure of data and metadata tables allows to

implement all principles underlying the definition of meta-

database, and it is satisfy the meta-database conception

presented in fig. 4. In this case meta-metadata, which defining

the rules of making metamodels, is the structure of meta-

database logical model.

Summing up, we can formulate the following features

meta-database:

─ No need for a-priori description of stored data structure;

─ Metadata is a descriptive. As a declarative tool we use

meta-metadata;

─ Independency of accessing data mechanisms from data

structure.

169 of 230

Implementation of the meta-database is called SiDB

(Structire-Independent Database) and described in detail in

[17].

No less important question related to the meta-database is

its utilization. For today the vast majority information systems

are based on object-oriented paradigm. As a result, interact

programs with relational databases is difficult - representation

of application objects do not always correspond to

representation of these objects in a relational database tables.

To resolve these mismatch problems developers apply

technology of object-relational mapping (Object-Relational

Mapping). Actually, ORM is a layer between application and

database that provides one mapping of data between two

models (fig. 9).

Relational DBRelational DBORM-layerORM-layerApplicationApplication

Figure 9. Using of ORM-layer

The main disadvantage of using ORM-layer is considered

a loss of productivity. From this perspective, addition of a

meta-level over the metadata would lead to even greater costs

on the conversion and searching of data. However, using of

metadata as a descriptive tool, which is not regulates strict

access paths to data and permits access to attribute values

directly in aggregate with a fixed structure of tables allows to

replace ORM-layer by SQL-queries generator (fig. 10). By

means of such generator any data from meta-database can be

represented in the required form for particular application.

Figure 10. SQL-query generator interface

Thereby, building up another layer, that involved in the

process of working with data does not occur (fig. 11).

MetadatabaseMetadatabaseSQL-query
generator

SQL-query
generator

ApplicationApplication

Figure 11. Scheme of interaction between the application and the meta-

database

Lack of cost on data conversion, together with the

possibility of using compiled stored procedures to access

frequently requested data allow to achieve an enough level of

performance, which is less than 10% inferior to relational

databases created on the classical technology [18,19].

The effectiveness of the development platform is

corroborated by its commercial use for automation of several

social protection institutions in the Southern Federal District

of Russia. This platform is called PRIMIUS (fig. 12) and in

the working process is based on interpretation of the

metamodel, which is created in terms of knowledge gained

during many years of work in this area. The metamodel is

implemented as entries in the metadata directories of SiDB.

Figure 12. Interface of development platform PRIMIUS

Information systems of any complexity is developing by

means of platform «PRIMIUS», both for individual

departments, where the volume of stored data is relatively

small, and for organizations with a wide range of workstations

and complex logical structure of stored data.

CONCLUSION

Proposed in this paper the meta-database is an effective

solution, with close to a relational database performance

measures. Meta-database has the following beneficial

properties:

─ storing of metamodel, information system model and

user data simultaneously;

─ absence of restrictions on the stored data structures;

─ storing is not only the elements of models and

relationships between them, but and the properties of

these relationships;

─ no need for a-priori description of the stored data

structure;

─ presence of means for formal description and data

manipulation.

Due to these properties using of the meta-database allows

to solve the next important problems:

170 of 230

16. Reducing the share of labor expenditures for writing

the source code. Meta-database allows to build a

development platform based on the paradigm of

metamodeling, That allows the developers to generate

source code by using of the models stored in meta-database.

17. Boundedness of development platforms which use

metamodels as an aspect of the static structure. Built on the

base of meta-database information systems development

platform can contain a variety of metamodels, and permits

their changing without loss of efficiency.

Current results of our work allow to form a basis for

further research, among which the following main areas:

─ Meta-database optimization and searching for its high-

performance implementations;

─ Creating tools for formalization description of subject

domain and information system;

─ Creating automate tools for the information systems

development process;

─ Creating tools for supporting variability of requirements

and information systems.

REFERENCES

[1] Colin Atkinson and Thomas Kühne. Model-driven development: a
metamodeling foundation. IEEE Software, 20(5):36–41, IEEE Computer
Society, 2003.

[2] Carlos Rossi, Antonio Guevara, Manuel Enciso, José Luis Caro, Angel
Mora. A Tool for user-guided database application development -
Automatic Design of XML Models using CBD. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, Volume 2, p.195-201.

[3] Xufeng (Danny) Liang, Christian Kop, Athula Ginige, Heinrich C.
Mayr: Turning concepts into reality - Bridging Requirement Engineering
and Model-Driven Generation of Web Applications. ICSOFT 2007,
Proceedings of the Second International Conference on Software and
Data Technologies, Volume ISDM/EHST/DC p.109-116

[4] Athula Ginige. Meta-design paradigm based approach for iterative rapid
development of enterprise web applications. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, Volume 2, p.337-343.

[5] Meta-Object Facility (MOF) standard. http://www.omg.org/mof/

[6] Gilles Dodinet, Michel Zam and Geneviève Jomier. Coevolutive meta-
execution support - Towards a Design and Execution Continuum.

Proceedings of the Fifth International Conference on Software and Data
Technologies, ICSOFT 2010, Volume 2, p.143-151.

[7] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA
Distilled: Principles of Model-Driven Architecture. Object Technology
Series. Addision-Wesley Longman, Amsterdam, The Netherlands, 2004.

[8] Thomas Stahl and Markus Völter. Model-Driven Software
Development: Technology, Engineering, Management. Wiley & Sons,
1st edition, 2006.

[9] Hsu, C., Bouziane, M., Rattner, L. and Yee, L. "Information Resources
Management in Heterogeneous, Distributed Environments: A
Metadatabase Approach", IEEE Transactions on Software Engineering,
Vol. SE-17, No. 6, June 1991, pp. 604-624.

[10] Fischer, G. (2007): "Designing Socio-Technical Environments in
Support of Meta-Design and Social Creativity", Proceedings of the
Conference on Computer Supported Collaborative Learning (CSCL
'2007), Rutgers University, July pp. 1-10.

[11] Fischer, G., & Giaccardi, E. (2006) "Meta-Design: A Framework for the
Future of End User Development." In H. Lieberman, F. Paternò, & V.
Wulf (Eds.), End User Development — Empowering people to flexibly
employ advanced information and communication technology, Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 427-457.

[12] E. F. Codd: Relational Completeness of Data Base Sublanguages. In: R.
Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM Research
Report RJ 987, San Jose, California : (1972)

[13] Gonzalez-Perez, C. and B. Henderson-Sellers, 2008. Metamodelling for
Software Engineering. Chichester (UK): Wiley. 210 p

[14] “Ecore” http://www.eclipse.org/modeling/emf/?project=emf

[15] L. Lyadova. Technology for creating a dynamically adaptable
information systems // Proceedings of International Conference on
Artificial Intelligence and Systems (AIS’07). – Moscow: Fizmatlit,
volume. 2, 2007.

[16] Y. Rogozov, A. Sviridov, S. Kucherov. An approach for formal
representation of metamodels. Proceedings of first international
conference on Actual problems of information systems and processes
constructing. Taganrog: SFEDU, 2010, p. 9-15.

[17] Youri I. Rogozov, Alexander S. Sviridov, Sergey A. Kutcherov,
Wladimir Bodrov. Purpose-driven approach for flexible structure-
independent database design. Proceedings of the Fifth International
Conference on Software and Data Technologies, ICSOFT 2010, Volume
1, p.356-362

[18] S. Kucherov. Performance evaluation of the statistical DB structure.
Proceedings of seventh All-Russian conference «Information
technologies, system analysis and management». - Taganrog: SFEDU,
2009. p. 138-141.

[19] Y. Rogozov, A. Sviridov, S. Kucherov. Performance evaluation of the
structure-independent database SiDB for the purposes of full-text search.
Proceedings of first international conference on Actual problems of
information systems and processes constructing. Taganrog: SFEDU,
2010, p. 196-199.

171 of 230

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liang:Xufeng_=Danny=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kop:Christian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Ginige:Athula.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Heinrich_C=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Heinrich_C=.html
http://www.omg.org/mof/
http://www.eclipse.org/modeling/emf/?project=emf

The Problem of Creating Multi-Tenant

 Database Clusters*

Evgeny A. Boytsov
Valery A. Sokolov

The faculty of the computer science,
Yaroslavl State University,

Yaroslavl, Russia
{boytsovea, valery-sokolov}@yandex.ru

Abstract — SaaS (Software as a Service) paradigm brings both
lots of benefits to end users and lots of problems to software
developers. One of such problems is an implementation of a data
storage which is able to satisfy needs of clients of a service
provider, at the same time providing easy application interface
for software developers and great opportunities for
administration and scaling. This paper provides a brief review of
existing problems in the field of organizing cloud data storages
that are based on the relational data model and proposes the
concept of architecture of RDBMS cluster dedicated to serve
multi-tenant cloud applications.

Keywords - databases, SaaS, multi-tenancy, scalability.

I. INTRODUCTION

One of the most notable tendencies in the modern software
development industry is the shift to Software as a Service
(SaaS) paradigm. The main ideas of this approach are the
following:

 An application is developed as a system of distributed
services interacting with each other.

 All computing power and infrastructure needed for
operating an application is supplied by a service
provider.

 A fee for an application is taken on the basis of actual
usage.

This approach is one of cloud computing delivery models.
The main advantage of its usage for customers is that all
expenditures for deploying infrastructure required for correct
and stable operation of software suit are taken by a service
provider. This fact should eliminate the need for a customer to
have his own IT staff and purchase a new computer equipment
with every new release of an application. Besides, this
approach allows to completely solve the problem of software
updating, because now it is done in a centralized manner by the
software company itself, that means that all customers always
use the most recent (i.e. the most safe and featured) version of
the application.

However, the «jump into clouds» brings not only benefits,
but also new problems mostly for developers and
administrators of such systems.

It is known that most of enterprise-level applications are
based on interaction with relational databases. Any customer

relationship management system, docflow or enterprise
accounting management system needs to store somewhere data
used by the application . The de-facto standard for such data
storages are RDBMS. In recent years there was a tendency to
move most of the application logic to the database tier
expressed in appearing procedural extensions of the SQL
language, in which developers wrote stored procedures and
packages of them. Modern RDBMS are able to process very
large arrays of data, fulfill very complex data selection and data
manipulation queries. The complexity of most powerful such
systems is comparable with the complexity of modern
operating systems. Some companies even create a specialized
hardware for them. Most software development specialists are
familiar with the SQL language and principles of data
organization in RDBMS.

A typical scenario of RDBMS usage in traditional on-
premise application is the following. A developer describes a
required data structure (tables, indexes, views, constraints
e.t.c.) and selects a database server which is the most
appropriate for a «scale» of the task being solved and
capability requirements (the choice here is very wide, from
embedded libraries, like SQLite, to powerful enterprise-level
distributed database clusters, like Oracle or DB2). After the
choice has been done, a developer team defines an application
logic based on interaction with the database server, and the
application with the database server is installed at the
customer's hardware. The application can be tuned in place to
satisfy special needs of the customer. The most advanced
applications are able to extend their data structure in place and
to add an additional logic, usually using one of the script
languages for such purposes. System administrators configure
the user rights and requisites and upload necessary initial data
to the database. After that the application is ready for use. In
the context of the discussed problems there are two key
moments of this process:

 Data and a database server are hosted by a customer,
thus their safety and availability (except the case of
data corruption by the application itself) are under
responsibility of customer's IT-staff.

 Access rights are granted at the database level by
configuring users and departments rights inside a
company.

In the case of a cloud application, data are hosted by (and
thus are under responsibility of) a service-provider which
undertakes to provide instant and fast access to them for tens or

* This work is supported by the RFBR grant # 11-07-00549-a.

172 of 230

hundreds of thousands of its clients concurrently. Violation of
any of these requirements (speed and availability) will cause
penalties to the service provider and, that is much more
important in the cloud industry, will worsen the image of the
provider. A typical service level agreement for a cloud service
guarantees its availability of 99%. These circumstances lead to
the following conclusions.

 Maintenance of a cloud application implies large
expenditures to organization of the data storage, caused
by the need to store (most likely, in multiple instances
to guarantee a required speed of access) data of
hundreds of thousands of clients and their backup
copies in order to restore in case of failure.

 Maintenance of a cloud application implies large
expenditures on support of infrastructure, required to
store data. This includes organization of monitoring
resources availability, efficiency of their usage,
backuping and restoring, organization of application
data structure update and much more.

These considerations, in turn, lead to the following
conclusion: an attempt to solve problems of scalability and
management of a storage infrastructure using the existing
technologies (which were used for designing and development
of traditional «boxed » applications) would require very large
expenditures, thus drastically limiting a barrier of entry to cloud
business. That is why a common desire of SaaS vendors is to
minimize costs of data storing and to find architectural solutions
that would lead as much as possible to such a minimization
without compromising performance and functionality of the
application,.

One of such solutions is a multi-tenant application (thus also
database) architecture. The main idea of this approach is to
share one instance of the application among many tenants
(companies subscribed to the service), thus drastically reducing
expenditures to application servers, web-servers and associated
infrastructural elements. An application design according to
such architectural principles imposes some restrictions to
functionality, but it brings unprecedented opportunities to scale
the solution. Every instance of an application server lives «from
request to request», without saving its state in internal data
structures that allows, having sufficient physical (or virtual)
computing power, to set up an unlimited amount of application
instances to serve clients.

However, these considerations do not apply to database
servers. Figure 1 shows a simplified architecture of a typical

SaaS application, but even in this diagram we can see that a
database server is the first candidate to become a bottleneck as
the system grows. The reason for this lies in the fact that in
contrast to application servers database servers scale poorly. To
be more precise, application servers are able to scale well just
because they descend most of load to the level of database
servers, just often generating SQL queries and performing
simple post-processing of the result. The database server
should provide a reliable data storage, fast access, transactional
integrity and others. A trend in recent years, when the most of
the application logic moved to the database level, increased the
load on this component of the system even more. In traditional
systems the problem of scaling is less crucial, because a typical
modern RDBMS in a single instance is able to serve needs of a
medium company or even a fairly large one. Even if the
problem of scale appears, it can be solved by formation of
database clusters which consist of some powerful servers with
a huge disk storage and database partitioning. However, this
approach is not applicable to cloud solutions, because the total
amount of data of all customers and the number of different
queries, that they have to perform, are beyond the capabilities
of any modern cluster.

II. MODERN WAYS OF ORGANIZING A MULTI-TENANT ARCHITECTURE
IN CLOUD SOLUTIONS

There is some experience in a field of organizing cloud data
storages [1,2,3]. There are both completely new technologies
based on absolutely new approaches and architectural solutions
that allow to get multi-tenant environment in traditional
RDBMSes.

A. NoSQL databases

The usage of NoSQL databases is one of the approaches that is
widely used in the software development industry to organize a
cloud data storage. This term denotes a wide range of
technologies and solutions, the main characteristics of which is
the emphasis on speed and ease of scalability at the expense of
other functionality. The data in such databases are stored in
separate records which are not limited by a predefined format,
there are no terms like «NoSQL database normalization» or
«NoSQL database data structure», in fact, these databases are
just key-value storages. Such systems are simpler than
traditional relational databases and provide a relatively small
amount of data types and abilities to manage them. But the lack
of features is compensated by very high performance and
unlimited scalability. High performance is achieved by the
simple structure and data indexing, scalability — by absence of
complex data arrays and relations. Such databases can be used
when a complex selection of large data arrays is not required
and the application logic is based on the processing of
individual objects or documents.

B. Multi-tenancy in RDBMS environment

In the case, when the application logic requires the complex
processing of data, transactional integrity and other features
that are currently unavailable in modern NoSQL databases,
software developers have to return to the usage of traditional
RDBMS. At the moment, there are two main approaches to
designing multi-tenant relational database.Figure 1. Simplified typical SaaS architecture

173 of 230

 Usage of shared tables for all clients with the
attachment of a tenant identifier to every record — this
is the shared table approach.

 Creation of the own set of tables for every tenant
(usually, these tables are united into one database
schema) — this is the shared process approach.

Both approaches have their pros and cons.

1) Shared table approach
This approach is the most radical one in answering a question
of sharing server resources. The usage of this approach requires
adding a special column to every table in the database which
stores a tenant identifier for distinguishing data of different
clients. Every SQL query to the database of such an
architecture should be supplemented with an additional
WHERE/HAVING predicate that leaves in the query result
only records that belong to a specific client. There are also
some projects of SQL extensions [4] that allow adding such
predicates automatically, but at the moment these extensions
are only concepts under development and research. The
advantages of the shared table approach are the following:

 better usage of a disk space;

 small size of a data dictionary;

 better usage of a query planner's cache (i.e. shorter
time of query analyzing and generation of its execution
plan).

This approach has some disadvantages.

 The enlarging of the size of database tables and their
indexes [5]. This drawback results in the requirement
of very high qualification of developer of database
queries, because any query for which database query
planner is not able to generate an effective, indexes-
based execution plan, will «hang» a database server for
a large period of time. The most unpleasant thing in
this situation is that usually the size of data of one
tenant is relatively small and the query that operates on
a data set with millions of records would return just a
pair dozens of rows.

 The need to add the predicate of selection of a current
tenant's data. This drawback leads to access errors,
when users of one tenant can see data of another
tenant. Such errors may be very destructive for the
reputation of a service provider .The above [4]
concepts of extensions of the SQL language are
possibly able to solve this issue.

 The complexity of replication and backup copying of
separate tenant's data. Since a tenant's data are
«smeared» across the database, it is very hard to
develop a generalized mechanism of their extraction
and recovery.

In general, this approach shows good results, when application
data schema is not large (there are not many tables) and a
typical query is relatively simple (it does not contain joins of
tens of tables, complex orderings and grouping, nested
subqueries). If the above conditions are met, this approach to
designing a database allows the most effective usage of a disk

space and other hardware resources, storing data of tens of
thousands of tenants in a shared database.

2) Shared process approach
This approach occupies an intermediate position in solving a
problem of sharing server resources between complete
isolation of a tenant's data in a separate database and a shared
storage of them in the shared table approach. The separation of
the tenant's data is achieved by creating its own set of database
objects (tables, views, e.t.c.) for each tenant. The advantages of
this approach are the following.

 Unification of the code of database queries and ease of
writing new ones. In contrast to the shared table
approach, queries are known to operate only the
current tenant's data which usually have a relatively
small size and therefore do not require a lot of memory
and other database server resources for their execution
[5].

 Relative ease of backup copying and replication of data
of a single tenant. Because the tenant's data are
grouped together in their own schema, they can be
easily separated from others.

 Decrease of data security risks. It is much harder to
make a mistake when writing a SQL query so that
users of one tenant could be able to get access to data
of another one.

 Simplification of system administration. Since a single
tenant's data are a small logically separated database,
they are human-readable and can be analyzed and
corrected by standard database administration tools, if
needed.

But there are also some drawbacks of this approach.

 Usage of this approach makes data dictionary of a
database very large and heavyweight. Database
metadata tables contain millions of records and are
expensive to access. Every new database object makes
them even larger.

 Because of a data dictionary enlargement, a query
planner is unable to use its cache effectively, that
makes him to generate a new plan of execution for
almost every incoming query [4].

 A disk space is used less effectively than in the shared
table approach [4].

 If a data structure change is required, it will take a very
long time to complete, because of the large amount of
database objects.

In general, this approach shows good results (to be more
precise, there is no real alternative), if an application data
structure is complex (contains a lot of objects) and a typical
query selects data from a large set of tables, makes nested
subqueries and other complex data manipulations.

III. LIMITATIONS OF EXISTING APPROACHES AND GOALS OF THE
RESEARCH

Despite the fact that they are not directly supported by
most of database engines, both approaches are successfully

174 of 230

used by the software development industry. However,
generated databases are very large and complex and therefore
they are hard to manage. But every cloud application that aims
to have a large user base has to operate on dozens of databases
of such a complex structure. It is physically impossible to place
all clients into one database. The highest level of database
resource consolidation known today is about 20 000 tenants in
one database with a relatively simple data structure. A simple
calculation shows that even with such a high degree of resource
consolidation, a company would require 50 database servers to
serve 500 000 tenants, storing one backup copy of data for each
of them for load balancing and data protection against failures
and errors. In reality, such system would require much more
database servers.

But the quantity of database servers is not the only
problem in organization of a cloud cluster. Even more
significant point is the load balancing for optimal usage of
computing power and disk space at the entire cluster level. The
nature of a cloud application is that the load on it is
unpredictable, it may rise and fall like an avalanche and "burst"
of activity can occur from a variety of tenants. The load may
account for both the CPU and the network adapter of database
servers, which occurs when the activity of tenant users
increases, and on its disk drives, which will inevitably occur
with the data accumulation. To provide the required level of
service, an application should be able to dynamically adapt
itself to changing conditions by automatically redistributing
available resources. At the moment, there are no software
systems that are able to solve this problem, as there are no clear
requirements and approved algorithms for them. This research
has the following goals:

 Development of algorithms of load balancing for
multi-tenant cloud database clusters.

 Research of developed algorithms for correctness and
safety, including imitation modelling and stress testing.

 Development of complex solution for organizing
multi-tenant cloud database clusters using ordinary
servers.

IV. SOLUTION REQUIREMENTS

The developed system will be intended for using by
small and medium-sized software companies, and therefore it
should be designed to meet their needs and capabilities. The
following points can be noted:

 Reliability and maximum guarantee of data safety. The
reputation is extremely important for a cloud service
provider, because his clients trust him their data and
for many of them this is a rather difficult decision. This
decision will become much more difficult to make, if
there are clients' data corruption or loss.

 Efficiency. A multi-tenant cloud cluster management
system should use available resources in the most
efficient way, providing maximum performance of an
application.

 The similarity to traditional DBMS with minimal
possible corrections for the cloud application specifics.
It is known that most software developers have some
experience with traditional RDBMS and the SQL

language and know main principles of the relational
data model. This is the significant benefit that should
be used.

 Horizontal scalability. Horizontal scalability is the
ability of a system to increase its performance by
adding new servers to existing ones. This differs the
horizontal scalability from the vertical scalability,
when performance of the system is increased by
upgrading the existing servers. The horizontal
scalability is preferred to vertical, because it is cheaper
and potentially allows to infinitely increase the
performance of the system.

 Ease of administration. If a service provider aims to
serve lots of clients, it has to deal with a very large and
complex infrastructure and its manual administration
can lead to management chaos and system
unmaintainability. To avoid this, the cluster
management system should provide maximum
automatization and tools for real-time system
monitoring.

Let us list the main characteristics of multi-tenant databases
for cloud applications, which should be taken into account,
when designing a cluster management system:

 The huge aggregate size of stored data. As the provider
is to serve dozens and hundreds of thousands of clients,
the total amount of data which it is responsible for is
huge and constantly growing with an unpredictable
speed.

 The small size of a single client data. Since we
consider multi-tenant solutions, this solution is likely
to aim at dealing with small and medium-sized
companies (so called «Long Tail» [1]), and therefore
the number of users and the size of data of an average
tenant is not large.

 The presence of shared data. Usually any cloud
application has some set of data which is shared among
all tenants of the provider. Such data include various
directories and classifiers. Accessing them is almost
always read-only. Such data should be stored in a
single copy, providing their replication to all database
servers in a cluster.

 The need for data backup.

 The need for data replication. Like in traditional
DBMS, data replication is used to balance the load of
database servers. The distinction is that often the
replication in cloud solutions is partial, i.e. only the
data of one or some tenants are replicated.

Based on these requirements and features, we present the
proposed project of the cloud cluster management system.

V. THE ARCHITECTURE OF MULTI-TENANT DATABASE CLUSTER
MANAGEMENT SYSTEM

When designing the cluster management system, it is
important to think about the comfort of its users in advance.
There are two categories of users of the system: application
developers and system administrators. The first category deals

175 of 230

with the system API to create their applications based on
multi-tenant cluster technologies. The ideal interface for this
category of users should ease the interaction with the system
and hide cluster implementation details behind an additional
layer of abstraction. From the point of view of a software
developer, the cluster should be considered as a set of
independent databases for each tenant with a single entry point
(i.e. database connection string). A desired application
interface should be the following:

Connect(params);

Execute(ClientID, «SELECT * FROM T1»);

Disconnect();

As for the second category of users (system
administrators), the most important characteristics of the
system are the ease of configuration and monitoring. Ideally,
the configuration of the system should be as simple as possible
and should be limited to specifying the physical structure of a
cluster. Monitoring tools should provide reports that show the
current state of the system in maximum detail.

The main idea of the proposed solution is to add a
new layer of abstraction between application and database
servers, functions of which are:

 The routing queries from an application server to an
appropriate database server by the tenant identifier.

 Management of tenant data distribution among
database servers, dynamic data redistribution according
to an average load of servers and characteristics of
different tenants activity in time.

 Management of data replication between database
servers in the cluster.

 Management of data backuping.

 Providing a fault tolerance in the case of failure of one
or some cluster databases.

 Analysis of resource usage and system diagnostics.

The system should be implemented as a set of
interconnected services using its own database to support a
map of the cluster and collect statistics on the system usage by
tenants and characteristics of the load. The shared process
approach is going to be used for tenants data separation at the
level of a single database. The choice of this approach is
explained by the fact that the system must be sufficiently
general and have no knowledge about the data structure
required for an application beforehand. Because one of the
requirements of the shared table approach is to add a service
column to every table in the database, it assumes much closer
familiarity with the application data structure and thus its usage
is difficult for the generic system. Moreover, the usage of the
shared table approach requires very good query optimization
skills and thus does not hide the underlying structure of the
cluster from the developer. The general architecture of the
proposed system is shown in Figure 2.

We proceed to a more detailed consideration of the
above-mentioned functions of the system. The proposed
solution assumes the appearance of a new element in a chain of
interaction between application and database servers. This new

element is a dedicated server which transparently for
application servers routes their queries to an appropriate
database server, basing on a tenant identifier, provided with a
query, characteristics of the query and statistics of the current
system load. This is the component application developers will
deal with. In fact, this component of the system is just a kind of
a proxy server which hides the details of the cluster structure
and whose main purpose is to find as fast as possible an
executor for a query and route the query to him. It makes a
decision basing on the cluster map.

It is important to note that the query routing server has
a small choice of executors for each query. If the query implies
data modification, there is no alternative than to route it to the
master database for the tenant, because only there data
modification is permitted. If the query is read-only, it also can
be routed to a slave server, but in the general case there would
be just one or two slaves for a given master, so even in this
case the choice is very limited.

Besides, it is important to mention that the discussed
component of the system can not use expensive load balancing
algorithms, because it must operate in real-time. All it can use
is its own statistics on the number of queries sent to a specific
database server of a cluster, the execution of which has not yet
been completed. Basing on this runtime data, it must decide
where to send the next query.

The implementation of this component should give a
significant benefit in performance and ease of cluster
administration.

 The second component of the system is the replication
and backup management server. Its functions are clear from the
name but it is important to note that, unlike the traditional
databases, in multi-tenant solutions the replication is almost
always partial, i.e. only some part of data is replicated. For
example, the data from the first tenant schema can be replicated
to one database, from the second tenant schema — to another
and the third tenant schema itself can be a replica of a part of
the second database from a cluster. Once again we recall that
the data change request can only be executed by the master
database of the tenant and this consideration should be taken

Figure 2. Multi-tenant database cluster architecture

176 of 230

into account during the distribution of tenant data among
servers to avoid hot spots.

The third component of the system, its peculiar
"circulatory system", is a set of agent-services placed at the
same machines as database servers. These small programs-
daemons are to collect statistics about the load of the server
(usage of CPU, RAM, network adapters and disk space) and
monitor server state in the case of failure. All the information
collected is sent to a central server for processing and analysing
and will be used as an input data for the load balancing
algorithm.

The last and the most important and complicated
component of the system is the data distribution and the load
balancing server. Its main functions are:

 initial distribution of tenants data among servers of the
cluster during the system deployment or addition of
new servers or tenants;

 collecting the statistics about the system usage by
different tenants and their users;

 analyzing the load on the cluster, the generation of
management reports;

 management of tenant data distribution based on the
collected statistics, including the creation of additional
data copies and moving data to other server;

 diagnosis of the system for the need of adding new
computing nodes and storage devices;

 managing the replication server.

This component of the system is of the highest value, since the
performance of an application depends on the success of its
work. The key indicators that can be used to evaluate its
effectiveness are:

 the average response time of a service (an average time
between the arrival of a request and receiving a
response to it);

 availability of a service (what percent of requests from
the total number was successfully executed, what
percent failed to meet a time limit or other parameters
and what percent is not executed at all);

 the average load of database servers (whether servers
are equally loaded, whether there are idling servers
when others fail to serve all requests).

Obviously, the last criterion affects the previous two.

An algorithm of cluster load analysis and need for
data redistribution should become the core of the load

balancing system. This algorithm should make its decision
about data redistribution, taking into account the following
considerations.

 Performance of cluster servers. If the system is not
homogenous, the proportions of its parts should be
taken into account.

 Free resources available. If the system has free
resources in its disposal, it makes sense to use them by
creating additional copies of tenant data to increase the
performance of the application. However, if the
number of tenants begins to grow, the created
redundant copies should be removed.

 The history of the individual tenant activity. If users of
the tenant A actively use the application and users of
the tenant B do not, it makes sense to move the data of
the tenant B to a more busy server and create less
copies of them, since they are unlikely to cause
problems for the service.

 Preventing the creation of hot spots on writing the data
in a context of replication organization. The system
should distribute master servers for all tenants in an
appropriate way, taking into account the history of the
tenant activity.

Such an algorithm can be based on a variety of strategies, and
currently it is not clear, which of them should be preferred.
From this it follows that the most reasonable solution would be
to implement several variants of the algorithm as a pluggable
modules and choose the best one according to the results of
imitation modelling and stress testing. It is very likely that such
a version will not be found and the final implementation of the
system will contain several versions of the algorithm which
showed themselves as the best ones under some external
conditions. In this case the choice of an appropriate version of
the algorithm will be the task of a cluster management system
administrator.

[1] F. Chong, G. Carraro, “Architecture Strategies for Catching the Long
Tail“, Microsoft Corp. Website, 2006.

[2] F. Chong, G. Carraro, R Wolter, “Multi-Tenant Data Architecture“,
Microsoft Corp. Website, 2006.

[3] K.S. Candan, W. Li, T. Phan, M. Zhou, "Frontiers in Information and
Software as Services", in Proc. ICDE, 2009, pages 1761-1768.

[4] Oliver Schiller, Benjamin Schiller, Andreas Brodt, Bernhard Mitschang,
“Native Support of Multi-tenancy in RDBMS for Software as a
Service“, Proceedings of the 14th International Conference on
Extending Database Technology EDBT '11 2011

[5] D. Jacobs, S. Aulbach, “Ruminations on Multi-Tenant Databases“, In
Proc. of BTW Conf., pages 514–521, 2007.

177 of 230

Automation of QA in the project of DB migration

from SQL Server into Oracle

Iakov Kirilenko & Eduard Baranov

Software Engineering Department,

Mathematics and Mechanics Faculty,

Saint-Petersburg State University,

Saint-Petersburg, Russia

Abstract— This paper describes an automatic QA organization

experience in the industrial project of DB migration from MS

SQL Server 2005 to Oracle 11gR2. The resulting DB of the

project is supposed to contain the same data and to have a

functional correspondence with the initial one. The initial DB

is quite huge: 6 terabytes of data and 2500 KSLOC of stored

procedures. The documentation for the initial base is

incomplete and outdated and doesn’t correspond with the

database in question. Functional specifications for stored

procedures are missing, as well as tests. This article contains

the description of the main problems solved during the project,

solutions and an estimation of their applicability based on

implementation experience.

Keywords - database, data migration, testing, reengineering,

quality assurance

I. INTRODUCTION

The authors are contracted to migrate the industrial

database from MSSQL Server 2005 to Oracle 11gR2. There

are main requirements to the project: all data must be

migrated from the initial base and all functionality must be

preserved. Also there is an afunctional and difficultly

formalizable requirement to minimize changes in schema of

the database and in signatures of stored procedures. This

requirement was introduced by the customer to decrease the

cost of the following adaptation for the new DB of client

applications.

The project is organized as simultaneous progress

in two ways: analytics of the initial DB and development of

the set of tools for automatic migration. During the project

DB migration process improves continuously to entirely

automatic migration. For this purpose a set of tools is

developed for automation of all predesigned steps: database

schema transformation, migration of stored procedures and

data transfer. At the same time a complex system for quality

assessment is being developed.

Absence of the documentation, which describes

functional behavior, was decided to be compensated by an

automation of comparison between behaviors of the initial

DB and the migrated one in functional scenarios that

correlate with business use-cases. Functional complexity of

the system (2.5 million lines of stored code) and huge

amount of data (6 Tb) considerably complicates

organization of the QA process. Additional changes made in

schema and in stored code during migration also complicate

the automation of the comparison.

II. RELATED WORKS

Methodologies for database migrations are

described in several papers. In the article [2] the example of

data migration methodology is presented. Migration process

between DB with different data models, its risks and

problems are described in [3] and [4]. Methodologies for

legacy system migration are presented in [5].

Database migration projects have special risks and

problems. Authors of [6] propose the data migration triangle

for project management in this area. One of dimensions

addresses quality assurance. Typical risks, testing and QA

techniques are described in [7]. Testing during a database

migration lifecycle is considered in [8].

Differential testing was initially proposed by

McKeeman [9]. It is a special case of random testing to

detect differences between different implementations.

Regression testing is discussed in [10] where differential

unit-tests are proposed for detecting differences between

versions of the same unit. In paper [11] a tool which can

identify the cause of regressions by trace analyzing is

discussed.

 There are a lot of works about data validation. The

paper [12] describes it with emphasis on automation, quality

and security of data validation process.

An experience of the migration testing can be found

at [1].

III. QA PURPOSES

The main purpose of the migration project is to result in a
new DB, which contains the same data and has functional
correspondence with the initial one. Testing, especially the
functional one, is necessary for inspection of migrated DB.

The initial DB is accepted as a model for the migrated
DB by formulation of the problem. Behavior of the initial
DB is considered as correct and the migrated DB must
functionally correspond the initial one within the accuracy of
documented changes, which contain renames, changes in a

178 of 230

database schema and consistent changes in procedures
semantics.

Goals of the functional testing are:

 Verification of data migration completeness

 Functional correspondence between the initial
DB and the migrated one.

Migration tool developing process also needs a control
and permanent verification is needed for results of its work.
So, objects for testing are:

 Code of the migration tool

 Data migration procedure

 Code for RDBMS Oracle

Functional testing must solve the following problems:

 To provide constant control for correspondence
between generated code Oracle PL/SQL and
projections designed in the migration tool

 To provide constant control for regression
during the migration tool development

 To provide control for functional
correspondence between initial (SQL Server)
and migrated (Oracle) DBs

 To provide control for data migration
correctness

 To provide everyday control for code migration
completeness

The QA is executed in two main directions: generated
code testing and the data migration process testing.

IV. MIGRATED CODE TESTING

A. Testing of Migratred Code Functionality

Functional testing process is based on a synchronous

playing of prepared traces in two DBs (initial and migrated).

Trace is a sequence of queries to the DB, which formalizes

an interaction between the DB and client applications. The

main requirement to the set of traces is sufficient functional

coverage. It is a black-box technique, when only external

effects are checked. They include output parameters, result-

sets, changes inside DB etc.

First traces were created from testing scenarios which

were given by the consumer. Traces were collected from

industrial servers in order to get more precise information

about functionality used in the maintenance. This helps to

enlarge the trace set with more priority scenarios which

cover more important functionality. Additional synthetic

traces were also developed for testing of rarely used

functionality.

Using only this kind of testing isn’t convenient for the

specific project. The whole migration process lasts several

hours and it’s too long to wait for results of small changes.

So some kinds of errors (e.g. incorrect construction

transformation) ought to be detected at earlier stages.

B. Early Determination of Defects

Primary migration tool testing is based on small tests,
which cover main functionality. These tests are designed for
early regress determination, so among them there are
examples for all code constructions. A test set is executed
automatically after every commit in a version control system
and allows prompt detection of an incorrect construction
transformation. Analytics and developers increase number of
tests during the development of the tool.

In addition, automatic loading and compilation in Oracle
are executed every day on procedures translated with the
most recent version of the migration tool. They allow to
control a number of correctly (syntactic correctness)
translated procedures, and show errors appeared in code.
This basic testing is especially urgent during the active
development of the migration tool.

Testing based on procedures compilation isn’t enough for
providing syntactic correctness of the code in the specific
project. A lot of procedures which contain critically
significant functionality use dynamically generated queries.
Additional functionality was developed for dynamic SQL,
which allows a detection of statically (without procedure
execution) lines of literals, which generate incorrect dynamic
query for sure.

C. Testing by Trace Playing

The trace recording method is based on MS SQL Server
2005 embedded tools. Queries are captured and saved during
the using of DB by customers. Traces for functional testing
are recorded on the initial DB in a single-user mode. Each
tester has an individual virtual machine. Virtual machine
state is saved with deployed DB before trace recording. After
recording traces are converted into a unified view which is
based on XML. The unified view represents original
structure of the initial trace. It consists of batches splitted in
queries. It keeps an original text of each query, which was
executed on SQL Server, and a text for Oracle. Queries for
Oracle are generated automatically by the trace
transformation with the rules which were used in stored
procedures code transformation. For this purpose integration
with trace transformer was added.

The trace playing always starts from the same saved
state, determined by the saved state of the initial DB. The
migrated DB is a result of migration process application to
the saved state of the initial DB. So the trace playing always
starts from two DBs in equivalent states. A synchronous
playing is also executed in a single-user mode. It provides
determined order of the stored procedures execution and a
regular repeatability of the trace playing result. Distortions
are observed only in results returned by disordered
samplings, but the trace playing tool takes this problem into
account during the result analysis.

Traces are played with a special developed utility. Result
sets received on each step are being compared as difference
sets A-B and B-A. If both of difference sets are empty then
the result is accepted and translated code is considered to be
functionally equivalent to the initial T-SQL one. Otherwise,
an attempt to compare sets A-B and B-A is performed by
rows and after that by columns for the error localization.
Results of comparing are logged into a report. Each trace has

179 of 230

its own record. Errors which were found during the code
execution are reported too.

For the QA improvement another monitoring was added
which strengthens control on the equivalence of initial and
migrated DBs. It looks for changes made during the trace
playing inside DBs. For this purpose triggers on events
INSERT/UPDATE/DELETE were added for every table in
initial and migrated DBs. Triggers write down information
about all changes made during the trace playing into a
special audit table.

For each section of the trace triggers write down
information about the fact of execution an operation on data.
It contains a table name, an operation type
(INSERT/UPDATE/DELETE), a number of changed values
and a hash key of the value collection. This functionality is
implemented in one trigger for all three operations on each
table. After the trace playing values in the correspondent
audit tables are compared. If any difference is found,
correspondent tables are also compared. The result of using
of this method shows that this testing can find differences in
the number of deleted rows which can’t be found by
comparison of the returning record sets. Noticeable
efficiency decreasing wasn’t observed after the triggers
addition.

D. Control and Providing Testing Coverage Completeness

Testing scenarios which were used for the trace recording
were given by the customer. It is supposed that they cover
sufficient functionality of the system. For test coverage
(completeness) quality assessment source codes of the stored
procedures were automatically changed on test servers.
Logging instructions were added which allow to backtrace a
sequence of operators in order they were executed with an
acceptable accuracy. At the beginning of each line code
section a command is added which inserts information about
passing through a checkpoint into a special table. During the
trace playing on the test server a log table is generated. With
knowledge about all checkpoints and their places it’s
possible to count code test coverage using this log. Synthetic
tests are counted separately.

For the testing coverage control traces from industrial
server are also used, and it helps to determine how the test
set covers wide used functionality. But the customer gave
only a few industrial traces.

The most completeness cover could be provided with
traces from the industrial server, collected during a long
period of time. But there are some problems with their
reproduction. Firstly, traces and the DB image must be
consistently depersonalized before their transfer to third
persons. It makes no difficulties to implement such
functionality while having such analysis level of the
migration tool, but it’s impossible because of the project time
limit. Another problem is the recording of the reproduced
traces even with solved problem of the consistent
depersonalization. Values returned in samples to client
applications can depend on current state of the DB, for
example IDENTITY column. In certain cases results made
during parallel sessions are not comparable. Possible solution
of the problem is to substitute IDENTITY generation (and a
column type converter) in the initial DB for more suitable

functions. But this substitution mustn’t have influence on
efficiency.

V. DATA MIGRATION TESTING

A DB size is impressive, so there is no guarantee, that
functional tests can find an imperfection of data loading. So
the QA of data loading procedure implementation is based
on return codes, logs analysis of all system utilities used in a
load chain, a data integrity control embedded in the DB and
an additional control of the data loading result – a
validation[2].

The validation makes it possible to assure that all data
reloaded successfully to the new DB after all necessary
documented transformations. This DB is a key component
for a valuable part of customer business, so the validation is
very urgent after the DB migration of such size. The
database schema contains more than 2000 tables and at
almost 10000 columns, some tables contain tens of millions
of records. Foreign keys as an instrument of data integrity
practically aren’t used.

The validation process must check not only objects
content but the whole database schema verifying existence
and state of objects. Full validation for checking DBs
equivalence with such volume DBs needs a huge amount of
resources, especially a time resource. For a regular process
another method is needed. It must require much less
resources but have a good result confidence.

At first, validation by row counting was used for primary
testing. Measure of success was a table’s row number
coincidence in initial and migrated DBs. Implementation was
pretty simple. It was necessary only to count a number of
rows in all tables and to compare results. Script was
automatically generated during the database schema and
stored code transformation. One of method’s advantages is
its speed. It has high speed, especially on tables which have
primary or unique keys. On this tables number of rows is
counted by index and full scan of the table is not performed.
Even such simple method revealed unsuccessfully migrated
objects. But this method doesn’t verify objects values and
this is a big disadvantage, especially in migration which is
accompanied by the data type transformation.

For the validation result reliability improvement another
method was implemented. It is based on hash keys
comparison. In the initial DB hash keys are calculated for all
columns in every table and results are saved in a separate
table. Procedure for hash keys calculating have the following
requirement: values of hash keys must be independent from
table strings traversal order, because the rows order in the
sample can be different and ordering is a very slow
operation, it can strongly reduce the speed of the validation.
At the current implementation the XOR operation is used. It
is commutative and it is embedded into SQL. However
research is being made in order to find another function
which makes more qualitative hashing but at the same time
is very fast. Calculation code is implemented in T-SQL. This
code and table with hash keys are being migrated with
database schema and stored procedures. Migrated hash
calculation procedure on migrated data must give the same

180 of 230

value as an initial one on the initial DB. This also makes an
additional testing of the migration tool.

VI. RESULTS

Described testing strategy was implemented within the

project. The unit test set contains a hundred of tests for

different input language constructs. Permanent control over

transformations of the constructions has helped to save a

vast amount of men-hours. Compilation in Oracle has often

showed a regress made in the previous day, so it wasn’t

difficult to isolate faults. Both controls have taken just

several minutes which is nothing in comparison with

migration process.

 Trace comparison has been conducted with more than

400 traces and is still growing. Trace playing process takes

6 hours. As a result of the discovered differences

investigation a lot of problems were found, and some of

them forced to improve or change introduced projections.

Moreover, this testing methodology has discovered

problems in the initial DB (e.g. some queries return first

element from unstable unordered selection, so the result

can’t be assured).

Evaluation of the testing coverage showed that

testing scenarios which were given by the customer had

covered about 14% of operators. Additional synthetic

scenarios made it possible to increase this value to 33%.

During the functional testing about 49% of procedures were

executed. Moreover, a huge amount of dead code (more

than 40% of operators) was found in the initial database, so

the resulting coverage is enough. 20% were confirmed by

the customer as acceptable test coverage. This number is

based on previous experience in reengineering and

correlates with Pareto’s principle.

Data validation process has had two implementations.

First implementation (by line counting) was fast, and it had

found several losses during the data migration at early

stages of the project. Next implementation based on hash

keys comparison has helped to improve data migration

process and it can provide rather high probability of the data

migration correctness. Validation process has taken 6 hours

on test servers which is much less than full validation.

VII. CONCLUSION

This paper presents an experience of the QA organization
in a technically complex project of DB migration. Described
methods were implemented and tested in practice and show
their efficiency.

In spite of positive results of the current QA organization
and automation some methods can be improved. The main
direction of methodology improvement is supposed to
implement trace recording and playing from the industrial
server. In order to achieve this synchronization problem and
depersonalization problem are needed to be solved.

REFERENCES

[1] Sneed H.M.,”Selective Regression Testing of a Host to DotNet

Migration”, Software Maintenance, 2006. ICSM '06. 22nd IEEE

International Conference J. ds, 1892, pp.68–73.
[2] Hudicka J., “The Complete Data Migration Methodology”, Dulcian

Inc., June 2000

[3] Chang-Yang Lin, “Migrating to Relational Systems: Problems,
Methods, and Strategies”, Contemporary Management Research, Pages

369-380, Vol. 4, No. 4, December 2008

[4] Maatuk A., “Migrating Relational Databases into Object-Based and
XML Databases”, Doctoral thesis, Northumbria University, 2009

[5] Wu B., Lawless D., Bisbal J., Grimson J., Wade V., O’Sullivan D.,

Richardson R., “Legacy System Migration : A Legacy Data Migration
Engine”, Proccedings of the 17th International Database Conference,

October, 1997. pp 129-138

[6] Klaus Haller, “Data Migration Project Management and Standard
Software – Experiences in Avaloq Implementation Projects”, Proceedings

of the DW2008 Conference, St. Gallen, Switzerland, 2008

[7] Matthes F., Schulz C., Haller K., “Testing & quality assurance in data
migration projects”, Software Maintenance (ICSM), 2011 27th IEEE

International Conference.

[8] Patil S., Royy S., Augustinez J., Redlichx A., Lodha S., Vin H.,
Deshpande A., Gharote M., Mehrotrak A., “Minimizing Testing Overheads

in Database Migration Lifecycle”, The 16th International Conference on

Management of Data (COMAD), 2010
[9] McKeeman W., “Differential testing for software”, Digital Technical

Journal, 1998
[10] Elbaum S., Chin H., Dwyer M., Dokulil J., “Carving differential unit

test cases from system test cases”, FSE’06, 2006.

[11] Hoffman K., Eugster P., Jagannathan S., “Semantics-aware trace
analysis”, PLDI’09, 2009

[12] Manjunath T., Ravindra S.,Mohan H., “Automated Data Validation for

Data Migration Security”, International Journal of Computer Applications
(0975 – 8887)Volume 30– No.6, September 2011

[13] Microsoft Developer Network Library, http://msdn.microsoft.com/en-

us/library/default.aspx
[14] Oracle Documentation, http://www.oracle.com/pls/db112/homepage

181 of 230

http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://www.oracle.com/pls/db112/homepage

One approach to document semantic indexing based

on multi-agent paradigm

George Sokolov

Computer Science Department

Perm State University

Perm, Russia

sokolovgeorge@gmail.com

Viacheslav Lanin

Department of Business Information Technologies

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru

The problem of search pertinence increasing with a low time-

complexity is one of the major research issues in Computer

Science. Semantic search as an alternative solution to this

problem has a high time complexity. This paper describes the use

of agent-based approach to reduce the time complexity of

constructing semantic indexes used for searching.

Semantic indexing; agent; ontology; document

I. INTRODUCTION

Nowadays the information retrieval (from the Internet and
off-line sources) is one of the major research areas in Computer
Science. The main criteria of a successful search are the high
relevance of search query information and fast response time.
Traditional search engines typically use an approach «Bag of
words» based on statistical methods to search for information.
This approach takes precedence over semantic search methods
is due to low time-complexity, low implementation complexity
and satisfactory degree of relevance. One of the main areas of
modern researches in the information retrieval is an increasing
of search pertinence with a low time-complexity.

In syntactic search some indexes are built to find quickly
the information required on some key words. By analogy let’s
introduce a concept of a semantic index. In this paper the
semantic index is one-one correspondence between elements of
the text and concepts from some ontological resource. There
are different formats of the semantic indexes. Some of them are
primitive (such as microformats hCard, Geo, microdata html5)
and other formats are advanced (such as RDF, OWL,
underlying the Semantic Web). In the semantic indexing there
are two directions: the construction of semantic indexes and
search for information on a semantic index. In this paper we
will consider the construction of the semantic index (or the so-
called semantic markup) for electronic documents.

The main problems of constructing semantic indexes are

1) high time-complexity (is due to various kinds of
ambiguity that require paying respect of a context),

2) the problem of choosing ontology, which would be
sufficiently complete to satisfy all search queries in an
electronic document,

3) large amount of constructed semantic indexes and the
problem of storage.

In this paper, the authors offer one approach of solving the
first problem (the problem of time-complexity). Obviously,
increase in the rate of the semantic indexing operation is
required not one but several calculators, i.e. the parallelization
of this operation is needed. The execution of the semantic
markup operation requires the coordination of actions to
resolve ambiguities. That’s why simple asynchronous
calculators aren’t capable to solve the problem. According to
the authors the most appropriate solution is using agent-based
approach.

II. EXISTING APPROACHES

Solution to the agent-based semantic indexing problem can
be obtained in two ways:

1) using of generic agent-based platforms that can decide a
wide range of tasks,

2) using of specialized semantic indexing systems based on
the multi-agent paradigm.

Let us consider each of these methods. Most popular agent
platforms are JADE [1], MASDK [2], Zeus [3].

TABLE I. GENERIC AGENT-BASED PLATFORMS

 JADE MASDK ZEUS

Developer

community

Telecom Italia

Lab

SPIIRAS BT Laboratories

License LGPL LGPL LGPL

Description This is the

platform for rapid

development of

multi-agent

systems, which

implements FIPA
standards [4].

JADE provides

base classes for
creating agents

and infrastructure
for the operation

of multi-agent

system.

This is the software

environment for

multi-agent

application

development that

supports the full life
cycle application

development of

MAS. The agent
platform, which is

the part of MASDK,
works on the

principle of P2P.

This is the agent

platform designed

for rapid

development of

multi-agent

applications. Zeus
provides a library

of agent

components.

Description
of the agent

behavior

Set in the code of
the agent class

that inherits from

Agent.

Set with language
ASML. This

language is used for

generating applied
MAS.

Set in an
environment for

building agents,

from which the
agent code is

generated.

182 of 230

Each of these agent platforms allows one way or another to
describe the behavior of the agent. Depending on the platform
we can define almost any behavior of an agent, programming
or describing it using specific language. So we can determine
the behavior of the agent that implements mechanisms of
semantic indexing. The key problem of this approach is the
high overhead of run-time. This is due to a complex
infrastructure applications received applications. This can be
compared with a programming in high level language and
Assembler. The actions are the same, but the performance is
significantly different. Therefore, such an approach to the
problem is not satisfactory.

As noted above, the second approach to the problem of
semantic indexing is the use of specialized semantic indexing
systems based on the multi-agent paradigm. In this area, it was
found only one solution – Magenta Toolkit [5]. This software
solution is commercial, so there is no legal possibility to
evaluate the effectiveness of work and, especially, to study the
mechanisms of their internal functioning. Magenta Toolkit
developers have written a number of publications [6, 7], which
describe the principles of the system in outline without
specifics. This decision is also not satisfactory.

Therefore, the task of the research is development of an
open (open source and detailed descriptions of the principles)
and an effective method of semantic indexing based on the
multi-agents paradigm. In addition, you also need the option to
apply this method to all electronic records. So the agent
platform must be developed.

III. DOCUMENT ANALYSES STEPS

On Fig. 1 text mining process steps are shown. Finally,
complete content and organizational editing before formatting.
Please take note of the following items when proofreading
spelling and grammar.

Figure 1. Steps of document analyses

Simplifying the problem we assume that first two steps of
text mining process have been made, i.e. a set of syntactic and
morphological descriptors for each sentence have been
obtained. The result of semantic analysis (indexing) is a
semantic descriptor of text that binds the syntactic descriptors
of sentences to the elements of the domain ontology which is
used for semantic search.

Descriptors (morphological, syntactic, and semantic) are a
set of tags which marks words in the sentence. Syntactic and
morphological descriptors will be put into relational tables for
two reasons. Firstly, syntactic and morphological descriptors
will be actively used for semantic indexing. Secondly, we don’t
want to pile up document by tags. Each word in the text
(except for a different kind of stop words) will be assigned a
unique identifier. Each identifier corresponds to a separate
table row.

Thus, i-th row of the table looks like (idi, {aj}i), where idi –
the identifier of the word, {aj}i – set of attributes (tags) that
have been assigned to a given word during morphological and
syntactic analysis process. In each row of syntactic descriptor
table an identifier of applicable syntactic rule is indicated. The
syntactic rule is a rule for constructing syntactically correct
sentences. The semantic descriptor is represented as set of tags
(semantic markup) within the indexed document.

IV. AGENT-BASED SOLUTION

Further let us consider the process of building a semantic
index based on multi-agent approach (see Fig. 2).

Figure 2. Arhitecture of agent platform

Agents have access to a domain ontology, syntactic,
morphological descriptors and electronic documents which will
be indexed. Indexing process is produced on the sentences in
the text. Sentences are processed sequentially by agents. The
agents form a "team" to index the particular sentence. Thus,
agents in the system after the start of the indexing are divided
into teams.

Morphological analysis

Syntactic analysis

Semantic indexing

Morphological

descriptors

Syntactic

descriptors

Semantic

descriptors

Morphological

descriptors

Syntactic

descriptors

Semantic

descriptors

Agent Agent

Agent

Ontology

183 of 230

A. Agent Types

The following types of agents are identified in the system,

according to the functional separation:

1) Team Lead First Level Agent - TLFL agent,

2) Team Lead Second Level Agent - TLSL agent,

3) Word Indexer Agent - WI agent,

4) Index Writer Agent - IW agent.
The task of WI agent is accessing to the domain ontology

and obtaining the set of possible semantic tags for the indexed

word. An input word is passed to the WI agent for indexing

with the parameters obtained at the stage of morphological and

syntactic analysis. Resulting set of possible semantic tags is

passed to the TLSL agent.

TLSL agent binds to syntactic and morphological

descriptors of the sentence and distributes words to all

available WI agents. TLSL agent finishes its work on the

sentence when the consistent semantic descriptor is formed and

written to the document. TLSL agent plans actions for the WI

agents and also participates in the auction for the resolution of

contradictions. After building a consistent semantic descriptor

TLSL agent transmits the generated semantic descriptor of the

sentence to IW agent who writes semantic tags to the

document.

TLFL agent binds to syntactic, morphological descriptors

of the document and distributes descriptors of the sentences to

all available TLSL agents. TLFL agent monitors the work of

TLSL agents. If the work on the sentence is completed TLSL

agent gives TLFL agent a new sentence. In addition, TLFL

agent conducts an auction among TLSL agents to resolve

ambiguity in the descriptors (see details in section «Agent

negotiation»).

B. Agent communication

Agents communicate through language FIPA ACL (Agent

Communication Language developed by FIPA) [8]. Two types

of actions are used. They are inform (inform about anything)

and perform (execution of an action).

Inform action type is implemented in the following cases:

1) WI agent informs the TLSL agent of completion of

indexing word and give it the set of possible semantic

tags; content of the communication is as follows: (id,

tags), where the id is the identifier word that came to

be indexed, tags are returned set of possible semantic

tags;

2) TLSL agent informs the TLFL agent of completion

of indexing sentence with a specific identifier;

content of this message contains an identifier of

indexed sentence.

Perform action type is implemented in the following cases:

1) TLFL agent gives to the TLSL agent a task to index a

sentence with a specific descriptor; content will look

like this: (id, descriptor), where the id is the identifier

of the sentence, descriptor is descriptor of the

sentence received as a result of syntactic and

semantic analysis;

2) TLSL agent gives a task to the WI agent to index a

word with specific id; content will look like this: (id,

word, parameters), where id is ID of the word, word

is the word for indexing, parameters are parameters

obtained at the stage of morphological and syntactic

analysis;

3) TLSL agent gives a task to the IW agent to write

semantic tag of specific word; content is as follows:

(word, tag), where the word is an indexed word, tag

is just a semantic tag of indexed word.

C. Planning

The planning is dynamic. TLSL agents themselves form a

team of agents from the available WI agents. A count of

needed WI agents depends on structure of a sentence. With a

lack of WI agents at the time of formation of the team TLSL

agent may designate to perform indexing of few words at once

to the same WI agent. TLFL agent monitors the performance of

work of TLSL agents and if they are released it assigns them

new sentences for indexing. Completing of work of the agents

(WI and TLSL) monitored not only by sending their

corresponding messages of inform type, but also change their

states (agent states) in the meaning of "vacant."

D. Agent knowledge bases

WI agents and IW agents are primitive reflex agents

working in the mode of stimulus-response. Their main function

is a simple, no inference, execution of work. In the knowledge

bases of these agents are only procedural steps.

Knowledge bases of TLFL and TLSL agents represent

productions with embedded procedural actions. In fact, the

script actions are necessary for the distribution of work

between agents. Accordingly TLSL agent knowledge base

contains a script for word distribution among WI agents, and

TLFL agent knowledge base includes a script for sentences

distribution between agents TLSL.

E. Agent negotiation

TLFL agent conducts an auction among agents TLSL, each

of which has a contextual memory (training component). Every

TLSL agent using the contextual memory votes for a one

option of sematic descriptor of the sentence. Option of

semantic descriptor of the sentence with the highest number of

votes shall be considered as a true semantic descriptor of the

sentence. The set of all consistent semantic descriptors of the

sentences form the document semantic descriptor.

V. CONCLUSION

So, in this paper we have discussed various approaches to
solving the problem of document semantic indexing based on
multi-agent paradigm. We propose a variant of the solution of
that problem and describe it in terms of morphological,
syntactic and semantic descriptors of the text. Specialized types
of agents are introduced and the general principles of multi-
agent system functioning are described.

REFERENCES

[1] JADE Programmers guide. http://sharon.cselt.it/projects/jade
/doc/programmersguide.pdf

184 of 230

[2] Gorodetsky V., Karsan O., Samoilov V., Serebryakov S. "Applied multi-
agent systems of group control" / / Artificial intelligence and decision
making № 2.2009

[3] ZEUS Techical Manual. www.upv.es/sma/plataformas/zeus/Zeus-
TechManual.pdf

[4] The Foundation for Intelligent Physical Agents. http://www.fipa.org

[5] The Magenta Toolkit. http://www.magenta-technology.ru/ru/

[6] Andreev V., Iwkushkin K., Karyagin D., Minakov I., Rzevski G.,
Skobelev, P., Tomin M.: Development of the Multi-Agent System for

Text Understanding. In 3rd International Conference ‘Complex Systems:
Control and Modelling Problems’. Samara, Russia, September 4-9 2001,
489 – 495.

[7] Minakov I., Rzevski G., Skobelev, P., Kanteev M., Volman S. : Multi-
Agent Meta-Search Engine Based on Domain Ontology.
http://www.magenta-technology.ru/ru/

[8] FIPA ACL Message Structure Specification.
http://www.fipa.org/specs/fipa00061/SC00061G.pdf

185 of 230

http://www.magenta-technology.ru/ru/
http://www.fipa.org/specs/fipa00061/SC00061G.pdf

One approach to metadata inclusion in electronic

documents

Vyacheslav Bessonov

Computer Science Department

Perm State University

Perm, Russia

v.bessonov@hotmail.com

Viacheslav Lanin

Department of Business Information Technologies

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru

The article describes an approach to the metadata inclusion into

Open XML and ODF documents. This metadata allows

implement semantic indexing. The described solution is realized

as a software library SemanticLib that provides a uniform access

to documents in these formats.

Open XML; OpenDocument Format; metadata; RDF

INTRODUCTION

Semantic indexing of electronic documents is intended to
include special structure associated with the content of
documents in its metadata. Most of the currently used
electronic document formats do not permit the inclusion of
additional information. Electronic documents open formats
Office Open XML and OpenDocument Format become
increasingly popular nowadays. By author’s opinion these
formats are the most promising.

I. OFFICE OPEN XML FORMAT

Office Open XML (OOXML) is a set of open formats
based on ZIP and XML technologies intended for
representation of electronic documents package of office
applications such as spreadsheets, presentations, text
documents.

In 2006 the Office Open XML was recognized as the
standard ECMA-376 and 2008 as the international standard
ISO/IEC 29500:2008.

Since 2007 version of Microsoft Office OOXML is the
default format for all applications included in the package of
Microsoft Office.

For each document type its own markup language is used:

• WordprocessingML for text documents;

• SpreadsheetML for spreadsheets;

• PresentationML for presentations.

OOXML also includes a set of specialized markup
languages that can be used in documents of various types:

• Office Math Markup Language is used to represent
mathematical formulas;

• DrawingML is used to represent vector graphics and
diagrams.

Office Open XML uses Open Packaging Convention
(OPC), created by Microsoft and intended for storing a
combination of XML and binary files (eg, BMP, PNG, AVI
and etc.) in a single container file.

II. OPENDOCUMENT FORMAT

OpenDocument Format (ODF) is an open document file
format intended for storing and exchanging editable office
documents such as spreadsheets, text documents and
presentations.

ODF standard is created and supported by Committee ODF
Technical Committee organization OASIS (Organization for
the Advancement of Structured Information Standards). OASIS
published ODF 1.0 in May 2005, Commission International
Organization for Standardization / International
Electrotechnical Commission ratified it in May 2006 as
ISO/IEC 26300:2006, so ODF become the first international
standard for office documents.

ODF was accepted as the national standard in the Russian
Federation, Brazil, Croatia, Italy, Korea, South Africa, Sweden
and Venezuela.

III. APPROACH DIFFERENCES

Although both formats are based on open technologies, and
are actually ZIP-archives that contain a set of XML-files
defining the contents of the documents, they use very different
approaches to solve the same problems and have radically
different internal representation.

Format ODF reuses existing open XML standards, and
introduces new ones only if it is really necessary. For example,
ODF uses a subset of Dublin Core to represent document
metadata, MathML to present mathematical expressions, SMIL
to present multimedia content of the document, XLink to
provide hyperlinks, etc. It means primarily it is easy to use this
format by people already familiar with the existing methods to
process XML.

186 of 230

The Office Open XML Format uses solutions developed by
Microsoft to solve these problems, such as, Office Math
Markup Language, DrawingML, etc.

IV. OFFICE OPEN XML AND OPENDOCUMENT FORMAT

APIS

As mentioned above, despite the same set of used
technologies – XML and ZIP, Office Open XML Format and
the OpenDocument Format have very different internal
representation. Besides over the formats are under permanent
development, there are currently several revisions of each
format with very different possibilities.

 For the Office Open XML they are:

 • ECMA-376;

 • ISO / IEC 29500:2008 Transitional;

 • ISO / EC 29500:2008 Strict.

 For the OpenDocument Format they are:

 • ISO / IEC 26300;

 • OASIS ODF 1.1;

 • OASIS ODF 1.2.

Existing software solutions designed to work with this
formats are quite different. We will consider some of them.

A. Office Open XML APIs

All libraries and other software tools for working with
documents in the Office Open XML Formats can be divided
into two broad categories. We will reference these technologies
next way:

• OPC API – low-level API, allowing working with OPC-
structure of OOXML documents, but not providing
opportunities to work with markup languages Office Open
XML. Examples of those APIs are shown in Table I.

• OOXML API – high-level API, designed to work with
specific markup languages (WordprocessingML,
SpreadsheetML, PresentationML). Libraries and tools of this
category typically are based on OPC API. Examples of
OOXML APIs are shown in Table II.

TABLE I. OPC APIS COMPARISON

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

Packaging API +

System.IO.Packaging +

OpenXML4j +

libOPC +

TABLE II. OOXML APIS COMPARISON

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

Microsoft Office
2007 Automation

 +

Microsoft Office +

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

2010 Automation

Open XML SDK 2.0 +

Apache POI +

B. ODF APIs

Libraries for operating with electronic documents in the
ODF format can be divided into two broad categories too:

 • Libraries in the ODF Toolkit. ODF Toolkit Union is the
community of open source software developers. Its goal is
simplifying document and document content software
management.

 • Third-party organizations libraries.

TABLE III. ODF APIS COMPARISON

ISO/IEC

26300

OASIS

ODF 1.2

AODL

odf4j +

ODFDOM + +

Simple Java for ODF

lpOD +

V. SEMANTICLIB

It is obvious that there should be a universal approach,
allowed to work with electronic documents in various formats
in a standardized way. SemanticLib was developed to solve
this problem.

SemanticLib - is a program complex designed for semantic
indexing of electronic documents. SemanticLib main functions
are:

• create new and edit existing Office Open XML and
OpenDocument Format documents;

• work with the document metadata, linking the metadata
with the content of the document;

• providing an interface for SPARQL queries to the
metadata document.

Here are the basic components of SemanticLib:

• SemanticLib DOM is an abstract model of an electronic
document and its metadata, which may be applicable for the
description of electronic documents in various formats (Office
Open XML, OpenDocument Format).

• SemanticLib Plugins are specific SemanticLib DOM
implementations using specialized API. For example, the
OpenXmlSdkPlugin uses Open XML SDK 2.0, a plugin
OdfDomPlugin uses ODFDOM [6].

• SemanticLib Interpreter is a module that allows to work
with SemanticLib online.

• SemanticLib Document Browser is a GUI application that
allows you to analyze the structure of electronic documents,
view its metadata and run SPARQL queries.

• SemanticLib Shell Extension is Microsoft Windows
Explorer extension, which adds to its context menu extra

187 of 230

points, allowing to run SemanticLib Document Browser for
certain types of documents (.docx, .odt, etc).

VI. SEMANTICLIB DOM

SemanticLib DOM is a set of interfaces and abstract classes
that describe the model of an electronic document and its
metadata. This model was designed in accordance with the
ISO/IEC 29500 standard, which described in [1], [2], and the
OASIS ODF 1.2 specification, which described in [3], [4].
Software implementation of this model is based on the
implementations used in Open XML SDL 2.0 and ODFDOM
libraries.

SemanticLib DOM as well as the Open XML SDK 2.0 and
ODFDOM has layered architecture:

• the first layer contains functions for working with
document package (e.g., OPC package as described in [2], or
ODF package as described in [4]).

• the second layer contains features designed specifically to
work with the structure of the document: add/delete
paragraphs, change document content, etc.

A. Document structure

The document model has a hierarchical structure and
schematically depicted in Fig. 1.

Figure 1. The model of the document used in SemanticLib

Fig. 2 shows a software implementation of DOM
SemanticLib.

Figure 2. SemanticLib.Core.dll interfaces to work with OOXML and ODF

documents

IMarkupable interface contains properties and methods that
are used for semantic markup.

ITextDocument interface contains methods and properties
for working with text documents, presented in a format like
OOXML, and in the format ODF.

IParagraph interface contains properties and methods for
working with particular paragraphs of the document.

IRange interface is used for working areas with continuous
text contained in paragraphs.

IText interface is designed to work with particular text
fragments contained in the text fields. The reason for the
separation is the necessary to provide an opportunity for
semantic markup of particular words in a text document.

It is worth to note that all mentioned interfaces inherit from
interface IMarkupable, so the semantic markup can be used as
well as at the level of the document and to its particular
elements such as paragraphs, text fields and text fragments.

It was mentioned that a text document and its fragments are
containers, i.e. they contain other elements:

• a text document contains a collection of paragraphs;

• each section contains a collection of text fields;

• each text area contains a collection of text fragments.

Fig. 3 shows the hierarchy of abstract classes that represent
collections of text documents.

Figure 3. Collections of DOM SemanticLib

CustomCollection is the base class for all collections
SemanticLib. It contains the common set of properties and
methods, such as, for example, adding a new item in a
collection, inserting a new item in a collection, removal
element of the collection, etc.

ParagraphCollection represents a collection of paragraphs.

RangeCollection represents a collection of text fields.

TextCollection represents a collection of text fragments.

188 of 230

B. Metadata model

Different types of metadata SemanticLib can be divided
into two groups:

• non-RDF metadata

• RDF metadata.

1) Non-RDF metadata
Metadata model of the group was developed based on

analysis:

• core properties, extended properties, custom properties,
described in [1], [2];

• predefined non-RDF metadata elements, described in [3].

Table IV shows a list of supported in the current version
SemanticLib DOM properties that allow to describe the
metadata of the document.

TABLE IV. NON-RDF DOCUMENT METADATA

SemanticLib

Property

OOXML Property ODF Property

Created created creation-date

Creator creator initial-creator

Description description description

Keywords keywords keyword

Language language language

LastModifiedBy lastModifiedBy creator

LastPrinted lastPrinted print-date

Modified modified date

Revision revision editing-cycles

Subject subject subject

Title title title

Application Application meta:generator

Characters Characters meta:character-count

CharactersWithSpaces CharactersWithSpaces meta:non-whitespace-

character-count

Lines Lines meta:row-count

Pages Pages meta:page-count

Paragraphs Paragraphs meta:paragraph-count

Template Template meta:template

TotalEditingTime TotalTime meta:editing-duration

Words Words meta:word-count

2) RDF metadata
SemanticLib RDF metadata model is based on the ODF 1.2

metadata model, as described in [3].

Access to all RDF metadata of the document is performed
by the manifest metadata, which in turn is also RDF document.
At the program level for this interface IMetadataManfiest is
used for this purpose. With IMetadataManifest you can access
directly to the manifest’s RDF graph, to gain access to existing
or to add new RDF metadata files.

SemanticLib uses for work with RDF an Open Source
Library dotNetRDF. It provides an opportunity to work with
RDF graphs in memory, to serialize/deserialize graphs and to
run SPARQL queries.

VII. SEMANTICLIB PLUGINS

The SemanticLib core library contains only a description of
the document model (DOM). Implementation of the methods
for processing documents of any format is contained in the

plug-ins. Typically each plug-in is an implementation of
SemanticLib DOM with some libraries described in
paragraph V. For example, a plug-in
SemanticLib.OpenXmlSdkPlugin.dll uses API Open XML
SDK 2.0, a plug-in SemanticLib.LibOpcPlugin.dll contains
API libOPC.

Using plug-ins using makes possible a high degree of
flexibility and extensibility. If a library expire or a new one
appears, developer can just replace or add a plug-in without
changing the basic functions of libraries and existing code.

However, plug-in development becomes significant
difficult because of the existing the variety and diversity
libraries. For example, the library Office Open XML SDK 2.0
is created on the platform .NET, while the library ODFDOM is
created in Java, which means a significant difficulty trying to
promote interoperability between these libraries. It is also
difficult to ensure interoperability between C/C++ and .NET
libraries. Let’s consider how these issues are resolved in
SemanticLib.

A. С/С++ plug-ins

Let’s see the interoperability between C/C++ and .NET
code by the example LibOpcPlugin, which is the
implementation of DOM SemanticLib with libraries libOPC,
written in ANSI C.

It was decided to use C++/CLI to enable interoperability
between managed and unmanaged code. The main advantage
of this solution is the ability to use object-oriented
programming style even interacting with procedural code of
libOPC. In this case plug-in consists of a set of classes that
implement the interfaces of DOM SemanticLib.

B. Java plug-ins

Interoperability between Java and .NET code will be
considered on the example plug-SemanticLib.OdfDomPlugin.

There are some solutions to ensure interaction between Java
and .NET applications. For example, there are products of
JNBridge company, which provide both in-process and inter-
process (network cloud) communication.

However, in SemanticLib Open Source project jni4net was
selected. Its aim is providing an in-process communication.

Deal with jni4net has several stages:

 • Creating a proxy for a Java library with a special utility
proxygen, which is part of jni4net.

 • Creating a .NET stub, which provides the work with
Java-proxy. This step is also performed using proxygen.

 • Implementation of a plugin functional using the resulting
stub.

This process is quite complex and requires specific skills,
so it is necessary to create automation tools in future versions
of SemanticLib.

189 of 230

C. Working with plug-ins

One of the significant advantages offered by SemanticLib,
is the ability to work with a dynamic plug-ins. This feature is
important if you work with a large number of different plug-
ins. Plug-in manager, which is part of SemanticLib, helps user
to manage the plug-ins loading process. Plugin Manager
provides the following features:

• Find the required plug-ins in accordance with certain
criteria, such as the name of the plug-in or the format of the
document.

• Loading and unloading plug-ins.

• Viewing the meta-information about the loaded plug-ins
(name, manufacturer, document format, etc.).

VIII. SEMANTIC LIB INTERPRETER

The main usage scenario SemanticLib involves writing
code in one of the support. NET languages and the subsequent
compilation of the code. However, this approach is not always
convenient. Especially it is not convenient for users who are
not programmers and have no special skills to work with IDE,
compilers, etc.

SemanticLib Interpreter has been developed to solve these
problems. He adds two more SemanticLib use cases:

• interactive work in interpreter mode;

• writing scripts and their subsequent dynamic compilation
without the need for third-party tools (IDE, compiler, etc.).

However, it should bear in mind that SemanticLib
Interpreter is a DLL and it need a host CUI or GUI application
(for example SemanticLib Document Browser).

A. Interpreter mode

In this mode user interacts with SemanticLib in progressive
interpretation kind. In this case the interpreter correctly handles
all the variables, i.e. following line:

“var plugin = PluginManager.FindPlugin("SemanticLib.OpenXmlSdkPlugin.dll")"

is absolutely correct and the variable “plugin” can be used in

subsequent commands.

B. Scenario mode

In this mode, the user instead of the progressive
interpretation creates a so-called "scenario" (set of SemanticLib
commands) and then compiles them into a CUI application.

IX. SEMANTICLIB DOCUMENT BROWSER

This application is still under development. It should be a
GUI application written using Microsoft Windows Presentation
Foundation framework. The main functions of this applications
are:

• view the document structure and it’s metadata;

• SPARQL queries execution and presentation.

X. RESULTS

• SemanticLib DOM library that allows you to perform
basic operations with the structure of Office Open XML and
OpenDocument Format documents.

• Metadata model and that allows to manipulate document-
level metadata.

• SemanticLib.OpenXmlSdkPlugin and
SemanticLib.OdfDomPlugin plugins.

• SemanticLib Interpretet that allows you to use
SemanticLib functions in interactive mode.

XI. GOALS

• To refine SemanticLib DOM, so that it covered more fully
the ISO/IEC 29500 standard and OASIS ODF 1.2
specification.

• To refine the metadata model of the document, in
particular the binding metadata to the document content.

• To develop a mechanism for context queries, i.e. queries
that would take into account the document contents.

• To develop SemanticLib Document Browser and
SemanticLib Shell Extension.

CONCLUSION

Semantic indexing of documents in Open XML Formats
and Open Document Format can be implemented on the basis
of the described solutions. The developed library is a part of
the intelligent document processing project, but also can be
used to solve other problems that require metadata inclusion.

REFERENCES

[1] ISO/IEC 29500-1 Second edition, 2011-08-15. Information technology –
Document description and processing languages – Office Open XML
File Formats. Part 1: Fundamentals and Markup Language Reference.

[2] ISO/IEC 29500-2 Second edition, 2011-08-15. Information technology –
Document description and processing languages – Office Open XML
File Formats. Part 2: Open Packaging Conventions. 138 с.

[3] Open Document Format for Office Applications (OpenDocument)
Version 1.2 Part 1: OpenDocument Schema 29 September 2011.

[4] Open Document Format for Office Applications (OpenDocument)
Version 1.2 Part 3: Packages 29 September 2011.

[5] OASIS OpenDocument 1.2 Metadata Examples, Oct 2,2009.

[6] http://incubator.apache.org/odftoolkit/odfdom/index.html

[7] http://dotnetrdf.org/

190 of 230

Data mining techniques in Real-time Marketing
1

Vladimir Gromov

Software Engineering School

National Research University Higher School of

Economics

Moscow, Russia

v.gromov@hotmail.com

Scientific Advisor: Prof. Sergey Avdoshin

Software Engineering School

National Research University Higher School of

Economics

Moscow, Russia

savdoshin@hse.ru

Abstract – This paper gives an overview of the

concept of a new system to support CRM in real-

time using data-mining techniques. To ensure that

in the modern world of dynamic companies

remain in the leaders of their industry they need to

continually monitor activity of their customers.

Such activities are performed by analysts.

Nevertheless, people are unable to handle huge

amounts of data, which are encountered by such

organizations as banks or mobile operators daily.

In this situation information systems come to help.

Software Engineering Department Higher School

of Economics, in collaboration with IBM

Company is conducting research in this area; the

interim results have been examined in this work.

I. INTRODUCTION

Different people use different products and

services for different reasons. However, they are all

part of the company’s customer base and demand a

handling that best suits their characteristics.

Nowadays companies tend to build long-term

relationship with the customers. In order to maintain

such relationship companies need to discover the

customer’s needs. However today companies often

have huge customer base, so it is unprofitable to

handle each customer apart from others. Another

problem is that if company wants to promote some

specific product among its customers, including all

customers into the target group would be either

expensive for a company, or irritating for them, so

they may turn to competitors.

In such situation data mining comes to help.

With aid of historical data company can identify

features of customers that lead to acceptance of some

product or offer so that it would be possible to narrow

the targeted audience. It could be also useful identify

group of customers that require specific handling in

order to ensure their loyalty.

II. CURRENT SITUATION IN CRM

Nowadays marketing is automated mainly

with use of CRM systems. There are several types of

CRM systems, but we are interested in the analytical

systems.

They provide the following capabilities:

 Classification of customers by some basis

 Analysis of market situation and competitors

 Analysis of choice and price of goods

 Analysis of conducted sales

 Analysis of purchases and supplies

 Accounting and evaluation of marketing

campaigns

However, traditional systems are unable to

apply data mining techniques in order to make

predictions about customer’s behavior and aid

company in making marketing decisions. Moreover

they are unable to handle huge amounts of data in

real-time. The proposed solution is aimed at

overcoming these issues.

III. PROPOSED METHODS

The proposed method implies usage of

several types of models [2]:

 Response Modeler — Increases ROI on

acquisition campaigns by identifying and

allowing to target those prospects who are

most likely to respond to direct mail

campaign.

1
This work is being performed within the scope of the research on the topic "Research and development of

innovative unifying models of intelligent systems for the situational response and safety control on the Russian

railways", state contract 07.514.11.4039 on September 26, 2011 at lot № 2011-1.4-514-045 "Development of

algorithms and software systems for solving problems of exceedingly large scientific data sets storage and

processing and data streams collection in real-time" as part of the federal target program activity 1.4 " Research and

development in Russian scientific-technological system 2007-2013 evolution priority directions".

191 of 230

mailto:v.gromov@hotmail.com
mailto:savdoshin@hse.ru

 Cross Seller — helps maximize sales of

products and services to existing customer

base by identifying those customers that are

most likely buy other products and services

(e.g., additional services or products based

on related product and service purchases) as

well as the specific products/services a

particular customer would be most

interested in.

 Segmenter and Profiler — helps analyze and

better understand customers for more one-

on-one marketing by segmenting them into

homogeneous groups (using natural

clustering methods, segmentations generated

from response, cross-sell or customer

valuation models, or using manually defined

segmentations) and profiling them. The

results of these groups can be used to

enhance customer acquisition programs (by

finding prospects that are similar to existing

customers) as well as retention programs (by

making a focused offer that will appeal to a

specific group).

 Customer Valuator — predicts the spending

level or profitability of your customers over

a specific time period to help forecast

demand, strategize acquisition campaigns,

and identify most valuable customers. These

models can be used in many ways to

optimize marketing efforts.

Provided the data mining models are

properly built, they can uncover groups with distinct

profiles and characteristics and lead to rich

segmentation schemes with business meaning and

value [1].

IV. A CUSTOMER SCENARIO FOR THE PROPOSED

SYSTEM

Let us consider a customer that wants to

offer advertisements to consumer who visits

CNN.com.

We have several advertisements at the

disposal for offer. So, our extreme opportunities are:

 Bid low on everything

 Bid high on only those you are most

confident of a hit.

The second option is available if we could

build up an “anonimized profile” of a consumer

based on:

 Transactions from this customer

o Cardholder since YYYYMM

o Average transaction value

o Monthly transaction value

o Categories purchased

o Brands purchased

 Descriptive

o Age

o Gender

o Family situation

o Zip code

 Interactions

o Web registration

o Web visits

o Customer service contacts

o Channel preference

 Attitudes

o Satisfaction scores

o Shopper type

o Eco score

All these data allow us identify consumer as

well as predict his response on one or another

advertisement. The data will be processed in real-

time and decision will be made once consumer enters

the site. All decisions are considered and used for

further scoring.

So now let us assess the how such system

can be implemented using the sample data.

V. SYSTEM STRUCTURE

 The sample data represents statistics of bank

loans decisions. There is no information about input

data, as it is covered and changed to meaningless

symbols and number. The only field we have

information about is final decision: positive or

negative.

 First of all, a model is built in Modeller that

encapsulates the above mentioned techniques (fig. 1).

Figure 1. SPSS Modeller model

On the figure 1 there is a model that consists

of data source node that imports data into model.

192 of 230

After that auto classifier comes to work. It uses

several data mining techniques and selects 3 decision

trees that provide highest confidence. In future

scoring will be performed and prediction will be maid

according to the prediction with the highest

confidence.

After that the model is trained on some

historical data. Another portion of historical data is

used for evaluation of obtained model.

Next step is exporting of model and

integrating it into IBM InfoSphere Streams operator

(fig. 2). IBM InfoSphere Streams is a runtime

environment that allows easy distribution of load

between nearly unlimited number of computational

nodes.

Figure 2. IBM InfoSphere Streams application graph

On figure 2 there is an application graph that

denotes structure of InfoSphere Streams program. In

this application data is read from an input file, than it

is passed to an operator that applies SPSS Modeller

model to the data and finally scoring results are put to

an output file. The model is executed in the Streams

program by special operator that calls the SPSS

Modeller Solution Publisher, with the help of special

API.

The training never stops. Every time new

data arrives, model is trained once again. So, each

time a transaction is made by customer, the system

estimates whether he is likely or not to accept some

marketing proposal and depending on estimation

makes offer.

Figure 3. Operation of model.

As it is seen from the figure 3, the model is

refreshed in real time by SPSS Colloboration and

Deployment Services.

VI. CONCLUSIONS

In this work data-mining techniques and

information system implementing these techniques

are presented. There are some tasks that are already

implemented, like integration of Infosphere Streams

and Modeller. The next step would be identification

of set of models that would be used to analyze input

data and transform it to output. The architecture of

Infosphere streams allows to split the system among

several computational nodes and thus it can be easily

scaled in order to meet business needs.

REFERENCES

[1] K. Tsiptsis and A. Chorianopoulos, Data Mining
Techniques in CRM 1st ed., John Wiley & Sons, Ltd. 2009

[2] Ing. Vladek Šlezingr. Campaign Management system

Technical Proposal For: Home Credit International a.s. 2011

193 of 230

Multistroke Mouse Gestures Recognition in
QReal metaCASE Technology

Maria Osechkina
Mathematics and Mechanics Faculty,

SPbSU
Saint-Petersburg, Russia

osechkina.masha@gmail.com

Yuri Litvinov
Mathematics and Mechanics Faculty,

SPbSU
Saint-Petersburg, Russia

yurii.litvinov@gmail.com

Timofey Bryksin
Mathematics and Mechanics Faculty,

SPbSU
Saint-Petersburg, Russia

timofey.bryksin@gmail.com

Abstract - Approaches for multistroke mouse gestures
support are considered in this paper. Presented way of
gestures implementation is oriented on creation of new
elements on a scene or diagram in meta-CASE system. We
propose to generate examples of mouse gestures for
elements and to allow user create elements by fast mouse
move. We present numerical comparison of gestures
recognition algorithms before and after training by k-means
algorithm. The proposed approach is implemented in QReal
meta-CASE-system.

Keywords – recognition, multistroke gestures, meta-
CASE-system, k-means algorithm

I. INTRODUCTION

World practice has gained considerable positive
experience with domain-specific visual techniques for
solving problems of industrial software development. In
comparison to the traditional approach of "manual"
coding we observe 3-10 times increase in productivity
on average [4].

There is no significant gain in programmers
productivity when using general purpose visual
languages such as UML, and therefore domain-specific
visual languages become more and more popular. Meta-
CASE-systems are designed for quick creation of
languages for particular subject areas and generation of
tool support for these languages. One example of meta-
CASE-systems is QReal [5, 6], which is developed at
Software Engineering chair of St. Petersburg State
University. To make rapid development of new visual
editors in QReal possible a meta-editor was developed. It
allows to create metamodels of new visual languages by
describing objects on a diagram and associations between
them, and defining visual representation of these
elements. Then the created metamodel is compiled into a
dynamic library and is plugged in QReal in run-time.

The effectiveness of each tool is determined by
how easy and fast it performs operations which this tool
is intended for. In modeling some of the most frequent
operations with objects and relationships in diagrams are
their creation and deletion. In many of existing CASE-
tools to create a desired object on a diagram one must
first either find it on a toolbar or select it from a menu,
and then specify position on a diagram where this
element sould be placed. Many toolkits provide ability to
create an element drag-and-dropping it from a palette.

The problem is that the number of diagram types and
objects in the palette of each diagram can be quite large
(for example, 13 types of diagrams in UML 2.4). It is not
always possible to leave on a palette only items that are
specific to current diagram, because sometimes there is a
need to use elements from different diagrams, for
example, for rapid prototyping. Even in case of such
basic operations like creation of new element, developer
has to make a set of purely mechanical actions and also
remember in which tab of a palette or which menu holds
desired item. He or she has to constantly switch from
thinking about the hierarchy of created models to
particular questions of usage of selected tool. We believe
that the process of adding items to diagrams could be
faster and easier if it involved some alternative ways of
man-machine interaction.

As an example of such approach of user interface
optimization we consider mouse gestures recognition.
The main idea is to associate some actions with specific
mouse movements performed with some modifier (for
example, with mouse button pressed). These actions are
executed immediately after the gesture is recognised. It is
desirable that there will be no restrictions on the direction
of mouse movements, number of clicks, and the
sequence of obtained strokes. In case of CASE-system
the action associated with gesture could be creation of
element on a diagram at a position where the gesture has
been performed. For more similarity with natural process
of drawing we want to use recognition of multistroke
gestures. This approach does not limit the way a gesture
is being drawn.

User interfaces based on mouse gestures
recognition are widely used not only in CASE-tools, but
also in other areas, such as online handwriting
recognition in a variety of text editors (for example, for
texting in smartphones), creation of objects on forms,
diagrams and scenes in different applications, navigation
in some web browsers, controlling the character in some
computer games. Some utilities (such as StrokeIt, gMote,
etc.) even allow you to add support of mouse gestures
recognition into an arbitrary application. Moreover, there
are CASE-systems that use similar approach, for
example, Visual Paradigm. However, support of mouse
gestures recognition in such programs is limited a
number of fixed gestures. That is unacceptable for
scalable systems like meta-CASE-systems. The paper

194 of 230

mailto:yurii.litvinov@gmail.com
mailto:timofey.bryksin@gmail.com

discribes an experience of implementing mouse gestures
recognition mechanism in an application where the
complete set of gestures is not known a priori and can be
expanded any time. In addition, for most of known
algorithms a long process of training is required and a
training set is comparable in size with a test set. Because
of a requirement of gestures set extensibility we need to
reduce time of creation of training sets to a minimum.

II. DEFINITIONS AND ALGORITHM
DESCRIPTION

In general, gesture recognition algorithm works
as follows: there is a list of ideal gestures, each of which
is associated with an action. Ideal gesture is a gesture
pattern that is matched to a user action that should be
executed after performing this gesture. User performs a
gesture holding a mouse button pressed. After a specific
signal (e.g. a timeout, a keypress or release of mouse
button in case of single mouse stroke gestures), the
gesture should be recognized. For that a list of ideal
gestures is searched for a gesture similar to the
performed one. If such gesture is found, the action that is
associated with this gesture should be executed.

Analysing the ideas behind pattern recognition
algorithms it becomes clear that before starting
recognition we have to build ideal gestures for each
action. In QReal this action is creation of a new element
on a diagram. It would be convenient if user gesture
would correspond to graphical representation of created
object. We decided to generate list of ideal gestures based
on this consideration. Graphical representation of each
object in QReal is stored in XML files in SVG-like
graphical format. This format consists of basic elements
like line segments, circles, arcs etc. For line segments are
defined by coordinates of their ends; circles — by the
top-left and bottom-right corners of a circumscribed
square with sides parallel to coordinate axes; arcs are
defined by top-left and bottom-right corners of a square
circumscribed around the circle, a part of which this arc
is, and two angles identifting the start of this arc and
rotation to the end of this arc. For constructing ideal
gesture it is enough to present described simple figures as
gesture strokes. Stroke is performed by mouse movement
between pressing and releasing of mouse button. Since
number of strokes, order of stroke drawing and mouse
movement direction has not to be taken into account in
the context of recognition problem, ideal gesture can be
represented as a list of lines that correspond to segments,
circles, and arcs that form object's graphical
representation, without specifying beginnings and ends of
these lines and the order of their drawing. When user
moves mouse, application receives a signal that the
mouse is moving with information about its current
position. Since these signals are discrete, line drawn by
user, as it is received by application, is a polyline, not a
continuous smooth curve, as it may seem to the user. This
polyline consists of short segments, which ends'
coordinates were obtained receiving signals from the
hardware. For constructing ideal gesture strokes we have

to represent primitive shapes consisting of short line
segments similar to polylines received from the
hardware. We have to calculate average speed of mouse
movement empirically — average distance between two
points, coordinates of which were obtained by successive
signals from the hardware. Note that this value can be
considered as signals rate on the assumption that signals
are sent at regular intervals. Segment is presented as
stroke by dividing it into equal segments of appropriate
length. A circle is represented by an inscribed polygon
with a sufficiently large number of sides. Arc is
represented by a polygin inscribed in an arc with equal
segments.

III. FEATURE SET

Comparison of lists of points is difficult, since
actual list of points received from mouse depends on the
hardware, speed of the mouse, stretch of a figure and
other factors that are not necessary and sometimes
excessive to consider for successful recognition. It is
convenient to calculate some features, e.g. numerical
measures that correspond to an object and represent its
essential properties. We introduce a feature set for which
comparison is made. In a space formed by feature sets we
introduce a function F with two arguments, where
arguments are the feature sets. Let M be the space of
feature sets.

F : M ×M →ℝ

This function determines the similarity between
two sets of attributes. For example, it may be a
probability of the user drawing a particular gesture, or the
distance between feature sets. For every ideal gesture a
feature set is calculated for later comparison.

IV. MOUSE GESTURES RECOGNITION
ALGORITHM

In general, algorithm of mouse gestures
recognition can be divided into several stages.

1) Identification of strokes in mouse path . At this
step a list of stroke point coordinates is being
built. These points are obtained from hardware
signals like mouse position when the button was
pressed, coordinates of mouse movement with
button pressed and position of mouse button
release.

2) Path filtering . As a result of user's hand shakes a
gesture can become distorted. It is desirable to
eliminate this distortion before proceeding to
gestures comparison. We have to smooth those
parts of the stroke that the user meant to draw as
straight lines, and don't smooth those, there the
user meant to change movement direction. As a
general rule, when a user moves the mouse
slowly, he typically wants the movement of the
mouse pointer on the display to follow the exact
path of the mouse, whereas when he or she

195 of 230

moves the mouse more quickly, the main
concern is typically where the pointer ends up,
not the exact path to get there. Guided by this
consideration, smoothness of the mouse path can
be based on mouse velocity.

3) Building of feature vector for user's gesture.

4) Selection of an object . We compute the
similarity function for feature set related to user
gesture, and each of the feature sets that are
related to ideal gestures. In our algorithm this
function will serve as the similarity distance. We
will choose the ideal gesture according to the
results, in our case this is ideal gesture, which is
associated with the set of attributes to which the
distance is at minimum. If there are several ideal
gestures which are close to minimum distance,
we shall provide user the ability to choose
desired object from them himself. If this
distance is less than some threshold, the gesture
is recognized and we generate corresponding
object.

5) Executing of an action . In case of QReal, when
an action is executed, new object have to be
created on a diagram. The object is generated in
such a way that its center coincides with the
center of a rectangle circumscribed around user
gesture, with sides parallel to the coordinate
axes.

There are training algorithms that allow to adjust
recognition algorithm's parameters, including a feature
set (or vector) that corresponds to the ideal gestures, in
order to improve recognition performance. But for such
algorithms we need training sets – a database of user
gestures where for each gesturewe know a class to which
this gesture relates. Creation of such set is mainly manual
process that takes time. In QReal editors for new visual
languages can be created very fast, and we do not want to
slow down the process of language creation by a need of
creation of gesture training database manually. As a
general rule, in known solutions the number of items in
training set is comparable to the number of items in test
set. After some experimenting we decided that training is
a necessary step, so we would like to reduce training sets
size and time spent on training to minimum. To
accomplish this it is desirable that percentage of
recognized gestures is high even without training.

V. RASTERIZATION

It is obvious that gesture position should not
affect recognition. In addition, in QReal you can stretch
elements on the diagram along the coordinate axes, so
stretch of the gesture should not affect recognition either.
For example, the ellipse and the circle should be
recognized as the same object. We introduce the feature
set, which is invariant to translation and scaling of a
gesture: at first, rectangle with sides parallel to
coordinate axes is circumscribed around gesture, then the
rectangle is divided into equal cells by lines parallel to

the coordinate axes. The number of cells is fixed in
advance. Then we create a list of cells, which are
intersected by the gesture. Coordinates of cells that
contain points of the gesture are considered as a feature.
A final list of coordinates is considered as a feature set.
We call it basic features set. The introduced feature set is
invariant to scale and translation: if we stretch or move a
gesture, the corresponding feature set will remain
unchanged. Having such a set constructed we got rid of
unnecessary information about the number of strokes, the
sequence of their drawing and direction of mouse
movement. Vast majority of user gesture properties that
are independent of the above factors, is also persisted for
basic feature set, since a basic feature set is essentially a
rasterized gesture with low resolution.

VI. FEATURE SETS AND DISTANCE

We would like to introduce the distance between
the basic feature sets, which has some geometrical
meaning. Let us analyze how we can interpret the
similarity of gestures. Note that two gestures can be
called similar if for each object (line segment, circle, cell)
from the first gesture we can pick similar object from the
second gesture so that they are close enough. I.e. for each
cell from the first basic feature set we can indicate close
cell from the second basic feature set and vice versa.
Based on this consideration Hausdorff distance d H
was chosen as distance between the basic feature sets. Let
X and Y are basic feature sets, r is distance in the cell
space.

d H (A , B)=max{X ,Y }
X =max a∈A minb∈B r (a ,b)
Y =maxb∈B mina∈A r (a ,b)

I.e. distance r is introduced in the space of cells.
Distance from each cell of the first basic feature set to
corresponding nearest cell of the second feature set is
calculated and vice versa — for each cell of the second
gesture distance to the nearest cells of the first gesture is
calculated. Hausdorff distance between the basic sets is
maximum of calculated distances between the nearest
cells.

As distance between cells we considered the
Euclidean distance (l2), maximum of absolute differences
between the coordinates (l∞), sum of absolute differences
of the coordinates (l1). The best recognition result is
achieved by maximum of absolute differences between
the coordinates.

Note that basic feature set cardinality is not
constant, so for different user gestures feature sets may
have different numbers of elements.

There are training algorithms that involve
correction of feature vectors corresponding to the ideal
gestures. k-means is one of such algorithms. This
algorithm finds center of mass for the elements of space,
in which the training is executed. Center of mass for a set
of vectors is a vector which coordinates are the arithmetic

196 of 230

mean of the corresponding coordinates of vectors from
the training set. It is difficult to imagine the addition of
basic feature sets and the division by a scalar keeping the
geometric meaning of a basic feature set, since the
cardinality of the basic feature set is not fixed.

To simplify the training it is desirable to deal
with feature vectors, that are feature sets of fixed
cardinality, for which the order of the elements is
essential. We propose several ways of constructing a
feature vector for the basic feature set. In all of the
proposed ways we have to construct a matrix, which is
interpreted as feature vector. In all cases, the size of the
matrix corresponds to the number of cells across the
width and height of the rectangle circumscribed around
the gesture, for which this basic feature set is built.

The matrix of distance to the basic feature set

M is a matrix constructed by basic feature set and
has dimensions w×h , where the dimensions of the
matrix are described above. Element of the matrix M[i, j]
is equal to the distance r from cell with coordinates i, j
to the nearest cell of feature set. Thus we have matrix of
distances to basic feature set. Note that we can
unambiguously reconstruct the basic set of features by
constructed matrix. Basic feature set consists of those and
only those cells, coordinates of which are equal to
coordinates of matrix elements that are equal to 0. The
matrix M can be represented as feature vector from space
Rw⋅h by writing down all of its lines into one. The

distance between the feature vectors is equal to norm of
the vectors difference. Introduced function (let us call it
F) is actually the distance between the feature vectors and
between basic data sets.

We prove that for the introduced function the
properties of distance in space of basic feature sets are
true.

A, B – feature sets,

M(A) – matrix corresponding to set A

M(B) – matrix corresponding to set B

1) F (A , B)≥0 - is obvious from the properties
of norm.

2) F (A , B)=0⇔ A=B

Thus vector norm is equal to 0 if and only if the vector is
(0..0), that is F (A ,B)=0⇔M (A)=M (B)

Since the matrix can be uniquely reconstructed by the
basic feature set, the basic feature sets are also equal.

⇐ Clear

3) F (A ,B)=F (B , A) This equality follows
from the properties of the norm.

F (B , A)=∣∣M (B)−M (A)∣∣=
=∣−1∣⋅∣∣M (A)−M (B)∣∣=F (A , B)

4) Correctness of the triangle inequality property
follows from the norm definition.

Proposition

r is the distance between cells, that is used for
calculation of Hausdorff distance between the basic
feature sets. Let the same distance r be used as the
distance between cells for constructing distances to the
gesture. The norm in space of feature vectors is the
maximum of absolute elements values (l ∞), the sum
of absolute elements' values (l1) or the square root of the
sum of the elements' squares (l2). Under these condition
Hausdorff distance between the basic feature sets is
equivalent to the introduced distance between the basic
sets.

Proof

Equivalence is transitive. The l ∞ (maximum of
absolute elements values) is equivalent to l1 (the sum of
absolute elements' values) and to l2 (the square root of
the sum of the elements' squares). I.e. for proof of
proposition it is suffice to prove the equivalence of the
Hausdorff distance and l ∞ .

Let M1 be the matrix that correspond to the first
user gesture, M2 be the matrix that correspond to the
second gesture, FS1 be the basic feature set for first
gesture and FS2 be the basic feature set for second
gesture, dist(FS1, FS2) be the introduced distance.

dist (FS1 , FS2)=max(∣M1i , j−M2i , j∣)≥
≥maxM1i , j=0∨M2i, j=0∣M1i , j−M2i , j∣=

=DH (FS1 , FS2)

DH is Hausdorff distance for basic feature sets.

We got that

dist (FS1 , FS2)≥DH (FS1 ,FS2)

We shall prove that

dist (FS1 , FS2)≤DH (FS1 , FS2)

We consider elements of the first and the second
matrix with coordinates (i, j). By construction of matrix
next identity is true:

M1i , j=min {r (O ,a) |a∈FS1} ,

where O is the cell with coordinates (i, j). Let minimum
is achieved at point A1.

Similarly, M2i , j=min{r (O , a)| a∈FS2}

Let minimum be achieved at point A2.

Let r (O , A2)=b≤r (O , A1)=c . The case
if r (O , A2)≥r (O , A1) is analogue.

Suppose that there exists a cell K1 from the first
basic feature set, such that r (K1 , A2)<c – b .

197 of 230

Then by the triangle inequality
r (K1 , O)≤r (O , A2)+r (A2 , K1)<

<b+(c−b)=c

 It is a point K1 of the first basic feature set, the
distance from which to O is less than the distance from O
to A1. It contradicts the selection of A1 as the cell on
which the minimum is achieved. It turns out that for each
point A of the first basic feature set r (A2 , A)≥c−b .

It follows from the definition of Hausdorff
distance that c−b≤DH (FS1 , FS2) . Due to the
fact that the cell O was selected randomly,
DH≥∣M1i , j−M2 i , j∣ for all i,j. Then
DH≥max∣M1i , j−M2i , j∣

We got that

DH (FS1 , FS2)≥dist (FS1 , FS2)≥
≥DH (FS1 , FS2)

The distances are equivalent, as required.

Note

When vector norm is considered as the maximum
of element absolute values, the Hausdorff distance is
equal to the introduced distance.

The number of cells in the rectangle

The idea of following algorithm is calculation of
the number of cells in a rectangle of m×n , where m
varies from 1 to the rectangle height, n varies from 1 to
the width of the rectangle. Element with coordinates (i, j)
is equal to the number of gesture cells, that are contained
in the rectangle [0,i]×[0, j] . If the gesture intersects
the same cell several times we count only one
intersection. As in the previous case, the matrix is
considered as a feature vector from the space Rw⋅h ,
distance between vectors is defined as norm of the vector
difference. Note that by construction of the matrix we can
unambiquously reconstruct the basic feature set.

Let e[i, j] be equal to 1 if there is a cell (i, j)
belonging to the basic feature set, otherwise e[i, j] is
equal to 0. Let J be constructed matrix, then
e [i , j]= J i , j+J i−1, j−1−J i , j−1−J i−1, j . We

assume that elements of J are equal to 0 outside of
gesture rectangle. Note that introduced function is indeed
the distance between the feature vectors and between
basic feature sets, as there is bijection between the space
of constructed feature vectors and the space of basic
feature sets. Proof is analogue to case of matrix of
distance to basic set.

The number of cells in zone

Feature vector used in this algorithm is similar to
previous, but we count cells in the zone, not in the

rectangle. J is matrix w×h . We define element [i, j] of
matrix as follow: let d be a number of cells in the
rectangle (i−1)×w , i.e. in the rectangle, which lies
entirely under the cell (i, j), k is the number of cells in the
zone from a number (i,j) from [i, 0] to [i, j],
J i , j=k+d . Note that the basic feature set can be

unambiguously recovered from the resulting matrix. Then
if we introduce a function of distance between the
matrices similar to two previous cases, this function will
be the distance between the basic feature sets.

Note that all these feature vectors and distance
can be combined by considering a new feature set. The
distance between combined feature sets is defined as a
linear combination of distances with the non-negative
coefficients, at least one of which is strictly positive. This
linear combination can be considered as distance between
combined feature sets.

VII. TRAINING

We can improve gestures recognition with
training: if we have user gesture base, and we know
which object should be generated for each gesture, we
can correct the parameters of recognition algorithm so
that other gestures performed by user will be recognized
with greater accuracy. There are a lot of algorithms that
allow to improve recognition through training set, for
example, Neural networks, the method of k nearest
neighbors, Bayesian method or k-means algorithm.

The neural network is a system of interconnected
processes, that are neurons. Training of neural network
involves calculating of coefficients for connections
between neurons. But a large training set is necessary for
successful recognition via neural network. For example,
sometimes number of items in a training set is 1.5 times
greater than number of items at a test set [2]. As already
mentioned, we would like to reduce the training set's size
as much as possible, otherwise the generative approach to
gestures creation will be meaningless.

We can use the k nearest neighbors method for
training [1]. For a gesture feature set we need to find k
nearest neighbors among the feature sets that correspond
to user gestures in the training set. The gesture is referred
to the class to which the majority of the k neighbors is
referred. k nearest neighbors is a time-consuming
problem in case of multi-dimensional spaces. In addition,
in case of a neural network it is sufficient to store only
weights of connections after training, and it is
unnecessary to store whole training set unless the need of
retraining. But this method does not allow to save
memory or to compress training set in any way.

Bayesian method [1] is designed for a variety of
symptoms, among which there are no statistical
dependencies. For each gesture's feature the probability
of this gesture belonging to the given class is calculated
basing on the training set. Then the total probability of
the gesture belonging to the class is calculated. The most
probable class is selected as a result of recognition.

198 of 230

Weakness of this algorithm is limitation to the feature set
(lack of statistical dependencies).

Idea of k-means algorithm [3] is to correct
feature set corresponding to ideal gestures and the
maximum threshold distance between feature set
corresponding to user gesture and corresponding to the
ideal gesture. Feature vector corresponding to ideal
gesture is replaced by a center of mass of feature vectors
that are corresponded to the gestures of the training set
for given object. Threshold distance is recalculated so
that distance from the center of mass to each feature
vector of training set is less than threshold distance. In
this case, after training we can store only corrected
feature set that is corresponding to the ideal gesture, and
corrected threshold distance.

In case of a neural network, the percentage of
recognized gestures would be high after training with a
small training set, if only we guessed optimal values of
coefficients of connections between neurons good
enough. E.g. we have to create a large training set to use
neural network. It is unlikely that after addition of a new
ideal gesture the training set could be quickly expanded
for it. In contrast, with k-means algorithm it is hoped that
it wouldn't require too many elements in the training set.
The method of k nearest neighbors, as mentioned, require
additional memory cost. And Bayesian method [1] is
designed for special feature sets. Therefore, we have
selected k-means algorithm for training.

Typically, the center of mass of a few vectors is
calculated as sum of these vectors divided by the number
of points. The problem of feature sets of non-fixed
cardinality is that it is difficult to determine sum of
feature sets and division by a scalar, so that geometric
meaning of feature set was kept and training gave results.

For construction of center of mass of feature sets
of non-fixed cardinality the following properties of center
of mass were used:

1) Center of mass of one element is equal to this
element.

2) Let M n be center of mass of a set of n
elements. We add element k to the set.

Let d =dist M n , k be the distance between the
center of mass and the added element.

Let M n+1 be the new center of mass.

dist (M n+1 , M n)=
d

n+1
=d0M

dist (k , M n)=
d⋅n
n+1

=d0k

We construct a point, that is located at distance
d0 M from point M n , and at a distance d0k from

point k (Property 2). In general, such point may not exist
in a metric space. Then we construct a point, the ratio of
the distances to which from M n and k is the closest to
desired ratio. Several points may satisfy this requirement,

it is important that in this case the algorithm should
return at least one such point.

Suppose we have two basic feature sets at a
distance d from each other, and we have to build a basic

feature set at distance
d
n from the first set, and

d⋅(n−1)
n

 from the second. For calculating distance

between two basic feature sets we consider pairs of cells
that are at the minimum distance from each other. For
each cell from the first basic feature set we find the
nearest cell from the second base set, and for each cell of
the second basic set nearest cell from the first basic set is
found. We consider obtained pairs of cells as endpoints
to construct the required set on a plane. Then we get a

point, that divides the segment in a given ratio of
1
n

from the first cell, if the first cell is referred to the first

feature. Otherwise ratio is equal to
(n – 1)

n . The

resulting points are interpreted as festures, and they can
have non-integer coordinates. Basic feature set is
consisted of points, distance to which from two given sets
is equal to required value.

Center of mass of a set of n basic feature sets is
constructed by induction. One basic feature set is equal to
its center of mass. Let the center of mass of the set of k
basic feature sets is already constructed. We add another
basic feature set and calculate the distance d between it
and the center of mass. By above-described method we
construct new center of mass so that the distance from it

to old center of mass is equal to
d

k+1 , and the distance

from new center mass to the added element is equal to
d⋅k
k+1 .

During the training we should change not only
the center of mass, but the maximum distance from the
center of mass of the class to a feature sets for the
gestures of a given class. It is necessary to correct the
maximum distance so that the sphere Bn(M n , D n)
would belong to the sphere Bn+1 with center M n+1
and radius Dn+1 . Added feature set should belong to

the new sphere. Thus Dn+1≥
d⋅n
n+1 . Let b0∈Bn ,

Bn is feature set. By triangle inequality

dist b0, M n+1 ≤dist b0, M n +

+dist M n , M n+1

We recalculate maximum distance based on
above inequalities

Dn+1=max d⋅n
n+1

, Dn
d

n+1

199 of 230

VIII. EXPERIMENTS

For testing we selected ten objects that are used
in QReal diagrams. The set of ideal multistroke gestures
was generated by graphical representation of these
objects (pic 1 – pic 10). Six people created training and
test sets to test the effectiveness of different algorithms.
There are1545 gestures in test set and 100 gestures in
training set.

Number of cells in circumscribed about the user
gesture rectangle that is used to construct the basic
feature set is equal to 81. Recognition results are shown
in the table 1.

The dependence of the recognition from number
of cells in the rectangle (similar to image resolution) for
combination of two algorithms is shown in the table 2.
Note that after some threshold recognition accuracy does
not increase with the size of the rectangle, but the speed
drops due to the complexity of the algorithm. So we
selected rectangle sizes equal to 81.

Percentage of recognized user gestures is very
different for different objects. Recognition depends on
similarity between different ideal gestures: if two ideal
gestures are similar enough, user gesture that is
corresponding to one ideal gesture can be confused with
another. Algorithm based on matrix of number of cells in
rectangle has a low general percentage of recognition, but
some gestures that are poorly recognized by other
algorithms, are well recognized by it. It was decided to
combine feature vector from this algorithm with the
feature vector that gives the best summary
recognizability. Coefficients for linear combination of
distances were chosen empirically, they are equal to 0.2
and 0.8 for algorithm based on matrix of number of cells
and algorithm based on matrix of distance to the basic
feature set respectively. Results of gesture recognition by
combination of feature vectors are given in the last two
rows of table 1.

Increasing of the percentage of recognized
gestures depends not only on the training set, but the
method of constructing feature vector. For example,
feature vector based on matrix of number of cells in the
zone shows improvement in recognition of 19% after
training. While feature vector based on matrix of number
of cells in rectangle shows recognition improvement of
only 6%, but it shows better recognition percentage
before training.

IX. CONCLUSION

Several algorithms of multistroke mouse gestures
recognition have been tested. Necessary condition for all
these algorithms is recognition independence of the
number and order of gesture strokes and mouse
movement direction.

After testing of algorithms without training we
concluded that recognition without training doesn't
satisfy the user. k-mean training algorithm has been
applied for feature vectors of fixed dimension and was
extended to the feature set of non-fixed cardinality.
However, the initial recognition threshold and speed of
training allows developers to provide the ability of
training application online. Retraining after insignificant
expansion of ideal gesture set is unnecessary. Initial
detection threshold is the percentage of gestures
recognized without training, the speed of training is the
ratio of gestures recognized with training to gestures
recognized without training. At the moment, the best
recognition percentage after training is 91% on the test
set of 1545 user gestures.

REFERENCES
[1] Cesar F. Pimentel, Manuel J. da Fonseca, Joaquim A. Jorge,

«Experimental evaluation of a trainable scribble recognizer
for calligraphic interface» // Graphics recognition:
algorithms and applications, eds. Dorothea Blostein, Young-
Bin Kwon, Ontario, Canada, 2001, pp. 81-85

[2] Don Willems, Ralph Niels, Marcel van Gerven, Louis
Vuurpijl, «Iconic and multi-stroke gestures recognition» //
Pattern recognition, Vol 42 Issue 12, pp. 3303-3312,
December, 2009

[3] Kanungo, T.; Mount, D. M.; Netanyahu, N. S.; Piatko, C. D.;
Silverman, R.; Wu, A. Y., «An efficient k-means clustering
algorithm: Analysis and implementation». IEEE Trans.
Pattern Analysis and Machine Intelligence Vol. 24 Isuue 7,
pp 881–892, July, 2002

[4] Kelly, S., Tolvanen, J.-P., «Visual domain-specific modeling:
benefits and experiences of using metaCASE tools», DSM
Forum, URL
http://www.dsmforum.org/papers/Visual_domain-
specific_modelling.pdf

[5] Timofey Bryksin, Yuri Litvinov, Valentin Onossovski,
Andrey N. Terekhov, «Ubiq Mobile + QReal - a technology
for development of distributed mobile services»,
unpublished

[6] Timofey Bryksin, Yuri Litvinov, «QReal metaCase
technology overview», unpublished

200 of 230

Algorithms Picture All gestures

1 2 3 4 5 6 7 8 9 10
User recognition 160 202 177 84 152 187 210 161 148 64 1545

Hausdorff distance 143 179 165 34 21 174 205 6 76 57 1060

Hausdorff distance + training 140 171 167 61 125 181 200 83 113 60 1301

Matrix of distance to basic feature set 141 176 171 39 21 178 204 19 80 58 1087

Matrix of distance + training 141 197 168 81 123 181 194 97 129 60 1371

Cells number at rectangle 45 144 169 10 85 51 193 8 82 33 820

Cells number at rectangle + training 79 112 171 28 112 99 164 70 41 39 915

Cells number at zone 112 169 166 5 15 61 205 7 44 25 809

Cells number at zone + training 122 114 174 44 133 142 185 69 62 49 1094

Combination of feature vectors 144 194 177 20 92 161 205 17 86 59 1155

Combination of feature vectors + training 140 197 175 74 149 180 195 126 115 59 1410
Table 1: Recognition results

Rectangle width and height, cell 32 40 50 60 70 81 90

Recognition, % 60 69 72 73 74 75 74
Table 2: Dependence of recognition on rectangle size

Pic 1:
AcceptEventAction

Pic 2:
AcceptTime
EventAction

Pic 3:
ActivityPartition Pic 4:

Actor

Pic 5: Comment
Pic 6: Decision
Node

Pic 7:
InitialNode

Pic 9:
SendSignalAction

Pic 8: InputPin

Pic 10: FinalState

201 of 230

Novel heuristics for deconvolution applied to
picture deblurring

Evgeniya Olenuk, Maxim Gromov
Faculty of Radiophysics
Tomsk State University

Tomsk, Russia
Email: evgeniya ok@mail.ru, gromov@sibmail.com

Abstract—In this paper we describe an implementation of a
method for blurred pictures restoring. We consider uniform,
linear photo-camera shift (movement) while picture is taken. In
this case, a picture, formed on a chip of a camera, is not static, but
moving along some straight line, and as a result photo is blurred.
Blurred picture can be seen as a convolution of two functions –
one describes initial picture, another is point-spread (or blurring)
function (PSF) [1]–[3]. “Deblurred” picture can be found as a
deconvolution of the given picture with known PSF [1], [2]. To
do this it is convenient to use Fourier transform and apply the
convolution theorem. But it leads to division by 0, and thus the
method is unstable. We suggest two heuristics to avoid division
by 0 and compare them with the known one [2].

Index Terms—Digital picture processing, blurred picture,
Fourier transform.

I. INTRODUCTION

Rapid development of computers brings lots of new possi-
bilities into the world of picture processing. Some operations
become easier with a computer – like colour correction, or
appliqué creation etc – some become possible by themselves.
One of such operation, which has no “manual” implementa-
tion, is picture deblurring [1]–[3].

In this paper we tell about our program which restores
blurred pictures, taken by a digital camera. We use well-
known method of deconvolution of two signals [1], [2]. The
idea of the method is to describe blurring as a convolution
of two functions and then to use Fourier transform to solve
corresponding equation. However, this equation does not have
a solution in general, since at some points it requires division
by 0. To overtake this hardship there are several approaches.

One is known as Wiener deconvolution [4]. It relies on the
fact, that in practice there is no measurement of a signal which
can be done without noise. So the noise-to-signal ratio is never
0 and being added to the denominator of the deconvolution
fraction it helps to avoid division by 0.

Another one is suggested by the authors of [2] and actually
is application of the regularizing theory by Tikhonov [5]. They
also modify the denominator of the deconvolution fraction in
such a way, that it never turns 0. The idea comes from the
fact, that we can tolerate the solution to be not exact but
approximate.

Also we should mention Richardson-Lucy deconvolu-
tion [6]. It does not use Fourier transformation and being an

iterative method it is considered to be very slow. Its implemen-
tation is used, for example, in ASTRA IMAGE software [7].

All mentioned methods assume the point-spread (or blur-
ring) function (PSF) to be known. However there are bunch
of works, devoted to automatic PSF reconstruction [3], [8],
[9].

In our work we assume PSF to be known and to be one of
the simplest type: uniform, linear shift of a camera. We use
Fourier transform based deconvolution and suggest two new
heuristics to avoid division by 0, which prove to work well
according to our experiments, and which, we believer, are a bit
simpler then Wiener or Tikhonov deconvolution. The idea is to
modify denominator of the deconvolution fraction only when
there is a need in division by 0. Then we replace denominator
with 1, so there is no any division (first heuristics) or with
the value which was used in divison at previous point (second
heuristics).

The rest paper is structured as follows. In section II brief
description of the method is given. Section III tells about the
application itself. In section IV we show some experimental
results, and section V concludes the paper.

II. METHOD DESCRIPTION

A. Picture and its blurring

A picture may be defined as a function 𝑢(𝑥, 𝑦), where 𝑥
and 𝑦 are coordinates on a plane of the camera sensor [4].
The value of 𝑢 at a point (𝑥, 𝑦) is intensity of the light beam
which has reached this point.

If the camera or the picturing object is moving while shutter
is open, then a light point, formed on the sensor by the camera
lens, will travel along some line and as a resulting in a blurred
picture (Figure 1).

In our work we assume, that the camera (or object) motion
is straight-line and uniform (without acceleration). In this case
the travelling line of light points will be rectilinear segment
of a length 𝐿, and the light intensity of the point will be
uniformly distributed along this line. Without loss of generality
we can assume, that the movement occurs along the axis 𝑥.
Then intensity of light 𝑢(𝑥, 𝑦), measured by the sensor at
the point (𝑥, 𝑦), can be counted by the following formula
𝑢(𝑥, 𝑦) = 1

𝐿𝑣(𝑥, 𝑦) +
1
𝐿𝑣(𝑥 + Δ𝑥, 𝑦) + 1

𝐿𝑣(𝑥 + 2Δ𝑥, 𝑦) +

202 of 230

Figure 1. Scheme of formation blurred picture

. . .+ 1
𝐿𝑣(𝑥+ 𝐿, 𝑦), or in integral form

𝑢(𝑥, 𝑦) =

∫︁ ∞

−∞
𝑘(𝑥− 𝜉)𝑣(𝜉, 𝑦)𝑑𝜉, (1)

where 𝑣(𝑥, 𝑦) – picture which would be got, if there were no
movement (and blurring),

𝑘(𝑥) =

{︂
1
𝐿 , if 𝑥 6 𝐿,
0, otherwise

is blurring function.
The expression (1) is a convolution-like equation for func-

tion 𝑣(𝑥, 𝑦), which is a original unblurred picture. Applying
Fourier transform to the both sides of the equation (1) and
keeping in mind convolution theorem [10] we shall get al-
gebraic equation for Fourier image 𝑉 (𝜔, 𝑦) of the function
𝑣(𝑥, 𝑦): 𝑈(𝜔, 𝑦) = 𝐾(𝜔)𝑉 (𝜔, 𝑦). Unfortunately, |𝐾(𝜔)| turns
0 (or, with no difference, very small) for some values of 𝜔 and
in this points solution could not be found as

𝑉 (𝜔, 𝑦) =
𝑈(𝜔, 𝑦)

𝐾(𝜔)
≡ 𝑈(𝜔, 𝑦)𝐾*(𝜔)

|𝐾(𝜔)|2
. (2)

B. Different approaches to avoid division by 0

There are several approaches to avoid division on 0 in
expression (2). The historically first approach should be con-
sidered deconvolution, based on Wiener’s filter [?]:

𝑉 (𝜔, 𝑦) =
𝑈(𝜔, 𝑦)𝐾*(𝜔)

|𝐾(𝜔)|2 + NSR(𝜔)
,

where NSR(𝜔) > 0 is noise-to-signal ratio, and since it is hard
to have a measurement without noise, this function in practice
is never 0. In most application it can be replaced with some
a priory known constant.

In [2] it is suggested to find solution in the form

𝑉 (𝜔, 𝑦) =
𝑈(𝜔, 𝑦)𝐾*(𝜔)

|𝐾(𝜔)|2 + 𝛼𝜔2𝑝
,

where 𝛼 and 𝑝 are heuristics parameters. This formula comes
from the regularizing theory by Tikhonov [5]. It is easy to
see, that in certain cases Tikhonov deconvolution turns into
Wiener deconvolution, for example, when 𝑝 = 0 and 𝛼 =
NSR = const.

We use a little bit different approach. We suggest to keep
formula (2) intact while there is no division by 0 and only
in cases of such 𝜔, that |𝐾(𝜔)|2 < 𝜀 replace |𝐾(𝜔)|2 with 1

(then there is no division), or with the value which was used
obtained for previous 𝜔. Here 𝜀 is a priory specified (by user)
threshold.

C. Digital case

Since all pictures we deal with are taken by digital camera,
function 𝑢(𝑥, 𝑦) (as well as 𝑣(𝑥, 𝑦) and 𝑘(𝑥)) and its argu-
ments 𝑥 and 𝑦 will take discrete values within certain limits.
Usually, for 24-bit .bmp files, which we shall use for our
application, value of intensity of a channel (red, green or blue)
lies within 0 and 255, 0 stands for the lowest intensity (no
light), 255 – the highest. Intensity, which is less then the lowest
is considered to be 0, and which is more then the highest –
255.

Values are measured equidistantly all over camera’s sensor,
which is usually rectangular. Points of the measurement are
called pixels. Upper left pixel has coordinates (0, 0), next right
to it – (1, 0) etc; next bottom to the pixel (0, 0) is pixel
(0, 1) etc. Thus, digital picture is a matrix u, where u(𝑥, 𝑦)
is intensity, measured at pixel (𝑥, 𝑦), 𝑥 ∈ {0, 1, . . .𝑚− 1},
𝑦 ∈ {0, 1, . . . 𝑛− 1}, 𝑚 – width of the picture in pixels, 𝑛 –
its height. Note, that we consider first index of the matrix to
be its column, and second – row.

In the digital case, the integral in (1) should be replaced by
the sum:

u(𝑥, 𝑦) =
𝑚−1∑︁
𝜉=0

k(𝑥− 𝜉)v(𝜉, 𝑦), (3)

and Fourier transform becomes the discrete Fourier transform,
when we try to find a solution for (3):

V(𝜔, 𝑦) =
U(𝜔, 𝑦)

K(𝜔)
. (4)

Here V – is the Fourier image of the unblurred digital picture
v, U – is the Fourier image of the blurred digital picture u,
taken by the camera, K – is the Fourier image of the blurring
vector k. Again, for some 𝜔 |K(𝜔)|2 may turn 0 or become
small enough to make division in (4) invalid. If that happens,
our program replaces |K(𝜔)|2 with 1 or replaces K(𝜔) with
the value K(𝜔−1), depending on what heuristics was chosen
by a user.

We measure blurring distance 𝐿 in pixels, which, we think,
is the most convenient way. So, the value of 𝐿 is integer and
has the following meaning. Suppose 𝐿 = 5. Then a light
point, which in other circumstances would result as a pixel
(𝑥, 𝑦) with intensity v(𝑥, 𝑦), “spreads” its intensity among 𝐿
pixels (𝑥, 𝑦), (𝑥+1, 𝑦), (𝑥+2, 𝑦), . . . (𝑥+4, 𝑦) and each gets
1/𝐿 = 1/5 part of the original intensity v(𝑥, 𝑦), and thus
k = ⟨ 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 , 0 . . . , 0⟩.

III. METHOD IMPLEMENTATION

For implementation of the method, described in section II,
we have chosen JAVA and NETBEANS [11] as IDE. For the
discrete Fourier transform we decided to use THE APACHE
SOFTWARE FOUNDATION implementation [12] of Fast Fourier
Transform algorithm [10]. This fact implies some restrictions

203 of 230

for the width 𝑚 of a picture: it should be of an integral extent
of 2. We decided 𝑚 to be 210 = 1024.

The application works with files of 24-bit .bmp pictures
of width 1024 pixels. Due to our assumption, that blurring is
happening along axis 𝑥, each line of the picture (the row in
terms of matrix) is processed separately (and the line has three
independent channels: red, blue and green).

Interface of the program you can see in Figure 2. On the left

Figure 2. Interface

part of the window there is original picture and on the right –
processed. User can chose either to restore the original picture
(buttons “Restore No. 1”, “Restore No. 2”, “Restore No. 3”)
or blur it (the button “Blur”).

Value of 𝑒 is the threshold for our heuristics. If the value of
|K(𝜔)|2 is less then 𝑒, program replaces |K(𝜔)|2 with 1 (i.e.
there is no division for this 𝜔 in (4)), when the first heuristics
is chosen (button “Restore No. 1”), or replaces K(𝜔) with
the value K(𝜔 − 1), when the second heuristics is chosen
(button “Restore No. 2”). In case the user presses button
“Restore No. 3” Tikhonov deconvolution will be used with
𝛼 and 𝑝 taken from edit-fields 𝑒 and 𝑝 correspondingly.

Value of 𝐿 stands for the blurring distance. The user can
specify it by hand or by clicking mouse on the original picture.

IV. SOME EXPERIMENTS WITH THE PROGRAM

Here we present some examples of pictures, restored by our
program. First we use artificially blurred picture (Figure 3 b)),
blurring distance 𝐿 is 80 pixels. Restored picture is shown in
Figure 4. There we used first heuristics: replacement of values
of |K(𝜔)|2 < 𝑒 with 1, where 𝑒 = 0.01.

Then we took a picture of a sheet of paper with Figure 3a
while moving the camera (see Figure 5). Result of restore is
shown in Figure 6.

a) b)

Figure 3. Original picture (a) and blurred by PHOTOSHOP [13] (b)

Figure 4. Restored picture from Fig. 3b, 𝑒 = 0.01, 𝐿 = 80

Figure 5. Really blurred picture

a) b)

c) d)

Figure 6. Restored picture from Fig. 5: a) “invalid” values of K(𝜔) are
replaced by 1, 𝑒 = 0.03, 𝐿 = 95; b) “invalid” values of K(𝜔) are replaced
by K(𝜔−1), 𝑒 = 0.04, 𝐿 = 95; c) using Tikhonov’s method with 𝛼 = 0.01
and 𝑝 = 0; d) using Tikhonov’s method with 𝛼 = 10−6 and 𝑝 = 1

V. CONCLUSION

In this paper we have presented our implementation of the
picture deblurring method, based on deconvolution. Blurring

204 of 230

process in most cases is a process with loss of data: at
some points value of Fourier image 𝐾(𝜔) of PSF 𝑘(𝑥)
becomes 0, causing loss of data. This means, that equation (1)
has no solution for 𝑣(𝑥, 𝑦) (deblurred picture). To get some
function, close enough to the solution of (1) authors of [2]
suggested to use Tikhonov deconvolution, replacing 1/𝐾(𝜔)
with 𝐾*(𝜔)/(|𝐾(𝜔)|2 + 𝛼𝜔2𝑝), where 𝛼 and 𝑝 are parameters
of their heuristics. Another well-known approach is to use
Wiener’s deconvolution [4] Here we have developed our own
heuristics: replace 𝐾(𝜔) with 1 or replace 𝐾(𝜔) with the
value from previous point whenever |𝐾(𝜔)|2 becomes less
then some predefined by a user threshold. Experiments have
shown, that our approach is capable to work with artificially
created blurred pictures as well as with blurred pictures taken
by real camera.

REFERENCES

[1] V.S. Sizikov Stable methods for the measurement results processing,
Tutorial, Saint-Petersburg: “SpetzLit”, 1999 (in Russian).

[2] A.G. Yagola and N.A. Koshev Restoring of blurred and defocused
pictures, Computational methods and programming, Moscow, Russia:
Moscow University publishing house, Vol. 9, 2008, Pp.207-212 (in
Russian).

[3] N. Joshi, S.B. Kang, C.L. Zitnick and R. Szeliski Image
deblurring using inertial measurement sensors, ACM Transactions
on Graphics (TOG) – Proceedings of ACM SIGGRAPH
2010, Volume 29 Issue 4, July 2010 ACM New York,
NY, USA (available at http://research.microsoft.com/en-
us/um/redmond/groups/ivm/imudeblurring/).

[4] R. Gonzalez and R. Woods Digital Image Processing, Moscow, Russia:
Techosphere, 2005 (in Russian).

[5] A.N. Tikhonov and V.Ya. Arsenyev Incorrect problems solving methods,
Moscow: Nauka, 1979 (in Russian).

[6] URL: http://en.wikipedia.org/wiki/Richardson-Lucy deconvolution
[7] URL: http://www.phasespace.com.au/decon ex.htm
[8] URL: http://en.wikipedia.org/wiki/Blind deconvolution
[9] Y.-W. Tai, H. Du, M.S. Brown and S. Lin Image/video deblurring using

a hybrid camera, In Computer Vision and Pattern Recognition, 2008.
[10] A.V. Aho, J.E. Hopcroft and J.D. Ullman The Design and Analysis of

Computer Algorithms, Moscow, Russia: Mir, 1979 (in Russian).
[11] URL: http://netbeans.org/
[12] URL: http://commons.apache.org/math/
[13] URL: http://www.photoshop.com/

205 of 230

A Semiotic Approach to the Intelligent Chinese

CALL System Development

Chuprina Svetlana

Department of Computer Science

Perm State National Research University

Perm, Russia

chuprinas@inbox.ru

Osotova Tatyana

Department of Computer Science

Perm State National Research University

Perm, Russia

hvostya@gmail.com

Abstract— In this paper, we present a novel approach to

development of intelligent Chinese Computer-Aided Language

Learning (CALL) systems based on ontological engineering

methods and a semiotic model of Chinese hieroglyphs. The new
features and methods such as “teaching by doing” method,

mnemonic novel method and others make the learning process

easier and are involved due to above mentioned approach. A

semiotic model of Chinese hieroglyph in terms of the first-order

logic is described. We have developed the system OntoKit 2.0

based on the results of our full research.

Chinese CALL system; semiotic model of Chinese hieroglyph;

ontological engineering method; mnemonic novel method

I. INTRODUCTION

An integration of traditional and intelligent information

technologies (IT) is one of mainstreams of modern software

development and of CALL systems implementation in
particular. Recently, the most implementations of traditional

CALL systems for non-native learners are focused on
automation of learning material development, language

assessment and learner's training as usual. In our opinion there
are not enough in order to get the best learning outcomes.

Additionally it is necessary to introduce creative elements to
improve learner’s cognition skills , to give an opportunity to

reveal new regulations and patterns of application domain via

self-training (for example, via cognitive games).

This paper presents one of possible approaches to develop

intelligent CALL systems as an adaptive self training system
and to solve mentioned above problems . We describe the

implementation of an intelligent Chinese writ ing CALL system
OntoKit 2.0 environment (see [1, 2] for details). Its ontological

knowledge base includes description of semiotic model of

Chinese hieroglyph as well as descriptions of the other types of
knowledge (tree structure of hieroglyph, syntactical rules of

Chinese language, etc). OntoKit 2.0 has became adaptive to
different hieroglyphic Asian languages’ features due to

ontological reengineering methods and universality of
supported paradigmatic relations .

In a way we are considering the problem of automation of

Chinese characters training as an application domain of
integration of such different technologies as pattern recognition

(including Artificial Neural Networks), semantic networks and
ontological engineering to improve the intelligent capabilities

of Chinese CALL systems. The using of techniques mentioned

above let us to add to automated training systems the new
features to evaluate Chinese characters learning from a simple

repetition to the creative process [3]. Ontology based approach
makes it possible not only to introduce the new features and

methods such as ―teaching by doing‖ method, ―mnemonic

novel‖ method, taking into account the historical and
culturological aspects of hieroglyphs’ evolution into learning

process but also provides an original ability of CALL system to
advance itself by extension of knowledge base without the

necessity to change the source code [1].

The phonological and the phonetic aspects of Chinese

language learning are not the issue of our research.

II. METHODS OF ACCELERATION OF CHINESE HIEROGLYPHS

MEMORIZATION

―Indo-European languages are based on a finite alphabet‖

and ―letters do not carry meaning unless they are strung
together into words‖ while Chinese language is ―made up of

symbols that themselves embody meaning‖, and ―the number
of possible symbols or elements in these languages is

arbitrarily large and can be considered infin ite‖ [4]. And for

those who have just started acquaintance with Chinese written
language, it seems that there is an incredible variety of

characters, and it is almost impossible to remember that.

As mentioned above many CALL systems and Chinese

CALL systems in particular are simply a set of lessons with
some characters that you just need to learn, and there is no

explanation of hieroglyph’s structure, which would greatly
facilitate the task of the study of Chinese written language for

learners.

Chinese language is classified as ideographic, that is, to a
system of signs which are used to record the lexical meaning of

linguistic units [5]. We support the idea that an image of most
of hieroglyphs maps the form of an object (physical or abstract

entity) or a group of objects of the reality. In time the images of
many Chinese characters became more schematic and abstract.

These were the so-called ―ideograms‖, which eventually got

the form of modern Chinese hieroglyphs, a lot of which lost its
original expressive image during the process of evolution. For

example, the character shown in Fig. 1 is perceived not like a
simple sequence of strokes, but as a schematic representation

of the tree also.

206 of 230

Figure 1. Chinese hieroglyph ―Tree‖ (on the left)

and picture of tree (on the right)

However, our imagination can extract the original visual

image from the abstract scheme as before [3] if historical and

culturological aspects are taken into account especially (see
Fig. 2).

The graphics and semantics of Chinese hieroglyphics’
evaluation are considered as a common process. Not only

complex Chinese character as a whole, but parts of it
(graphemes) carry certain semantic load. Therefore, the

meaning of a comp lex Chinese character depends on the
meanings of its graphemes usually [3]. For example, Fig. 2

illustrates the image of Chinese character "Prosperity", which

consists of the characters "Woman" and "Roof", so it is the
symbol of prosperity for the Chinese people because it

describes a situation when ―a woman is at home‖ (under
rooftop). And the character "Woman" itself depicts a sitting

woman, which bended knees (this pose was accepted for sitting
in the ancient China) and with folded hands in a sign of

submission [5].

Figure 2. Historical and culturological aspects of hieroglyphs ―Prosperity‖
and "Woman"

Taking account of historical and culturological aspects

related to the evolution of the graphical representation of
hieroglyphs during the process of Chinese characters learning,

makes it possible not only to acquaint the learner with the
history and culture of China and to feel the mentality of

Chinese people better, but also to improve the process of
Chinese characters learning itself [3].

However, it happens that it is not enough to learn only the

appearance and modern spelling of some Chinese character to
recognize its meaning from graphical representation [3]. Then

for character learning it requires to create an additional
stimulus in the form of visual metaphor to exert influence on

learner’s memory [6] (see Fig. 3). Some kind of modification

of the mnemonic novel method is used in our approach for this
purpose: we take into account images of one and the same

hieroglyph from different historical epochs and some
additional facts (such kind of knowledge is stored at the

ontological base) [3].

Figure 3. An example of the way of graphic visual metaphor creation for
Chinese character "to go" [7]

III. MODEL OF CHINESE HIEROGLYPH

In contrast to the Indo-European languages single Chinese

character is considered as a whole word or a part of the word.
We have constructed a formal model for the description of the

semiotic structure of the Chinese character to solve problems of
explanation of Chinese characters’ structure and its features to

learners.

The first-order logic is used to formalize the model.

However, there are all sorts of ambiguities by reason of

incomplete knowledge, because the Chinese language is
extensible. In addition, it should be noted there is some

inconsistency between different sources about the nature of
many Chinese characters’ structure. For example, even such

obligatory element of any hieroglyph as a radical has different
definitions. In one case the radical is defined via graphemes,

but in another case it can be defined via other graphical

elements. Thus it is not enough to describe the formal model of
Chinese hieroglyph in whole by the apparatus of first-order

logic, and we use an apparatus of nonmonotonic logic, the
default logic of Reiter (see [8] for details).

The formal model of Chinese hieroglyph in the OntoKit 2.0
is a triple

 V={S,T,K},

where S — a simbol of Chinese hieroglyph itself (symbol is
considered as a part of Frege semiotic triangle (see [9,10] for

details) showed on Fig. 4), T — translation of the Chinese
hieroglyph into Russian language, K — knowledge about the

hieroglyph, concerning both its structural component (image
syntax) and semantics, including historical and culturological

aspects [11].

207 of 230

Figure 4. Semiotic Frege Triangle

Let us make some comments on terminology.

Any hieroglyphic character both complex and primitive

consists of some number of standard graphic elements, named

strokes [12]. The set of strokes is restricted (see, for example,
Fig. 5). Graphical indication of the stroke is that it consists of

one persistent line (see [13] for details).

Figure 5. Base strokes of the Chinese hieroglyphics according to [14]

It seems to us that there are no requirements to organize the

semantic search based on strokes only.

Additionally there are 24 basic graphical structures (some
of them look as a stroke) so called ―features‖ picked out

especially for Chinese printed text (Fig. 6). Some d ictionaries,
for example [15], let conduct the search based on features

mentioned above.

Figure 6. 24 typical features, which are marked out

for Chinese printed text [15]

However, representation of hieroglyphic symbol only as a

combination of strokes is not enough to understand its
meaning. ―Meaning‖ is considered here as a ―referent‖ from

the Frege triangle (see [9, 10] for details) showed on Fig. 4.

That’s why more complex graphical constructions such as
graphemes and radicals are required.

Combinations of strokes with fixed lexical meaning are
called graphemes (see [12] for details). As the result of our

review of the different interpretations of the structure of the

Chinese characters information resources we have considered

that not all graphemes have a self-contained lexical meaning.
On our point of view the inner ―context‖ within the character’s

image has the significant impact on the recognizing of the
grapheme’s meaning.

Hieroglyph’s structure mathematically represents an
ordered tree. Sharapov J.A. in [16] (the author of paper [16] is

OntoKit development group member as well as the authors of

this paper) points out that generally graphemes may be
represented as the leaves of the latter tree. The graphemes’

order in the hierarchical structure of hieroglyph is an important
part to comprehend its meaning. That’s why the ontological

knowledge base includes semantic description of hieroglyph’s
structure. This description is handled by special component

responsible to break down (to decompose) Chinese characters
to its parts automatically. Description of the model of Chinese

character represented as an ordered tree, the method of

hieroglyph’s decomposition to graphemes and the adequate
internal view construction for Chinese characters is beyond the

scope of this paper (see [16] for details).

Primitive Chinese character is hieroglyphic symbol

consisting of a single grapheme.

Complex Chinese character is hieroglyphic symbol

consisting of more than one grapheme.

The radical is a semantic component of hieroglyph and
hints at the meaning of the character. Within the environment

of OntoKit 2.0 mentioned above a radical represents the
belonging of any Chinese hieroglyph to the concrete semantic

category of an appropriate domain specific ontology (see [3]
for details). For example, consider a fragment of domain

ontology shown in Fig. 7. We can see that the hieroglyph

has the radical ―tree‖ (it belongs to the category ―Nature‖ of

domain ontology). It signifies that translation of hieroglyph
is related to tree (the meaning of this Chinese character is

―thick forest‖).

Figure 7. Fragment of domain ontology from OntoKit 2.0

According to [12] the rad ical is either some stroke (for
example, radicals "one", "vertical", "tilting to the left") with no

fixed meaning, or a grapheme, or symbol, consisting of 2-3
graphemes (for example, the radicals ―to see‖, ―chamois

leather‖, ―hemp‖, ―turtle‖, ―flute‖) as it is showed on Fig. 8.
Earlier there were 214 radicals. A total list of radicals has been

revised by Chinese linguists recently. The graphic elements,

which were used in a limited number of hieroglyphs or rare,
have been excluded. The modern list of radicals includes about

208 of 230

190 radicals (different versions of some radicals are taken into

account also) [17]. There are a lot of dictionaries based on the
radicals search.

Figure 8. Illustration of corelation between set of Chinese characters’

radicals and sets of other graphical elements (from the structure of the image
point of view)

The model of Chinese hieroglyph in the language of first-
order predicate is presented below (note that we give

mnemonic names to predicates for convenience despite the fact
that it is accepted to denote predicates by single symbols of the

Roman alphabet):

“W” is a set of concepts.

“w” is some concept, w W.

“X” is a set of graphic elements derived from the strokes
that can be called symbols in a semiotic perspective, that is,

graphemes, including the strokes with independent meaning,
and hieroglyphs

“x” is an element of the set X; x X.

S(x) asserts that x is a hieroglyph, x X.

Simp(x) asserts that x is a primit ive hieroglyph, x X.

Comp(x) asserts that x is a complex hieroglyph, x X .

G(x) asserts that x is a grapheme, x X.

Key(x) asserts that x is a radical , x X.

BeKey(x,y) asserts that x is a radical to y (x, y X, where

Key(x)S(y) is correct).

Mean(x,w) asserts that graphical element x have meaning w,

x X, w W.

P(x,y) asserts that x is a part of y; x, y X.

Eq(x,y) asserts that x is y; x, y X (that is graphical
elements x and y are equal by inscription).

EqW(x,y) asserts that x is y, x, y W.

Opmodif = {VC, HC, NTC} is an operation of distortion,

where VC is a vertical compression, HC is a horizontal
compression, NTC is a nonformalizable transformation (it is

usually associated with some fundamental simplification of the

structure, and most of these transformations can be specified by
the table).

modif{Opmodif, Opmodifmodif’}, где modif’{Opmodif, modif}.

1. Common statements:

 , (2)

 , (3)

 , (4)

 . (5)

2. Grapheme is a part of hieroglyph (Fig. 9)

 . (6)

Figure 9. Illustration of the construction features of Chinese characters

3. A Chinese hieroglyph consists of one grapheme at

least (Fig. 9):

 . (7)

4. A Chinese hieroglyph is primit ive if and only if it
consists of a single grapheme (Fig. 10):

 , (8)

where ― ‖ is a symbol of biconditional operation.

Figure 10. Example of primitive hieroglyph

5. A Chinese hieroglyph is complex if and only if it

consists of more than one grapheme (Fig. 11):

209 of 230

 , (9)

 where ― ‖ is a symbol of biconditional operation (this
statement does not exclude the situation when the complex

character consists of several identical graphemes).

Figure 11. Example of complex hieroglyphs

6. A Chinese hieroglyph is either primitive or complex:

 , (10)

where ― ‖ is exclusive OR operation.

7. A radical is a part of hieroglyph (Fig. 9):.

 , (11)

8. There is a radical in any Chinese hieroglyph and it is

just one (Fig. 9):

 . (12)

9. One and the same radical in the context of different

characters can have different meanings [12]:

 . (13)

An example of such radicals is shown in Fig. 12: Chinese
hieroglyphs "City" and "Hill" in the function of radical have

the same spelling. These radicals can be discerned in the
character only by their position: "City" is used on the right,

"Hill" - on the left.

10. There are radicals with the same meaning but
different spelling:

 . (14)

Figure 12. Radicals, which in the function of radical have the same spelling,
but different meaning

Let us explain this statement with an example. In Fig. 13
there is shows the character "Fire", it is the radical of the

character "Flame" (but in the character "Autumn" this character

is only a grapheme). In addition, the character "Boil" has as the
radical "Fire", although the spelling differs.

Figure 13. Illustration of the features of radicals of Chinese characters

The statements represented below are noted with default

logic of Reiter.

11. A radical is a grapheme (Fig. 9), if it does not

contradict with other knowledge represented in the
system (in Fig. 8 it is reflected that this statement is

not always true):

 , (15)

 . (16)

12. Primit ive hieroglyph associates with a grapheme with

certain distortion (Fig. 9), if it does not contradict
other knowledge represented in the system (some

210 of 230

primitive characters are presented by grapheme

without distortion):

 , (17)

 . (18)

We use the model described above as a basis of the

development of our CALL system OntoKit 2.0 and so called

―teaching by doing‖ method in particular. Due to this method
a learner has the facilities not only to decompose Chinese

character to graphemes in order to know its meaning but to
compose a new hieroglyph from different graphical

constructions to ―design‖ a new meaning based on the
meanings of its source parts also [2]. It brings elements of

creative work to the learning process and also provides an

ability of CALL system to advance itself by extension of
knowledge base without the necessity to change its source code

[1].

A general scheme of decomposition process is illustrated in

Fig. 14.

Figure 14. A general scheme of automation of Chinese characters learning

process [18]

There is a scheme of h ieroglyph’s image analysis in
Fig. 15. An image of hieroglyph (in bmp or jpg format, for

example) is an input of this process. The system breaks down
image to images of hieroglyph’s components automatically. As

the result of this process the internal view of hieroglyph’s
components description in ordered tree form is generated due

to recognition based on the convolutional neural network using

[19]. The system uses the results of recognition to help
someone learn the Chinese hieroglyphs, memorize its spelling,

or perform other learning-related activities via cognitive

games.

Figure 15. OntoKit 2.0: a scheme of hieroglyph’s image analysis

CONCLUSION

This article focuses on the problems of automation of

Chinese characters training and development of an extensible

Chinese CALL system with new intelligent facilities based on
the original ontological approach and semiotic model of

hieroglyph.

The semiotic model of Chinese character in terms of the

first-order logic and non-monotonic default logic of Reiter is
represented.

We have implemented the research prototype of

OntoKit 2.0 based on the proposed approach by using C# and
C++ languages. So the viability of described approach have

been proved. That’s why we consider our results as full
research.

REFERENCES

[1] Chuptina S.I., Sharapov J.A., Osotova T.V. ―The ontology approach to
creation of an automated adaptive system for teaching chinese
characters‖ // Proceedings of XXXVI International Conference
«Information technology in scince, sociology, economics и business» IT
+ SE’09 The Autemn session. М.: 2009, pp. 53-55. (rus)

[2] Osotova T.V. ―The approach to Chinese character recognition at the
CALL system OntoKit 2.0‖ // Proceedings of scintific academic
conference ―Modern problems of mathematic and its applied areas‖
Perm: Perm State University, 2010, pp. 114-118. (rus)

[3] Chuptina S.I., Sharapov J.A., Osotova T.V. ―Automatisation of Chinese
language training: historical and culturological approach‖ // Proceedings
of scintific conference «Historical and Cultural Heritage and
Information and Communication Technology: retention analysis». Perm:
Perm State University, 2009, pp. 202-213. (rus)

211 of 230

[4] Jurgens H., Peitgen H.-O., Saupe D. ―The Language of Fractals‖ //
Scintific American.1990. №10. P . 36.

[5] Volkova O.N. ―Culture-oriented linguistics of the first foreign language
(chinese language). Module 1. The Chinese grammotology‖ Version 1.0
[Online resource]: online educational manual. URL:
http://www.files.lib.sfu-kras.ru/ebibl/umkd/346/u_course_1.pdf
(access date: 30.01.2012). (rus)

[6] Vurdov A.M. ―Japanese language for pleasure. Kanji essays‖ Syktyvkar:
Uki, 2006, p.528. (rus)

[7] Lusya V., Starostina S.P. ―The Chinese-Russian educational
dictionary‖.– М.: АSТ : Vostok – Zapad, 2006, p.382 (rus)

[8] Ueno H., Koyama T., Okamoto T., Matsubi B., Isidzuka M..
―Knowledge representation and deployment‖ Trans. from jap. – М.: Mir,
1989, pp.199 – 207. (rus)

[9] Nesterov A.V. ―On semantic, pragmatic, and dialectic triangles‖ //
Automatic Documentation and Mathematical Linguistics, Vol. 43, №3.
Allerton Press, 2009, pp. 9-14.

[10] Frege: ―On Sense and Denotation‖ // UW Faculty Web Server. URL:
http://faculty.washington.edu/smcohen/453/FregeDisplay.pdf
(access date: 30.03.2012).

[11] Osotova T.V. ―The role of semiotic description at automated Chinese
language training‖ // Proceedings of IV International Online Scintific
Students’ Conference «Students’ scintific forum» URL:
http://www.rae.ru/forum2012/pdf/2721.pdf (access date: 26.03.2012)
(rus)

[12] Kondrashevskii A.F. ―Practical cource of the Chinese language.
Hieroglyphic’s guide’‖ Part I. М. : PH «Muravey», 2000, p.152 (rus)

[13] Hieroglyph’s structure // Educational center «Sakura» URL:
http://www.sakura-inyaz.ru/struktura_ieroglifov.html
(access date: 15.12.2011). (rus)

[14] Wieger L. ―Chinese Characters. Their origin, etymology, history,
classification and signification. A thorough study from Chinese
documents‖ – New York: Paragon book reprint corp. — P. 12.

[15] Panasyuk V.A., Suhanov V.F. ―The Great Chinese-Russian dictionary‖
Vol. 1. М.: «Nauka», 1983, pp.10 – 12. (rus)

[16] Sharapov J.A. ―The algorithm of inventive tasks solving at the task of
Chinese characters’ structure description‖ // Proceedings of XXXVII
International Conference «Information technology in scince, sociology,
economics и business» IT + SE’10 The Spring session. М.: 2010,
pp. 86-88. (rus)

[17] Internet-school of the Chinese language. Issue 4. The Chinese writing.
Knowledges aboute the structure and spelling of hieroglyphs // Internet-
school of the Chinese language URL: http://chinese-
school.narod.ru/004.html (access date: 23.12.2011). (rus)

[18] Osotova T.V. ―The semiotic approach to aftomation of Chinese
character training‖ / The bulletin of Perm State University. Mathematics.
Mechanics. Informatics. Issue 3(7). Perm, 2011, pp. 59-62. (rus)

[19] Quen-Zong Wu, Yann Le Cun, Larry D. Jackel, Bor-Shenn Jeng On-
line recognition of limited-vocabulary Chinese character using
multiple convolutional neural networks // Yann LeCun home page.
URL: http://yann.lecun.com/exdb/publis/index.html
(access date: 23.05.2009).

212 of 230

http://faculty.washington.edu/smcohen/453/FregeDisplay.pdf

Scheduling Problem Solutions in Transport
Enterprises

Andrey Orlov

Software Engineering School
National Research University Higher School of Economics

Moscow, Russia
lokaro.oa@gmail.com

Scientific Advisor: Prof. Sergey Avdoshin
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

savdoshin@hse.ru

Abstract – The classical transportation problem is a problem of
optimal transportation plan of a homogeneous product of
uniform items in the presence of homogeneous items of
consumption on homogeneous vehicles with static data and the
linear approach [1]. Development and application of optimal
schemes of cargo flows can reduce the cost of transport and
maximize profits. We should make a detailed transportation
plan, which should take into account a number of limitations.
Models for such tasks contain more 50,000 variables and
constraints. The market hasn’t practically any software, which
satisfies all companies’ needs. In this article we will consider the
process of modeling in IBM ILOG CPLEX Optimizer. This
software includes efficient algorithms for solving optimization
problems.

Keywords: optimization; modeling; scheduling; railway; CPLEX;
OPL.

I. INTRODUCTION

The science of better decisions Operations Research (OR)
is the discipline of applying advanced analytical methods to
make better decisions [2]. By using techniques such as
mathematical modeling to analyze complex situations,
operations research gives executives the power to make more
effective decisions and build more productive systems.

To understand how optimization touches many aspects of
everyday life, consider a business trip. The price you pay for
your ticket is determined by optimization. The flight crew is
scheduled by optimization. Trucks you might see on the road
are loaded up and routed by optimization. And when you get to
your hotel room, and turn on the TV to relax, the scheduled ads
are optimized to maximize the revenues for the network.

The IBM ILOG optimization products put the power of
optimization in the hands of business decision makers. We will
use these tools for modeling scheduling problem in
transportation enterprise.

This work is a logical continuation of [3] and being
performed within the scope of the research on the topic
"Research and development of innovative unifying models of
intelligent systems for the situational response and safety
control on the Russian railways", state contract 07.514.11.4039
on September 26, 2011 at lot № 2011-1.4-514-045
"Development of algorithms and software systems for solving
problems of exceedingly large scientific data sets storage and
processing and data streams collection in real-time" as part of

the federal target program activity "Research and development
in Russian scientific-technological system 2007-2013 evolution
priority directions".

II. OVERVIEW

 We classify and give in detail the basic concepts [4].
All vehicles can be divided as follows:

• Aircraft (passenger, cargo);

• Train (passenger, freight, suburban, long-
distance);

• Truck (Short-haul, long-haul, hazmat
transportation);

• Ship (liner, costal traffic, ferry, tanker);

• Public transit (Bus, metro, suburban train);

• …

Thus, we can identify problems for each type. For example,
passenger and public transport planning is contained in the
scheduling of the day, while sending orders for truck or rail
will be actually in planning for a month. Therefore, according
to the duration, the planning can be divided into four types:

• Strategic (several years):

o Network design and location of main
facilities: airports, highways, subway
lines;

o The purchase of the fleet;

• Tactical (several weeks or months):

o selection of a route bus lines;

o location of the intermediate objects:
stations, warehouses;

o laying seasonal routes, transportation
schedules;

o prices;

• Operational (a few hours or days):

o destination transport on the route;

o transport of parcels;

213 of 230

• Real time (seconds or minutes):

o Location and movement of ambulances
or fire truck

Among these types we are interested only in tactical
planning, as time is limited to one month. In the paper we
discuss the problem of rail transportation. It can be divided into
two classes - passenger and freight. Suburban and intercity
trains are all the passenger type. Scheduling is characterized by
a single goal for this class. In the case of force majeure on the
railway, you can plan bypasses, but it is not as frequent. The
special features of passenger transport are:

• Network design;

• Train scheduling;

• Blocking the way;

• Appointment of drivers;

The movement of freight trains is an important part of a
fully functioning transportation system. Efficient movement of
goods both within and across regions is necessary for industry,
retail and international trade, and agriculture. There are
airports, major terminals, shipyards in large cities, which are
particularly affected by the issue of cargo transportation. The
task of planning depends on a very large number of constraints.
The peculiarities of this kind of traffic can be classified as
follows:

• Fragmentation;

• Not so well organized and optimized, for example,
in contrast to the aviation industry;

• The profit can be increased through better
planning, use of the crew and pricing policies;

III. TECHNICAL DETAILS

IBM ILOG CPLEX Optimization Studio is one of the IBM
ILOG optimization products [5]. These products include IBM
ILOG Optimization Decision Manager (ODM) Enterprise and
some packaged applications. We don’t consider other
optimization software, because we need an enterprise
application, which simply build with ODM. CPLEX Studio
and ODM Enterprise are used to develop custom applications
based on Mathematical Programming (MP) or Constraint
Programming (CP).

• the CPLEX engine for mathematical programming
is used by default when you run your project if
your model does not start with the statement using
CP;

• the CP Optimizer engine for constraint
programming is called if your model starts with
the statement using CP;

IBM ILOG CPLEX CP Optimizer is specially adapted to
solving detailed scheduling problems over fine grained time
[6]. There are, for example, keywords particularly designed to
represent typical scheduling model elements, such as tasks and
temporal constraints.

With CP Optimizer, you can address the issues inherent in
detailed scheduling problems from manufacturing,
construction, driver scheduling, and more.

In a detailed scheduling problem, the most basic activity is
assigning start and end times to intervals. Scheduling problems
also require the management of minimal or maximal capacity
constraints for resources over time, and of alternative modes to
perform a task.

A. Interval

 An interval variable represents an interval of time
during which something happens (for example, a task occurs,
an activity is carried out) and whose position in time is an
unknown of the scheduling problem. An interval is
characterized by a start value, an end value, a size and
intensity. The length of an interval is its end time minus its start
time.

An important additional feature of interval variables is the
fact that they can be optional; that is, one can decide not to
consider them in the solution schedule.

dvar interval <taskName>
[optional[(IsOptional)]]
[in StartMin..EndMax]
[size SZ | in SZMin .. SZMax]
[intensity F];

For example, the following variable:

dvar interval garden optional in 20.. 32 size 5;

means, that the task "garden", if it will run takes 5 time units
and must begin after 20 units of time and before the end 32
units of time.

B. Cumulative function

 In scheduling problems involving cumulative
resources (also known as renewable resources), the cumulated
usage of the resource by the activities is usually represented by
a function of time. An activity usually increases the cumulated
resource usage function at its start time and decreases it when it
releases the resource at its end time (pulse function). For
resources that can be produced and consumed by activities (for
instance the content of an inventory or a tank), the resource
level can also be described as a function of time; production
activities will increase the resource level whereas consuming
activities will decrease it. In these types of problems, the
cumulated contribution of activities on the resource can be
represented by a function of time and constraints can be
modeled on this function, for instance a maximal or a safety
level.

cumulFunction <functionName> =

 <elementary_function_expression>;

where <elementary_function_expression> is a cumulative
function expression. This expression includes:

• step;

• pulse;

• stepAtStart;

214 of 230

• stepAtEnd.

Let us consider each of them.

1) Pulse

Pulse represents the contribution to the cumulative function
of an individual interval variable or fixed interval of time.
Pulse covers the usage of a cumulative or renewable resource
when an activity increases the resource usage function at its
start and decreases usage when it releases the resource at its
end time.

cumulFunction f = pulse(u, v, h);

cumulFunction f = pulse(a, h);

cumulFunction f = pulse(a, hmin, hmax);

The pulse function interval is represented by a, or by the
start point u and end point v. The height of the function is
represented by h, or bounded by hmin and hmax.

To illustrate, consider cumulative function of using
resources, which a volume is a measure. There are two
intervals – A and B – which are time-limited. Each interval
increases the value during duration.

cumulFunction f = pulse(A, 1);

cumulFunction ff = pulse(B, 1);

The functions are shown at Figure 1.

Fig 1. Pulse function

2) Step

Step is an elementary cumulative function expression
representing the contribution starting at a point in time. Step
covers the production or consumption of a cumulative
resource.

cumulFunction f = step(u, h);

where time u is the start of production or consumption and
the height of the function is represented by h.

As another example, consider a function of flow
measurement resources, similar to the budget:

The level of resources is equal to zero up to time 2, when
the value increases to 4.

cumulFunction f = step(2, 4);

There are two intervals – A and B, which are fixed in time.
Interval A reduced level of resources for 3 at the beginning of
the interval.

cumulFunction ff = stepAtStart(A, -3);

Interval B increases resource level for 2 at the end of the
interval.

 cumulFunction fff = stepAtEnd(B, 2);

The functions are shown at Figure 2.

Fig 2. Step function

3) Alternative

The constraint alternative(a, {b1, .., bn}) models an
exclusive alternative between {b1, .., bn}. If interval is present
then exactly one of intervals {b1, .., bn} is present and a starts
and ends together with this chosen one.

The constraint alternative(a, {b1, .., bn},c) models a
selection of c intervals in the set {b1, .., bn}. If interval is
present then exactly c intervals in {b1, .., bn} are present and a
starts and ends together with these selected ones. If it is absent,
then all b intervals are absent. This constraint is typically used
to model the selection of 1 resource (or c resources) among a
set of candidate ones. It can also be used in more complex
cases to model alternative execution modes for activities or
alternative time-windows for executing a task.

The array B must be a one-dimensional array; for greater
complexity, use the keyword all.

Fig 3. Alternatives

215 of 230

IV. EXPERIMENTAL EVALUATION

The company has available near 100.000 wagons, which
are evenly distributed over at the 1.000 stations. There are
10.000 applications for transportation of cargo from one station
to another in the company. We should construct transportation
plan for a month.

This condition is a real problem. For demonstration we
reduce the scale of 100 times. Also part of constraints simplify
to understanding of the problem: we aren’t considered options
such as progressive rate, rate group and so on.

For this problem, we build three optimization models and
analyze them. Each of the following models will be an
extension of the previous model. For all cases, we will have the
same data.

In our case, we have the following transportation network
shown in Figure 4. The edges represent the distance (in days)
between the two stations, and the figure at the vertex – the
number of wagons the first day of planning.

We will answer a few questions about building a model:
• What is the purpose? – Maximization profit for

cargo transportation.

• How is the solution? – The decision depends on
the time of commencement of the application and
the number of wagons.

• What are the limitations imposed on the model? –
Number of wagons:

o Do not exceed the total amount.

o Should not be below a certain
predetermined threshold at the station.

o Should not be above a certain threshold
at the station.

A. «With returns»

The first model is called «Order fulfillment with returning».
Each order consists of two parts:

• Wagons are sent to the destination station.

• After that wagons will be sent to the original
station.

Thus, each order is like a pendulum, has double length of
time.

1) Decision variables

Decision variables of this model could be identified as two

arrays of interval variables. First – Applications:

dvar interval app[a in OrderID] optional;

We point out the applications are not required. This is due
to the fact that not all of them can be performed (total number
of wagons in orders at one station may not exceed the number
of wagons on this station). The following is a list of
identification numbers of applications to find a solution among
the set of alternative. As we pointed out above, we consider
doubling time of the order:

dvar interval alt [o in allOrder] optional in
o.order.StartData..(o.order.FinshData +

o.place.Duration) size o.place.Duration * 2;

We include cumulative function to decision variables. It
will take into account the number of wagons at the station in
time:

cumulFunction count [l in Locations] = step(0,
l.Units) - sum (ao in allOrder : l.Station ==

ao.order.From) pulse (alt[ao], ao.count);

2) Objective function

Since the goal is to maximize profits for its implementation,
we will summarize the number of wagons multiplied by travel
time:

maximize sum (ao in allOrder) presenceOf(alt[ao])
* ao.count * ao.place.Duration;

3) Constraints

This model is a classic example of vertical alternative:

forall (d in OrderID) alternative (app[d], all (ao
in allOrder : ao.order.ID == d) alt[ao]);

Also, number of used wagons at any time shouldn't be less
than zero:

forall (l in Locations) count[l] >= 0 ;

4) Result

This method finds the optimal solution if and only if all
kinds of data are distributed evenly. If the number of
applications for transport to a particular station is large enough,
and the number of wagons on it is a little as we pointed out
above, the decision will be far from optimal. But in the original
sample data, the optimal solution was found quickly. We get a
ready-formed schedule by day, which we could see at figure 5.

Fig 4. Example net

216 of 230

Fig 5. Scheduling

Although we found the optimal solution, this solution is not
acceptable. We have to spend a certain amount on the empty
wagons run to the station. Thus, the profit will be:

Profit = FullPrice – EmptyRun

This model, due to the rather large losses in empty run is
not applicable in the real world; however, it is the launching
pad for the next model.

B. «Without returns»

If in the previous model constructed after the wagons went
back, it is logical to assume that these wagons can be left at the
station of arrival. Thus, we will not spend their finances on the
empty run.

1) Decision variables

Decision variables are changed in relation to the amended
model. All alternatives will not have twice the range and will
be similar to the input data:

dvar interval alt [o in allOrder] optional in
o.order.StartData..o.order.FinishData size

o.place.Duration;

Also, the changes will affect the cumulative function of
counting wagons at the station, as the wagons do not come
back:

cumulFunction count [l in Locations] = step(0,
l.Units)

- sum (ao1 in allOrder : ao1.order.From ==
l.Station) stepAtStart(alt[ao1], ao1.count)

+ sum (ao2 in allOrder : ao2.order.To ==
l.Station) stepAtEnd(alt[ao2], ao2.count);

We are using stepAtStart function considering that the part
of wagons from current station run at the beginning of the

application. It is a similar situation with stepAtEnd, when
wagons come to station after fulfills the order.

The objective function and constraints in this case will not
change as we change only the behavior of wagons during the
execution of orders.

2) Results

Similarly to the previous model, the optimal solution will
be found only when data have uniform distribution. For
example, the solution was found, shown in Figure 6:

Fig 6. Optimization process

This solution is not optimal, but the ratio of the solution
found to the absolute solution will be acceptable for cargo
companies:

6185 / 6310 = 0,98019…

We will get 98% of the maximum possible profit. It can be
considered an excellent option.

The drawback of the model is inability to drive wagons
from nearby stations. If one station has a lot of applications,
then the wagons don’t come to the station. As a result, some
orders will not be performed. Figure 7 shows the number of
wagons at each station everyday. You may notice that the
station 2, 5 and 7 have an application for a large number of
departing wagons, so for these stations, the number of wagons
is almost zero at the end of the month. In contrast, for example,
for stations 1, 6 and 8, the number of wagons is increased by
1.5 or even 2 times.

217 of 230

C. «Additional empty run»

If some station doesn’t have enough wagons for the
application, it is reasonable to drive the number of missing
wagons from nearby stations. Maybe this will help even
increase the objective function.

1) Decision variables

In this case, decision variables augmented with one more
variable interval. It has the following type:

{EmptyRun} emptyRun = {<do, s, i> | do in
detailOrder, s in Places, i in 0..do.order.Max : s. To

== do.order.From && s.Time <= days};

Variables simulate all possible combinations of sending
empty wagons from the neighboring stations. So we put the
restriction that wagons can be sent from the stations, in which
the stage is not greater than a special parameter.

dvar interval emptyRuns [o in emptyRun] optional
in (o.order.StartDate - o.place.Duration >= 0 ?

o.order.StartData - o.place.Duration : 0)..
(o.order.FinishDate - o.place.Duration) size

o.place.Duration;

Cumulative function is changed to:

cumulFunction count [l in Locations] = step(0,
l.Units)

 - sum (ao1 in allOrder : ao1.order.From ==
l.Station) stepAtStart(alt[ao1], ao1.count)

 + sum (ao2 in allOrder : ao2.order.To ==
l.Station) stepAtEnd(alt[ao2], ao2.count)
 - sum (er1 in emptyRun : er1.place.From ==

l.Station) stepAtStart(emptyRuns[er1], er1.count)
 + sum (er2 in emptyRun : er2.place.To ==

l.Station) stepAtEnd(emptyRuns[er2], er2.count);

We add a similar sum to account for incoming and
outgoing wagons on the empty runs.

2) Objective function

All empty runs company pays for itself, so the empty run is
subtracted from the profit:

maximize sum (ao in allOrder) presenceOf(alt[ao])
* ao.count * ao.place.Duration * FullPrice

 - sum (er in emptyRun)
presenceOf(emptyRuns[er]) * er.count *

er.place.Duration * EmptyPrice;

Add the following parameters: price for transportation
cargo and price for empty run. Thus the objective function is an
order of magnitude higher than the result of the previous
examples.

3) Constraints

There are reserve wagons at the station, we make a new
restriction. We establish that the number of cars can be in the
range [20; 160] at the station at any time:

forall (l in Locations) {
 alwaysIn(count[l], 0, 60, 20, 160);

 }

4) Results

This solution is closer to the optimal value, even with
restrictions on the number of wagons:

311380 / 315500 = 0,98694…

This model does not depend on the location of wagons and
we can just say that all orders will be fulfilled. It is as close to
real use.

Fig 7. Number of wagons at stations after optimization

218 of 230

V. CONCLUSIONS

This article demonstrates the easy modeling of though
simplified, but at the same time, the real problem. We
considered several models and provides a comparative
analysis. This is just the first step of constructing solutions of
the system response and planning. This IBM’s tool allows one
to quickly build a model of a problem and get an optimal
answer. In the future, these developments will be used for
detailing that problem. In particular, several large companies
are already interested in this. Of course IBM ILOG Cplex
Optimization Studio is not designed for building large
applications. The next step is to build an application based on
the product IBM ILOG Optimization Decision Manager
Enterprise, which is precisely designed for that purpose.

VI. REFERENCES
[1] Yudin, DB and Holstein, EG (1961). Objectives and methods of linear

programming. Publ. “Soviet Radio”.

[2] The transportation planning process: key issues. A briefing book for
transportation decisionmakers, officials and staff.

[3] Avdoshin S., Gorbatovskiy M., Chernov A., “The Concept of
intellectual situational response system and railways safety of modern
Russia”, Business Informatics №4 (18), 2011.

[4] Laporte, G. “An overview of transportation planning problem. HEC
Montreal, Chaire de Recherché du Canada en Distributique“.

[5] Model development with IBM ILOG CPLEX Optimization Studio
V12.2.

[6] Detailed scheduling in IBM ILOG OPL with IBM ILOG CP Optimizer.

219 of 230

EnergoWatcher – the platform for creating adaptable

energy monitoring systems

Evgeniy A. Kalashnikov

Department of Software and Computing Systems Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: keatrance@gmail.com

Abstract. Energy monitoring systems are widely spread among

large productions and smart houses. It's designed to collect,

process, store data and provide users with aggregated and

detailed information about the consumed resources. However,

the developing price of these systems is large enough. It is

required to have a technology for fast and cheap creation of

power consumption monitoring system. These systems should be

adaptable to varying of operating conditions and designed for

small objects. EnergoWatcher is a development technology of

program complexes of power consumption monitoring, which is

described in this article. The systems created by means of this

technology suppose dynamic adapting to varying of operating

conditions and users requirements. The software provides

possibility of connection to various sources of the information (to

controllers of technical state of objects, to databases of the

external applications, and so on).

Domain-specific modelling; monitoring; metamodelling; power

consumption; EnergoWatcher;

I. INTRODUCTION, PROBLEMATIC

This paper is devoted to the power consumption: a lack of
information is the main cause of wasteful use of resources,
since you can only effectively manage those that can be
measured.

The problem of the resource consumption dynamic opacity
can be achieved through creation and using monitoring
systems [1, 2] that allow you to automate the process of
collecting data from external sources (sensors, meters,
indicators and so on) to obtain a more complete picture of what
is happening. It should be noted that data from the energy
accounting devices are handled by software developed by
equipment manufacturers to work with specific devices. This
specialized software often makes it impossible to integrate data
from different sources, processing and presentation in one
program. The key objectives of monitoring systems are to
collect, process, store data and provide users with aggregated
and detailed information about the consumed resources
collected from heterogeneous sources.

It should be noted that the need for such monitoring
systems are increasingly seen not only in industrial scale (large
production), but at the household level. There are government
agencies and private companies seeking to control the level of

water / heat / electricity consumption etc. in order to save his
own funds. However, the monitoring system - an expensive,
"custom made" product, developed under the specific type and
configuration of equipment, so there is a problem on the
establishment of flexible software, which could be configurable
while condition changes of maintenance (connection of new
devices, monitoring of certain parameters, etc.).

So it’s necessary to have a technology for easy dashboard
construction. Using generative programming approach we
could generate monitoring systems with minimum costs
without involving programmers. Such software can be
reconfigurable for new connected devices and their parameters.

The main requirement for such technology is the ability to
adapt the system constructed under specific operating
conditions [3]. The system should be dynamically adjusted to
the new hardware and user needs, without the programmer
(without changing the source code and subsequent
recompilation). To this end, a toolkit is being developed, that
allows construct virtual panel for energy consumption
monitoring, which in future will be discussed by experts and
will lead to relevant policies to improve energy efficiency. In
this paper we propose a technique EnergoWatcher - the
platform for creating adaptable energy monitoring systems.

II. MONITORING SYSTEMS: ARCHITECTURES, APPROACHES

There are two basic approaches to the development of
monitoring systems [4] - "manual" and "automatic". In the first
case, the system is programmed from scratch for a specific
hardware system architecture; system's components are
strongly coupled; the code is optimal in terms of performance.
However, it would lead to significant development costs,
inflexible solutions and inability to reconfigure the system
when adding new hardware.

While using an automatic generation of software
development the code and database generation happens on the
basis of the system’s model defined by developer. This is the
standard approach with CASE-tools [4], based on
transformations of the original model of monitoring system in
code. In this case, we have a universal solution to the high rate
of development to the detriment of generated code
performance. However, this solution is not flexible too,

220 of 230

because the slightest change in the architecture of complex
hardware / system requirements will need to re-generation of
source code and database.

In both approaches adapt facilities of the final applications
are limited. The specificity of the modern software is that the
application life cycle never ends with the completion of its
development. Therefore it is required to provide the ability to
dynamically configure system to new operating conditions, the
needs of its users.

To create an adaptable system of this kind is needed to
store a description of the hardware configuration (new
connected devices, parameters, their tracking), and other
settings. If you change the configuration, the application code
should not be changed. The program functioning is based on
the interpretation of these descriptions (metadata) [1]. User
interface (UI) is generated based on this metadata every time
when you run an application, what makes possible to construct
and keep UI settings. That mode of interpreting the metadata
allows achieving the necessary flexibility and balance between
the rate of development, flexibility and adaptability of the
application possibilities.

III. ARCHITECTURE OF ENERGOWATCHER SYSTEM

The core of the system is metadata that describes
components of the system from different viewpoints [2].
Metadata’s model (meta2model) of logic level is the main. It is
based on the ER-model of Chen (entity-relationship model).
Each entity is an abstract real-world object (e.g., meters), with
its own properties (attributes) and relationships with other
entities (links). Instances of the entity represent the existing
concrete objects and their attribute values and relationships
reflect their current state.

Let’s consider the EnergoWatcher’s application
architecture, the multi-level monitoring system. The system
consists of five logical and physical levels (see Fig. 1).

Figure 1. Levels in EnergoWatcher’s architecture

Levels 4 and 5 are responsible for connecting to external
sources, configuring the import data parameters. The data,
which obtained with the metering of energy consumption, are
handled by foreign applications. After processing the received
device parameters are stored in external sources (databases,
spreadsheets, CSV files, etc.). The system asks for new sources

of data at defined intervals of time. If this data is available, the
system processes import into the database (level 3) caching
obtained values at the same time [5].

For each configuration of hardware on database server
(level 3) based on the metadata its own database is created to
store rates selected for import. The database structure is
determined by the metadata of logical and physical level (Fig.
2) in accordance with the existing hardware configuration. It is
updated automatically at metadata changing via component
restructuring.

The components of levels number 1 and 2 are part of a
client-server service-oriented architecture. The end-client
establishes a connection with the services in polling or duplex
mode and receives data (data services, and events) and
metadata (metadata services and settings UI). Metadata service
is available on user request and provides metadata of logical
level. UI service, which is actually part of metadata service,
represents metadata of presentation level. Event service notifies
connected clients automatically if emergency situations arise.
Data service sends new data when new imported values appear
on server side. The client defines its own interface of
dashboard and configures the connection UI controls to data
sources (binding) in return.

The logical connection between these levels is provided by
interdependent layers of metadata (MD), describing the system
from different angles (Fig. 2). Key metamodel - a model of
logic level - provides a link of metadata and system operation
under terms of a specific domain for the user (in this case in the
field of energy auditing).

Figure 2. Interdependent metadata (MD) layers

IV. REQUIREMENTS FOR UI SYSTEM

One of the main goals of the monitoring applications is a

convenient and timely notification of the ongoing processes,

emergency situations, displaying the real picture of energy

consumption (energy audit) for further analysis [6]. It’s all

about the data visualization, which perhaps has the most

important value in operational dashboards.

In general, to create own interface user (or administrator)

will need to perform several actions:

- create instances of the visualization components (controls);

- place these controls in the required locations, given their
mutual nesting and hierarchy;

- configure the basic properties of the controls;

221 of 230

- specify the data sources for display - those attributes, whose
values you want to display, and, if necessary, set the
missing values.

To ensure maximum system flexibility and adaptability to
dynamically changing the operating conditions were
determined following requirements for UI system [7]:

1. Setting up the visual interface should be simple and
understandable to the end user-nonprogrammer:

- using of intuitive action in WYSIWYG way:

Technology Drag & Drop, the component is resized with the

mouse, etc.;

- a set of display properties for component configuring

and their descriptions should be dynamically configurable - in

fact, they become part of the metadata system. It is required to

display user only necessary properties and group them into

predefined categories;

- the problem of localization of all the properties of the

components need to be solved: they need to be shown in the

user native language (in our case, in Russian) when

configuring the component. Thus, ordinary users are unlikely

to know what the terms mean "Width" and "Height";

- meta-description of the parent control properties

(within the concept of the OOP) to be inherited by child

controls with the ability to override them (to avoid massive

duplication of descriptions and provide illustrative

descriptions).

2. The set of supported components to be dynamically
extensible:

- adding a new component must be clear to the user

without data addition in the database;

- format for storing information on the control and its

properties should be open – e.g., XML;

- .NET component of visualization must have clear

interfaces to implement the logic to display the incoming data

and, if necessary, entry of missing values on data service.

3. The UI components must support one of the possible
types of data binding:

- none binding: component is used only to display static

information and / or grouping other components;

- single binding: component displays only one parameter

of the system over time (e.g., reading a thermometer);

- multi binding: component displays multiple parameters

of the system over time (e.g., a graph with multiple

indicators).

4. All changes in the system should be applied at run time,
without recompiling the source code, using the principle of
WYSIWYG. In many systems, the interface is not the model is
interpreted at runtime, but only serves to generate user
interface code [6, 8].

It should be noted that the controls themselves, as well as
connected data sources, should be able to be dynamically
connected to the system without recompiling the source code.

V. PRESENTATION METADATA AND BINDING COMPONENTS

In EnergoWatcher technology, based on the interpretation
of interrelated metadata, user creates his own dashboard,
described by the metadata of presentation layer (Fig. 3). User
selects indicators what he wants to watch and sets their
configuration, using the means of creating a visual interface of
customizable panel in EnergoWatcher.

Figure 3. Two parts of presentation layer metadata

222 of 230

For the dynamic connection management components and

configuration UI presentation layer metadata is divided into

two levels: UI level and level of the interface components.

The UI level (see Fig. 3, classes without background)

describes the user's desktop: tree menu (menu items

MenuItems), and a lot of dashboards IndicatorPanel.

Dashboard is a collection of custom visual components

IndicatorControl, located in the hierarchy relative to each

other. Each component has its own internal serialized state,

which is used to saving and restoring the configuration user

interface. During system operation the visual components are

dynamically linked to the sources, the values in which come

from the server through a duplex channel.

Component level (see Fig. 3, green background) contains

meta-information about the components of imaging: an

indication of the type and assembly, in which the control is

located, as well as a list of descriptions of the component

properties. Meta-descriptions are stored in XML file, resulting

in the connection of new components takes place directly at run

time, besides the issues of descriptions localization and names

of configurable properties are resolved.

As mentioned above, the presentation model has a

connection with logical model. It provides binding UI

components to server sources. There are 2 kinds of objects in

the capacity of server sources: attributes and expressions (see

Fig. 4). Every time when the application starts, controls

establish communication with LightSource element. Server

metadata [1] of available sources is too heavy to be

transported to client, that’s why there is light representation of

them (it is realization of pattern “Data Transfer Objects”,

DTO).

Figure 4. Client metadata DTOs for data management

LightAttributeSource represent values of attribute
LightAttribute of instance LightEntityObject of entity
LightEntity. LightExpressionSource represent values of
expression instance LightExpressionObject of expression
LightExpression, which is computed on server. Actual data is
collected from server automatically using duplex mode of
service communication.

CONCLUSION

This paper proposes an approach to building monitoring
systems, based on an interpretation of metadata in real time.
The article describes presentation model of EnergoWather
system for building user interfaces in runtime by WYSIWYG
way.

At this moment system are being developed and it is
planned to product a prototype version of EnergoWatcher. It’s
need to implement set of subsystems:

- operations with event metamodel, including describing

specific events in domain specific language (DSL);

- straight connections to devices in real time using

standart transport protocols;

- data analizer for automatic recognition of leaks and

other emergency situations;

- services for supplying data, events and metadata to

clients;

The system was tested at the tenders U.M.N.I.K. and B.I.T.,
nowadays it is in developing state. It’s planned to integrate it to
municipal authorities and resource-demanding facilities and
provide the power consumption audit.

The proposed system focused on monitoring in order to
save own funds. First of all, it will be interesting to introduce
EnergoWather in small industrial and social facilities (schools,
hospitals, kindergartens), as well as other municipal property
objects. Generated software will analyze the dynamics of daily
energy consumption and compare it with historical state. So it
is possible to find an illegal consumption size as well as to
track the occurrence of abnormal situations.

REFERENCES

[1] V.A. Voronov, E. A. Kalashnikov, L.N. Lyadova Technology of
development of power consumption monitoring system // Proceedings of
the Congress on Intelligence Systems and Technologies “AIS-IT’10”.
Scientific publications in 4 volumes. Moscow: Physmathlit, 2010, Vol.
4.

[2] E. A. Kalashnikov Tools for creating dynamic dashboards of energy
consumption on the basis of related metadata models // III All-Russian
Student Research Forum (electronic conference,
http://rae.ru/forum2011/104/285).

[3] Joseph W. Yoder, Ralph E. Johnson: The Adaptive Object-Model
Architectural Style. WICSA, 2002, pp. 3-27.

[4] K. Czarnecki, U. Eisenecker Generative Programming: Methods, Tools,
and Applications. Reading, MA, USA, Addison-Wesley, 2000.

[5] E. A. Kalashnikov Caching in the systems for monitoring of energy
consumption // IV All-Russian Student Research Forum (electronic
conference, http://rae.ru/forum2012/219/2697).

[6] Ekkerson U. Performance Dashboards: Measuring, Monitoring, and
Managing Your Business. Moscow: Alpina Business Books, 2007.

[7] E. A. Kalashnikov Creation user interface in WYSIWYG way for
energy consumption indicators monitoring system. Math of software
system, Perm University, Perm, 2010, pp. 84-91.

[8] Mohan R., Kulkarni V. Model Driven Development of Graphical User
Interfaces for Enterprise Business Applications // MODELS'09
Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems. Springer-Verlag Berlin,
Heidelberg, 2009, pp. 307-321.

223 of 230

Development experience of ore extraction

and traffic simulation system in potash mines –

bundled software “Рудопоток”

Gleb Chudinov

Perm State National Research University

Perm, Russian Federation

e-mail: gleb.chud@gmail.com

E.B. Zamyatina (research supervisor)

Perm State National Research University

Perm, Russian Federation

Abstract— Development experience of ore traffic and extraction

simulation system in underground part of potash mines is

reviewed. Distinctive features of suggested simulation model

(combine complex extraction, using conveyor transport and

transfer point in continuous ore traffic simulation) are

represented. Implementation features of bundled software

”Рудопоток” are considered.

Keywords: simulation model, simulation system, potash, mine,

extraction, conveyor, ore traffic

I. INTRODUCTION

The final goal of potash mining company is increasing
extent of mineral production with simultaneous decreasing of
its expenses. Considerable contribution in total bottom-line
cost is endowed by ore extraction and transportation in mines’
underground parts. In connection with this problem of optimal
mining planning become urgent. It includes tasks for guaranteeing
minimal-required mineral content (quality), continual conveyor
workload and uniform ore arrival to shafts with total decreasing
transportation costs. Additional tasks for solving problem are
selection optimal sizes and places for bunkers in transfer points,
conveyor transport estimation, determination for transport scheme
and layer way of ore extraction.

Significant to note, classical task of statistical rough
estimation for combine complex production rates was
researched and solved in mining literature, example [1]. But for
interactively solving the problem (in dynamic) it needs
simulation. Though according to author investigations, also [2]
– most of complex models are from 1980s and technically
turned old because of computing machinery’ and information
technologies rapid development. Modern researches [3] are
devoted to coal mines and explore different aspects, laying
aside questions of ore quality composition, its extraction in
mining sites, and don’t take into account conveyor transport
specific and ore flow continuous nature.

The development of detailed simulation model and
simulation experiment for ore extraction and transportation in
underground part of potash mines and its software
implementation (bundled software “Рудопоток”) have been
progressing since 2008 year [4]. The project is elaborating in
Aerology and Thermal Physics Laboratory of Mining Institute

UrB of RAS and it includes the investigation results of
Computer Science Department[5] (Perm State University).

The paper demonstrates key features (generic aspects) and
main specific characteristics for developed program model
(via bundled software) of ore extraction (layered, heading-
and-stall method by combine complexes) and transportation
using conveyors and transfer points in underground part of
potash mines. Suggested model have been verified, validated,
calibrated and have been approved on transportation network
of mine БКПРУ-4. The methodologies for determination of
optimal parameters for transport equipment have been developed.

II. SIMULATION MODEL AND ITS FEATURES

Most of known models in freight (ore) flow [1], [2], [3] are
simplified or investigated only part of needful aspects. Often,
they don’t take ore mineral quality (composition) into account,
it’s impossible to manage conveyor speed and power
consumption and to optimize these parameters. Ore movement
on conveyors isn’t full and is performed without taking into
account the cross-sectional profile of the conveyor belt.
Mining sites are replaced with aggregates usually.

One of ways to solve the problem is to use agent oriented
paradigm in relation to simulation [6]. In this case simulation
model of ore extraction in mine is presented as an extended
object scheme for conveyor transport. Structure for the
transport network – blocks, conveyors, transfer points and
relations between them - is specified in program as user input
(Fig. 1).

Figure 1. Model of mine transport scheme – common components

224 of 230

Figure 2. Component structure of mining site (block)

User inputs parameters: belt width, length, speed; side
rollers angle of inclination and etc. – for conveyors. Transfer
points (TP) are equipped with discharge devices (DD) with
specified productivity for each. Mining sites are separated on
native parts – multiple layers and combine complexes (Fig. 2).
Each unit has its own characteristics. Model takes into account
combine complexes’ working order (plan), different equipment
types (models) and physical restrictions for them; also sizes and
frequency of stall and ore passes placement (layout); technical
and organizational idle times. All these parameters and some
others influence on simulation process and output results.

Important feature is ore transportation on conveyors with
layered holding (Fig. 3) and taking cross-section belt profile
(Fig. 4) into account. Model implements ore continuous flow
transportation process in discrete model (bunker filling and
emptying are subject to ratio of DD bandwidths and incoming
ore rates). It implements ore proportional unloading on
multiple conveyors according to realistic physical behavior
and constraints.

Figure 3. Ore width/height distribution on conveyor belt

Figure 4. Conveyor belt cross-section profile

Ore mass’ mineral composition quality are taken into
consideration, it’s computed during excavation process in mined
layers in block. Model keeps track of mineral content in the
cases of ore mixing in bunkers and as result of ore layering on
panel (magisterial) conveyors.

Methodology for computation average-required conveyor
productivity and minimal-required TP bunker volumes are
developed on the base of imitation experiments’ series on
calibrated model (natural measurements were executed for
defining accurate combine complex operations’ duration). This
methods use mean equipment workload for the time of all
simulations running (Fig. 5). Simulation engine takes optimal
value for each iteration, and maximum of them from
experiments series as final result for equipment.

Figure 5. Determination of mean ore mass along conveyor belt

III. HIGH LEVEL ARCHITECTURE VIEW OF “РУДОПОТОК”

SOFTWARE

Completed program implementation is interaction along
time among three main modules by areas of responsibility:
graphical interface (GI), data persistence and simulation model
(SM). In turn GI and SM are divided into lesser components.

Graphical interface ensures common user data editing
(definition of transport network structure and its main
components – blocks, conveyors and transfer points,
interconnections between them; parameters of model
equipment). Besides, after series of imitational experiments
results are displayed into diagrams of ore mass and its mineral
composition quality over time, and some others. Animation for
processes of ore extraction and transportation over all mine are
implemented on basis of received historical data from
completed experiments (Fig. 6).

Figure 6. Ore extraction animation on all transport network, blocks
disabled

225 of 230

Statistics gathering module is represented by classes for
aggregation and storing states of objects over time and
gathering statistical information after simulation completion.
Basis for optimization is data linearization, when only begin and
end of line sections are retained for linear-changing parameters
(removing intermediate points as unnecessary) (Fig. 7).

Figure 7. Ore extraction animation on all transport network, blocks
disabled

Simulation model consists of domain classes (Fig. 8), time
advancement system (scheduler) and statistics gathering
module. Domain implements main conception classes such as
block, conveyor, transferring point. Equipment behavior along
time (combine, self-propelled car) is simulated indirectly on
basis of state diagrams (work without outer influence) and
activity diagrams (equipment interaction, for example, ore
transfer). Time advancement system consists of scheduler,
where discrete event algorithm for time advancement with
constant and variable step (with possible sub steps) is
implemented.

Figure 8. Simulation model main components

IV. CONCLUSION AND EXPERIMENTAL RESULTS

Thus, object imitational model of ore extraction and
transportation in underground parts of potash mines is
developed. Its verification, validation and calibration have
been made. On model basis methods for estimation of
equipment optimal parameters (TP bunker volume, conveyor
belt bandwidth) are suggested and developed. Model was
implemented as bundled computation software “Рудопоток”,
which affords means for creating (building), running and
analyzing of transport networks (existing or only under
construction); animation for processes of ore extraction and
transportation in all over the mine in whole. Experimental
check has been accomplished on transport scheme for mine
БКПРУ-4 on 2010 year.

REFERENCES.

[1] Лыхин П.А. Добыча калийных солей. (In Russian)

URL: http://www.mi-perm.ru/authors/lyhin/b1_text.htm#s

[2] Панасюк И.И. Имитационное моделирование организации
рудопотока и управления затратами горнорудного предприятия:
дис. канд. экон. наук : 08.00.13 СПб., 2005, 263 с. (In Russian)

[3] Конюх В.Л. Имитационное моделирование системы подземного
транспортирования / В. Л. Конюх // Проблемы информатики, 2010.
- №3. - С. 43-53. (In Russian)

[4] Круглов Ю.В., Мальцев М.С., Чудинов Г.В. Имитационное
моделирвоание горных работ и рудопотоков в калийных рудниках
ОАО «Уралалий».// Горный журнал, 2011.- № 11 .- С. 20-22 (in Russian)

[5] Замятина E.Б., Чудинов Г.В. Разработка и использование
программных средств для построения и исследования агентных
имитационных моделей. / Е.Б. Замятина, Г.В. Чудинов // Вестник
пермского университета. Математика, механика, информатика,
2010, №2(2), C. 80 – 84. (in Russian)

[6] Macal C.M., North M.J. Agent based modeling and simulation / C.M.
Macal, M.J. North // In the Proceedings of the 2009 Winter Simulation
Conference, ed. Rossetti M. D., Hill R. R., Johansson B., Dunkin A.,
Ingalls R.G., 2009. P. 86-98.

226 of 230

http://www.mi-perm.ru/authors/lyhin/b1_text.htm#s

Research of methods for constructing message-passing interprocess communication

based system for railroad situation analysis

Daria Kobyakova
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

dskobyakova@gmail.com

Scientific Advisor: Prof. Sergey Avdoshin

Software Engineering School
National Research University Higher School of Economics

Moscow, Russia
savdoshin@hse.ru

Abstract—This paper briefly outlines the research of parallel

system constructing methods for railroad situation analysis

and emergencies prediction. Within the scope of the research

various paralleling method are considered and analyzed in

terms of application for railroad emergencies prediction.

Keywords: parallelism, emergencies prediction, real-time data

mining, exceedingly large volumes of data processing.

I. INTRODUCTION

Nowadays in railway cargo transportation area contingencies

such as crime, theft, locomotive breakdown emergencies are

controlled and regulated mostly by dispatcher’s offices. And in

most cases contingencies become known only after they have

happened, what results in the loss of money, time and client

confidence. The solution is to collect data both structured and

unstructured, originated from a wide variety of sources such as

cameras, sensors, news feeds, VoIP and traditional databases,

analyze and thereby identify and prevent possible contingency

situations or emergencies on the railways. It is clear that the

volume of such source data can be enormous and is estimated in

terabytes or even petabytes. In order to achieve effective and

timely processing of enormous volumes of data real-time and

with extremely low latency it is necessary to use parallel

algorithms and indeed it is critical to choose an appropriate

paralleling method. In this study various parallel system building

methods will be analyzed in terms of application in railway

situation analysis.

This work is being performed within the scope of the research

on the topic "Research and development of innovative unifying

models of intelligent systems for the situational response and

safety control on the Russian railways", state contract

07.514.11.4039 on September 26, 2011 at lot № 2011-1.4-514-

045 "Development of algorithms and software systems for

solving problems of exceedingly large scientific data sets storage

and processing and data streams collection in real-time" as part

of the federal target program activity 1.4 " Research and

development in Russian scientific-technological system 2007-

2013 evolution priority directions".

II. SPECIFIC TASKS AND OBJECTIVES OF THE

RESEARCH

A. Tasks

Main subtasks in my research include the following

steps:

• Identify kinds of situations to be predicted

On this stage of the research only one kind of situation is

considered: accident due to technical failure

• Generate data sets that are necessary for prediction

• Build a predictive model based on historical facts of

railway situations using special data mining software IBM

SPSS Modeler. The accuracy of predictive algorithm must be not

less than 75%.

• Identify type of parallelism that is typical of the task

and choose appropriate paralleling method. It is also

supposed that on this stage various paralleling methods will

be analyzed in terms of application for railway situation

analysis.

• Implement parallel predictive algorithm (parallel

algorithm development using special software IBM

InfoSphere Streams, testing, debugging).

Preprocessing data preparation steps, including refinement,

cleaning, aggregation and transformation are beyond the scope of

the paper.

B. Objectives

The result of the research is expected to be a parallel

algorithm targeted to analyze situations on the railways

particularly:

 Accident due technical failure

III. TYPES OF PARALLELISM

In different kinds of tasks the following types of parallelism

usually occur [6]:

• data parallelism

This type of parallelism is typical of tasks that include

the repeated execution of the same algorithm with different

input data. Such calculations can obviously be done in

parallel. If the problem has a parallel data, parallel program

should be organized as a set of identical programs, each of

which runs on its own processor from the main program.

Such a program is usually a coarse grained one. Paralleling

method based on data parallelism is called data

decomposition.

• functional parallelism

This kind of parallelism is based on different functional

blocks in an application. It can be split into separate

processing units, that communicate with a fixed number

other units in such a way that the output of one part serves as

the input of another part. Method of parallelization based on

functional parallelism is called functional decomposition.

• geometric parallelism

It requires that the problem space should be divisible

into sub-regions, within which local operations are

performed. The difference between the geometric

parallelism and data parallelism is that in the first one

subtasks of processing in each of the subareas must be

interconnected. Parallelization based on geometric

parallelism is called domain decomposition method.

• algorithmic parallelism

Stands for a type parallelism, which is detected by

identifying in the algorithm the fragments, which can be

performed in parallel. Algorithmic parallelism rarely

generates coarse-grained (large-block) parallel algorithms

and programs. The paralleling method based on this type of

parallelism is called algorithmic decomposition.
227 of 230

Fig. 1. Predictive model development process

• pipelined parallelism

This type of parallelism is typical of task in which input

data must go through several stages of processing. In this

case it is natural to use the pipeline decomposition of a task.

• «disorderly» parallelism

Often occurs in classes of algorithms where the possible

number of parallel branches and the computational

complexity are a priori unknown and depend on a specific

task.

IV. PARALLEL PREDICTIVE ALGORITHM

DEVELOPMENT

A. The process of model training

All information (data about precedents) required for the

model construction is going to be extracted from operational

sources to a special file containing of a table with facts

hereinafter referred to as full set. The rows in the table represent

precedents, and the columns are attributes of each precedent. In

the last column there are losses suffered as a result of each

situation. Then, in order to build accurate losses- prediction

model, two random samples from full set must be selected:

• training (learning) sample;

• control (testing) sample

Building the predictive model on the learning sample will

result in a certain function F, mapping X (a set of attribute values

for each precedent) to Y - the predicted value of possible losses.

Class of the function depends on the learning technique. Some of

such techniques are supposed to be considered during the

analysis:

• Logistic regression

• Neural Networks

• QUEST

• Decision-tree

• C&R Tree

To assess the quality of the obtained model it must be run on

the testing sample, then the predicted losses will be compared to

the actual damage by calculating special metric ROC, which

shows the accuracy of predicted values or average forecast error

[2]. However there is still the risk that the obtained error may be

strongly dependent on how the full sample has been split in

learning and control ones. Therefore, the next step should be so

called cross-validation. Cross validation is a statistical method of

evaluating and comparing learning algorithms that assumes that

full sample should be divided into subsets for training and

validation randomly multiple times [3]. 10-fold cross validation is

commonly used [4]. For each split must be calculated ROC. Then

averaging will be used in order to estimate prediction error of

each learning technique. The algorithm that comes out best

(minimal) average ROC is considered as superior to the other

one.

B. Parallelization in model training process

In the posed task parallelism occurs not only during real

situations prediction but also on the model developing stage.

1. Predictive model development

In real practice the size of the full sample is usually too large

therefore all the calculations can take a long time, what does not

meet the target of timely response. The solution is to compute

ROCs for each split in parallel. Thus data parallelism is typical

of the posed task as it includes the repeated execution of the same

algorithm with different input data. Algorithm parallelizing

should be performed using data decomposition method. The

process on the predictive model development will be organized

as a set of identical processes, each of which runs on his slave

processor from the main program that runs on the master

processor.

C. Predictive model selection

The initial set of features is as follows:

(<Part of the railroad>,< the average weight of trains passed

through the area over the past day>,< device 1 serviceability>,<

device 2 serviceability, temperature>)

We will train the model and select the most important for

prediction features simultaneously. Training of the models is

supposed to be carried on in 4 steps progressively complicating

the relationship among the data.

Step 1. Firstly it's necessary to generate the initial set of five

features. Dependencies should not be trivial, so assume that

information about the serviceability of the device 2 is not always

reliable (the device fails): sometimes the device 2 serviceability

indicates ―true‖, but really it has ―false‖. In 80% of cases with

such a failure railway accidents happen. The rest of the accidents

occurs due to unknown reasons. Failure of the device in 50% of

cases are due to too low or high temperatures. The remaining data

do not have any explicit dependencies. The results of training the

model on such data set are presented in table below.

According to the results decision tree algorithm will be

excluded of the further selection process, because it's results on

 Decision

tree

Neural

Networks

Logistic

regression

QUEST С&R

Tree

Training

accuracy

0.331 0.821 0.792 0.842 0.848

Testing

accuracy

0.333 0.815 0.787 0.829 0.837

228 of 230

the very first sample are unsatisfactory.

Step 2. On this step it's necessary to complicate the task of

modes learning by increasing the number of predictors. Select

most important for the prediction features from those available. In

almost any problem of forecasting the question arises: what signs

to use, and what not. The problem of features selection often

arises from the fact that at the stages of formulation of the

problem and the generation of data is not yet clear what the signs

are prediction-useless or duplicate each other. The challenge for

feature selection in its exhaustive search nature. If the number of

sign is n, the number of non-empty subsets of 2n -1. Direct

enumeration of all subsets is impossible if n is the order of 20

even in the most modern machines. Attributes synthesis (also

called features extraction) is the approach to reduce

dimensionality. It consists of finding a transformation of the

original feature space into a new space of substantially smaller

dimension. One of the well-known and frequently used methods

is the sequential addition of features - ADD method. This method

assumes adding to an existing set of one additional feature, and

the choice of ones, which leads to the greatest predictive error

decrease (or predictive model accuracy increase) on a testing

sample. It should be noted that the ADD method reduces the

complexity of brute force but sometimes it tends to include a set

of extra (noise) features. In our case, the duplication of features

can be neglected, because we have just the model of the real

situation so it's simplicity assumes the minimum number of data

set. All features available are:

(<Part of the railroad>, <average mass of trains passing

through particular sector per day>, <device 1 serviceability>,

<device 2 serviceability>, <temperature>, <device 3

serviceability>, <ware of contact wire>, <DISC - sensor

reading>, <maneuverable light signal>, <input light signal>,

<occupation intensity per day>).

 For best features selection, we take the predictive

algorithm, which showed the best results in the first step –C&R

tree.

After adding to the existing data set ―device 3 serviceability‖

feature algorithm re-training came up with following results:

 C&R Tree

Training acuracy 0.848

Testing accuracy 0.845

 Note that the accuracy of the model on the training set on

average has not changed, but the accuracy of prediction on the

testing sample increased. We conclude that this feature is not

excess and leave it in the set of predictors. The next feature that

we will check - the ―wear of contact wire‖. The result of the

experiment is shown in the following table:

 C&R Tree

Testing accuracy 0.875

Training accuracy 0.874

The results indicate that this predictor is surely quite

informative so leave it in the sample too.

After the sequential adding of the next 5 features the accuracy

was practically unchanged, but after adding station battery

indicator feature, the prediction accuracy was reduced, so this

feature will not be considered in further process of algorithms

training. Final sample get the following attributes:

(<Part of the railroad>, <average mass of trains passing

through particular sector per day>, <device 1 serviceability>,

<device 2 serviceability>, <temperature>, <device 3

serviceability>, <ware of contact wire>, <DISC - sensor

reading>, <maneuverable light signal>, <battery voltage>,

<input light signal>, <occupation intensity per day>).

The results of the re-training on the obtained sample are as

follows:

 Neural Networks Logistic

regression

QUEST C&R Tree

Training

accuracy

0.862

0.790 0.849 0.875

Testing

accuracy

0.857 0.786 0.848 0.875

Logistic regression came up with less accuracy than on the

previous step. Since the following training stages are supposed to

have more complex relationships this model will not be

considered.

Step 3.Then complicate our relationships, and suppose that an

accident occurs in only 50% of the device 2 failures, other

emergencies do not have explicit dependencies.

Step 4. On the last step of models learning assume that 50%

of cases when the device 2 fails, and the maneuverable light

signal is "blue" (prohibitive), an accident occurs. The remaining

data dependencies are not explicit.

 Neural networks QUEST C&R Tree

Training

accuracy

0.884 0.892 0.928

Testing

accuracy

0.886 0.890 0.926

 Neural networks QUEST C&R Tree

Training

accuracy

0.932 0.949 0.874

Testing

accuracy

0.928 0.947 0.849

229 of 230

 As a result of 4-step models training on available data set, the

algorithm showed the best result is QUEST. That's why It is

selected for export in the Streams application as a scoring

operator.

D. Railroad situation analysis system parallelism

After predictive model is selected and trained it should be

translated into InfoSphere Streams application as a user-defined

scoring operator for real-time processing of exceedingly large

sets of raw data. This raw data is expected to come from various

sources such as cameras, RFID sensors, GPS sensors, etc. and be

assimilated by Streams. Then initial data will be filtered and

divided into several sets each for specific kind of situations to be

predicted. This is algorithmic parallelism therefore dividing into

3 parts is referred to as algorithmic decomposition. On this stage

of research only one kind of emergency is considered. Since the

supposed volume of raw data is enormous, even after dividing it

into 3 parts we will still have the bottleneck problem as the size

of data for the particular situation can still be too large to meet

the target of timely response. In order to avoid this problem data

decomposition need to be applied - data need to be split into

smaller parts depending on the part of the railroad after that it

will proceed to the scoring operators distributed among different

processing nodes. Each kind of emergency of course requires it’s

own set of features, therefore there must be different predictive

model (scoring operator) for each one. Thus we have that data

parallelism is nested in algorithmic parallelism.

Fig. 2 Railroad situation analysis system parallelism

Parallelism pattern in Infosphere Streams application can be

implemented using special operator Split. The Split Operator is

used to split an input stream into various output streams. These

output streams typically route each tuple based on Attribute

characteristics.

V. DEVELOPMENT TOOLS

The predictive model will be elaborated with the use of the

special data mining software IBM SPSS Modeler.

For parallelization will be used IBM InfoSphere

Streams.IBM InfoSphere Streams is a software platform that

intended for the development and execution of applications,

processing data streams in parallel [5].

The platform provides:

 Streams Processing Language (SPL) consisted of a

programming language interface that enables end- users

operating on data streams and runtime framework that can

execute the applications on a single or distributed set of hosts in

parallel. Streams runtime implements its own message-based

interprocess communication model [6] but enables to create

applications without needing to understand the lower-level

stream-specific operations.

 An integrated development environment (IDE) for

Streams applications. Integrating SPSS Model Scoring in

InfoSphere Streams makes possible leveraging the powerful

predictive models in a real-time scoring environment.

CONCLUSION

According to the research by company DISCOVERY

Research Group at the present time in Russia 83% of cargo

transportation accounts for the railways. That’s why railways

security is a key priority for the Russian Government for many

years ahead [7]. However current technologies are unable to

support predictive detection and prevention of emergencies on

railways due to extra large volumes of data and due to the lack of

technical means for intellectual data mining in real time. The

research conducted by IBM along with NRU-HSE within the

state contract is targeted to facilitate russian intellectual rail

transport system development.

REFERENCES

[1] Karpenko, A. Parallel computing. Retrieved January 29,

2012, from Bauman’s MSTU educational base website:

http://bigor.bmstu.ru

[2]Wikipedia, Free Encyclopedia, Mean absolute percentage

error. Retrieved March 3, 2012, from Wikipedia website:

http://en.wikipedia.org/wiki/Mean_absolute_percentage_error

[3] Liu, Ling & Ozsu, M. Tamer (Eds.) (2009). Cross

Validation. Encyclopedia of Database Systems

[4] McLachlan, Geoffrey J. & Do, Kim-Anh & Ambroise,

Christophe (2004). Analyzing microarray gene expression data.

Wiley.

[5] Ballard, C. & Farrell, D. & Lee, M. & Stone P. &

Thibault, S. & Tucker, S. (2010). IBMInfosphere Streams:

harnessing data in motion (pp. 128-130). Texas: IBM

International Technical Support Organization.

[6] IBM Corporation. Transport options. Retrieved March

25, 2012, from IBM InfoSphere Streams Information Center:

http://publib.boulder.ibmcom/infocenter/streams/v2r0/index.j sp

[7] Avdoshin, S. & Gorbatovskiy, M. & Chernov, A. (2011).

The concept of the of situational response and modern russian

railways safety intellectual system. Business-informatics,

4(18), 8-15.

230 of 230

http://www.ibm.com/developerworks/views/data/libraryview.jsp?search_by=Integrating+SPSS+InfoSphere+Streams
http://www.ibm.com/developerworks/views/data/libraryview.jsp?search_by=Integrating+SPSS+InfoSphere+Streams
http://bigor.bmstu.ru/
http://en.wikipedia.org/wiki/Mean_absolute_percentage_error
http://publib.boulder.ibmcom/infocenter/streams/v2r0/index.j

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

