
Technology for creating 3D realtime applications in 

Android OS 
 

Polotnyanschikov I.S. 

mjollneer@gmail.com 

Scientific advisor: Zalogova L.A. 

zalogova.la@gmail.com

 

Software and Computing Systems Mathematical Support Perm State University 

Perm, Russia 

 
Abstract— This article discusses the development of technology 

for creating 3D realtime applications for OS Android. Described 

tools selection, data domain analysis and realization. Also 

described process of creating new light model for luminous 

segment. The results of the work are illustrated with screenshots 

of real application. 

Keywords-Androd; 3D graphics; Opengl ES; OOP; shaders; 

lighting model 

I. INTRODUCTION 

Creation of 3D applications for Android OS became 
especially actual after devices using this platform spread over 
the world, outstripping its rival Apple iOS.  

Devices with Android OS belong to differing classes of 
performance and appointment – from a MP3 players and a 
watches to tablet computers. Users of this devices often require 
high-quality 3D visualization in real time. 

The purpose of the work is to develop technology of 
creation of interactive applications for the mobile devices using 
3D graphics. Achievement of this purpose require to solve the 
following problems: 

 investigate features of development 3D applications in 
Android OS, 

 prove use of an object-oriented paradigm, 

 design and implement hierarchy of classes for creation 
of 3D appendices. 

II. CURRENT STATE OF 3D GRAPHICS IN ANDROID 

Nowadays best engines of 3D graphics in Android 
presented by following two categories: 

A. Commercial engines 

Best commercial engines are Corona SDK and UNITY 3D 
[9, 10]. No doubt, they offer very powerful cross platform 
solutions. Library of different multimedia resources, music 
subsystem, physics emulation, strong animation and most 
modern visual effects. Customers also get professional support 
and many tools for development 3D applications. And the cost 
from $200 to $1500 annually. 

B. Free engines 

Best free engines are AndEngine and LibGDX [11, 12]. 
They both corresponds big difficult systems with many 
functions. Both of them contains many subsystems, like sound, 
file i/o, animation, physics. LibGDX is crossplatform, 
AndEngine is 2D-only. Support here is forums and manuals. 

Note now, that cross platform source code is noticeably 
slower than native, because of different wrapping technologies. 
Also high complexity made mentioned engines difficult to 
understand and use.  

So, taking into account all of the above, seems urgent to 
develop easy-to-use technology for creating android-only 
hardware accelerated real-time 3D graphic. 

III. INTERFACE CHOICE 

There are different approaches to render graphics in 
Android [7]. OpenGL ES library was chosen as the hardware-
software interface. It is recommended by developers of 
Android for creation of high-efficiency applications [3]. 
Besides, OpenGL ES allows to reach the most qualitative 
result. 

At present the majority of mobile devices work under 
control of Android 2.3 or more senior version. In these devices 
OpenGL ES 1.0 and 2.0 is supported at the same time. So there 
is a question of a choice.. Each subsequent OpenGL version for 
the personal computer comprises all functionality of the 
previous versions. At the same time senior and younger 
OpenGL ES versions contain essentially different functionality. 
Therefore, they solve identical problems in qualitatively 
different ways. For example, the programmer should create a 
part of functionality of ES 2.0 by means of special programs – 
shaders. It is impossible to recognize the senior version 
unequivocally better than the younger. It is necessary to choose 
the version allowing in the best way to achieve the object of 
work. This choice will directly affect structure of the developed 
technology. 

IV. OPENGL ES VERSION CHOICE 

During comparison of OpenGL ES versions distinctions in 
their syntax [1,2] and functionality were analysed. Results 
presented in tab. 1. 



TABLE I.  RESULT OF COMPARING OF OPENGL ES VERSIONS 

Criterion OpenGL ES 1.0 OpenGL ES 2.0 

Code amount Less More 

Program structure More easy More difficult 

Result Worse Better 

Number of 

supported effects 

Less More 

Perfomance Less More 

Rendering setup By means of 

parameters of 

rasterization, 

texturing, lighting, 

etc. 

By means of 

shaders 

OpenGL ES 1.0 is suitable when speed of development is 
more important than image quality. But in this work 
performance and quality of result interests us first of all. So 
version 2.0 corresponds us in the best way. In ES 2.0 growth of 
number of geometrical objects cause the size of the program 
considerably increases. 

Note, that there are different paradigms available for 
anfroid-developers. For example procedural paradigm and even 
workable bindings for OpenGL and LISP (functional 
paradigm) [5,6]. But, for effective management of large 
amount of a code the object-oriented paradigm was selected.  

V. CLASS HIERARCHY DEVELOPMENT 

In the course of creation class hierarchy it is necessary to 
consider features of data domain and the instrument of 
implementation. The data domain (a 3D graphics) is described 
in such terms as the camera, geometrical object, a material, a 
light source. The developed hierarchy includes the classes 
corresponding to terms specified above. However, their fields, 
methods and relations substantially depend on features of 
OpenGL ES 2.0. 

For detection of features of ES 2.0 the test program 
consisting of several geometrical objects, shader objects and 
attributes of vertexes was written. Specific organization of this 
program allowed to select repeating parts of a code and data 
with similar behavior. This features became fields and methods 
of classes. 

The developed object model were named "Lit Engine". In 
paragraphs A-D classes of LitEngine grouped by implication 
and described in outline. 

A. Creation of geometrical objects 

Containers of data – the abstract class LitDataContainer and 
its successors. They intended to storage attributes of any 
dimensionality and assignment. 

Factory of data – the abstract class LitDataFactory and its 
successors. They intended to filling data containers with the 
attributes describing one geometrical object. 

A transformation matrix – the class ModelViewMatrix. It is 
intended to storing and processing matrix in terms of 
transformation of coordinates. 

The universal object – the class Universal3DObject. It is 
intended for storage all information describing one geometrical 
object. 

B. Light setup 

Material – the abstract class LitAppearance and its 
descendants. They intended to storing settings for the specific 
shader program. 

The effect manager – LitSpecialEffect and its descendants. 
Effect manger can tune one shader program for one universal 
3D object using one specified material."Material". 

C. Camera setup 

Projection matrix - the class ProjectionMatrix. It is intended 
to storing and processing matrix in terms of projection of 
coordinates. 

The camera – class LitCamera. It is intended to operate a 
projection matrix in terms of setup of the camera. 

D. Rendering 

Shader program – class glslProgramm. It is intended to 
encapsulate all operation with one shader: loading, 
compilation, linking, setup and activation. 

VI. DEVELOPMENT OF NOT POINTWISE LIGHT SOURSE 

MODEL 

Let’s take a close look on process of development new light 
model. 

A. Formulation of the problem 

Lighting calculation by means of shaders traditionally use 
models of pointwise light sources. For example Ward's models, 
Lambert, Gooch, Blinn and Phong [13]. These models 
appeared preferentially to simulate more and more difficult 
materials. 

 However, obviously, it is not enough in those situations 
when it is impossible to neglect the form or the sizes of a 
source – a lamp shade occupies essential volume and creates 
dim shadows, the lamp of day lighting shall illuminate like 
shining cylinder and be mirrored like a bright straight line. The 
screen of the computer shall be processed as rectangle 
occupying a certain fixed space and creating an adequate flare 
on smooth surfaces. 

Let's call such objects not pointwise, i.e. consisting of more 
than one point. 

This task is certainly solved by means of global 
illumination models in which emit and reflect light can any 
polygon. Such decision provides the high-quality image, 
generated for the long time every frame. For real-time 
applications similar physically accurate solution was not found 
by the author. 

Within this work the problem of simulation of not 
pointwise light sources was posed and solved. 



B. Solution 

First of all let’s describe, how lighting from a luminous 
segment empirically shall be created. 

 

Figure 1.  Desirable light for luminous segment 

On fig. 1 we see how diffuse (left) and specular (right) light 
should spread in space near luminous segment. 

Note that diffuse lighting is the brighter where the 
perpendiculars lowered from a segment to a surface. 

Author made the assumption that in case of calculation 
diffuse lighting of each separate fragment it is possible to 
replace a luminous segment without loss with one pointwise 
light source. This pointwise source at the same time should 
belong to a segment and be placed as close to a lighted 
fragment as possible. Searching of such points on a segment 
for different surface fragments is schematically figured by 
orange dotted lines. 

Let's note that the mirror flare is brightest on fragments 
which reflect a vector of a look v as precisely into a segment as 
it is possible (blue dotted lines). 

We will make the assumption, based on reasons of common 
sense, that in case of calculation specular lighting for each 
surface fragment it is possible to replace a luminous segment 
with one pointwise light source without loss. This source shall 
belong to a straight line passing through a segment. At the 
same time it must be as close to reflected eye vector v as 
possible. 

In other words, summary it is necessary to calculate 
coordinates of two light sources – the first will give us 
diffusion component, the second – specular. 

It is necessary to calculate these coordinates for each 
surface fragment for every frame. 

Specific values of diffusion and specular components can 
be calculated by means of any pointwise illumination model, 
for example Blinn. 

Below illustrated (fig. 2) a model of diffusion light for 
segment and one surface fragment. 

 

Figure 2.  Geometrical model of luminous segment 

P – point for which intensity computation is made (surface 
fragment) 

,  – coordinates of the ends of a luminous segment 

L – required pointwise diffuse light source 

d – distance to a straight line passing through a segment 

Computation of required coordinates without intermediate 
formulas:  

    

  

The received formula is correct, only if the point L belongs 
to a segment. If point L is outside of segment, it is necessary to 
replace it with one of the segment ends. 

For computation of coordinates of the second light source it 
is necessary to find a point on segment close to reflected v 
vector. 

  

Equation for coefficient m will not be shown in this article. 

If m is not between [0,1], it must be replaced with  or .  

Described model was realized via GLES shaders and 
included in LitEngine. 

VII. EXAMPLE OF APPLICATION OF LITENGINE 

Fig. 3 and 4 is the screenshots of demo application running 
on mobile device. By means of LitEngine the scene consisting 
of a set of cubes and illuminated with one luminous segment is 
rendered in real-time (about 20fps and 600 polygons on 
Adreno 205 GPU). It is important that luminous segment create 
adequate diffuse and specular lighting. 

 

Figure 3.  Example of use of LitEngine 



 

Figure 4.  Example of use of LitEngine 

VIII. CONCLUSION 

Possibility of a reuse of the developed hierarchy was 
proved in practice by a means of several demonstration 
applications with a  different set of geometrical and shader 
objects. 

Extensibility of the developed hierarchy is proved by one of 
probable scenarios of extension. For example support of new 
geometry – the torus was added. Torus was completely 
incapsulated in one new class inherited from the abstract 
factory of data. For use of new geometry in the user application 
its  requiring just to rewrite one line of code. 

Thus, the developed hierarchy can be reused in case to 
solve tasks from different data domain (game, simulation 

modeling, advertizing, editors, GIS, augmented reality, etc.). 
Further it is necessary to expand model with additional special 
effects, use JNI [8], include support for external models and 
create more demo applications. 

REFERENCES 

[1] Leech J. OpenGL ES Common Profile Difference Annotated 
Specification 2.0.25. URL: 
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.25.pdf 

[2] Munshi  A. OpenGL ES 2.0 Programming Guide. Boston: Addison-
Wesley, 2009. 457 с. 

[3] Android DevGuide. Graphics URL: 
http://developer.android.com/guide/topics/graphics/index.html 

[4] Imagination Technologies Ltd. Migration from OpenGL ES 

[5] Spare time projects: OpenGL and Lisp URL: 
http://www.mindstab.net/spare-time-projects-opengl-lisp/ 

[6] Lisp and Android SDK URL: 
http://stackoverflow.com/questions/5683543/lisp-and-android-ndk 

[7] Android Developer. Graphics URL: 
http://developer.android.com/guide/topics/graphics/index.html 

[8] Java Native Interface URL: 
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html 

[9] UNITY URL: http://unity3d.com 

[10] Corona URL: http://www.anscamobile.com/corona/index.html 

[11] AndEngine - http://www.andengine.org/ 

[12] LibGDX - http://libgdx.badlogicgames.com/documentation.php 

[13] Light models URL: http://steps3d.narod.ru/tutorials/lighting-
tutorial.html

 

http://www.andengine.org/
http://libgdx.badlogicgames.com/documentation.php

