
Meta-Model and Platform for quickly build software
applications

Yuri Rogozov, Alexey Degtyarev
System analysis and telecommunications.

Taganrog Institute of Technology, Southern Federal University
Taganrog, Russia

rogozov@tsure.ru, alexey.a.degtyarev@gmail.com

Abstract— In the development of large and complex applications
is difficult to satisfy unique customer requirements without
stretching development time. The need to support adaptability of
applications is growing because of dynamic business processes.
We analyzed of the literature in this domain. The analysis has
shown that combination of the existing paradigm of application
development is a good approach to support adaptability of
business applications. This paper presents a multi-layered Meta-
Model for enterprise applications and platforms that we have
created on our multi-layered Meta-Model.

Keywords - metamodel, metamodelling, meta-design, business
application development platform, automation.

I. INTRODUCTION
The creation of business applications based on client-

server architecture is still an urgent task. In this paper we will
pay attention to the corporate business applications. The main
features of such applications are heterogeneity (heterogeneity)
of business information and variability processes that use this
information. This creates a lot of problems in the development
of business applications. Many of the studies on software
project failures have identified difficulties of accurately
capturing user requirements as a major contributor to failure of
software development projects [1]. In the domain of software
engineering a lot of effort has been spent to improve methods
of capturing requirements. However, experience has shown
that requirements cannot be initially captured completely and
correctly [2]. In our opinion they are not static, but
dynamically changing, evolving along with the world around
us. To solve this problem software engineering proposed
iterative approach to application development. The main idea
of the approach is the speedy transfer of user working version
[3]. Given the scale and complexity of corporate business
applications, we can confidently say that even when using an
iterative approach, the average time of development business
applications is not less than six months. Approved by the
functional and data structure in an early iteration of the project
completion can be drastically revised by future system users.
It will make some additional risks in the development process.
That is why the support of business applications adaptability
appears [27]. On the other side the market of the modern
information technology, shows that universal automation
solutions are ineffective [28], so the business application must
be created individually for each customer [29].

To solve the above problems, we need such software tool
that would allow: significantly reduce the complexity of each
iteration; ensure the creation of individual decisions at
different levels of detail (either total subsystem, or individual
business functions); modify the functional and data structures
at no additional cost, which were approved in early iterations.

Analysis of existing approaches to application
development allowed us to determine that each of them
focuses on a specific level of granularity, i.e. strictly defined
in advance the items that are indivisible or atomic. In some
approaches to such elements include operators of classical
programming languages, classes and objects [4], in other
cases, they include the whole program modules [5]. However,
in our opinion, the approach Meta – Design is the most
promising. [6]. A comparison of these approaches with its
problems allowed us to assume that a multi-level Meta -
Model platform was the most promising. To understand what
must be the Meta - Model, we have generalized our
knowledge in developing enterprise business applications.
Then we built meta-level aspects of the model that described
the business applications. This Meta-Model should be
reflected in the Meta - Model implementation. We relied on
our experience and knowledge and tried to make it more
concrete. We chose the concept of service-oriented
architecture as a starting point [7]. In this paper we propose a
multi - level Meta - Model and platform for building client /
server enterprise business applications.

Platform with developed AV Script scripting language and
the unique structure of an independent data base [8] allow us to
bind together the software details of different levels - from the
software modules that implement support for business process
or some of its functions to a low-level programming constructs
perform mathematical operations and access to business
information.

II. ANALYSIS OF EXISTING APPROACHES TO SOFTWARE
BUILDING

During the development of software engineering a number
of approaches to software development have formed. These
approaches have both positive sides and restrictions. The most
important methods of software development , proven during
its existence presented below: a) Classical programming [9];
b) Generative programming [10]; c) Model Driven
(Architecture, Design, Engineering) [11]; d) Feature-Driven

Development [12]; e) domain specific (languages ,modeling,
design) [13]; f) Metaprogramming [14]; g) Software factory,
Frame Technology [15].

Figure 1. Existing approaches to software building

In our view, the criteria by which we can compare the
approaches are following:

• level of personalization of the solutions determines
how much depth we take into account the unique requirements
of user (if the user wants a button, which shimmers like a
rainbow, and we fulfill his requirement, it means that degree
of personalization is high, if we make the four colors button
only, because we have such templates, it means that degree of
personalization is lower);

• level of formalization of the programming process,
determines which way displaying the business problem in an
existing space of solutions the process is carried out. (For
example, if an application requires a creative activity for
transformation of business models processes then the degree
of formalization is low, and if an application has to perform a
set of strictly defined rules for transformation of business
models process then the degree of formalization is high) [16].
Then a comparison of approaches could be presented
graphically in the following way (see Figure 1). The motion
on the dotted line from left to right in Figure 1 shows the
increasing abstraction level. So, to create a platform that
would allow to reduce the complexity of each iteration, we
need to maximize the formalization of the software
development process.

Figure 1 shows that requirements to the platform could be
met using Meta – design approach as the most attractive in
accordance with our requirements [17].

However, the development of software at different levels of
detail by constructing a common meta-model is most likely not
succeeded. This is primarily because of constructing the
complexity single universal Meta – Model [18, 19, 20].
Assumes that the Meta - Model should be multilevel and meet
the following requirements: ensure that changes in the level of
detail (see Figure 1); ensure the maximum degree of software
formalization development processes.

III. ASPECTS THAT CHARACTERIZE THE CORPORATE
BUSINESS APPLICATIONS

We believe that the modern corporate business
applications aimed at collecting, storing and processing
information in the most general case characterized by the
following aspects (see Figure 2): work flow logic; graphic user
interface; decision logic; data manipulating function; business
objects. Note that some researchers in the software field have
a similar view [21],[22],[23],[24], it makes our judgments
more reasonable.

Work flow logic - an aspect that reflects the functions
sequence performing, business applications and management
tasks.

Graphic user interface - an aspect that reflects the
interaction of users with information and business application.

Decision logic - an aspect that describes the
implementation of logic solutions (calculation formulas,
processing information about Business Objects).

Data manipulating function - determines how to work with
data that represent real business objects. The standard
functions for manipulating data include: the input new data,
edit existing data, viewing of existing data, delete existing
data.

Business Objects - a simplified model of real business
objects, which characterizes them as the way which is
important for building enterprise business applications.

Figure 2. Aspects that characterize the corporate business applications

Figure 2 shows the Meta – Model aspects level that
characterize the corporate business applications. This Meta -
Model is abstracted from the domain and business objectives,
i.e. is interdisciplinary. However, if we attempt to deepen it
(refine) to a specific business problem we will be faced with
problems. First, these problems are associated with a set of the

Identify applicable sponsor/s here. If no sponsors, delete this text box.
(sponsors)

domain knowledge, which subject that works out in detail
should know. Secondly knowledge of implementation
technologies to create the functioning business applications is
required. In other words, it is not enough to work out in detail
aspects of the Meta - Model to the level of a specific business
problem. It is necessary to display the specific business
objectives for space implementation. Today it is a serious
problem. Assume the following: concretized aspects of the
Meta - Model elements, will find their place in any of the
approaches to building software that depicted in Figure 1.

Then conceptually multi-layered meta-model space
realizations can be represented as a plane that is divided into
different levels of abstraction (see Figure 3). In this view, you
can find the correspondence between the abstraction level
above approaches and input levels of abstraction space
realizations (see numerals in Figures 2 and 3). Depth of detail
and level of abstraction is limited only by the degree of our
knowledge and technology developments i.e. can grow
indefinitely.

Figure 3. Mapping aspects

IV. MULTI-LEVEL META - MODEL CORPORATE BUSINESS
APPLICATIONS

Multi-level Meta- Model was constructing by using the
idea behind meta-approach of building prototypes of the object
[25]. To determine the highest level of abstraction layered
Meta- Model we used the principle of service-oriented
architecture [7]. This principle bases that any enterprise
business application is represented as a collection of loosely
coupled modules. At the level of detail, where the module is an
atomic unit, a business application can be represented as
follows - Figure 4. By analogy with the terminology of object-
oriented approach [26], the module is an object that
encapsulates a user interface and business logic. Inter-module

interfaces and interfaces to the database are external interfaces
of the module. In Figure 4, weak ties are reflected by dotted
lines. In accordance with Figure 3, consider how aspects of
enterprise business applications are displayed at the proposed
area of implementation. Analyzing the figures 2, 3 and 4 set a
direct mapping is characterized by the corporate business
applications in the proposed space realizations.

Figure 4. Meta-Model on level modules

Business objects are displayed in the database (Data Base),
the logic of the process of business applications in the inter-
module interfaces (Module interface), user interfaces and

business logic in the module (Module), the standard functions
for manipulating data in an interface to the database (data base
interface). This map is shown in Figure 5. Displays the next
level of detail will be similar.

Figure 5. Mapping aspects of one level

Let’s decompose the module into smaller components (see
Figure 6) and introduce the corresponding concepts.

Module - is a certain amount of functional units (FU).
They are strongly connected (tightly coupled) with each other
and have minimal connection with the functional units (FU) of
other modules. One of the functional units have to be the main
(working with the central or main object in the context of the
business objectives of the module) and the remaining
subsidiaries.

Figure 6. Meta-Model on level functional units

We showed Interface intermodule interactions (Module
Interface) interface and work with DB (Data Base interface)
on Figure 6 because the functional units themselves may
interact with the database and functional units of other
modules. In reality, the module interface and data base
interface are located in the internal structure of functional
units (FU). The solid lines in Figure 6 show that the functional
units are combined into modules according to the principle of
tightly coupled. We introduce the concept of functional units
and continue to decompose.

Functional unit of the module (FE) - a graphical element
(shape, window, Web page, etc.) which contains a set of
elementary operations (EO). They are intended for display,
modify, add or remove a business object's attributes or their
values. Elementary operation may cause, another elementary
operation or a functional unit of the module and perform other
similar operations. In other words, a functional unit allows for
a certain set of functions associated business processes.
Main functional unit (MFU) - functional unit of the module
with the highest degree of connectivity (informational or
functional) with other functional units of modules and
comprises a master form. The remaining functional units of
the module are subject-forms. We can lead explorer in MS
Windows as an illustration. It folders and files are central to
the business objects, so a window displaying them with all its
functionality, is the primary functional unit. In turn, the
window control which users can share any file or folder it can
be a child or a subordinate.

Figure 7. Meta-Model on level Graphic Element

The graphic element of a higher order (see Figure 7) - is a
component, which is presented graphically in the window
form or the screen. It has events and properties and contain a
set of elementary operations. Events and properties of the
graphical elements of higher order and a set of elementary
operations together provide a complete description of the
functional units of the module. Elementary operations can be
arbitrarily interact with each other and interact with other
functional units. There are two important limitations: an
elementary operation cannot directly interact with the unit
belonging operation to another graphic element, a functional
unit of the module always has one and only one graphic
element of a higher order, which represents a box shape of the
screen or Web page.

Events - this is actually class methods (in the terminology
of object-oriented programming) implements a specific
graphic element (such as a mouse click - OnButtonClick (), or
loss of window focus - FocusOff (), or closing the window -
OnClose ()), each event if so stipulated requirements for
business applications, can have its own handler.

Properties - the attributes that characterize a particular
instance of a graphical interface. The properties of the graphic
element may include the following parameters: name,
description, the form position the top left corner along the axis
X; the form position of the upper left corner along the axis Y;
height form, the breadth of forms; color, font settings (font
name, font size, bold, italic, underline), the visibility of the
form (visible / invisible).
Elementary operation (EO) - is an elementary graphical
elements (buttons, panels, switch, etc.), that connected with a
single action function of a business process. The structure of
its metadata elementary graphic element is very similar to the
graphic element of a higher order. There is one exception, to
be exact an elementary graphic element cannot contain
elementary operations. Everything else is absolutely equally:
events, properties and handlers. Let`s consider the structure of
the handler (see Figure 8). The structure is identical for both
the graphic element of a higher order (GE) and for an
elementary graphic element (EGE).

Figure 8. Meta-Model on level handler event

The operators of arithmetic and logic, mathematical
functions, operators, loops and conditionals - these operators

are designed to implement the business logic (see Figure 1),
their collection may vary.

Function call's graphic elements (GE) of higher order,
function call's elementary graphical elements (EGE), options
to set properties for GE and EGE - may represent a limited
number of universal adaptive functions (performance depends
on the method of implementation and using the framework).

Data Manipulating function - designed to implement
interfaces with databases. Data Manipulating function can be
variable. For stored objects in our database ("Object", "object
attributes", "The values of object attributes") we released 12
basic functions for manipulating data. In case of need this set
of functions can be expanded. The handler must have a certain
syntax. The handler`s syntax can be a modern graphical
syntax, built on the cognitive perception of reality as well as
the classic text syntax.
A result of realizations stepwise decomposition of elements a
Meta - Model was obtained. The Meta - Model has a divergent
level of detail. Multi-level meta-atomic elements at the
deepest level of detail can be considered: the elements of an
event handler, basic graphic elements and graphic elements of
the highest order. The last two sections cannot be divided but
can be customized. Generalized multi-layered meta-model is
shown on Figure 9.

Figure 9. Meta-Model on all levels

We should note that at all levels either explicitly or
implicitly event element as part of an integration is used. The
syntax of the handler describes the event.	

V. A PLATFORM TO QUICKLY BUILD BUSINESS
APPLICATIONS

Our platform is based on the multi-level Meta – Model.
The Meta - Model presented above has been implemented as
bundles of desktop applications and server. Server stores the
description of the components, business information and all
service information. We tried to make the most simple quickly
creation environment of business applications. It contains only
the most necessary elements for building business
applications. We will see a concise workspace, when we

launch Primius platform. Since launching platform Primius,
we will see a concise workspace. Main navigation menu
consists of 2 major categories: Administration and modules
that are available in selected business applications (see Figure
10). Figure 10 shows that the current business application
consists of 3 modules - Drugstore, Clinical nutrition,
Employee.

The modules are workstations of employees in the
enterprise information system. Each application contains
several functional units. The work of the existing modules is
no differ from other business applications that is why it will
not be considered. Figure 11 shows the category of platform
administration. This section consists of three sections:
Configuration, System Editor, and Business Object Editor.
The Configuration partition partially consistent with the
hierarchy of levels of multilevel Meta - Model we have
developed. The creation and configuration the necessary
business applications are made by this section. Section System
Editor is designed to create new and modify existing items
that are available in the categories section of Configuration.
The work of Configuration partition always starts with the
choice of Domain. Any further action should be tied to a
specific application, so long as the current application is not
specified, the other tabs will be unavailable.

Figure 10. Modules those are available in selected business applications

A configuration on the modules is done by adding them to the
list of available in the selected application modules. Every
time you add a new module to the application, the metadata of
the business data changes. Features of the implementation of
this framework were considered in [8]. Configurations of next
detail levels of elements realizes similarly. Figure 12 shows
the Business Objects Editor. Any business object (real or
abstract) is displayed by directory of objects that reference the
attributes and the type of relationship between objects and
attributes. All business objects and their attributes are linked
to a specific system. There are two ways to create or change
the structure of business data: automatic and manual.

Figure 11. Modules configuration

Automatic mode is available when developer operating at the
level of modules. In other cases, the structure of business data
should be prepared manually by editing the business objects.

Figure 12. Business object editor

VI. CONCLUSION
In this article we looked at popular approaches to

development programs and analyzed them for the important
criteria to us. We concluded that to solve the problems of
software development which relate to development time,
individuality and flexibility of these solutions the platform
should use a combination of approaches Meta design and
factory applications. We have also assumed that the basis of
the platform should be based on a multi-level Meta - Model.
Analysis of the aspects characterizing the corporate business
applications enabling us to understand what kind of needs
multi-level Meta - Model should be. Our platform is based on
the Meta - Model that we have developed. We have developed
a unique structure of the data [8] to implement the ideas
embodied in the Meta - Model. The structure is a common

repository that describes elements of Meta, Meta data
describing the business objects and data from which these
objects work. This platform allows reducing the demands on
staff. To explore this indicator we have attracted students to
develop real-world business applications. Students were at 2
and 3 year bachelor's degree programs in "Computer Science
and Engineering." One of the groups studied the C # and SQL
in the IDE Microsoft Visual Studio 2005, another group of
students studying specialized algorithmic language AV
Scripts, SQL and basic knowledge of operating principles in
the platform Primius. Our research group specializes in the
development of fairly large business applications for the social
protection institutions. We detected the following fact: in both
groups to obtain basic knowledge took on average a similar
time. However, the results between the groups were very
different. Figure 13 reflects the evaluation of professional
commitment to the development of applied business
applications of groups.

Figure 13. Comparison Chart

When we research and test platform for the control groups
we identified areas which require further investigation. One of
the identified areas was the task of generation automating the
SQL queries. We want to rid the developers using our platform
from having knowledge of SQL - they need to concentrate on
the business structure of the data but not on relational algebra.
This work demonstrates that a natural way of development of
software engineering is raising the level of abstraction. Our
results show that the combination paradigm of Meta - Design
and application factories can produce very good results.

REFERENCES

[1] Standish_Group (1995). Chaos. THE STANDISH GROUP REPORT.
[2] Tao Yue, Lionel C. Briand and Yvan Labiche, "A systematic review of

transformation approaches between user requirements and analysis
models". //Springerlink.com

[3] Craig Larman, Victor R. Basili (June 2003). "Iterative and Incremental
Development: A Brief History"

[4] Gafter, Neal (2006-11-05). "Reified Generkics for Java"
[5] Esteves, J., and Pastor, J., Enterprise Resource Planning Systems

Research: An Annotated Bibliography, Communications of AIS, 7(8)
pp. 2-54

[6] Cesar Gonzalez-Perez, Brian Henderson-Sellers Metamodelling for
Software Engineering, Wiley, 2008, 219 pages

[7] Bieberstein et al., Service-Oriented Architecture (SOA) Compass:
Business Value, Planning, and Enterprise Roadmap (The
developerWorks Series) (Hardcover), IBM Press books, 2005.

[8] Youri I. Rogozov, Alexander S. Sviridov, Sergey A. Kutcherov,
Wladimir Bodrov. Purpose-driven approach for flexible structure-
independent database design. Proceedings of the Fifth International
Conference on Software and Data Technologies, ICSOFT 2010, Volume
1, p.356-362

[9] Stroustrup, Bjarne (1997). "1". The C++ Programming Language (Third
ed.).

[10] Krzysztof Czarnecki and Ulrich W. Eisenecker Generative
Programming - Methods, Tools, and Applications Addison-Wesley,
2000, 864 pages

[11] Anneke Kleppe , Jos Warmer , Wim Bast MDA Explained: The Model
Driven Architecture(TM): Practice and Promise Addison-Wesley
Professional, 2003, 192 рages

[12] Palmer, S.R., & Felsing, J.M. (2002). A Practical Guide to Feature-
Driven Development. Prentice Hall. (ISBN 0-13-067615-2)

[13] Steven Kelly, Juha-Pekka Tolvanen Domain-Specific Modeling Wiley-
IEEE Computer Society Press,2008, 448 pages

[14] David Abrahams, Aleksey Gurtovoy C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley Professional , 2004, 4000 pages

[15] Jack Greenfield and Keith Short Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools Wiley, 2004,
500 pages

[16] Рогозов Ю.И., Актуальные проблемы и перспективные направления
в области построения информационных систем и процессов:
сборник статей международной научно-технической конференции.
Таганрог: изд-во ТИ ЮФУ, 2010 г., стр. 9-15

[17] Ye, Y., Fischer, G.: Designing for Participation in Socio-Technical
Software Systems. In: Stephanidis, C. (ed.) Proceedings of 4th
International Conference on Universal Access in Human-Computer
Interaction, Beijing, China, pp. 312–321. Springer, Heidelberg (2007)

[18] Schwabe, D., G. Rossi, et al. (1996). Systematic hypermedia application
design with OOHDM. seventh ACM conference on Hypertext,
Bethesda, Maryland, United States, ACM Press.

[19] Fratenali, P. and P. Paolini (1998). A conceptual model and a tool
environment for developing more scalable and dynamic Web
applications. EDBT 98, Valencia, Spain

[20] Schewe, K.-D., B. Thalheim, et al. (2004). Modelling and Stories in
Web Information System. Information Systems Technology and its
Applications (ISTA), Salt Lake Ciy, Utah, USA.

[21] Visual Rules – www.visual-rules.com/dynamic-applications.html
[22] Athula Ginige. Meta-design paradigm based approach for iterative rapid

development of enterprise WEB applications. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, p.337-343

[23] Webratio – http://www.webratio.com
[24] Mendix – http://www.mendix.com/
[25] Yuri Rogozov, Wladimir Bodrow, META-APPROACH FOR

CREATION OF OBJECT PROTOTYPES. Proceedings of ICERI2010
Conference. 15th-17th November 2010, Madrid, Spain.

[26] Grady Booch, Object-Oriented Analysis and Design with Applications,
2007.

[27] L.N. Lyadova et al., Implementation of distant learning portals based on
CASE-technology METAS, // International Journal "Information
Technologies and Knowledge", 2008. Т. 2. № 5. C. 489—495

[28] L.N. Lyadova, V.Lanin, Documents Management in Dynamically
Adaptable Systems Based on Metamodelling // Proceedings of the
Congress on Intelligence Systems and Technologies “AIS-IT’10”.
Scientific publications in 4 volumes. Moscow: Physmathlit, 2010, Vol.
4. , Moscow, 2010.

[29] Fischer, G. and E. Giaccardi. Meta Design: A framework for the future
of end user development. End User Development: Empowering People
to flexibly Employ Advanced Information and Communication
Technology. H. Lieberman, F. Paterno and V. Wulf, Springer. 9: 427-
457

