
Getting Software Engineering out of Isolation
(Invited Paper)

Peter Gorm Larsen and Joey W. Coleman
Aarhus University

Department of Engineering
Finlandsgade 22, DK-8200 Aarhus N, Denmark

e-mail: {pgl,jwc}@iha.dk

John Fitzgerald
Newcastle University

School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK

e-mail: John.Fitzgerald@ncl.ac.uk

Abstract—We argue that the main challenges to be overcome in
developing future generations of IT-enabled products and services
lie not so much in the software engineering discipline itself as in
the collaborative relationships that software engineers have with
other disciplines. We briefly review the need for more emphasis
on multi-disciplinary approaches and consider three classes of
demanding system: embedded products, systems-of-systems and
cyber-physical systems. In each of these areas, we argue that
there is a need for engineering with formal semantic bases that
enable joint modelling, analysis and simulation of groups of
heterogeneous models.

Index Terms—Formal methods, multi-disciplinarity, modelling,
simulation, systems-of-systems, cyber-physical systems, embed-
ded systems

I. INTRODUCTION

The discipline of “software engineering”, the origins of
which are traceable to the NATO conferences of the late 1960s,
emerged from a perceived need for a well-founded discipline
underpinning a technical response to a software crisis [1],
[2]. Unfortunately, the success rate of software development
projects is still far from ideal [3], [4]. We would speculate
that the rise of software engineering as a separate discipline
has brought a real risk that software developers are distanced
from the other engineering disciplines involved in product
development. It almost seems a truism to say that software
engineers need to understand well the system in which their
product will operate, but the separation of engineering teams
and phases in development still militates against this. The
growth in embedded systems, and in networked integrations of
software-rich systems, makes it imperative for software engi-
neers to find ways of developing systems collaboratively with
disciplines that may use quite radically different modelling and
analysis techniques. This implies global system models that
encompass cyber and physical elements, enabling the analysis
and trade-off of decisions across the boundaries between these
domains.

The mono-disciplinary nature of most engineering edu-
cations contributes to the challenge here. Graduates trained
as experts in one single discipline may have difficulties in
understanding stakeholders from different disciplines and the
challenges that they face. As a result, solutions that are glob-
ally optimal from a system-wide perspective are not reached
because modelling and analysis work tends to focus on mono-
disciplinary optimisation. There is a need in our education

system to ensure that students get at least a feel for the
significant design parameters from other disciplines.

One example of such an opportunity for collaborative
engineering is between control and software engineering.
Modelling embedded systems that are intended to affect the
physical world is a significant challenge [5]. Models of the
physical world often involve differential equations that de-
scribe how the world changes over time; these models are
based on continuous mathematical domains. Models of digital
controllers –often software-based– usually do not reference
time at all and instead treat the model of the controller in
terms of discrete events that trigger specific reactions from the
controller; these models are based on discrete mathematical
domains [6]. In order to be able to appropriately balance
concerns from control engineering with software engineering
and taking potential faults into account a common model that
can be analysed is needed [7]. The challenge can be further
extended when different systems can provide added benefits
for its users by interaction with other systems. There is a new
emerging discipline for the proper engineering of such System
of Systems (SoSs). Here the challenges cannot be solved using
software engineering or system engineering principles alone.
The scaling here gives new research challenges that clearly
can get inspiration from existing engineering disciplines but a
multidisciplinary approach is necessary again.

In this paper we look at the need for multidisciplinarity
in engineering education in Section II. In Section III, we
focus on how software engineering aspects might be combined
with consideration of the physical world surrounding software.
Section IV discuss scaling software development up to the
level of “Systems-of-Systems”. Section V takes this further
on to cyber-physical systems that have aspects of both em-
bedded systems and systems-of-systems. Section VII provides
concluding remarks and identifies future research directions
aiming at getting software engineering out of isolation.

II. MULTIDISCIPLINARY ENGINEERING EDUCATION

Most university studies are highly specialized within a sin-
gle discipline –to the point of being strictly mono-disciplinary
at some universities– in order to impart a sufficient depth of
skill to the students. This approach is true of most European
universities and many North American institutions as well.



As a contrast, there are universities, mostly in North Amer-
ica though some are in Europe, that follow the liberal arts
tradition. These institutions require that students take courses
from outside of their chosen discipline. This applies mostly
to programs offered at the Bachelour’s level, as Master’s level
degrees remain specialized even at liberal arts institutions.

At all levels of education, however, it is important that
the students have some significant exposure to challenges and
terminology from other disciplines [8]. Without this exposure
there is a substantial risk that students starting their careers will
face challenges in understanding and collaborating with peers
and stakeholders from different disciplinary backgrounds. The
question is how to best prevent this situation from happening,
and how to provide the appropriate tools for students to over-
come this situation when it does occur. Practical experience
suggests the direction of a broader answer to this question.

A summer school with the aim of providing students with a
multi-disciplinary angle to their studies has run since 2008 in
Denmark, in collaboration with Bang & Olufsen [9]. The sum-
mer school is entitled “Conceptual Design and Development
of Innovative products”. Students with different disciplinary
and cultural backgrounds are combined in mixed groups. Each
group then receives assignments that require them to use their
combined skills to solve it appropriately. This requirement
for collaboration is rooted in problem-based learning princi-
ples [10]. The results of delivering this summer school series
has been so successful that the idea is being exported and
expanded with a similar summer school in China in 2012.

A similar multidisciplinary summer school for PhD students
was delivered for the first time in Portugal in 2012, titled “In-
novation and Creativity for Complex Engineering Systems”.
Here the focus was more on producing multidisciplinary
research plans. This summer school is also project-based but
more teacher-led lecturing was included to give the students a
better understanding of specific topics, such as how to write
multidisciplinary research plans.

The challenge is to get such stand-alone events incorporated
into the standard curriculum used in (engineering) educations
such that all students get exposed to this kind of experience
during their studies. We believe that a first start of this is
to ensure that all (engineering) students get a joint course
on system engineering [11]. However, we believe that col-
laboration across disciplines and respect for the challenges in
other disciplines will only fully be achieved if the students try
to solve multi-disciplinary assignments in multi-disciplinary
groups.

In the spirit of the liberal arts traditions seen in Bachelor’s
education, we would ultimately like a similar “technical arts”
tradition for specialist Master’s degrees. This is most important
for those programs whose topic inevitably leads to cross-
disciplinary collaboration. This proposal is not to introduce
a “general science year” into the curricula, but rather to
ensure that the graduates of specialist Master’s programs have
significant exposure to the terminology and challenges of other
scientific disciplines.

The incorporation of a stand-alone multidisciplinary project

course –tacking problems that require input and skills from
many disciplines– into the regular curriculum is a first step
towards a technical arts tradition. The main challenges for
implementing these courses are mainly of practical adminis-
tration since such courses typically need to be coordinated
between different disciplinary studies and across different
departments. However, if it was successfully implemented the
students would get out of isolation of their own discipline and
as a consequence be much better at solving more complicated
challenges at the general system level when they would enter
their professional careers.

III. EMBEDDED SYSTEMS

An embedded system is a computer system designed for
specific control functions within a larger system, often with
real-time computing constraints [12]. It is embedded as part
of a complete device often including hardware and mechanical
parts and typically with less interface towards human users.
By contrast, a general-purpose computer, such as a Personal
Computer (PC), is designed to be flexible and to meet a wide
range of end-user needs. Embedded systems control many
devices in common use today.

The DESTECS project1 has taken a first step in the di-
rection of crossing between different disciplines necessary in
the embedded control domain [13]. This project addresses
collaborative, multidisciplinary design of embedded systems
using methodology and tools that promote rapid construction
and evaluation of well-founded system models.

One of the main impediments to the design of embedded
real-time control solutions is the separation of engineering
disciplines. While control engineering typically uses tools
operating on Continuous-Time (CT) models, software engi-
neering is founded on Discrete-Event (DE) models. In order
to evaluate alternative designs and support early defect analysis
or correction, it is essential that engineers collaborate across
disciplines in short windows of opportunity [14], [15]. Model-
based approaches provide a way of encouraging collaboration,
but engineers need to jointly perform design evaluation and
analysis using models expressed in different tools. These tools
should reflect the relevant aspects of the design in a natural
way, but also allow consistent, rapid analysis and comparison
of models. Achieving this requires advances in CT modelling;
formal DE modelling of controllers and architectures; fault
modelling and fault tolerance; and open tools frameworks.
These various advances are the aim of the DESTECS project.

An Example: Train Carriage Braking

It is simply impossible to develop a useful controller without
close interaction between the disciplines of control engi-
neering, software engineering, mechanical engineering and
electrical engineering. Each of these will have their own estab-
lished modelling techniques and formalisms. As an example,
consider the development of software for controlling the speed
of railway carriages by applying the brakes. Associated with

1“Design Support and Tooling for Embedded Control Software”
http://www.destecs.org



each carriage, control software takes account of environmental
conditions (e.g. current speed, temperature, friction etc.) and
fixed design parameters (e.g. number and position of wheels,
mass of the carriage etc.) in order to determine how best to
apply the brakes on command from the driver or safety unit. It
only makes sense to talk about the behaviour of this software
in the context of the product of which it is a part – the railway
carriage as a whole.

Imagine one scenario for the development of the braking
system. Well-established control laws for this type of brak-
ing system are developed using tools based on continuous
time models (perhaps using numerical solutions to differential
equations as a simulation). These laws are passed to software
developers who discover that the laws cannot be directly
implemented on the processors available because certain cal-
culations necessary for processing the data from the sensors
cannot be completed quickly enough within the processor
schedule. By this stage in the development process it may be
too late to modify the carriage design, or use alternative and
better sensors. The CPUs for the controller software will often
have been fixed and even purchased some time previously,
so they cannot be replaced with faster processors. The only
remaining option may be to modify the schedule running on
the processor, so that some other functionality affecting less
critical functions, like the smoothness of the ride, for example,
have to be rescheduled, compromising performance and the
quality of the product. In practice, there can often be a slow
iterative process in which control laws are re-engineered and
re-implemented several times before a compromise is reached,
reducing time to market.

Fig. 1. A 20-sim model of a train carriage braking built from bond graphs
and iconic diagrams.

If the developers could model the control laws collabora-
tively and at the same time as the software, some of these diffi-
culties might be reduced. For example, an alternative choice of
sensor might be made, replacing the original design with one
that does pre-processing of the data, and this could be checked
out and evaluated at the modelling stage. In DESTECS, we
build such collaborative models (co-models) which represent
the semantic integration of the software design, based on DE
computation models in VDM, with the CT models of the plant
and control laws in a bond graph formalism supported by the

20-sim environment (see Figure 1). For our example, such a
co-model would contain:

• A CT model encompassing the wheels of the carriage,
their friction and force linkages to the track, and the
braking mechanism itself.

• A DE model of the control software, including the main
control loop. This may also include the supervisory
control software which manages system functionality a
level above the loop control, including the switching of
modes, error detection and recovery. In our experience,
supervisory control accounts for 80% of the software
content of an embedded product, and can be a greater
source of potential defects than the loop controller itself.
The DE model can readily be expressed in VDM with its
real-time extensions. In our example, supervisory control
might be responsible for switching alternative control
laws into force if the temperature of the brakes exceeds
a certain value, or invoke emergency braking modes if
signalled to do so from the train driver’s cab.

• An interface (in DESTECS this is termed the contract)
between the two models defining the shared design
parameters that both sides need to know, the shared
variables that are monitored or controlled and any events
of interest. Events are logical predicates that may cause
the simulation of the CT-side model of the plant to be
interrupted in order so that a response can be generated
by the controller (for example if a sensed value crosses
a threshold).

The question of where to place the models of sensors and actu-
ators is interesting. In many cases it is appropriate to describe
them “CT-side”, but digital control might sometimes suggest
placing them DE-side. The co-model as a whole presents an
interface to a co-simulation engine that allows the CT and DE
models to be executed together. The co-simulation engine im-
plements a reconciled operational semantics of the two models,
managing the synchronisation of time and state between them.
The co-simulation can proceed under the control of a script
that implements a particular scenario in terms of the actions of
the environment (for example in raising a braking signal), and
the invocation of fault models that may be built in to the DE or
CT models. The exploration of the space of design alternatives
is enabled by such co-simulation. Multiple scenario-based tests
can be used to assess the performance of either alternative
plant or controller designs. In our example, this could include
an assessment of alternative numbers and configurations of
sensors (modelled CT side) with a appropriate changes of
control loop (DE-side). Being able to perform design space
exploration at an early stage is the essence of successful
system design, and the example emphasises the extent to
which this is a multi-disciplinary activity enabled by software
engineers work in collaboration with others, and certainly not
alone. The challenges that remain in such cross-disciplinary
assignments are much more complex and important to tackle
than those that remains inside software engineering itself.



IV. SYSTEMS-OF-SYSTEMS

Modern network technologies are enabling the integration
of pre-existing computing systems into “Systems-of-Systems”
(SoS) that together deliver a service that the constituent sys-
tems could not offer alone [16]. Examples include emergency
response systems formed from the coalition of information
systems of the response services such the ambulance, hospital
and fire services. The public who expect responsive emergency
services may demand confidence that the SoS will deliver
safe, rapid and secure transfer of patient data between these
systems. Examples on another scale might include the audio-
video ecosystem in a home in which digital content is streamed
from multiple sources to multiple users via a range of systems
provided by different manufacturers. The customer experienc-
ing the SoS expects to have a consistent experience (such as
a common playlist) as they move through the ecosystem from
device to device. The manufacturers of the devices also need to
demonstrate that they will respect the digital rights agreements
in force for the content as it is played through their devices,
even though they may be delivered through another system in
the SoS.

While embedded systems are often characterised by closed
loop control, SoS are more general, are distributed, and
typically have more human interaction. The distinguishing
characteristics of SoSs are:

• Operational independence: A SoS is formed by het-
erogeneous constituent systems, many of which may not
have been originally designed for participation in the SoS.
They may be described using a wide range of methods
and require modification, for example, through wrapping
or linking interfaces, in order to achieve integration

• Managerial independence: The constituent systems may
be managed independently and so can change function-
ality or character during the life of the SoS in ways that
are not foreseen when they are originally composed.

• Distribution: Constituent systems may be distributed
and decoupled, and yet a communications infrastructure
should support the protocols necessary to facilitate coor-
dination between them.

• Evolutionary development: The independence of con-
stituent systems means that the SoS changes over time to
respond to changing goals or component characteristics.

• Emergence: SoSs exhibit behaviour that their compo-
nents do not exhibit on their own.

In a rather conventional view of software engineering,
software systems are constructed in a highly directed way
by teams who are usually within the same organisation, and
who (at least on paper) have a shared understanding of the
goals of the system being developed. The components can
be designed to use carefully defined interfaces that violate
their independence by revealing data and services in order to
manage their collaboration. The operational and managerial
independence characteristics mean this is not the case. One
category of SoS (“directed” SoS [17]) does allow for a master
that has the power to get owners of other constituent systems

to adapt to their wishes, but SoS that adhere to this structure
are comparatively rare. In general, the characteristics listed
above pose major challenges to conventional “closed” software
engineering methods if we wish to develop SoS that are de-
pendable. Independence means that developers can have only
limited knowledge of, and confidence in the likely behaviour
of constituent systems. Distribution (in some cases also mo-
bility) can compound the difficulty of gaining confidence
in concurrent behaviours. The need to manage evolutionary
development means that some ability to cope with change must
be built-in. Above all the reliance on emergence means that the
verification of global SoS-level behaviour must follow from
the composition of the behaviours of individual constituents.
As our emergency response and audio-video examples show,
in practical terms, SoS Engineering is challenged by the large
number and range of stakeholders (the owners and operators of
the constituent systems as well as the users who experience the
SoS as a whole). Here again, software cannot be developed in
isolation and thus software engineers need to be able to think
in a SoS setting where they cannot control all parts.

The COMPASS2 project that aims to develop systematic
engineering principles that are applicable to SoS design,
including the scaling-up of modelling and validation tech-
niques from a formal methods to address the SoS challenges.
COMPASS is defining the first formally based modelling
language specially designed to target the SoS area [18]. The
challenge of constituent system independence is addressed by
recording contracts that express our limited knowledge about
constituents, constraining, but not completely prescribing, their
range of behaviours. Global SoS-level properties are verified as
the composition of the properties guaranteed in the constituent
system contracts.

Example: Interoperable Train Carriage Systems

An important objective of development work in the rail
sector is to increase the interoperability of railway equipment
such as carriages from different suppliers, so that it becomes
possible to mix them in the same “set” or train, for example
by coupling trains from different railway systems at national
borders, to form larger trains.

A train made up from a heterogeneous collection of com-
ponent carriages is a form of a SoS, and Figure 2 gives a
partial representation of this. The constituent systems are the
information and computing systems in each carriage. These
constituents were not necessarily designed with the intention
of being in a mixed set, and they will generally be running
software that is managed and upgraded by suppliers who
are independent of each other. They are networked in the
train and geographically distributed, and the software in each
manufacturer’s carriage can change with time. In spite of
all this, we expect them to deliver a consistent emergent
experience to the passengers on board. The developers of
train systems are unlikely to subjugate their own corporate

2This is an acronym for “Comprehensive Modelling for Advanced Systems
of Systems”.



goals to those of the SoS, so this is not a “directed” SoS. We
would not risk simply plugging carriages together, so some
level of explicit cooperation is needed, even at the level of
ensuring data transfer, so this is not a “virtual” SoS either [16].
Rather, depending on the degree of explicit cooperation, it is
an “acknowledged” or a “collaborative” SoS.

Control bus

Engine

Carriage 1

Carriage 2
Doors

...

Fig. 2. Diagram of a system of train carriages.

A model of this SoS contains contractual descriptions
for each of the services offered at the boundaries of each
carriage and other constituent systems. Such contracts involve
assumptions and guarantees. For example, the contract on a
door locking service of a constituent system might record a
guarantee to lock the doors within 3 seconds of receiving
a specified signal; the assumption might be that the signal
comes with a valid carriage identifier. Contracts also record the
constraints on interaction behaviours, recording for example
that a “Lock the doors” command is acknowledged once the
doors have been locked, or a special response denoting failure
if the locks did not work. Furthermore, the door locking
services of all carriages must communicate with the control
bus on each carriage, and each carriage’s control bus must
cooperate with the busses on connected carriages and with the
control system in the engine.

In COMPASS, we work on formalisms for contracts that
support the description of both functional and interaction
behaviours. Verifying a global property, such as the fact that
all of the train’s doors will be locked, or failure acknowledged
within a specified time, should follow from the contracts of-
fered by the constituents. For such a SoS we require not merely
that data should be syntactically compatible between units, but
that there should be a semantic mapping, so that “Lock the
doors!” is interpreted in similar ways in all carriages of the
train. In SoS engineering, as in embedded systems, software
engineers have to deal with heterogeneity of systems and
models, and cannot confine their analysis to mono-disciplinary

approaches. This again provides a need to think outside the
isolated software engineering discipline.

V. CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems (CPS) are integrations of multiple
computing and physical processes, with the potential to design
and adapt both computing and physical elements to improve
efficiency and resilience of the system as a whole [19], [20].
This encompasses the conventional control systems which
typically are represented in a static setup. However CPS can
also be seen in increasingly dynamic settings. Examples of
mobile cyber-physical systems include applications to track
and analyse Carbon Dioxide emissions [21], detect traffic
accidents and provide situational awareness services to first
responders [22], measure traffic [23], and monitor cardiac
patients [24].

The engineering challenges associated with developing
dependable CPS combine those of embedded systems and
systems-of-systems. The ultimate goal here is to be able
to analyse trade-offs of design alternatives that cross the
boundaries between cyber and physical elements, as with em-
bedded systems, but also between multiple cyber and multiple
physical elements. As with SoS, the integrator has only limited
knowledge and confidence about the constituent computing
and physical elements, so these can only be modelled in
contractual terms. In a CPS setting, we need to consider
a range of interfaces between physical and cyber elements,
including force or other physical phenomena, and not merely
data. Indeed, the field of rigorous engineering methods for
dependable CPS is still in its infancy [25].

Example: Controlling the Train!
In our multi-carriage train example, the SoS formed by

distributed control of the diverse carriage braking systems
forms a CPS. Developers requiring to verify that braking
commands will result in the train speed reducing within a
specified distance or time need to consider the multiple cyber
control elements in the constituent carriages, and their different
capabilities, as well as the effects of braking on the train
physics. In this latter aspect, the physical elements have an
influence on one another through the braking force of the
train. Aside from verifying safety-related properties, having a
CPS multi-model based on a number of networked co-models,
allows us to analyse properties such as energy consumption
in different operating scenarios. The kinds of design trade-
off that might be considered are variations in the braking
command parameters sent to different carriages to take account
of their physical differences as well as the differences in their
control characteristics. Aside from the multiple co-modelling
involved, there is a significant amount of research to be done in
visualisation of scenario outcomes, and the associated support
for design space exploration, in such a complex system.

VI. RELATED WORK

The ideas presented here build for example on advances
in embedded systems design and fault modelling. In the em-
bedded sector, BODERC [26] developed a method to predict



performance of real-time control systems, albeit with little tool
support for trade-off studies or co-simulation. Modelica [27] is
an object-oriented, equation-based multi-domain language for
simulating controlled physical systems, and provides source
libraries of physical components similar to the approach taken
in the DESTECS project. Approaches to co-simulation of
discrete-event and continuous-time models have been defined
by Nicolescu et al. [28]. Ptolemy II [29] offers both discrete-
event and continuous-time simulation within a single tool,
though lacking the object-orientation offered by VDM and
the component libraries offered by 20-sim. Work on time
synchronisation between DE and CT models is described in
hybrid systems literature, for instance, Cassandras et al. [30].
The DESTECS approach is distinctive in including a rich but
abstract DE-side modelling language, and in managing co-
simulation of heterogeneous models in their “native” tools.

Collaborative modelling is essential in both SoS and CPS
engineering. Several approaches to collaborative modelling are
described by Renger et al. [31]: problem structuring methods
focus on the decision-making process including simulation
for scenario exploration; group model building takes extends
the conceptual model to simulation models to explore differ-
ent options; enterprise analysis focuses on models that are
built collaboratively. Our work is focussed on collaborative
construction of models that are then used to explore design
options.

VII. CONCLUDING REMARKS

Software engineering is a maturing discipline with sound
scientific foundations, a range of methodologies, increasingly
robust tools, and a wealth of experience. However, in this
paper, we have argued that the complex products, solutions
and services developed in the future, and the levels of depend-
ability that they demand, require a more multidisciplinary and
collaborative approach. This has consequences for software
engineering technology, for formal methods themselves, and
for training and education, all of which need to cross an
increasingly broad range of disciplines and modelling types.

Our experience in the DESTECS and COMPASS projects
has been a first small step in this direction. There remain
opportunities for significant advances in modelling technol-
ogy, including the areas of semantics, tool support, design
space exploration, methodology and model management. The
need to package relevant research results as industry-ready
methods and (open) tools is paramount. We hope that the
ideas presented in this paper will cause more researchers to
carry out their research in software engineering in a larger
context in order to have a more significant impact on the
actual development of software-based systems in industry.
Hopefully there will be fruitful collaborations for this kind
of multidisciplinary research.

ACKNOWLEDGEMENTS

Both the DESTECS and the COMPASS projects have been
supported by the European Commission under the 7th Frame-
work programme. We would like to thank our collaborators

from the DESTECS and COMPASS projects for their work
to make the joint visions become reality. Finally we would
like to thank Nick Battle, Carl Gamble and Claus Ballegaard
Nielsen for providing valuable input on drafts of this paper.

REFERENCES

[1] P. Naur and E. B. Randell, “Software Engineering: Report on a Confer-
ence sponsored by the NATO Science Committee,” garmisch, Germany,
7th to 11th October 1968, Brussels, Scientific Affairs Division, NATO,
January 1969.

[2] W. W. Gibbs, “Software’s Chronic Crisis,” Scientific American, pp. 72–
81, September 1994.

[3] The-Standish-Group, “The Chaos Report,”
http://www.projectsmart.co.uk/docs/chaos-report.pdf, 1995.

[4] J. Johnson, My Life Is Failure: 100 Things You Should Know to Be a
Better Project Leader. Standish Group International, 2004.

[5] T. Henzinger and J. Sifakis, “The Discipline of Embedded Systems
Design,” IEEE Computer, vol. 40, no. 10, pp. 32–40, October 2007.

[6] A. Tiwari, N. Shankar, and J. Rushby, “Invisible Formal Methods for
Embedded Control Systems,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 29–39, January 2003.

[7] M. Verhoef, “Modeling and Validating Distributed Embedded Real-Time
Control Systems,” Ph.D. dissertation, Radboud University Nijmegen,
2009.

[8] S. Jahanian and J. M. Matthews, “Multidisciplinary Project: A Tool for
Learning the Subject,” Journal of Engineering Education, April 1999.

[9] P. G. Larsen, J. M. Fernandes, J. Habel, H. Lehrskov, R. J. Vos,
O. Wallington, and J. Zidek, “A Multidisciplinary Engineering Summer
School in an Industrial Setting,” European Journal of Engineering
Education, August 2009.

[10] D. L. Maskell and P. J. Grabau, “A Multidisciplinary Cooperative
Problem-Based Learning Approach to Embedded Systems Design,”
IEEE Transactions on Education, vol. 41, no. 2, pp. 101–103, May
1998.

[11] R. Stevens, P. Brook, K. Jackson, and S. Arnold, System Engineering
– Coping with Complexity. Pearson Education, 1998, vol. ISBN 0-13-
095085-8.

[12] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design, Modelling Synthesis and Verification. Springer, 2009.

[13] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic,
K. Pierce, and W. F., “Design Support and Tooling for Dependable Em-
bedded Control Software,” in Proceedings of Serene 2010 International
Workshop on Software Engineering for Resilient Systems. ACM, April
2010, pp. 77–82.

[14] J. Fitzgerald, P. G. Larsen, K. Pierce, M. Verhoef, and S. Wolff, “Collab-
orative Modelling and Co-simulation in the Development of Dependable
Embedded Systems,” in IFM 2010, Integrated Formal Methods, ser.
Lecture Notes in Computer Science, D. Méry and S. Merz, Eds., vol.
6396. Springer-Verlag, October 2010, pp. 12–26.

[15] J. Fitzgerald, P. G. Larsen, K. Pierce, and M. Verhoef, “A Formal
Approach to Collaborative Modelling and Co-simulation for Embedded
Systems,” To appear in Mathematical Structures in Computer Science,
2012.

[16] M. W. Maier, “Architecting Principles for Systems-of-Systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[17] J. Dahmann and K. Baldwin, “Understanding the Current State of
US Defense Systems of Systems and the Implications for Systems
Engineering,” in IEEE Systems Conference. IEEE, April 2008.

[18] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry, “Features of CML: a Formal Modelling Language for Systems
of Systems,” in The 7th International Conference on System of System
Engineering, July 2012.

[19] J. White, S. Clarke, C. Groba, B. Dougherty, C. Thompson, and D. C.
Schmidt, “R&D Challenges and Solutions for Mobile Cyber-Physical
Applications and Supporting Internet Services,” J. Internet Services and
Applications, vol. 1, no. 1, pp. 45–56, 2010.

[20] E. Lee and S. Seshia, Introduction to Embedded Systems, A
Cyber-Physical Systems Approach. University of Berkley:
http://LeeSeshia.org, 2011, iSBN 978-0-557-70857-4.



[21] J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Har-
rison, and J. A. Landay, “UbiGreen: Investigating a Mobile Tool for
Tracking and Supporting Green Transportation Habits,” in Proceedings
of the 27th international conference on Human factors in computing
systems, ser. CHI ’09. New York, NY, USA: ACM, 2009, pp. 1043–
1052.

[22] C. Thompson, J. White, B. Dougherty, and D. C. Schmidt, “Optimizing
Mobile Application Performance with Model-Driven Engineering,” in
Proceedings of the 7th IFIP WG 10.2 International Workshop on
Software Technologies for Embedded and Ubiquitous Systems, ser. SEUS
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 36–46.

[23] G. Rose, “Mobile Phones as Traffic Probes: Practices, Prospects and
Issues,” Transport Reviews, vol. 26, no. 3, pp. 275–291, 2006.

[24] P. Leijdekkers and V. Gay, “Personal Heart Monitoring and Rehabilita-
tion System using Smart Phones,” in Proceedings of the International
Conference on Mobile Business. Washington, DC, USA: IEEE Com-
puter Society, 2006.

[25] H. Giese, B. Rumpe, B. Schätz, and J. Sztipanovits, Eds., Science and
Engineering of Cyber-Physical Systems (Dagstuhl Seminar 11441), ser.
Dagstuhl Reports. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011, vol. 1(11).

[26] M. Heemels and G. Muller, Boderc: Model-Based Design of High-
tech Systems, 2nd ed. Den Dolech 2, Eindhoven, The Netherlands:
Embedded Systems Institute, March 2007.

[27] P. Fritzson and V. Engelson, “Modelica - A Unified Object-Oriented
Language for System Modelling and Simulation,” in ECCOP ’98:
Proceedings of the 12th European Conference on Object-Oriented
Programming. Springer-Verlag, 1998, pp. 67–90. [Online]. Available:
http://www.modelica.org/documents/ModelicaSpec32.pdf

[28] G. Nicolescu, H. Boucheneb, L. Gheorghe, and F. Bouchhima, “Method-
ology for Efficient Design of Continuous/Discrete-Events Co-Simulation
Tools,” in High Level Simulation Languages and Applications, J. Ander-
son and R. Huntsinger, Eds. San Diego, CA: SCS, 2007, pp. 172–179.

[29] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong, “Taming Heterogeneity – the Ptolemy
Approach,” Proc. of the IEEE, vol. 91, no. 1, pp. 127–144, January
2003.

[30] C. G. Cassandras, Analysis and Design of Hybrid Systems: a Proceed-
ings Volume from the 2nd IFAC Conference. Elsevier, Jun. 2006.

[31] M. Renger, G. L. Kolfschoten, and G.-J. Vreede, “Challenges in Col-
laborative Modeling: A Literature Review,” in Advances in Enterprise
Engineering I, ser. Lecture Notes in Business Information Processing,
J. L. G. Dietz, A. Albani, J. Barjis, W. Aalst, J. Mylopoulos, M. Rose-
mann, M. J. Shaw, and C. Szyperski, Eds. Springer Berlin Heidelberg,
2008, vol. 10, pp. 61–77.


